

Driving on seaweed

Major achievements of the H2020 MacroFuels project towards producing biofuels from macroalgae

> Jaap van Hal, Karla Dussan Rojas, TNO Anne-Belinda Bjerre, DTI

e-EUBCE / 7 July 2020

www.macrofuels.eu

Contents

- Objectives and concept
- Achievements:
 - Cultivation
 - Stabilisation & storage
 - Fractionation & conditioning
 - Biofuel production
 - Cost drivers and sustainability aspects
- Conclusions and outlook

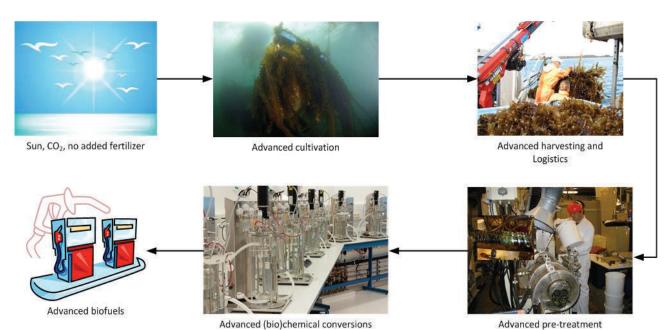
- ✓ Links to resources throughout this presentation.
- ✓ You can also visit our virtual **TNO Biomass programme** booth for a chat!

Main Objective

MacroFuels aims to develop technologies to produce advanced liquid biofuels from seaweed for transportation.

The targeted biofuels are ethanol, butanol, furanics and biogas.

e-EUBCE 2020 / Driving on seaweed


www.macrofuels.eu

3

Main Objective

Concept

Advanced cultivation

Rotating crop scheme, year around harvesting Automated harvesting concept

Pretreatment and fractionation

Economic feasible storage Enzymatic and chemical hydrolysis to yield fermentable sugars

Improved biofuel production

Fermentation of algal sugars to bio- ethanol and butanol Conversion of algal sugars to furans (mg scale to kg scale)

Integral sustainability of MacroFuels chain

A multi-criteria assessment of MacroFuels biofuels Economic and environmental lifecycle impacts and outlook

e-EUBCE 2020 / Driving on seaweed

www.macrofuels.eu

-

Achievements

Cultivation

- Kelps and green seaweeds on advanced textiles at unprecedented scale (200+m², # sites).
- Novel year-round cultivation successfully proven: 19 kg/l-m.
- Design and test of automated harvesting using textile cultivation sheets.
- New knowledge: Site (eco)types vs. crop requirements, approaches on seeding, timing, coppicing, monitoring, etc.

For more information, visit **Cultivation**

e-EUBCE 2020 / Driving on seaweed

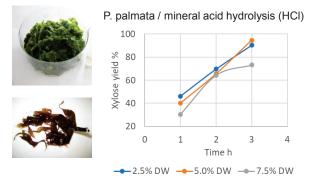
www.macrofuels.eu

7

Storage and preservation

- Biological vs chemical ensiling:
 Achievable with inherent differences in consumption of sugars and costs.
- Ensiling on land and at sea was demonstrated as means of stabilisation and storage (+6 months).
- Variability in ensilability of seaweeds and contamination.


For more information, visit Ensiling



Fractionation and conditioning

- Various approaches developed via enzymatic and chemical treatments.
- Process insights: Enzyme deactivation at high loadings, large mineral acid consumption.
- Conditioning via ion exclusion in SMB and nanofiltration: Removal of +90% minerals and recovery of +90% sugars.

For more information, visit Hydrolysis

e-EUBCE 2020 / Driving on seaweed

www.macrofuels.eu

(

Fermentative biofuel production

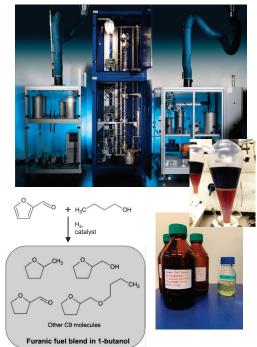
Seaweed-based ethanol

- Various fermentation strategies (SHF, SSF) integrated to algal polysaccharide extraction.
- S. latissima at pilot scale: Ethanol titre
 4.9% v/v, 78% yield.

Seaweed-based Acetone-Butanol-Ethanol

 Via 2 Clostridium strains: 8-15 g/L from P. Palmaria and S. latissima, +90% sugar conversion.

For more information, visit Biorefinery and biofuel production



Catalytic biofuel production

Seaweed-based furanics

- Multiple new (catalytic) thermal conversion: Pyrolysis, dehydration.
- Valuable platform chemicals from P. palmata and U. lactuca: furfural (+85%) and 5-methylfurfural (+45%).
- Catalytic upgrading to fuel boosters with 1-butanol.
- P. palmata at kg-scale: Catalyst activity poses further challenges.

For more information, visit Biorefinery and biofuel production

e-EUBCE 2020 / Driving on seaweed

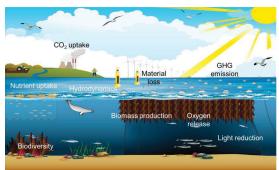
www.macrofuels.eu

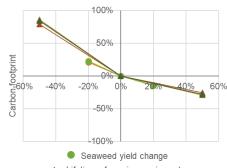
1

MacroFuels in engine tests

- Tests: 10L of ethanol and butanol in petrol engine and 2.5L butanol+booster in diesel engine.
- Lab and real-driving conditions.
- Excellent engine performance (cold/hot start and operation), equivalent to commercial petrol/diesel.
- No significant differences in terms of emissions under lab and real drive conditions (CO, CO₂, NOx, PN).

Video: Could seaweed be the fuel of the future?




Sustainability outlook

- A multi-criteria assessment comparing MacroFuels and fossil and terrestrial bio-fuels.
- Remaining challenge: High costs/impacts from cultivation.
- **Key developments:** Improved cultivation design and co-production of value-added products.
- **Environment:** Depending on site selection and monitoring (Authority setting tolerable impact thresholds).

For more information, visit Environmental and Social/Regional factsheets, and reports on LCA and sustainability assessment

Lifetime of growing equipment

e-EUBCE 2020 / Driving on seaweed

www.macrofuels.eu

Conclusions and outlook

MACROFUELS in numbers:

- 3 concepts of biofuel production from seaweeds
- +10 tonnes of 4 seaweed species were harvested in Scotland/Denmark
- 20 litres of seaweed based biofuels were produced
- A test car drove 80 km on seaweed based fuel mix
- The biofuel production from cultivated seaweed was brought from Technology Readiness Level 3 to 5

Challenges yet remain:

- Cultivation: Aligning sustainability aspects of technology.
- Processing: Cascading concepts with high value products.

Acknowledgement

This presentation is part of the MacroFuels project. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654010

macrofuels@dti.dk

e-EUBCE 2020 / Driving on seaweed

www.macrofuels.eu

15