Ulvan as a versatile biobased polysaccharide for textile and plastic applications

4th International Conference on Bio-based and Biodegradable Textiles and Plastics

<u>Karla Dussan</u>, Ilona van Zandvoort, André van Zomeren, Jaap W. van Hal

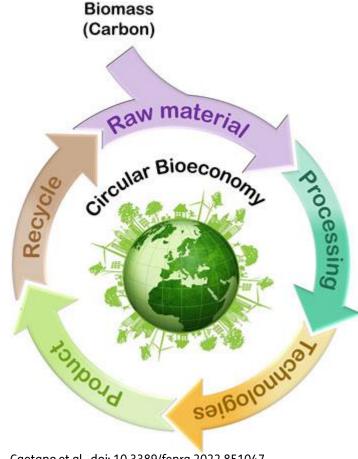
Biobased and Circular Technologies Group, TNO

Ghent | 20 April 2023

Agenda

- 1. Introduction
- 2. Green seaweed & ulvan
- 3. Ulvan applications
- 4. Biorefinery development: Ulvan
- 5. Biorefinery development: Residue valorisation
- 6. Concluding remarks

Our organisation


Biobased & Circular Technologies Group

- Knowledge and technology for biomass conversion into energy, chemicals and materials
- Our partners:
 - Technology suppliers, knowledge institutes
 - Biomass/waste streams producers
 - Biobased products producers

Introduction Circular & Biobased Economy

- EU climate strategy: 40% emission reductions by 2030, climate neutrality by 2050
- Bioeconomy strategy:
 - Sustainable use of natural resources
 - Reduce dependency on non-renewable, unsustainable resources
 - Strengthen EU competitiveness
- Important elements:
 - Sustainable, renewable biomass
 - Resource efficiency
 - Integrated biorefineries

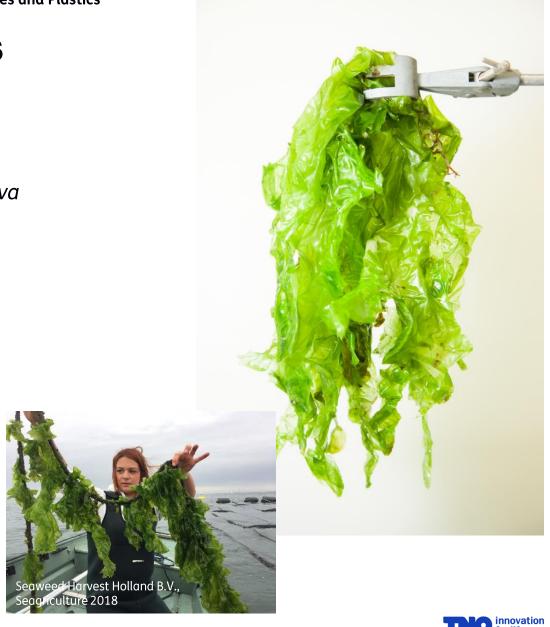

Caetano et al., doi: 10.3389/fenrg.2022.851047

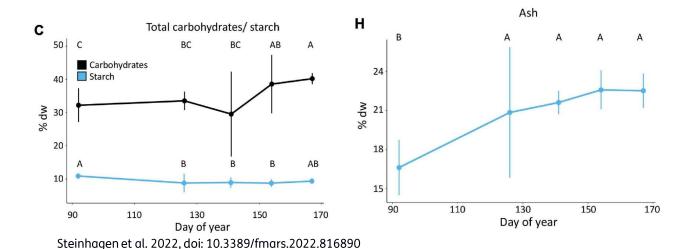
Seaweed for a sustainable future

- Fast growing biomass in European climates
- Large availability of marine environment, no land competition
- Integration with offshore sites, multi-renewable energy platforms and multi-trophic aquaculture
- Richness in (specialty) carbohydrates, protein, bioactives and minerals: Opportunities for biorefining

Contribution to UN Sustainable Development Goals



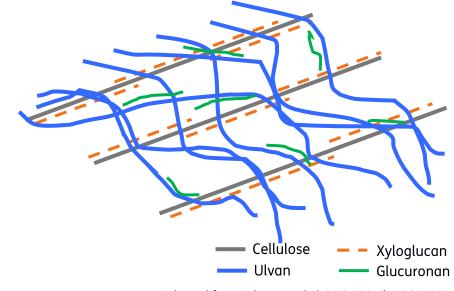



Green seaweed as biomass

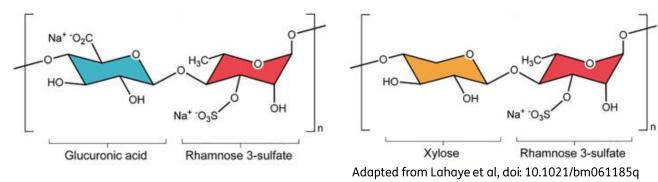
- Commonly known as sea lettuce, incl. Ulva lactuca and Ulva fenestrata
- Highly attractive in the aquaculture sector
- Land-based cultivation: Control over quality, year round supply, high yields, higher costs
- Near/off-shore: Capitalising on the ocean, cost efficient, larger scale production, more challenging control
- **Environmental benefits:**
 - Ecosystem and bioremediation services
 - Removal of green tides

Green seaweed as biomass

- High carbohydrate content but depending on cultivation/harvest
- Land-based: Control over nutrient and cultivation conditions
- Sea-based: Highly dependant on site and harvest time



Composition, dw basis	Range	
Rhamnan	5-10%	
Xylan	1-8%	
Uronic acids	2-7%	
Glucan	10-30%	
Protein	5-30%	
Ash	20-50%	


TNO data, Phyllis2 database, https://phyllis.nl/

Ulvan as new biobased polysaccharide

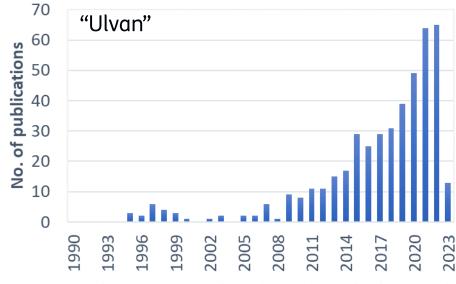
- Water-soluble fraction in cell wall of green seaweeds
- Building blocks: Rhamnose, uronic acids, xylose, glucose, sulphate
- Diverse properties and activities:
 - Unique composition
 - ✓ Mw ranges: 300-1000 kDa
 - Rheological activity
 - ✓ Biological activities:
 - Non toxic, antioxidant, therapeutical
 - Plant defence & stress response

Adapted from Lahaye et al, doi: 10.1021/bm061185q

Ulvan in material applications Thickening agent & hydrogels

- Gel formation behaviour at high concentrations and enhanced with other agents
- High affinity to bind heavy metal ions and compound carrier/delivery
- Diverse partial or fully biobased potential formulations
- Applications:
 - Medical
 - Personal care
 - Environmental
 - Agriculture

Ulvan in material applications Biobased plastics

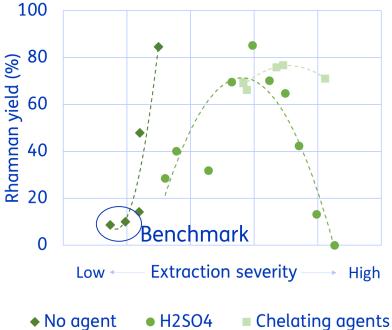

- Natural polymer for solution casting
- Biobased, active, potentially biodegradable
- Plasticizing additives to improve elasticity
- As additive on cellulose based films
- Applications:
 - Edible films and coatings in food packaging
 - Biobased composites

Ulvan in material applications Untapped potential

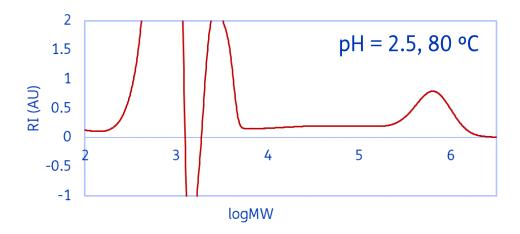
- Functional textiles:
 - Spinning/incorporation into fibres for added functionalities¹
 - Technical and biomedical applications
- Biocomposites:
 - New renewable source of natural polymers
 - Blending with other polymers²
- Biobased chemicals for materials:
 - High value compounds: rhamnose, uronic acids
 - Feedstock for production of furanics and organic acids³

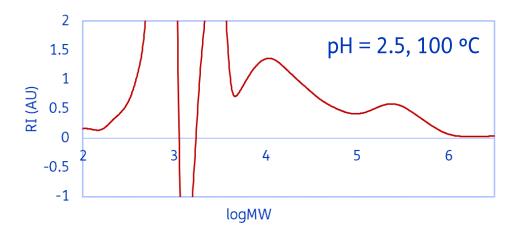
Copyright © 2023 American Chemical Society (ACS). All Rights Reserved.

Biorefinery development: Ulvan extraction


- Challenges:
 - Biomass novelty
 - Availability of ulvan
 - Variability in terms of origin, extraction, purification
- Opportunities:
 - Effect of extraction conditions on ulvan characteristics
 - Downstream processing requirements
 - Seaweed residue valorisation
 - Scale up

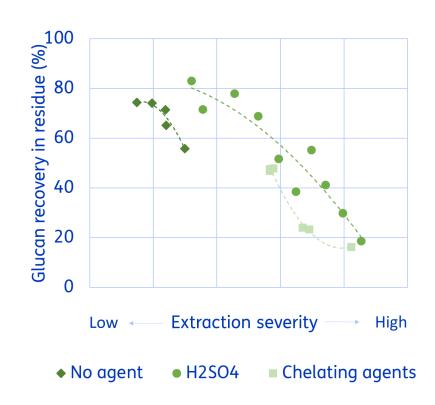
Biorefinery development: Ulvan extraction


- Extraction in aqueous phase at low temperatures
- Parametric screening combining effects of temperature, time and pH (extracting agent)
- Focusing on extraction selectivity (rhamnan yield)
- Severity and extracting agent can improve extraction efficiency



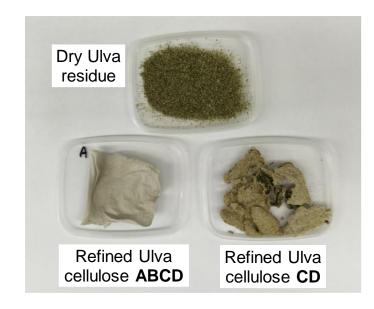
Biorefinery development: Ulvan extraction

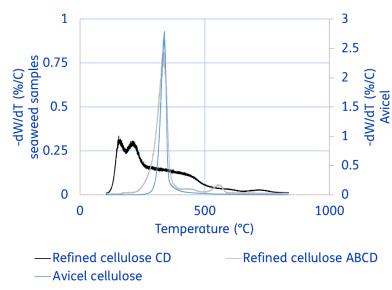
- Increasing severity releases more ulvan
- Trade-off in extraction: Higher yield, different MW distribution
- Other effects in terms of functional units (uronic acids, sulphate, xylan)



Biorefinery development: Cellulose from residue valorisation

- Extraction impacts residue quality: Cellulose extracted in proportion with extraction severity
- Cellulose content in residues depend on starting seaweed composition and extraction conditions
- Cellulose recovery: Targeting removal of remaining fractions


Components	Green seaweed residues	
Glucan	10-39%	
Other saccharides	10-20%	
Protein	5-7%	
Ash	10-26%	



Biorefinery development: Cellulose from residue valorisation

- Low yields and minerals difficult to remove selectively
- Cellulose purity achieved when incl. solvent extraction and oxidative treatment
- Chemically-intensive processing steps:
 - Further optimisation for suitable applications

Biorefinery development: Upscaling

Process development

- Upscaling from g to kg scale: 100L total volume
- Batch wise incorporating relevant downstream separation processes
- Challenges:
 - Higher fraction of degradation products
 - Solid-liquid separations

	Rhamnan yield % Poly / Mono	Residue yield % dw	Glucan recovery %
g-scale	85 / 9	50	52
Kg-scale	67 / 20	19	28

Grinding/ milling

Hydrothermal processing (20-100L)

Solid-liquid continuous separation

Membrane filtration

Concentration & stabilisation

Concluding remarks

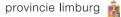
- Green seaweed: New biomass value chain for a sustainable European bioeconomy
- Opportunities in the implementation of polysaccharide ulvan in material applications due to its functionalities and properties
- Green seaweed biorefinery opportunities:
 - Ulvan extraction approach: Process efficiency, DSP & product properties
 - Upscaled extraction: Relevant for advancement of applications
 - Cellulose refining: Intensive and low yields, thus alternative valorisation routes for residues are desirable

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101000632.

Europese Unie Europees Fonds voor Regionale Ontwikkeling

► The ZCORE project is made possible by the European Regional Development Fund and the provinces of Noord-Brabant, Zeeland, and Limburg in the context of OPZuid.


European Union

European Regional Development Fund

