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Executive summary 
This white paper entitled "Artificial Intelligence in Manufacturing" reports the use of Artificial Intelligence 
(AI) in European manufacturing, and its potential to enhance competitiveness and technological 
leadership in the future. The paper is based on research conducted by the Artificial Intelligence in 
Manufacturing NETwork (AIM-NET), which represents the viewpoint of the manufacturing community on 
the achievements and challenges of AI solutions. The document covers topics such as AI in manufacturing 
processes, robots, machines, and operations support in manufacturing, and AI in manufacturing systems. 
It also includes discussions on cross-cutting aspects such as regulation, education, systems engineering, 
and data augmentation. The paper also presents the maturity achieved TRL levels of existing AI-based 
applications in manufacturing, typical KPIs used to assess performance, and barriers and limitations to 
wide adoption. It also provides a roadmap for future work on AI, with efforts needed in short-term and 
long-term time horizons. Overall, the paper provides a comprehensive overview of the current status and 
future vision of AI in manufacturing for policy makers, practitioners, and researchers. 
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1 Overview of AI in manufacturing 
Manufacturing is traditionally an early adopter of technical innovation and digital transformation, which 

is also observed for AI related technologies. The ConnectedFactories 2 CSA project1 has clustered the 

available AI solutions for manufacturing into the following six categories of technological enablers: 

Machine vision and Robotics, Embedded AI in Products (Smart Products), Machine Learning and 

Knowledge Discovery, AI Forecasting and Prediction, AI Diagnosis and Maintenance, Recommendation 

and Decision Support System. As for the maturity of AI solutions, the project has categorized it in five 

levels driven by the autonomy in the Human-AI interaction, which are namely the following: Humans in 

Control, AI Assistance, AI Recommendation, Collaborative AI, AI in Control (Figure 1). AI approaches have 

been tested for facilitating the design, planning, control, management, and integration of products and 

processes, and they are expected to empower companies to scale up and move from conventional 

manufacturing to autonomous factories. Relevant AI applications include cognitive systems and robotics, 

predictive maintenance, fault diagnosis and quality inspection, which have been enabled by AI algorithms 

such as Deep Learning and Artificial Neural Networks.  

 
Figure 1. AI maturity levels from the human-ai interaction viewpoint, ConnectedFactories2 CSA project 1 

Even though several AI algorithms and applications are well-known, the status of the implementation of 

AI in manufacturing, as well as the unmet needs remain vague. A comprehensive taxonomy of existing 

solutions and manufacturers' expectations can improve the understanding of the AI achievements and 

the gaps that will stimulate the steps forward. AI-enhanced applications address varying requirements at 

different levels of the Reference Architectural Model Industry 4.0 (RAMI) hierarchy, which can be grouped 

into three levels: manufacturing systems, workstation, and manufacturing process (Figure 2). These levels 

are mapped to the RAMI model and include aspects from product and field devices to complete work 

centers and enterprise interactions with external instances. 

 
1 Connected Factories 2 Supported by the European Commission through the Factories of the Future PPP (Grant Agreement Number 873086) 
CSA, https://www.connectedfactories.eu/ai-manufacturing-pathway  

https://www.connectedfactories.eu/ai-manufacturing-pathway
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Figure 2. From the RAMI model to the Hierarchical model (adapted schema based on the Reference 

Architecture Model 4.02) 

Each level is characterized by different complexity, i.e., number of components, correlations between 

components, parameters, and the like. In turn, the sources producing data, the data types, and the 

amounts of data that need to be collected, stored, and processed are different at each level. Furthermore, 

the decision-making horizon depends on the situation, and the level of decision-making. At the 

manufacturing process level, detailed decisions are required that should be made in near real-time, they 

usually affect the production of one product, and they are based on data of high certainty. On the other 

hand, at the systems level, it is needed to make strategic decisions for which longer time horizons are 

available nevertheless the available information is usually of limited certainty and the impact of the 

decisions can affect the whole company. Other requirements include the performance of the AI-based 

solutions in terms of runtime, latencies, human-in-the-loop to approve decisions, etc. Aside from the 

requirements that are relevant for each level, cross-cutting aspects also stimulate research around AI for 

topics such as Ethics, Explainability, Data availability, Legislation, Education, etc. Figure 3 provides an 

indicative list of research items that are relevant for each level, whereas sections 3, 4, 5, and 6 provide 

more details about the implemented solutions.  

 
2 https://www.plattform-i40.de/IP/Redaktion/EN/Infographics/reference_architecture_model_40.html  

https://www.plattform-i40.de/IP/Redaktion/EN/Infographics/reference_architecture_model_40.html
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Figure 3. Industrial application areas and objectives for using AI in Manufacturing per hierarchical level 

(Chryssolouris, Alexopoulos & Arkouli, 2023). 

Practitioners and academics have produced AI solutions for each of the hierarchical levels in 

manufacturing. As depicted in Figure 4, these solutions are often built-up to AI capabilities that have been 

typically incubated in other sectors such as the e-games industry, autonomous driving, language 

translation, etc. In turn, the AI functions such as computer vision, data generation, reasoning, and learning 

have been enabled by the application of AI methods. Based on Pedro Domingos AI methods can be 

classified into symbolic AI, connectionist AI, evolutionary AI, Bayesian AI, and Analogizer AI 3 . The 

application of AI in manufacturing has started with the use of symbolic AI in 1970s, however today the 

application of all the types of methods is met in the AI applications in manufacturing. It seems that the 

attention today is mainly on connectionist AI, where Convolutional Neural Networks algorithms seem to 

be amongst the most popular especially for machine vision.  

 
3 Domingos, P. Prologue to The Master Algorithm. 
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Figure 4. AI solutions hierarchy from basic AI methods to AI applications in Manufacturing  

Figure 5 illustrates an indicative break-down of several application areas over the product/process 

lifecycle following the system, machine, and manufacturing process taxonomy. Additionally, a number of 

Key Performance Indicators (KPIs) typically used to assess the performance of the AI modules are 

demonstrated. Time, production rate, quality, footprint, worker’s comfort, and user satisfaction in 

tandem with legal and ethical factors are some of the aspects that are frequently evaluated. Figure 5 also 

illustrates that solutions are usually designed to address a specific set of the lifecycle stages. On the other 

hand, the connectivity among the modules often relies on the humans, whereas the heterogeneity of the 

file formats of different design, engineering, and so forth applications usually undermines the use of data 

among different applications.  

However, manufacturing is a ‘wide’ area of complex systems and sub-systems that are interconnected 

with myriads of dynamic connections. Manufacturing is achieved by a combination of processes, such as 

product and process design, production equipment design and commissioning, production, after sales, 

recycling and remanufacturing. Production itself is a complex activity that includes several resources and 

tasks such as dynamic scheduling, workforce management, warehouse management and many more.  
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Figure 5. Overall map of AI application in Manufacturing. Horizontally are the Lifecycle stages of the 
Manufacturing system and Vertically the Physical Department involved in the creation of a product. 

The limitations of the currently provided solutions derive of a series of barriers that have been reported 

to hamper the wider adoption of AI in industry, which are both technical and non-technical. In particular, 

technical issues seem to focus on but not be limited to access to quality data, management of large 

volumes of heterogeneous data, low traceability of the methods, and demand for faultless methods with 

low configuration and engineering effort. By means of illustration, Figure 6 aims to depict the complexity 

that arises in data management through the product/production lifecycle that involves several data types 

and formats. Different stages of the lifecycle generate new data of different types in different formats 

increasing the accumulated data that is produced and thus perplexing data management. The 

accumulation of data from product design to production and product use is illustrated with the number 

of boxes that increases from stage to stage. For instance, product design involves mainly the product 

drawings in CAD files, whereas production is based on CAD and CAM files, process plans, schedules, etc. 

that flow from the previous engineering stages, but also produce data from sensors, machines, and quality 

control.  

Equally important are the challenges related to skills, trust, ethical and legal aspects, and vulnerability, 

whereas many manufacturing companies report a lack of relevant expertise to adopt AI methods. In 

addition, manufacturing companies are usually very experienced in buying machinery but when it comes 

to digital tools and AI, it might be challenging to find the right technology and estimate the return on 

investment. Also, the long lifetime of manufacturing infrastructure slows down the adoption of AI in 

production. The barrier related to trust and ethics are underpinned by the field of social AI. 

Understandability, explainability and trustworthiness are critical for the adoption and growth of the AI 

era. In general, it is deemed that people do not sufficiently understand technology or even the outcome 

or behaviour of AI in a human-comprehensible way. This limits the technology acceptance and the amount 
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of trust from the bottom-up level since the adoption starts with a certain ground feeling of understanding 

and being understood. It is in human nature to want and be able to explain the behaviour of things in 

order to be able to predict and anticipate.  

 
Figure 6. Evolution of Digital twin & data growth over the product/production lifecycle  

The viewpoint of the industry stakeholders on the presented solutions and the expected next steps has 

been captured by several surveys. Indicatively, a poll from the EFFRA community indicated that the factory 

level optimization has the highest potential for AI in manufacturing, non-symbolic AI seems more 

important amongst the existing approaches, and the challenges regarding AI in manufacturing are related 

to AI and security, interaction of Humans and AI, explanatory AI, AI and business models, data availability, 

and finally digital skills4. Regarding revenue generation and cost reduction that can be achieved, Figure 7 

shows that a limited number of responders can see benefit from AI in these areas1. Additionally, McKinsey 

& Company5 conclude that Industry 4.0 has assisted companies improve KPIs in the following five areas of 

impact 1) sustainability KPIs (greenhouse-gas emissions), 2) productivity (as factory output), 3) agility 

(lead-time), 4) other speed-to-market KPIs, and 5) customization. 

 
4 https://cloud.effra.eu/index.php/s/4n4Y09ZvKnbfx1n#pdfviewer   
5 https://www.mckinsey.com/business-functions/operations/our-insights/transforming-advanced-manufacturing-through-industry-4-0 

https://cloud.effra.eu/index.php/s/4n4Y09ZvKnbfx1n#pdfviewer
https://www.mckinsey.com/business-functions/operations/our-insights/transforming-advanced-manufacturing-through-industry-4-0
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Figure 7. Survey on the revenue increase and cost reduction by AI adoption6 

In addition to the existing surveys, AIM-NET has held a workshop on its own to directly receive feedback 

on the industrial perspective about AI. The scope of the workshop was mainly to investigate 1) the 

knowledge of companies about the AI capabilities, 2) why AI might have lower priority in the R&D activities 

of industries, 3) discover any gaps requiring the development of new AI-based applications, as well as 

investigate 4) how to promote AI among the industrial community. Additionally, it was of interest to 

explore the availability of AI-related expertise in companies and their current organization and identify 

whether guidelines on new education processes, expertise organization, and job design are needed. For 

instance, the adoption of AI may introduce different roles or extend the current ones e.g. line planners, 

autonomous robotics experts, vision experts, gripper designers, actuation analyst, and so forth. 

Furthermore, it was in scope to explore the expected impacts of AI and identify the ones that are more 

popular e.g., repurposing, resilience, quality improvements, lower emissions, reduction of operating 

costs, increase of industry competitiveness, etc.  

The workshop was attended by industry professionals from several fields including automotive, 

aeronautics, electronics, manufacturing, and industrial automation. The workshop was organized in three 

parts: 1) presentation of ongoing AI-related activities, 2) structured discussion, and 3) open discussion on 

the interest in AI, AI adoption, barriers for adoption, successful implementations, and AIM-NETs potential 

contribution on enhancing the adoption of AI.  

During the open discussion, a number of additional points were raised. Some points that were raised 

include but are not limited to the need of AI solutions for bridging the gap between manufacturing and 

product design and enriching discussions by including AI from the design perspective as well. Intelligent 

machines and exploiting data from the field are needed so as to optimize process parameters and avoid 

scrap, reduce waste, etc. A very important aspect is also the reduction of energy consumption, which can 

also be enabled by reducing the needed machine energy, e.g. by using models to reduce the energy 

consumption. Maintenance management is no data friendly, therefore AI-based support is needed and 

moving towards predictive maintenance seems very interesting. However, the integration of AI solutions 

is not yet wide due to the need for support of the management of different IT systems (e.g. it is often 

 
6 https://ai.eitcommunity.eu/assets/docs/EIT-UrbanMobility-Emerging-AI-and-Data-Driven-Business-Models-in-Europe.pdf  

https://ai.eitcommunity.eu/assets/docs/EIT-UrbanMobility-Emerging-AI-and-Data-Driven-Business-Models-in-Europe.pdf
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highly complex to clean up data). Moreover, the integration and (generalized) profitability of new 

technologies (XAI, quantum, surrogate models, security7, cloud and big data8, democratized & responsible 

AI9) is not clear. The output of the workshop has been summarized in Figure 8, where key points of the 

industry feedback have been classified in the following categories: 1. applications of interest, 2. existing 

implementations, 3. barriers, 4. AIM-NET expectation, 5.  

 
Figure 8. AIM-NET industry feedback 

The existing implementations recap the areas where AI has already been used, and industry thinks the 

results are positive. Intelligent monitoring, anomaly detection and inspection, together with quality 

control, maintenance, as well as tool wear monitoring are the first cluster of implemented AI solutions. 

Additionally, reasoning and decision making as well as logistics and supply chain management are the 

second set of solutions.  

The next step towards future implementation of AI is reflected in the applications of interest field. In more 

detail, intelligent production monitoring, inspection, and quality control anomaly detection, and smart 

maintenance reflect the need to further advance the functionalities already provided, and progress with 

processing large amounts of heterogeneous data towards reducing error propagation in the 

manufacturing chain and reduce downtimes and maintenance costs. The operation of manufacturing 

systems requires support in reasoning and decision making, with the worthiest to mention aspects being 

the inventory management, task planning and scheduling, management of logistics and supply chain but 

also energy management. Additionally, cognitive automation and robotics require AI-enhanced solutions 

to achieve the desired levels of efficiency. Finally, the design of production systems and products could 

also benefit from AI solutions.  

Although the results so far are promising, the flourishing of the aforementioned AI-based applications in 

the industrial field remains uncertain. Topics that should be addressed to pave the way for broader AI 

adoption include among others many aspects that relate to the management of data from data sharing 

to infrastructures and old machinery along with the limited amount and quality of data. Human resources 

are also important for the adoption of AI thus, shortage of expertise hinders the adoption of AI. The 

reported technical barriers also include challenges that arise from the integration stage and also the 

 
7  https://www.marktechpost.com/2022/03/02/top-emerging-machine-learning-trends-for-2022/ 
8 https://www.geekwire.com/2016/future-machine-learning-5-trends-watch-around-algorithms-cloud-iot-big-data/ 
9 https://www.techtarget.com/searchenterpriseai/tip/9-top-AI-and-machine-learning-trends 

https://www.marktechpost.com/2022/03/02/top-emerging-machine-learning-trends-for-2022/
https://www.geekwire.com/2016/future-machine-learning-5-trends-watch-around-algorithms-cloud-iot-big-data/
https://www.techtarget.com/searchenterpriseai/tip/9-top-AI-and-machine-learning-trends
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uncertainty of impact on the already installed base. The non-technical barriers include but are not limited 

to the lack of AI knowledge at business side, as well as the obscureness around the expected ROI.  

The needs for the step forward are expressed into the expectations from AIM-NET, which can be clustered 

into technical and non-technical subjects. For instance, broadening the understanding of AI in 

manufacturing, mapping the AI services to industrial needs, providing realistic or event real world AI 

demonstrators, and setting simple measurable AI KPIs and measurable targets are some of the non-

technical expectations. On the other hand, research and techniques to manage the lack of data, e.g. the 

automated annotation of features such as defects on images, or the complexity of data and the 

management the integration of older to new IT systems. Additionally, methods are needed to enhance 

the design aspects, bridge the gap between product design and manufacturing, and enable to involve 

multi-actors in developing AI models. Nevertheless, methods to model deployment are also required. 

Moreover, AI solutions to serve for process parameters collection and model tuning in tandem with data 

and information visualization are indispensable. Finally, among others modelling the energy use and the 

manufacturing shop floor space availability are some of the applications that industrial stakeholders aspire 

to have in the future.  

It is expected that the reported challenges will be gradually addressed towards realizing the Industry 5.0 

in short-term, and autonomous factories in the long-term. In particular, in the next 5 to 10 years it is 

expected that AI will enable among others to perform automated optimization, widely adopt advanced 

manufacturing technologies, and deploy flexible manufacturing cells. In the upcoming paradigm of 

industry 5.0 it is expected that the body of knowledge coming from the fields of philosophy, cognitive 

psychology/science, and social psychology, will be infused in the industrial research fields, giving raise to 

the notion of trustworthy AI and thereby to the real adoption of AI in autonomous and hybrid factories. 

Additionally, the future interactive data visualization will become more automated, adaptive, and 

personalized to guide the manufacturing users in the visual analytics process and easily detect data 

changes, and the most relevant insights. 

In the next 10-20 years, it is expected that with the help of AI, production systems could operate 

independently with little, or no human interaction and the digital supply chains would optimize 

themselves automatically. Regarding the Sustainability and Green aspects enabled by AI, production, 

supply chain management, and product design optimization are expected to provide several benefits. 

Production optimization may enable to produce more with less resources (energy, materials, human 

resources, …), produce more customized products with improved scheduling, improve availability of 

industrial equipment with predictive maintenance. On the other hand, supply chain optimization could 

enable us to adapt logistics to the production and the customer requests with low impact. Figure 9 

summarizes the current state and goals for the future years. 

 
Figure 9. Mapping of the White Paper parts to AI applications maturity and Industry paradigms 

Despite the described goals being well-known, the roadmap towards achieving them or even the research 

areas that should be promoted in order to enable this vision to seem currently obscure for the European 
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manufacturing community. The discussion in the next sections aims to shed light on the capabilities of the 

AI-based tools that have been implemented, along with discussing in more detail the challenges, barriers, 

and limitations that are present at each level of the discussed hierarchical levels (manufacturing 

processes, workstations, systems), as well as the potential that are expected within the next 5-10 and 10-

20 years. Subsequently, the roadmap for the future will be outlooked by prioritizing research areas that 

need to be further enhanced.  

2 AI at the Process level 
The manufacturing industry has a profound impact on economy and societal progress. Technological 

changes and innovations are essential sources for that progress; more profitable and efficient sectors and 

firms displace less productive and profitable ones. Thus, technological change is in the center of modern 

economic growth; as industrial production, is currently inspired by global competition. For that reason, 

there is a need for fast adaptation of production to the ever-changing market requests. This is a challenge, 

however, that is quite case-dependent. This implies the need for tailoring the solutions down to each case, 

not only from a technical point of view, since each machine and each environment are unique, but also 

there are business challenges to AI deployment, such as strategy enforcement (Lopez-Garcia et al, 2022). 

The applicability of AI at manufacturing processes level has to do with many different aspects (Figure 10). 

To begin with, complexity manipulation, for the desire of the so-called Digital Twins is to be addressed, as 

the workflows have to be digitized. Then, more specifically, what could be required, potentially also as 

operations of the digital twins, are: 

• quality monitoring, requiring to a large extent machine learning 

• cognitive process control, where, depending on the sensors, deep learning can also be needed 

• alarms generation and management, utilizing data science and AI (for instance heuristics or 

Genetic algorithms) 

• Process control, where time-series can be utilized 

The complexity is varying across applications and is dependent on many criteria, like: 

•  the process mechanism; for instance, conventional processes involve mechanical interactions 

and non-conventional processes thermal or chemical ones 

•  the sensor type; sampling rate may be a key parameter, or even the sensors plethora can lead to 

data variety 

• the level of detail to which we are interested in; i.e., classifying the weld in the case of many types 

of defects increases the complexity 

• and finally, the application itself; e.g., real-time (adaptive) process control requires smaller time 

scales than quality monitoring 

All these facts can be summarized in the diagram hereafter, where the various techniques are matched 

against the needs for AI within digitalized process optimization workflow (Papacharalampopoulos et al, 

2020; Panagiotis et al, 2020; Stavropoulos et al, 2020b; García-Díaz et al, 2018; Papacharalampopoulos et 

al, 2019).  
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Figure 10. Manufacturing process level operations requiring Artificial Intelligence, (Stavropoulos, 
Papacharalampopoulos, & Athanasopoulou 2020), (García-Día, et al. 2018), (Stavropoulos, et al. 2020), 
(Papacharalampopoulos, et al. 2020), (Papacharalampopoulos, Stavropoulos, & Stavridis, 2018) 

 

2.1 Intelligent quality monitoring & control 
In any case, the various challenges that have been mentioned have to be addressed individually, as they 

are unique with respect to their theoretical and implementation-related needs. A very indicative problem 

that reflects this fact lies in the area of quality monitoring and link with process control. The characteristic 

factor is that everything must be done in real-time or at least near-real-time, especially in the case where 

the policy adopted is zero-defect manufacturing. This is slightly different than traditional quality control, 

i.e., six-sigma, in the sense that defects must be prevented; the table provides us with some extra details. 

Thus, everything must be done in time scales smaller than processing times and include countermeasures 

at the same time for every single part being produced. 

The solution comes with the embedding of the concept of Cyber-Physical Systems (CPS) (Stavropoulos et 

al, 2020b). Also, I4.0 offers networking possibilities as its key ingredient; thus, AI can flourish here with 

related applications. AI is implemented in multiple CPS levels as indicated in the figure below (Figure 11), 

with some cognition characteristics than can even have distributed (networked) character. 
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Figure 11. CPS aspects of quality monitoring and control, (Stavropoulos et al, 2020b) 

It is also worth mentioning the diversity with respect to the elaboration of sensor data. The AI in the case 

of laser welding quality monitoring, for example, involves fusing data from different sensors, namely 

thermal images (or rather videos, since laser welding refers to seams) at different parts of the spectrum 

(Near-Infrared and Mid-wavelength infrared) which are then “reduced” down to features. These features 

can either be geometrical (GFE) or statistical (SFE). The first ones regard primarily the size of the melt-

pool and the others have to do with pixels providing us with maximum information. Then, a classifier 

(Support Vector Machine in the case of Figure 12) uses these features as input and decides on the “frame” 

quality. The two extra steps have to do with fusing these decisions towards seam quality and part quality. 

Hidden Markov Models can be used to this end. Each one of these stages corresponds to integrating 

different I4.0 KETs. 

   
Figure 12. Hierarchical Quality monitoring digital twin based on AI techniques, (Stavropoulos et al., 2020) 

An example of how AI can help process and quality engineers tackle the problem of fast and robust in-line 

detection of process anomalies is presented in Colosimo and Grasso (2018) and in Bugatti and Colosimo 

(2022). The application regards the in-line and in-situ detection of so called “hot-spot” events in laser 

powder bed fusion, one of most widespread metal AM processes in industry. A hot-spot is a local anomaly 



 

17 | P a g e   ©2023 AIM-NET 
 

consisting of excessive heat accumulation as a consequence of diminished heat dissipations, commonly 

related to critical geometrical features, like overhang regions, acute corners and thin walls. Hot-spots are 

known to be drivers of geometrical and/or internal defects in the part, and hence they shall be detected 

as soon as possible. High-speed video imaging (in the order of hundreds or thousands of frames per 

second) can be used to determine the stability of the laser-material interaction during the exposure of the 

powder bed in every layer. The big challenge consists of being able to automatically detect the onset of a 

hot-spot event despite the highly time-varying patterns captured in video image data, minimizing the false 

alarm rate while maximizing the detection performances. Figure 13 shows an example form Colosimo and 

Grasso (2018), where a spatially weighted variant of the Principal Component Analysis (PCA) was 

combined with a K-means clustering-based alarm rule aimed at capturing the spatiotemporal signature of 

the process enclosed in the monitored video image data and detecting the onset of a local hot-spot. 

Indeed, pixels belonging to regions affected by hot-spot events were known to be characterized by a 

temporal cooling pattern that has high similarity within the anomalous cluster, but different from other 

video image pixels. The same problem was tackled by Bugatti and Colosimo (2021), by comparing the 

unsupervised k-means-based approach against other two AI-based monitoring solutions: one exploiting 

Support Vector Machines (SVMs) for the hot-spot classification, and one exploiting a fully connected 

neural network for the same purpose.    

 
Figure 13. Example of hot-spot detection in additive manufacturing via spatial Principal component 

analysis (PCA) combined with K-means clustering (Colosimo and Grasso, 2018) 

 

2.2 Tool wear assessment & prediction 
Another class of problems is that of monitoring and predicting indirectly tool-wear. Tool-wear affects 

partially quality and in sensitive applications the part may be completely destroyed due to tool condition. 

However, the harsh environmental conditions (referring to process’ environment) restrict the use of 

specific sensors, while the existence of legacy systems as well as the cost prevent the operators from 

integrating force sensors, in many cases. Thus, a solution would be to integrate sensors, such that 

vibrations and electric current one, that are only indirectly used to monitor tool-wear (Stavropoulos, 
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2016). So, the objective here is to monitor tool-wear indirectly and, if possibly predict tool-wear 

progression, while running the machine, through sensors, such as accelerometers and inductive clamps. 

The procedure involves data collection from two different sensors, features extraction (i.e., spectrum 

related indicators). Subsequently, these features are fused, and a classifier based on thresholds for classes 

is used to decide on the toolwear level. Physics may be used to augment this (Figure 14). 

 

 
Figure 14. Toolwear assessment with physics-informed AI, (Stavropoulos et al., 2015) 

The next step would be to fuse those results into a single diagram, using the features retrieved from these 

two signals. Acceleration feature and spindle electric current feature can be used at the same time to 

define thresholds separating low from medium and form high toolwear levels. The complex character of 

this application is revealed from the fact that the thresholds are typically not perpendicular to the 

acceleration or the current axes. As a matter of fact, they are also dependent on the cutting speed and 

they are not necessarily straight lines in some cases. 

Despite the amount of literature devoted to studying multi-stream RNNs in machine tool monitoring, the 

powerful advantages coming from their application are underexploited in current applications. One 

example of their implementation for one-cycle-ahead multisensory data prediction in milling operations 

was presented in Garghetti et al. (2022) (Figure 15). In this case a Gated Recurrent Uni (GRU) neural 

network was used to predict future process outcome in different manufacturing scenarios, including the 

prediction of one-cycle-ahead of multi-axis spindle current signals in milling and the prediction of the 

machine health condition on the basis of periodically repeated no-load operations. The GRU network was 

compared against a wavelet modelling technique. Results showed that the GRU was more effective and 

accurate in predicting next process outcomes in non-stationary conditions, whereas in highly repeated 

and stationary process states, the most traditional wavelet method one preferred. This result also 

provides evidence of the fact that the actual benefits provided by AI strongly depends on the nature of 
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the problem and the data pattern. The actual boundaries for convenient use of AI in place of other 

statistical methods is still not fully explored and consolidated and represents a relevant field of 

investigation.   

 
Figure 15. Gated Recurrent Uni (GRU) neural network for one-cycle-ahead prediction of process data in 

milling (Garghetti et al., 2022) 

Tool wear prediction is an important factor which affects the machined surface characteristics, because 

during the machining processes those surfaces get more or less destroyed. Surface integrity is one of the 

most relevant parameters used for evaluating the quality of finish machined surfaces. The predictions of 

tool life in machining have become a challenging task for proper optimization of the process, mainly 

because they play an important role in the economic aspects of metal cutting operations. Machine 

learning regression techniques can be used to predict the tool wear using as predictive or input variables 

the cutting force components.  

 

2.3 Smart modelling & digital twins 
Moving on to a different class of potential operations within the framework of a digital twin, integration 

of AI in process modelling is required to keep up with the various aspects of a digitalized workflow. To 

begin with, AI could be used to accelerate theoretical (physics-oriented) process models, towards their 

running in near-real time (Foteinopoulos et al, 2018). Their use could be multifold; responding to what-if 

scenarios, designing process control, or even studying the inner state of a part (i.e., in terms of quality). It 

is also noted that the concept of “near-real time” (decision making or optimization) refers to being able 

to react to optimization requests within a fraction of process time.  

An additional example would be utilizing a set of models seamlessly, in a way that is able to provide 

uncertainty management and process control for manufacturing processes. It is seen in (Stavropoulos et 

al, 2021) that at least four different models are cooperating to achieve this. At the same time, AI can be 

in charge of the workflow and the exchange of information among the aforementioned models. This 

results in a complex CPS that is a result of rather severe integration, as per the guidelines that have already 

been given. Then, with the help of process control, a variation of classical control theory, the behaviour 

of the process can be regulated within the desired specifications (Figure 16). 
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Figure 16. Robust manufacturing implementation, (Stavropoulos et al., 2015) 

The augmentation of a digital twin towards ZDM is also potential with the help of AI 

(Papacharalampopoulos et al, 2021). The use of AI at process level, however, does not end here. In 

modern manufacturing, multi-criteria optimization is a major demand, given the environmental and social 

challenges. Energy and quality joint problems occur this way and AI, besides optimization and control 

could intervene also in hierarchical use of process models; the case of molecular dynamics is characteristic 

(Panagiotis et al, 2020); local information has to be fed to higher-level process simulations, providing extra 

information about the KPIs. 

Finally, as enlisted at the beginning, energy, quality, or any other KPI related alarms can be manipulated 

through AI. The fusion of AI with theoretical models is a powerful tool; in the following figure, a very 

specific illustration is given, for the case of an FDM 3D printer (Papacharalampopoulos et al, 2021b). It can 

be seen that, depending on the direction of planar printing, the energy consumption may have some 

differentiations. It is up to AI to decide if this has to trigger an alarm and a suggestion on whether this is 

an issue of the printer (process), or the monitoring system itself. 

 

2.4 AI for Process optimization  
Process optimization requires adequate knowledge about a wide range of parameters and variables that 

impact the process results. Optimization of industrial processes should be a task for industrial process 

experts. The complexity of the processes has required the help of mathematical techniques able to 

manage huge quantity of data that extract the intrinsic relations and keys that are hidden in those data. 

Likewise, the complexity of these mathematical techniques requires the participation of data analytics 

engineers to help the industrial process engineers. They have to cooperate in order to disentangle the 

industrial process keys hidden in the data, but this complementary work is not always efficient. In the end, 

the ideal situation would require only industrial process experts, and so, the question to be faced would 

be: is there any possible approach to provide the industrial process experts with the necessary tools to 

optimize their process?  
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The first stage is always to understand the details of the industrial process, which is specific of every 

industry (Figure 17). Once the process is understood the next stage is the modelling of the process, setting 

up the prediction model to estimate the desired key performance indicators (KPIs) based on the relevant 

process parameters (PPs). Once the prediction model is set up, the final stage is the optimization one, 

where one or more combination of process parameters is selected to reach an optimum KPI. 

 

Figure 17. Optimization framework for decision making in manufacturing  

In the case of process parameters optimization, the ultimate goal is to produce high quality products with 

less cost. Meta-heuristic AI algorithms such as, genetic algorithm, simulated annealing, particle swarm 

optimization, artificial bee colony optimization and ant colony optimization can be used. The aim of these 

optimization problems is to find the best combination of process parameters in order to optimize a KPI 

related to the process efficiency. In some cases, various criteria can be used simultaneously, turning the 

optimization problem into multi-objective optimization problem. Also, some constraints are usually used 

to assure that the quality requirements of the final product are fulfilled. Due to the complex nature of the 

processes, the modelling of the KPI (objective function) and constrains are usually performed using data-

driven models instead of employing simple linear functions.  

An additional benefit, as stated also, in section 3.2, is the complementarity with physics modelling. For 

instance, even part of modelling could be substituted by AI. In the case of spring-back modelling in 

particular, the proposed mechanism uses a novel point series representation to capture local geometries 

that then form a global bank of geometries for general use. Each point series can then be associated with 

a predicted springback value generated using deep or machine learning. Experiments are reported using 

a Long Short-Term Memory (LSTM) model coupled with a Multilayer Perception Network (MLP), and a 

Support Vector Machine (SVM) regression model (Bingqian et al, 2022). There have also been attempts to 

develop a visual evaluation method to diagnosis the quality installation of blind fasteners with AI (Del Val 

et al, 2022).  

The customization in data elaboration is obvious, since the machines are subject to unique surroundings, 

leading to customized noise. Subsequently, technical challenges are to obtain more reliable models in 

order to reduce the uncertainty of the data by applying more sophisticated AI techniques. As such, 

generative adversarial networks can be used to balance the distributions of the target data that usually 

do not present too high or too low values. In addition, data management calls for a whole different class 

of IT backbone. All these imply, in addition, the use of a differentiated workflow during both design and 
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operation phases. This causes specific business hinders in the industry operation, since there are financial, 

social and communicational challenges that are formed from this technological transition. Another issue 

here is to imply actively the human (operator) in the loop. This would help to have more supervised data 

of the process, thus having more certainty and robustness in the data.  

In some industrial processes, there are variables which are difficult to measure on-line due to technical or 

economic limitations. A solution for this type of problem comes on the hand of the software sensor (SS) 

paradigm, which provides a reliable and stable estimation. A soft-sensor is a predictive model which is 

responsible for the online forecasting of certain variables that play an indispensable role in the quality 

control of an industrial process. In this paradigm we must include the fact of the degradation of the 

predictive model. Therefore, it is necessary to consider and plan a continuous readjustment through the 

detection and retraining of the model.  

2.5 Utilization of data in process design and operation 
Generative models, as a particular technique within the AI landscape is a relatively new field whose 

applications are growing each year in different domains. The techniques englobed under this term, such 

as Generative Adversarial Networks (GANs) (Goodfellow et al, 2014) or Variational Autoenconders (VAE) 

(Kingma et al 2020.) are widely used for data generation or dimensionality reduction problems in fields 

such as medicine (Uzunova et al, 2022), chemistry (Dan et al, 2020) or material science, and recently 

Manufacturing frameworks (Kim et a, 2021) started to adopt also these non-supervised solutions for 

particular problems. Apart from the most obvious application of Generative modelling for the design of 

products, also performance-oriented materials or design synthetic data generation has been 

demonstrated as a remarkable solution for data augmentation.  

One bottleneck for the efficient application of some ML techniques that rely in the use of Artificial Neural 

Networks (ANN) is the large amount of data required for training. In particular, many Quality Inspection 

procedures are based on Convolutional Neural Networks (CNN) for image processing that need large 

number of images for it. Given that factories try to minimize the existence of defects, the acquisition of 

large numbers of images of defects tends to be difficult. In addition, defects usually appear in a way that 

can be classified by some common features meaning that different defect typologies can be identified for 

the same process and the frequency at which the different typologies appear is usually different. Which 

means that examples of some defect typology can be massively acquired and examples of some other can 

be rarely seen. As a result, quality control procedures might show really good results for some typology 

while remaining almost blind to the detection of another. The use of generative models to generate 

synthetic image data for training of such CNN-based systems allows significant enhancement of the 

volume of data for training with its consequent impact on the detection ratios. This type of application is 

probably the most mature application of generative models reaching TRLs between 5 and 6. 

Another application of generative models includes product design. Specifically Deep Generative Design 

tools such as Generative Adversarial Networks (GANs) and Variational Autoencoders (VAE) have been 

shown as powerful frameworks to provide solutions in a wide range of complexity dimensional reduction 

problems and generation as active tools for 3D shapes generation of specific products (Figure 18). This 

application of AI can enhance the co-creation of fully customized products can be achieved though the 

exchange of data and processes between members of a community (Ding et al, 2013; Duray, 2002; 

Mohajeri, 2015). This is the essence of social manufacturing (SM), a novel approach where such data is 

shared within a cyber-physical social space (CPSS), triggering massive decentralized co-creation processes. 
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One can visualize the cyber-physical social space as a multidimensional one, with multiple channels 

holding information flows in terms of services, technology or design each of them with different degree 

of explicitness regarding agent (community member) knowledge. One key element within the SM 

landscape is the so-called prosumer, a consumer that participates actively in social manufacturing 

assuming also the role of a producer. The more involved the prosumers (agents), the more reach the final 

product results through self-organizing and social-enabled mechanism. However, contrary to what would 

be an ideal SM context, where all the members of a community are pure prosumers, the current approach 

to SM shows the presence of customers and services providers in an independent way. In such scenario, 

the symmetrical conditions of the assumed roles distribution, or the fact that all the actors might not be 

equally active, results in a potential weakness of the whole SM workflow for the emergence of a collective 

production. 

 
Figure 18. Generative Design in manufacturing, (Gonzalez-Val and Muiños-Landín, 2020). 

In order to achieve customization of products based on collective behavior, one particularly critic channel 

that captures the interactions within the CPSS is the one composed by the information related with 

product design. Such criticality comes not just from the above-mentioned risks regarding the possible 

absence of agents providing such knowledge to the CPSS. But also, from the intrinsic difficulty to define 

variables that hold the essence of a design, to represent it as information to be stored, shared and 

customized. To overcome such issue Artificial Intelligence provides different approaches (Gonzalez-Val 

and Muiños-Landín, 2020), as shown in Figure 18. The application of Generative approaches in this domain 

rely on a very experimental phase with TRLs between 3 and 4.  
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Complementarily to the AI-based design of customized products, AI has enabled to promote the fast and 

inexpensive production of such products. Manufacturing companies need to meet the customer demand 

for products tailored to specific, individual needs, which in turn introduces the challenge of design and 

produce fast and cost-efficiently easily adaptable goods of high quality. The development of modular 

design architectures has proven capable to meet this challenge. In this perspective, novel AI-based 

clustering methods have been developed to cluster product’s components into modules towards the 

effective creation of modular design architectures (Pandremenos & Chryssolouris, 2011). Neural 

Networks in combination with Design Structure Matrices and multi-criteria decision-making approaches 

have been used to reorganize the components of a product in clusters to efficiently generate and evaluate 

different clustering alternatives (Figure 19).  

 
Figure 19. Design Structure Matrices for Body in White (Pandremenos & Chryssolouris, 2011) 

Furthermore, generative approaches have been used for the development of high-performance materials. 

High-performance materials are a key tool for several reasons. On the one hand, their use brings obvious 

progress in the performance of the pieces where they are used in fields such as aeronautics, construction, 

or biotechnology. On the other hand, high-performance materials also allow more efficient use of energy 

in industrial processes where the use of such energy becomes intensive with its consequences in terms of 

environmental and economic sustainability. For these reasons, the emergence of high-performance 

materials has captured the attention of industry and researchers within the last years. However, the 

development of these materials requires a large amount of time and money invested in the design, 

synthesizability evaluation, construction, and characterization of such compounds. The use of AI for the 

design of materials, even in its current infancy status, provides a valuable tool to accelerate the initial 
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phases of materials design and HEAs, where the high number of combinations brings a perfect scenario 

for the deployment of Machine Learning techniques. In this context, Generative models start to be used 

to generate synthetic compounds or alloys for highly intensive industrial processes. In this scenario, the 

application of Generative models relies in a very initial phase due mostly to the implications of its 

deployment. Meaning that this technology in this domain remains in a TRL between 2 and 3. 

The nature of the algorithms themselves makes generative approaches difficult to quantify or to stablish 

standard indicators that might quantify their performance. However, depending on the application some 

KPIs can be established for the solutions developed using generative approaches. For instance, in case of 

using Generative approaches for data augmentation, the improvement of the performance of the 

algorithm for which the data is generated for, is a direct measurement of the impact that the generative 

approach is having of the global system. In the case of using Generative models for materials design, one 

indicator of its performance is the number of compounds generated within the requirements stablished 

by the case of study. The most difficult scenario to evaluate the performance of the generative model is 

the design case. Here, if the design implies certain functionality, again the amount of candidate solutions 

within the requirements constraints can be established as an indicator. However, if the design is provided 

in a creative context, only the variability within the latent space can provided hints about the performance 

of the algorithm. 

 

2.6 Consolidation of AI application at the process level 
The use of AI in the scope of manufacturing process optimization is a multi-fold issue, that affects every 

other operation, and can result in overall KPIs enhancement. However, this multi-objective optimization 

does not come at no cost. The implications in the technical workflow, as well as in the business operation 

can cause some turbulence that requires for some steps, not necessarily in a linear scenario, but rather in 

an iterative way: 

a) Selection of monitoring systems 

b) Choice of data management system 

c) Standardized Data structure/format   

d) Document physics-based knowledge, due to materials and geometries interaction 

e) Choice of AI model 

f) Selection of way of giving feedback to the system 

g) Define the role of humans 

h) Training the system 

i) Train the personnel 

j) Operation with a different workflow 

k) Evaluation of the AI system with respect to the requirements 

The implementation of AI at the manufacturing process levels has provided several benefits including 

reduced assembly time and easier automation solutions, improved quality control and detection of 

process deviations, increased overall throughput, and decreased NDT inspection. For instance, AI has 

shown to be a reliable option for controlling manufacturing processes and improving efficiency for 

fastening processes. The technology has achieved high scores in laboratory trials, but it is currently at a 

TRL level 4. Additionally, using AI in fastening can have a positive impact on sustainability by reducing the 
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weight of aircraft and reducing fuel consumption, CO2, NOx, and noise emissions since there are about 

1.5-2 million rivets and bolts in a large aircraft 10.  

 
Figure 20. Current status and Future Vision for the adoption of AI at the Manufacturing Process level 

Over the next 5-10 years, it is expected that AI-based solution at the manufacturing processes level will 

become increasingly integrated into automated processes reducing substantially processing waste and 

energy use. Over the next 10-20 years, it is expected that the technology will continue to evolve and 

improve, leading to even greater benefits and improvements in energy efficiency, raw material use, and 

sustainability. 

 

Figure 21. Degree of vision achievement  

 

 
10Biao Mei, Zengsheng Liang, Weidong Zhu, Yinglin Ke, Positioning variation synthesis for an automated drilling system in wing assembly, Robotics 

and Computer-Integrated Manufacturing, Volume 67, 2021, https://doi.org/10.1016/j.rcim.2020.102044 

https://doi.org/10.1016/j.rcim.2020.102044
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3 AI at the workstation level 
The increasingly growing requirement to accommodate the fluctuations of market demand along with the 

trend for highly personalized products has also influenced the configuration of manufacturing 

workstations. So far, automation has enabled increasing production rates and quality consistency, 

reduced production costs, and achieving competitive delivery times. However, further advancement is 

needed in the selection of the automation degree and the work cell configuration since automation and 

flexibility are usually inversely proportional. To this end, cooperating machinery has been proposed 

meaning the cooperation of pieces of machinery equipment between themselves, but also the 

cooperation of machinery with human operators (Makris, 2021; Arkouli et al., 2021; Michalos, Kousi, et 

al., 2018). Therefore, the potential of AI-based tools to facilitate the implementation of collaborative 

production systems where people, robots, and parts coexist is investigated as a means to realize the new 

Hybrid Production paradigm (Figure 22) is discussed.  

This coexistence of humans and robots induces several decision-making problems related to the design, 

planning of operation, and control of the workstations (Michalos et al., 2022). For instance, layout design, 

task allocation, coordination of the resources, adaptation of the behavior of the automated resources to 

the requirements and needs of the individual workers, adjustment of the behavior of the resources based 

on the status of the process and environment, and so forth. On top of that, Human-Robot Collaboration 

(HRC) entail challenges in physical interactions, i.e. always guaranteeing the safety of human operators, 

and activities coordination, toward improving cell productivity. Hence, robust controllers capable of 

preserving productivity and enforcing human safety are required (Freitag & Hildebrandt, 2016).  

 
Figure 22. Hybrid Production Systems (Michalos et al. 2014) 
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The inclusion in the industry of more sophisticated robots invites the use of new AI techniques since more 

and more data is computed to obtain very precise results in the shortest possible time. Focusing on the 

dynamic task planning systems, which can derive critical productivity benefits flexible plan-based 

solutions can be a key enabling feature of HRC controllers where robot motions must be continuously 

adapted to the presence of humans, which act as uncontrollable “agents” in the environment. Moreover, 

the integration of Planning and Scheduling (P&S) technology with Knowledge Engineering solutions and, 

more specifically, with verification and validation techniques is a key element to synthesize safety critical 

systems in robotics (Orlandini et al., 2014). The aforementioned conditions synthesize the challenges 

which academia and research have been dealing with by developing several AI-enhanced solutions that 

will be analyzed in the following paragraphs. In more detail, the next paragraphs present applications of 

AI extracted from projects like Sherlock, Thomas, Odin, Remodel, Romoflex, among others, which have 

demonstrated how the industry can benefit from AI.  The contents of the following paragraphs are the 

following: 

1. Hierarchical knowledge modelling for robot programming, task & workspace planning  
2. Intelligent ergonomics assessment for workstation layout design 

3. AI for dynamic task and motion planning 
4. AI for flexible and precise robotics  
5. AI for dynamic operator support  
6. AI-enhanced human-robot interaction  
7. AI for predictive maintenance 
 

3.1 Hierarchical knowledge modelling for robot programming, task & workspace 
planning  

Decision-making in manufacturing systems aims to achieve performance requirements e.g. cycle times, 

costs, and so forth, by selecting values for particular values of decision-variables e.g. location of 

machinery, allocation of tasks, etc. Typically, the mapping of decision variables to the expected 

performance has been accomplished with techno-economical models, however with the introduction of 

new requirements such as the integration of various systems for production, the simplification of robot 

programming, and the increase in robots’ accuracy the types of models is more and more extended 

(Chryssolouris, Alexopoulos & Arkouli, 2023).  

For instance, semantic models have been used to facilitate the integration between various systems for 

production, coordination and interaction, and they are becoming more and more part of industrial 

solutions Semantic models, originally used for symbolic reasoning and descriptions of linked-data sets. 

Semantic knowledge modeling is a process of creating a computer interpretable model of knowledge or 

standard specifications about a kind of process and/or about a kind of product. The semantic models are 

expressed in a knowledge representation language or data structure that enables humans and automated 

software components to interpret the meaning of the data in a consistent manner. Knowledge models 

are used to guide the creation of a product. Also processes imply the use of semantic models, a process 

model is in fact a semantic description of how to go from one step in the process to another, involving an 

action on a particular product. Similarly, a knowledge model of an assembly physical object is a 

decomposition structure that specifies the components of the assembly and possible the sub-components 

of the components and its processes.  
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The effort to simplify robot programming and increase the intuitiveness in Human-Robot Interaction (HRI) 
has frequently stimulated research about representing human, robot, or shared human-robot activities. 
Task-oriented robot programming that focuses on ‘what’ is to be done, as opposed to the motion-oriented 
programming that focuses on ‘how to be done’ is deemed to be more aligned with the efforts for intuitive 
programming (Makris et al., 2014) as it can enable the development of interfaces that will assist humans 
to transfer high level commands to a sequence of robot motions and actions. In this view, methods for 
robot programming grounded on the hierarchical decomposition of complex activities into simpler ones 
concurrently with the definition the sequence of operations and the creation of robot libraries including 
simpler robot tasks have been suggested (Makris et al., 2014). For instance, the method Figure 23 is based 
on three modules for the programming of a dual arm robot: the robot language, the human intention 
recognition and the human language. The robot language involves the high layer robotic library for the 
bimanual tasks, e.g., BI-APPROACH, BI-INSERT, etc. to support the dual arm motion control. The human 
language includes all the sensors/interfaces and the selected methodology for interaction including 
gestures, voice commands and graphical user interfaces (GUIs). The arguments for each operation such 
as start and target robot position are defined from human interfaces, voice commands and gestures. The 
human intention recognition maps the recognized human gestures to robot language commands. The 
implementation of the approach was based on a service-oriented architecture developed in ROS realizing 
an assembly task coming from the automotive industry achieving important reduction of programming 
steps and thus, of the overall programming effort. 

 
Figure 23. Robot process hierarchical modelling, (Makris et al., 2014) 

The concurrent modelling of human and robot tasks together with the existing resources in a unified 

model have been proposed to support the Human Robot Collaborative (HRC) workplace design, as well as 

the automatic task allocation. Methodologies based on hierarchical models may address the workstation 

layout design problem but also the task allocation. The approach in  Figure 24,  firstly locates all the 

components and following maps tasks to resources using a smart decision-making framework (Tsarouchi 

et al., 2016). The evaluation of the alternative HRC workplace layouts is based on multiple criteria such as 

ergonomics, whereas the system has been integrated with a user interface into a 3D simulation tool and 

tested on an automotive industry case study. Reduced time for redesign and reconfiguration of 

workplaces and process plans was noted.  
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Figure 24. Workplace and resources hierarchical modelling, (Tsarouchi et al., 2016) 

The design of automated cells currently requires considerable time and a working team of engineers, 

designers, system integrators, robot specialists, etc. The integration of rules and knowledge about cell 

design in AI-algorithms into the automated generation of good quality workstation designs in short time 

have attracted research interest. The prerequisite steps of such module should involve the modeling of 

the problem the definition of different criteria, (which are either calculated analytically or 

computationally), and then a set of algorithms, e.g. heuristics-based search algorithms (Tsarouchi et al., 

2017), for generating design alternatives, before selecting the most appropriate one. The modeling of the 

system is typically performed by combining rational data, or data from different sources and their 

geometrical counterparts that enable to model, of the actual production system, as well as the kinematic 

and dynamic constraints. Popular criteria for the alternative selection may be the payload, reachability, 

dexterity, number of required resources for a task, etc. The impact of using such methods includes the 

efficient design of work cells with reduced space utilization, and optimized resource utilization. 

Furthermore, Kokotinis et al., 2023) have worked on the quantification of the quality of human-robot 

collaboration, which can significantly support the ranking of human-robot collaboration scenarios based 

on human-centric viewpoint.  

 

3.2 Intelligent ergonomics assessment for workstation layout design 
As workplace layout is closely related to the worker wellbeing, physical fatigue but also productivity, and 

production costs the investigation of the impact it has on human operators are gradually investigated to 

a greater extent. Until recently, workplace optimization has been based on observational methods and 

software simulations which may not be as insightful to prevent workstation layout redesigns and 

interventions when the actual setup is in-place. On the other hand, full size prototypes entail high costs 

and implementation time. An alternative which can significantly reduce costs for physical prototypes 

construction and workplace design, as well as prevent redesign iterations deriving from the operators’ 

requirements and needs is the simulation in Virtual Environments with simultaneous data capturing. 
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Virtual Reality (VR) has been proposed for simulation of industrial operations and optimization of shop 

floors and workflow design (Rentzos et al., 2014). A review of the available methods together with a 

decision-support framework for the selection of the proper ergonomics evaluation method depending on 

the use case requirements has been presented (Arkouli, Michalos, and Makris, 2022) In this view, 

frameworks allowing inexpert users to create 1:1 replicas of industrial shop floors in an efficient manner, 

rapid modelling of tasks and actions for the preparation of Virtual Reality based assembly simulations 

(Dimitropoulos et al., 2020). The exploitation of VR simulation to analyse and enhance industrial 

workplaces by collecting more realistic data involving operators performing their actual task on a 

simulated environment is another area where researchers have focused (Michalos et al., 2018) to enable 

the tracking of (multiple) users virtually performing assembly tasks, with simultaneous visualization of 

KPIs (e.g. completion time, traveled distance, ergonomics) to support the relevant decision making.   

 
Figure 25. Human centred workspace design 

 

3.3 AI for dynamic task and motion planning  
Planning is another problem that requires notable effort and can be simplified with the use of AI based 

tools (Evangelou et al., 2021). A planning problem is typically modelled by identifying a set of relevant 

components whose temporal evolution must be controlled to obtain a desired behavior. Planning for real 

world problems with explicit temporal constraints is a challenging problem. Among different approaches, 

the use of flexible timelines in Planning and Scheduling P&S has been shown to be successful in a number 

of concrete applications, such as, for instance, autonomous space (Amedeo Cesta et al., 2007; Jónsson et 

al., 2000). Timeline-based planning has been introduced by Muscettola (N. Muscettola, 1994), under a 

modelling assumption inspired by classical control theory. Components represent logical or physical 

subsystems whose state may vary over time.  
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Since a decade, a research initiative has been started to investigate the possible integration of a timeline-

based planning framework (Cesta et al., 2008) and validation and verification techniques based on Timed 

Game Automata (TGA) to automatically synthesize a robot controller that guarantees robustness and 

safety properties (Cesta et al., 2011; Orlandini et al., 2013). Unfortunately, these systems do not allow an 

explicit representation of uncontrollability features. Consequently, the resulting controllers are not 

endowed with the robustness needed to deal with the temporal uncertainty of HRC scenarios and 

controllability issues (Morris & Muscettola, 2005). These systems usually rely on replanning mechanisms 

that may however strongly penalize the production performance. The execution of a flexible plan is usually 

under the responsibility of an executive system that forces value transitions over the timelines dispatching 

commands to the concrete system, while continuously accepting feedback and, thus, monitoring plan 

execution.  In such cases, the execution time of controllable tasks should be chosen so that they can face 

uncontrollable events. This is known as the controllability problem (Vidal & Fargier, 1999). 

In (Cesta et al., 2016) the general pursued approach is presented aiming at realizing controllers capable 

to dynamically coordinate tasks according to the behaviors of human workers. Umbrico et al. presented 

a task planning and execution framework (PLATINUm) and its integration with a Knowledge Engineering 

solution describing its deployment in safe and effective solutions for manufacturing HRC scenarios 

(Umbrico et al., 2018). PLATINUm is a timeline-based planning system capable of supporting flexible 

temporal planning and execution with uncertainty. PLATINUm has been used to introduce an innovative 

integrated motion planning and scheduling methodology that (i) provides a set of robot trajectories for 

each task as well as an interval on the robot execution time for each trajectory and (ii) optimizes, at 

relevant time steps, a task plan, minimizing the cycle time through trajectory selection, task sequence and 

task allocation (Pellegrinelli et al., 2017). PLATINUm has been used to combine task and motion planning 

efficiently in HRC pursuing a control-based approach based on two layers, i.e., task planning and action 

planning. Each layer reasons at a different level of abstraction: task planning considers high-level 

operations without considering their motion properties; action planning optimizes the execution of high-

level operations based on current human state and geometric reasoning. Also, connections with 

ontologies and semantic technologies are provided to demonstrate how abstractions and meta-reasoning 

can bring additional advantages in terms of adaptability and effectiveness in dealing with uncertainty 

(Borgo et al., 2016; Umbrico et al., 2020). 

In the perspective of increasing the responsiveness of production, collaborative Mobile Robots have been 

put on the spotlight to endow dynamic re-organization of the work in production systems. Mobile robots 

however call for dynamic generation and evaluation of the mobile robots’ task sequences, as well as the 

respective motions. The planning and optimization of the mobile robot paths has been addressed with 

several approaches illustrated in Figure 26 breakdown into sub-problems. Two main categories can be 

distinguished in the highest level i) global and ii) local planning. Each one of the two path planning modes 

requires modeling, optimization criteria, and searching. Especially the searching part can be enhanced by 

the implementation of AI-based applications such as the Artificial potential field. Robot abilities that are 

addressed include autonomous navigation (optimization of 2D trajectory) and manipulation (optimization 

of 3D trajectories). Including dynamic obstacle avoidance and online re-planning. Applications that require 

path planning in manufacturing include but are not limited to the following: delivery, autonomous car, 

logistics, fleet management of AGV and AMR to achieve better cycle times through offline simulations and 

online optimization calculations. 
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Figure 26. Mobile robots path planning problem analysis 

Approaches on planning for hybrid production model considering not only the robot actions but also the 

tasks and resources have been proposed. In some approaches hierarchical models of the tasks and 

resources are used to add context for decision-making and in scope of ensuring that the context is always 

relevant, the digital twin concept has been used (Kousi et al. 2019). In the application depicted in (Figure 

27) the digital model of the workstation is updated with data coming from the field, whereas the target 

of the proposed digital twin-based approach is to enable decision-makers to acquire context on the 

current shopfloor status and have up-to-date information about the actual production process. 

 
Figure 27. Scheduling and motion planning of mobile robots 
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This is achieved by firstly realizing the virtual twin of the system, i.e., modeling the parameters of the 

production system at different levels including assembly process, production station, and line level. The 

models capture both geometrical information and semantics. 

 
Figure 28. Digital Twins for Human-centric reconfigurable manufacturing lines, (Kousi et al., 2021). 

The models can be used together with an AI logic to generate alternative configurations of the production 

systems. In particular, for the implementation of (Kousi et al., 2021) the suggested digital world model 

infrastructure involves three main functionalities: 1) Virtual representation of the shopfloor, synthesizing 

multiple sensor data and CAD models. The digital shopfloor is rendered in the 3D environment benefiting 

from the capabilities provided by Robot Operating System (ROS) framework, 2) Semantic representation 

of the world through the implementation of a unified data model for the representation of the 

geometrical and the workload state, and 3) Dynamic update of the digital twin based on real time sensor 

and resource data coming from the physical shopfloor. The communication and integration layer among 

the physical and the virtual agents is implemented on top of the ROS framework (Kousi et al., 2021). The 

developed infrastructure has been applied to an industrial case study coming from the automotive 

industry focusing on a car’s front axle assembly. Nevertheless, it is designed to be generic enough to 

accommodate cases. The impact that was achieved by implementing this approach involved reduced time 

to adapt the production system and respond to unforeseen situations (Kousi et al., 2019).  

 

3.4 AI for flexible and precise robotics  
The manipulation of complex parts by industrial robots is a challenging application due to the uncertainty 

of the parts’ positioning, the distribution of the part’s weight, as well as the gripper’s grasping instability 

that has been favored by the use of vision systems. The instability is a result of non-symmetrical and 

complex geometries that may result in a slightly variable orientation of the part after being grasped, which 

is outside the handling/assembly process tolerance. In order to address this challenge, machine learning 

methods can be employed to recognize the parts and estimate their position and orientation after they 

have been grasped. The implementation of such approaches can increase the number of successful 

operations, the tolerance to the object’s initial positioning, but also to the part’s compliance, and the 

object’s geometrical complexity (Aivaliotis et al., 2017).   
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The growth of industrial sectors (automotive, aeronautics, clothing industry, etc.), whose processes 

involve deformable parts such as textiles and composites, has stimulated the automation of the 

manipulation and assembly of deformable parts. This research area up until recently was not very active 

due to the challenges related to flexible material deformability that are enhanced by the limitations of 

robot dexterity and perception during the deformable parts handling. Some solutions have though been 

presented.  

The robot manipulation and assembly of linear non-rigid components including the safe flexible material 

supply, part detection and grasping (Figure 29) and cross section recognition (in case of non-symmetrical 

parts) was addressed in (Andronas et al., 2022). Also, the identification of the most convenient grasping 

point, which is troubling due to the stochastic positioning and configuration of the objects, it is described 

by Sardelis et al. (2020). 

 
Figure 29. Grasping of a randomly positioned flexible part: (a) detection, (b) detection results (c) edge 

localization (d) part grasping (Andronas et al., 2022). 

Human-robot or multi-robot fabric co-manipulation has also been addressed. A model-based closed-loop 

control framework for seamless co-manipulation has been developed to exploit the potentials of HRC in 

this application field in (Andronas et al., 2021). A mass-spring model is used for simulating ply distortion 

and generating optimal grasping points’ spatial localization. The model is enriched with real-time 

operator’s handling actions, as captured from the implemented perception system. The proposed sensor 

and model-based controlling framework incorporates robot motion planners for operator support, 

through non-rigid object co-manipulation, or synchronization of cooperative robots within fully 

automated tasks. An experimental setup was used for validating system’s handling cognition during 

collaborative manipulation showing that there is potential for important improvements in the quality 

consistence, the ergonomics of the operator, but also the resilience into pandemics (Andronas et al., 

2021). 
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Figure 30. Co-manipulation of flexible parts, (Makris et al., 2022) 

Other researchers focused on increasing the accuracy of machine equipment modelling in order improve 

their accuracy, energy efficiency, and so forth. Nowadays, robot manipulators are far from the 

traditionally heavy and stiff structures, which in turn leads to less accurate positioning of the robot end 

effector due to the flexibility of robots’ links and gearboxes complementary to the friction phenomena 

that are present in the motor’s gear box. To this end, Aivaliotis et al. proposed an easy-to-use method for 

the identification of an industrial robot’s dynamic parameters based on physics-based simulation models. 

Robot motion data from both the digital and the physical robot together with an intelligent algorithm 

were employed to estimate the robot’s dynamic parameters and eventually adjust the control of the robot 

motion to improve accuracy (Aivaliotis et al., 2020).  

 

3.5 AI for dynamic operator support 
AI-based computer vision modules usually include a set of tools and methods that allow obtaining, 

processing, and analyzing images of the real world so that they can be processed by a computer. Common 

applications in the manufacturing field are: inspection and recognition of failures, quality control, 

perception of the environment, detection and tracking. Apart from that, they can be used to provide 

support to human operators. In this context, systems to detect errors as they are being performed, and 

prevent their propagation to the upcoming production steps are required. An object and human hands 
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detection vision system in combination with intention identification based on Convolutional Neural 

Networks (CNNs) are proposed to automatically monitor the execution of human-based assembly 

operations. The error handling is addressed by the provision of dynamic step-by-step instructions that are 

provided to the operators via multi-modal user interfaces (Andrianakos et al., 2020).  

 
Figure 31. AI-empowered process surveillance and dynamic step-by-step instructions, (Andrianakos et al., 

2020) 

ViTroVo is another similar solution involving an artificial intelligence framework capable of (1) 

autonomously building a graph of assembly steps via trial-and-error (in vitro Assembly Search) and (2) 

presenting relevant instructions to a human operator and, by autonomously detecting her progress and 

affective state, adapting accordingly (in vivo Adaptive Operator Guidance). The power of ViTroVo resides 

in its versatile way to manipulate a given product’s component Augmented Computer Aided Design 

(CAD+) models throughout the whole assembly task (Grappiolo et al. 2021). 

 
Figure 32. Artificial Intelligence creates assembly instructions from CAD, (Grappiolo et al. 2021) 
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3.6 AI-enhanced human-robot interaction  
Research on human robot interaction so far has addressed the improvement of the collaboration between 

humans and robots, mainly focusing on task sharing and allocation, safety, awareness, and cognitive 

support in form of Augmented Reality based instructions. For instance, the Robot Companion platform 

(Gosselin et al, 2022) integrates various technological bricks enabling to meet the needs of factories of 

the future in an iterative and agile way (Figure 33). The main components (apart mechatronics and 

embedded systems) are digital twin, vision sensors and algorithms (recognition and localization of 

objects), environment monitoring (analysis of the presence and activity of the operator), orchestration 

and task-planning (planning and execution of robotic actions), robot control, and communication 

protocols between the different components of the robot and between the robot and its environment. 

Gesture recognition and analysis of human-robot interaction as well as natural language interactions are 

also expected in the longer term. Several systems with similar objectives have been developed in different 

laboratories or by industrial companies over the last decades (MIT, Willow Garage, Halodi Robotics, 

University of Washington, Waseda University, DLR, TUM, KIT, Toyota Research Institute, Fetch Robotics, 

Robotnik, Pal Robotics,…). However, their use is often limited to demonstrations in laboratory 

environments, home or logistics. Industrial Robot Companions (e.g. Kawada, Epson) remain confidential 

and are mainly used as a showcase for their manufacturers. Only collaborative robots (Universal Robots, 

Kuka, ABB) are more widely distributed, but they do not have all the characteristics of a Robot Companion. 

Indeed, the vision defined above can only be realized if all the technologies used to make robots more 

efficient, more interactive, more intelligent, more communicative and safer reach a sufficient level of 

performance and maturity.  

The demonstrator in Figure 34 addresses the assembly of randomly deposited mechanical parts on a fixed 

base and presents various challenges, in particular for vision (small, similar and shiny parts), capture and 

assembly (smooth parts, of very variable sizes, insertions with very little play, screwing) and integration 

of various technologies. A new demonstrator with two arms is being built to perform tasks more smoothly 

and quickly. The ambition is also for the robot(s) to be able to handle cases where not all objects are 

visible or reachable at the beginning, forcing the system to have dynamic adaptation capabilities with re-

planning during execution to be able to adapt to unexpected situations. The medium-term objective is to 

have a demonstrator capable of learning and performing new tasks and in the longer term to be able to 

perform different assemblies on the fly with full autonomy and mobility.  
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Figure 33.Overview of the main functionalities of the Robot Companion 

 
Figure 34. Assembly of randomly deposited mechanical parts using AI-based vision capabilities 

Apart from light-weight collaborative robots, researchers has also worked on enabling high payload 

collaborative robots to work side-by-side with humans. This in turn required dynamically reconfigurable 

safety monitoring systems and smart Human Robot interfaces allowing the seamless integration of 

operators and robots in a common workflow has been presented in (Dimitropoulos et al., 2020). Among 

others, the presented solution can support a variety of hardware to easily fit in various industrial 

scenarios, and it has been tested in two case studies inspired by the elevators production and industrial 

modules production fields. The results of the testing and validation procedure indicate reductions in cycle 

time, operator idle times, but also improved operator satisfaction, and operator ergonomics 

(Dimitropoulos et al., 2021). 
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Figure 35. AI-enhanced operator support & robot adaptability to improve user experience, 

(Dimitropoulos 2021) 

 

3.7 AI for predictive maintenance 
The maintenance of machining processes is one of the most studied topics in manufacturing industry, due 

to its relevance for the process behavior and the economic impact on the production plans. Two different 

maintenance methods are applied in most of the industries; On the one hand, preventive maintenance, 

based on the theoretical life of the tool. On the other hand, predictive maintenance uses strategies such 

as inferring the remaining useful life (RUL) of the tool, which mostly depends on the wear measurements 

(Cerquitelli et al., 2021a, Cerquitelli et al., 2021b). It is critically important to assess the RUL of an asset 

while in use since it has impacts on the planning of maintenance activities, spare parts provision, 

operational performance, and the profitability of the owner of an asset. The objective of predictive 

maintenance is to predict when equipment failure may occur and to prevent a failure by performing 

maintenance. Ideally, this approach enables the system to have the lowest possible maintenance 

frequency.  

The field of prognostic maintenance (Giordano et al., 2021) aims at predicting the remaining time for a 

system or component to continue being used under the desired performance. This time is usually named 

as Remaining Useful Life (RUL). In order to enable such approaches in a cyber-physical production system, 

a deep learning algorithm is used (Bampoula et al., 2021) - Figure 36, allowing for maintenance activities 

to be planned according to the actual operational status of the hot rolling mill machine and not in advance. 

The rolling mill is composed of two rolling cylinders, rotating using torque motors.  The lower rolling 

cylinder has a fixed position and only the upper can move linearly (vertical) The segments have a wear-

resistant coating that degrades over time. The machine has mounted sensors, measuring cylinder 

hydraulic forces and segment surface temperatures.  The approach aims on enabling Predictive 

Maintenance (PdM) for the coating segments of a hot rolling mill machine, through estimating in real-

time their RUL.  Monitoring the wear stage of machine components can lead to improved scheduling of 

maintenance activities. An autoencoder-based methodology is employed for classifying real-world 

machine and sensor data, into a set of condition-related labels. Real-world data collected from 

manufacturing operations are used for training and testing a prototype implementation of Long Short-

Term Memory autoencoders for estimating the remaining useful life of the monitored equipment. 
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Figure 36. a) Rolling mill with degraded (red) coatings, b) LSTM-autoencoder implementation, (Bampoula 

et al., 2021) 

Other approaches involve correlation analysis and recurrent Neural Networks for machine failure 

forecasting. In this case, having the operational parameters of the positive displacement pump machines 

(e.g.: temperature, humidity, voltage, torque, force, etc.), and some Operation & Maintenance (O&M) 

records that indicate the date when the machines had some kind of abnormal behaviour, the AI-based 

approach would consist of correlating both sources of information to produce a health status of the 

machines and study how it evolves over time in a prognosis framework. To do so, a semisupervised self-

learning method is first applied to the O&M data since they are imprecisely categorized and have 

unreliable dates. Then an anomaly score is defined and a recurrent neural network is fit to it in order to 

forecast when a machine failure is going to occur given the previous trend. 

Deep Neural Networks have been employed for anomaly detection and identification of 

underperformance Figure 37. Given the vibrations of the blowers and pumps acquired by accelerometers 

and the operational context of the assets (e.g.: damper opening degree, composition of the combustion 

gases, etc.), a deep neural network-based model for anomaly detection is first learned. Then an adaptive 

strategy based on a context drift detector is deployed to automatically adapt the deep model to changing 

and dynamic production conditions, and thus detecting when the performance of the assets is not optimal 

given the current operational context. 
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Figure 37. Deep Neural Networks for anomaly detection and identification of underperformance 

Research on predictive maintenance so far has involved mainly data-driven prognostic techniques for 

machinery equipment individual components. Simulation capabilities can address the lack of historical 

data but also any challenges that are induced by the intricate design of industrial machines, e.g. robots 

that are frequently reported. In this perspective, a generic framework for the enhancement of advanced 

physics-based models with degradation curves has been proposed (Aivaliotis, Georgoulias, et al., 2019). 

The creation of a robot’s simulation model can play an important role in the accuracy of the simulation 

results (Arkouli, Aivaliotis, Makris, 2021). Moreover, due to the variations of the behaviour of the 

machinery equipment that stem from their use and the relevant fatigue invite for the continuous 

monitoring and update of the digital model parameters, which can be based on data and information 

extracted from degradation curves of the robot’s components. The health status of the robot can be 

monitored using a Digital Twin based approach that ensures the convergence of the simulated to the 

actual robot behaviour (Aivaliotis et al. 2023). The simulation can estimate the future behaviour of the 

robot and predict the quality of the products to be produced, as well as to estimate the robot’s Remaining 

Useful Life. The proposed approach is applied in a case study coming from the white goods industry, where 

it is investigated whether the robot will experience some failure within a predefined timeframe. The 

expected outcomes involve improved resource availability, product quality, etc. (Aivaliotis et al., 2021). 

 
Figure 38. RUL prediction enabled by physics based models enhanced with degradation curves, (Aivaliotis 

et al., 2021) 
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3.8 Consolidation of AI application at the Machine and Station level 
Industry and academia have been working on solutions to increase productivity fulfill the market demand 

for highly customized products. Although those have been ongoing research issues for some decades and 

many of the proposed solutions over the years have managed to improve the productivity and flexibility 

of factories, it seems that more effort is needed towards reducing integration costs, improve agility, and 

cover the requirements for an increased level of qualification and skills of operators. As an example, 

robotics, which has been widely deployed in industry over the last decades, is still often restricted to fully 

automated mass production applications that justify the implementation of perfectly controlled and 

monitored dedicated environments, with integration costs representing up to 70 to 80% of the cost of the 

production cell and development times that can range from a few days to several months.  

This has motivated the integration of AI techniques in manufacturing applications. There have been 

several calls for European projects where project proposals are presented that include different AI 

techniques. Thanks to these calls, AI techniques are increasingly sophisticated and with greater 

applicability in industrial processes. For logistics tasks for example, within its great breadth and diversity, 

the inclusion of AI has helped a great deal. Intelligent trajectory planning, dynamic obstacle avoidance, 

large fleet management of AGV and AMR to achieve better cycle times through offline simulations and 

online optimization calculations. 

AI for workstation layout, task allocation, and dynamic planning have dealt with fast reconfigurations, 

optimized performance, reduction of idle times, and dealing with unforeseen events. These items have 

been addressed combining the benefits of simulation and data-driven approaches, for the generation of 

alternatives while search-based intelligent algorithms using heuristics have provided promising solutions. 

Mixed Reality tools, further increase the information content that is available for decision-making by 

introducing human factors in the design loop, e.g., by enabling to measure the physical effort that is 

required for a specific task. As for the Digital Twin concept, it has been frequently employed to improve 

the quality of the decision-making by providing continuous contextual information on the actual shopfloor 

condition, including the availability of resources, space, and materials.  

AI is also linked to the enabling of a number of robot skills that allowed to automate several processes, 

such as the manipulation of deformable parts, that would otherwise remain strictly manual. Vision 

systems allow to adjust the robot behaviour based on the status of its surroundings not only to prevent 

collisions, but also to guarantee stable processing/manipulation of parts. Human-Robot 

Collaboration/Interaction, broadens the range of applications that may benefit from automation. In this 

context, AI is responsible to endow the robot to perceive the status of the operator and then automatically 

adjust its behaviour in order to promote a safe but at the same time comfortable interaction/collaboration 

with the operator by respecting its needs and preferences. The needs may refer to the physical effort that 

is required by the operator (e.g. selection of robot trajectory so that the operator avoids the assumption 

of uncomfortable postures when processing a part that is held by the robot), the operators feelings 

concerning any stress that might be introduced by the motion profile of the robot (motion speed, and 

acceleration), as well as the effort and expertise that is needed to program the robot. Additionally, there 

is a growing demand comprehensible by the human’s models that are used for decision-making, especially 

when it comes to critical applications, such as safety in human-robot collaboration. This item is addressed 

by the research field of explainable AI (XAI).  
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Besides robots, AI has also enriched the capabilities of humans by providing the right information when 

needed, e.g., surveillance of manual assembly for the detection of errors and provision of step-by-step 

instructions for error handling. Finally, AI can act enabling to predict the status of the machines or detect 

anomalies in the machinery equipment operation. CNNs seem to be a part of the majority of the 

approaches that have been presented so far. On the other hand, physics-based simulations may offer 

additional insight on the machineries internal condition, which stimulates efforts towards hybrid models. 

Figure 39 depicts the implemented AI solutions so far, as well as the achieved impact together with the 

expected results for the years to come. Regarding the efficiency of hybrid productions systems, theoretical 

and experimental work is still needed to improve the performance and stability of the control of such 

increasingly complex systems. This work is expected within the next 5-10 years and can exploit model- or 

data-driven approaches, capitalizing on the most recent advances in artificial intelligence as proposed for 

example by Alphabet/Intrinsic, and taking into account both the robot and perirobotic components such 

as sensors, environmental perception and scanning functions, and dedicated effectors (e.g. inspection, 

NDT, assembly, welding, ...).  

Performance improvement also requires working on software and embedded systems, with the objective 

of minimizing the sensor latencies and/or optimizing the execution times, energy efficiency or even the 

size (and therefore weight and consumption) of the embedded electronics. Example critical functions that 

can benefit from this work cover the data fusion of heterogeneous sensors to monitor the system’s and 

environment’s state, the acceleration of vision/recognition/localization functions thanks to the 

optimization of image processing, or the acceleration of collision-free motion/path planning as proposed 

by RealTime Robotics who implemented Georgia Tech algorithms on FPGAs with a 100x gain. These 

developments are the basic components allowing the development of advanced robotic functions 

(mobility, gripping, bi-manual handling, man-robot collaboration, etc.), themselves at the heart of task or 

mission planning functions that can benefit from the digital twin of the robot(s) and their environment. 

 
Figure 39. Current status and Future Vision for the adoption of AI at the Manufacturing Workstation level 
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The notions of interoperability, safety and security (physical but also cyber) are of course also central to 

hybrid production systems. Previous research indicates bottlenecks from the interaction of the operators 

with such supportive systems. The cause for these bottlenecks is the fact that both the direct interaction 

approaches (use of push buttons) or indirect-gesture based interaction require operators to constantly 

occupy their hands performing the relevant button presses or gestures (Dimitropoulos et al., 2020). 

Moreover, a great number of the proposed approaches are hardware dependent and need a lot of 

customization before being integrated with the rest of the hybrid system’s components. Furthermore, it 

is for example extremely difficult to certify equipment at the hardware and software level, which can 

exclude some technologies. Demonstrating compliance with standards can therefore become crucial for 

the implementation of the technology. To enable early assessment of concerns such as performance, 

safety, security, reliability, etc., advanced software architecture design tools will be needed. These next 

generation systems engineering tools will be central for reducing design iterations and costly and time-

consuming design cycles. These tools are also crucial for the development of interoperable solutions that 

allow such robots to be easily adapted to new tasks and environments, e.g. by communicating with other 

sensors (e.g. surveillance camera) and equipment in the plant. This requires efficient and secured 

communication capabilities, with dynamic safety and security features able to adapt to changing 

configurations and environments. These elements are central to the development of intelligent and 

trusted collaboration and cooperation functions, whether between several robots, between the robot(s) 

and their environment, or between the robot(s) and human operators. 

 
Figure 40. Degree of vision achievement  

The long-term future involves the improvement of the intelligence of collaborative that will be capable of 

learning from themselves (e.g. deep reinforcement learning). In this context, the coupling of robots (and 

their environment) to their digital twin could allow the development of hybrid approaches combining 

learning in simulation and in the real world (e.g. Sim2real approach). We can also rely on the operators to 

teach the robots, with the possibility of exploiting very intuitive and natural interaction paradigms to 

manipulate the robots and show them the actions to be performed without any knowledge of 

programming or robotics (programming by demonstration, by imitation). Federated learning or symbolic 

AI are also enablers to give the robot better reasoning and reaction capabilities. The co-existence of robots 

and human operators in future factories also requires robots that are sufficiently expressive for operators 

to immediately understand what they are doing and to be able to work with confidence at their contact 
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or in their proximity. Intuitive multimodal HMIs (e.g. gesture, touch, speech, vision) are also required for 

natural and efficient interactions. 

Additionally, AI solutions respecting the existing standards make it possible to envisage systems easier to 

integrate into existing legacy environments (‘plug and produce’ concept) in the long-term future. 

However, it should be taken into account that standardization has not equally progressed in all the 

industrial sectors, for instance e.g., OPC-UA has been proposed for the automotive industry, while other 

domains (e.g. micro-electronics, food industry) are currently less structured and still use proprietary 

solutions. In addition, challenges remain in implementing modular and interoperable software 

architectures and solutions that guarantee the safety (compliance with current safety regulations, e.g. 

15066) and cybersecurity of machinery equipment, which requires, in particular, the certification of the 

codes of the various components. 

Maintaining and even relocating factories in Europe requires investing in manufacturing tools that are 

more efficient in order to guarantee the European competitiveness, more agile to adapt to a growing 

demand for customized and personalized products, and more responsible, keeping the human operators 

in the heart of factories. These challenges require the development of a whole new generation of plug-

and-produce robots, i.e., very easy to install and use, making it possible to multiply the capacities of 

human operators by physically assisting them, by helping them to work more efficiently, or by performing 

part of their work autonomously, after learning from them. 

4 AI at the System level 
It has been observed that there is no commonly agreed definition of manufacturing systems level, as 

usually the definitions given by researchers or people in the industry differ. In this work, with 

manufacturing systems, a combination of machines, cells, intra-logistics devices, and other peripheral 

devices used on the factory floor as well as the relevant software is assumed. Moreover, the value chain 

of manufacturing systems including logistics is being considered under this hierarchical level. At this level, 

the complexity and interrelations among the entities increases, the volume of data also increases as it 

aggregates data from lower levels, and uncertainty, non-linearity, and stochasticity also increase. All these 

inherited attributes make transparency, predictability, and adaptability more challenging tasks for AI. 

However, at the same time as uncertainty and stochasticity increase, the need for accuracy of the models’ 

results decreases, at least compared to the AI models in the lower hierarchical levels, and usually there 

are longer time frames available for decision making. The challenges in the industry at the system level 

mainly concern process efficiency and energy consumption maintaining the quality of the final product. 

Moreover, important challenges are the optimization of the available space while ensuring that all the 

necessary elements are included in the layout design and the workspace is safe and accessible, as well as 

ensuring accurate reporting to allow for effective management and decision-making. It is important to 

weigh each objective in each situation of the process and product lifecycles since the objectives are 

opposed. In this regard this section will discuss the following cases that fit onto this hierarchical level: 

1. Design of manufacturing systems 
2. Work management with AI  
3. Planning and scheduling the production of IPPS  
4. Industrial reports based on Natural Language Processing 
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4.1 Design of manufacturing systems 
Manufacturing of products requires the combined and coordinated effort of human resources, 

equipment, and machinery. The design of manufacturing systems can become highly complicated due to 

the multitude of possible solutions and the geometrically increasing engineering time needed to find an 

optimal solution. As the number of variables and constraints, which depend on the types of products, 

resources, and processes, in the system design problem increases, traditional optimization algorithms 

struggle to find the optimal solution in a reasonable amount of time. This issue stems from the fact that 

the design of manufacturing systems falls under the classification of NP-hard problems, for which no 

efficient algorithm currently exists to find the optimal solution. Therefore, the design of manufacturing 

systems requires innovative approaches and techniques to overcome these challenges and find the best 

possible solution. 

AI can play a crucial role in the case of manufacturing systems design as it can effectively handle the 

complexity and scale of these problems. By utilizing advanced algorithms such as machine learning and 

deep learning, AI can analyze large amounts of data, uncover patterns, and provide insights that inform 

the design process. The implementation of AI in the manufacturing systems design enables automated 

search processes, allowing human resources to undertake other tasks. Furthermore, AI can serve to 

identify trade-offs between different design decisions and provide insights into the impact of changes to 

the manufacturing system. In practice, AI can be employed for predictive modeling and optimization using 

machine learning algorithms, and design and simulation through AI-powered simulations. Thus, the 

integration of AI into the design of manufacturing seems to have the potential to significantly improve the 

efficiency and effectiveness of the design process while improving the outcome and yielding more 

efficient production processes. 

In this perspective, several methods of deriving assembly line design alternatives and evaluating them 

against multiple user-defined criteria have been presented (Michalos et al., 2012). Process requirements 

such as the process plan, and alternative possible solutions, such as the joining technology to be used can 

be provided as input to the AI system (Figure 41). The system based on the input generates and searches 

a large number of technically feasible designs. Then the alternative design is evaluated under a number 

of multiple criteria e.g., investment cost, availability, equipment reuse, production volume, and flexibility. 

As a result, suitable alternative cell designs are generated and proposed to the designer (Figure 42). The 

discussed method can translate a cell design decision-making problem into a search one, and it can, 

therefore, be attacked in a more systematic way using AI. The method was implemented in the form of a 

decision support tool, capable of identifying good quality solutions. An intelligent search algorithm was 

employed to solve the design problem at hand. 
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Figure 41.  Alternative designs for product design, (Michalos et al., 2012) 

 

 
Figure 42.  Alternative cell designs created through a generative design process, (Michalos et al., 2012) 

 

4.2 Work management with AI 
The manufacturing work environment is increasingly becoming digital. In the digitalized factories, there is 

a need for new kind of collaboration between production systems and factory workers. Capacity planning 

of human and material resources can be done holistically to maximize productivity and well-being at work 

simultaneously. Different work tasks can be measured, physical and cognitive workload can be followed 

and worker information can be considered. Combining the information of the work environment and 

worker preferences and skills can greatly enhance the wellbeing and satisfaction of the workers and 

empowering work communities.   

The AI Foreman concept solution that carries out work management with AI has been proposed as a 

counter measure. The pilot is part of the Reboot IoT Factory initiative where one of the main goals was to 

study how new technologies can be used to improve the well-being and productivity of human workers11. 

AI Foreman tracks production and records skills data to a matrix that collects the expertise of each worker. 

The tasks are allocated based on a worker’s digital twin, which includes personal preferences and skills. 

Each employee can then access their own personal data through the MES system. Also, feedback of 

 
11 Reboot IoT Factory, https://rebootiotfactory.fi/labor-at-digital-work-environment/) 
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various work phases can be collected and used so that the employee’s day consists of pleasant and 

sensible tasks. The system monitors the daily progress, resourcing and how the goals are met. It helps to 

ensure that the team has as little obstacles as possible disturbing their work. In a longer term, the 

information can also be used for adopting new skills and career development. 

 
Figure 43. AI Foreman concept12 

When optimising work practices, it is essential to consider ethical and legal aspects and engage workers. 

Making decisions and gathering data about human resources requires empathy, control, involvement as 

well as agile, appropriate, and data-intensive tools. AI Foreman has shown promising results and the 

feedback from the employees is very positive. This paves the way towards AI-powered work communities 

and collaborative human-AI systems, where human operators can pre-process data, critically interpret the 

AI results and train AI solutions similarly as new colleagues. 

 

4.3 Planning and scheduling the production of IPPS 
In product-oriented Industrial Product Service Systems (IPSSs) the customers benefit from the 

combination of a product that offers some functionalities and a set of services. IPSS supports the provision 

of services which can be offered by the product manufacturer. The services can offer a wide range of 

functionalities that can range from ensuring the product’s original functionality to augmenting the original 

functionality of the product. The shifting of a company to IPSS poses many challenges such as the changing 

of the company’s business model. One of the most important challenges for the establishment of IPSS is 

the appropriate planning of the resources for production, deployment, and installation into the 

customers’ site.  In (Alexopoulos et al., 2017) a multi-criteria resource planning method and tool for 

optimizing the production, delivery, and installation of IPSS has been developed. The solution employs an 

AI technique for generating alternative IPSS production and installation plans and evaluating them on 

performance measures for production and installation such as time and cost. Moreover, through the 

integration of the planning tool with the IPSS design phase, information for generating the Bill of Process 

and Materials is presented.  The objective of the AI planning method is to find an optimal solution that 

decides what IPPS equipment (e.g., sensors) suppliers to select, which resources (e.g. IPSS service 

installation technicians), and when they should perform which processes/tasks at IPSS provider or 

customer site. The planning method proposed in this work is based on the approach proposed by 

 
12 https://rebootiotfactory.fi/rebootiotfactory/future-work-with-ai-foreman-in-digital-factory/  

https://rebootiotfactory.fi/rebootiotfactory/future-work-with-ai-foreman-in-digital-factory/
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Chryssolouris and Lee (1994) and it defines the approach for assigning a set of resources to a set of tasks 

under multiple and often conflicting optimization criteria. 

 
Figure 44. Industrial Product Service System production and installation planning flowchart (left); 

intelligence search for evaluating different option (right), (Alexopoulos et al., 2018) 

 

4.4 Industrial reports based on Natural Language Processing 
Production, maintenance or inspection processes require semi-structured reports containing metadata, 

text and images. They serve as a support for the transmission or capitalisation of information. Due to the 

lack of available time and the working environment, the reports are poorly written and/or incomplete, 

making them difficult to exploit through automatic processing. In addition, reports are written "on the 

way back to the office", which often results in a loss of information. NLP tools could be used to simplify 

the report writing process by automatically structuring dictated reports for integration into automated 

processes. 

Written reports are one of the main ways that organizations capture and pass on knowledge. But to be 

effective, an organization's knowledge management system needs complete, clearly-written reports. For 

instance, DIVORA is a smart voice-dictation tool, developed in the scope of Factory Lab, that can automate 

the generation of written reports. The idea is for users to be able to dictate their reports into a mobile 

device right from the worksite. DIVORA prototype aims to simplify the process of writing structured 

reports in the industrial context by adapting automatic written language processing tools for the analysis 

and interpretation of voice dictation. 
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In the DIVORA13 prototype, a first module leverages a speech recognition technology to convert speech 

into text. The text then goes through a second module, built on CEA-List's LIMA14 multilingual analyzer, 

where significant terms of the report and the semantic relationships between these terms are identified. 

One problem with this type of tool is the difficulty of adapting the artificial intelligence models to the 

domain of the use cases treated: specific vocabularies, syntaxes, languages and knowledge. To do this, 

the CLIMA tool (LIMA Configurator) facilitates the configuration. 

The development of demonstrators focused on two use cases: the generation of an inspection report for 

a forklift truck and the generation of a report for site monitoring. The demonstrators are functional and 

produce clear reports, possibly presented in the form of tables. In addition to saving time, they guarantee 

optimal information quality. DIVORA will soon be adapted to other professions, notably in the fields of 

health and e-commerce. 

Work is being carried out to integrate data-mining tools into Electronic Document Management (EDM) 

technologies. AI technologies will ease extraction of technical terminology, document matching, 

document categorization, structuring of business concepts. AI will also drastically improve semantic 

search engines, synthetic view of documents and adaptation to the domain for greater user autonomy. 

The technological stakes are multiple and ambitious: making LIMA/CLIMA evolve for the needs of EDM, 

capitalization of evolutions of the search engine according to the cases of use treated (Search by 

keywords, entities, relations…) and cross-document exploration, development and the automatic 

terminology structuring theme. 

 
Figure 45.  Semi-automated term clustering for terminology structuring by identifying key concepts of the 

domain (grouping of instances) 

 

 
13 cea ialv, DIVORA BV, (Nov. 04, 2020). Accessed: Sep. 01, 2021. [Online Video]. Available: 
https://www.youtube.com/watch?v=FrwnB6XDzpU  
14 “Home · aymara/lima Wiki,” GitHub. https://github.com/aymara/lima (accessed Sep. 01, 2021). 

https://www.youtube.com/watch?v=FrwnB6XDzpU
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4.5 Consolidation of AI application at the System level 
The AI-based enhancement of the manufacturing system’s level can support multiple processes from the 

system’s design to the digital infrastructures and ICT technologies that are required for its seamless 

operation. The impact that can be brought by AI solutions is possible to be reflected in KPI values. The 

majority of existing solutions evaluate their performance based on KPIs such as the design time required 

to produce AI models/Digital twins.  

Regarding the design time required to produce AI models/Digital Twins, data scientists typically spent 60 

to 80% of their time in ‘data collection’.  The knowledge graph approach (TRL 3-4) we put forward should 

allow to significantly reduce the time needed to collect that data. Nuance: there is a setup cost, so 

currently the benefit is for companies that systematically want to invest in AI for manufacturing, and less 

for ‘one-off’ implementations. 

A lot of attempts to create AI models in the manufacturing domain fail due to the fact ‘black-box 

approaches’ are used to infer cause-effect relations on the one hand and train models on the other hand.  

Especially in a high-mix-low-volume context with limited data and many process and configuration 

parameters, these approaches do not yield successful AI algorithms.  By capturing explicit and implicit 

knowledge in the knowledge graph, a much higher success rate can be achieved. 

 
Figure 46. Current status and Future Vision for the adoption of AI at the Manufacturing System level 
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Figure 47. Degree of vision achievement 

If the data that is going to fit the AI model is not representative enough of the problem to be addressed, 

the probability of success drastically decreases for obvious reasons. The proper digitization of the system 

or systems under study is crucial in order to be able to compute and measure the KPIs over time and 

optimize them by means of an AI-based, data-driven approach. This is done by having a clear idea about 

what to measure and how from the system under study, at the conceptualization and design stage of the 

AI solution. The expert knowledge and a deeper problem understanding from a business perspective must 

support this process.  

5 Cross-cutting aspects of AI in Manufacturing  
This chapter deals with aspects that are relevant to all the levels of the defined manufacturing hierarchy 

and the identified technologies. Issues such as knowledge representation, synthetic data generation, and 

platforms for AI applications in manufacturing are discussed.  

5.1 Knowledge representation: Modelling & Semantics as enablers of smart 
decision-making  

AI in manufacturing covers a very diverse range of applications from defect detection to more complicated 

applications such as plant predictive maintenance, as presented in the previous sections. AI is especially 

beneficial in supporting tactical (fi. ‘where should I install an additional QI system’) and operational 

decision making (fi ‘optimally combining parts to ensure the end-of-line quality’) at the level of the design 

and (re-configuration) complete factory lines, or even reaching beyond the manufacturing silo towards 

the product design (‘Based on my end-of-line test, do I really need such a tight geometrical tolerance on 

this shaft in order to have the desired performance’). A crucial step in the “AI lifecycle” of all these 

applications, is the analysis of (raw) data recorded by sensors and software, often carried out by data 

scientists, in order to generate actionable insights.  Typically, this is a complex and cumbersome process. 

The reasons for this are manifold: 

• Data is often physically spread across multiple silos within the organization. This makes it hard for a 

data scientist to keep a correct overview of all data, and how it is connected. 

• The data sources (inputs from human operators and designers, Manufacturing Operations 

Management software, machine sensors) and types are very heterogeneous: data may be relational 

(product X was tested by operator XYZ and assembled in workstation ABC), blob data (e.g., images 
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from quality inspection systems), timeseries data (fi. Cooling liquid temperatures), graph data, etc.  

and therefore, also typically stored in different storage mechanisms. 

• Technical level data does rarely correspond to domain level data: a concept in a problem domain 

often maps to multiple technical data concepts (e.g., tables), data may not be organized or named in 

an intuitive way, data formats may not correspond their semantics, etc. In one of our industrial cases, 

retrieving all orders for a customer involved joining more than 10 tables. 

• Important context information about the data is often implicit: data may be recorded under different 

conditions, by different operators etc. and this meta-data is often not captured. 

• Existing production knowledge (fi. process FMEAs, Ishikawa diagrams, operator experience) are most 

often still tacit knowledge and not easily reusable.  

• Previously obtained insights typically take the form of ad-hoc analysis scripts (in e.g., Databricks) and 

reports. This makes it hard to reuse those previous insights and knowledge when starting a new data 

analysis experiment. 

Knowledge graph approaches have been proposed to make the data analysis processes for AI applications 

more efficient. The knowledge graph is used as the harbor of all data, information and knowledge related 

to a manufacturing system. It is structured according to the conceptual model of a knowledge domain, 

i.e., product design and its manufacturing process. Therefore, domain experts can use real-world 

concepts, vocabulary and relationships between these concepts to describe and solve problems related 

to the domain (e.g., what-if analysis, training AI models, etc.). During the AI lifecycle, the manufacturing 

knowledge graph is the gateway to find and store all knowledge about a manufacturing process that exists 

within an organization. It specifies what historical data exists, how it is related, from which sensors this 

data was collected, to which manufacturing process it was related, who was involved, what correlations 

may exist, what physics models are involved, which data experiments have been conducted in the past, 

what machines, sensors, products, operations exists and how they are used in the manufacturing process, 

etc. All this data, information and knowledge together form the “historical digital twin” of the 

manufacturing system. The term “historical” digital twin is used since this digital twin contains the 

historical information of the manufacturing system, as opposed to the more traditional “streaming” digital 

twin that mirrors the live state based on streaming data of a manufacturing system.  The approach is 

illustrated in Figure 48 . 
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Figure 48. Knowledge Graphs for AI in manufacturing, (Meyers et al., 2022) 

In order to being able to support the data analytics step in the AI lifecycle, the manufacturing knowledge 

graph has to exhibit a number of characteristics: 

• More than data: it models data, but also information and knowledge about this data, where all 

concepts are defined in terms of the problem domain, making them intuitive to domain experts.  

For instance, to avoid that, data scientists have to perform an enormous amount of black box 

correlation analysis, known or suspected influence relationships can be captured in the 

knowledge graph. 

• Typed graph: the knowledge graph can be seen as linked concepts, so it has a graph structure by 

nature. Concepts are explicitly typed in order to define and impose structure. 

• Explorable: given the potentially large span of content of the knowledge graph, it must be possible 

to explore its structure, to learn what concepts exists and how they are related.  

• Queryable: during the AI lifecycle, data scientists must be able to query specific data, information 

and knowledge, without needing to know its technicalities, e.g., where data are stored, with what 

tool, etc. Users may query for data, but also for information and knowledge, e.g., have we done a 

data science experiment that investigates the correlation between two given physical entities? 

• Virtual data: Given the large amount of data in an organization, and the highly optimized storage 

of this data, the knowledge graph needs to support data virtualization. Existing technologies like 

Spark data frames (in e.g., Databricks) provide such support and are thus, interesting for data 

scientists. Alternatively, querying the knowledge graph may result in technical-level queries. In 

any case, the user is shielded from having to compose the technical database queries, having to 

learn their format, location, schema, etc. Furthermore, on-demand (on-the-fly) calculations of 

data, by e.g., using an algorithm or simulation model can be stored explicitly in the knowledge 

graph and be executed on demand. 

• Evolving: as the manufacturing system produces new data and structurally changes over time, by 

definition, the knowledge graph evolves with it, as also implied by the term ‘historical digital twin’. 

This means that a query to the knowledge graph, is in fact a query to that particular snapshot in 

time of the knowledge graph. The same query may yield a different result at a different point in 
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time. The evolution of the knowledge graph needs to be made explicit in order to make e.g., data 

experiments reproducible, and reusable. 

 
Figure 49. Data, Information, Knowledge, Wisdom (DIKW) pyramid 

The implementation of the concept of manufacturing knowledge graphs has been performed using two 

major technology stacks, i.e., metamodeling and semantic web technology. A metamodel-based 

knowledge graph focuses more on strong typing and constraining all concepts in the domain. It provides 

a more natural integration in a software engineering process. A semantic web based knowledge graph, 

sometimes called ontological knowledge graph, focuses on common vocabulary, categorization and 

relationships of concepts for large domains. In contrast to metamodeling, it allows automated reasoning 

based on an open-world assumption, which often maps better to reality. Ontology engineering has been 

used in several disciplines to gain a better common understanding about a domain. In software 

engineering-related projects, RDF and OWL are de facto standards, popularized by the Semantic Web, 

which intends to make the Internet machine-readable by structuring its metadata. Well known success 

stories in other domains are DBpedia, a formalization attempt for Wikipedia that allows querying its 

resources and links to related resources, and the Google Knowledge Graph, which is able to extract specific 

information on search results in an infobox. In different areas, ontologies emerged that standardize the 

complete domain. Especially in life sciences this proved to be very successful (e.g., the Gene Ontology in 

bioinformatics, Plant Ontology in biology, etc.). In manufacturing, similar initiatives exist, like the Ontology 

for Sensors, Observations, Samples, and Actuators (SOSA). Yet, in contrast to the successful examples from 

other domains, knowledge graphs in manufacturing are still very rare, mainly due to the very 

heterogeneous data and knowledge that has to be dealt with. For instance, how to formally encode 

existing knowledge from process FMEA and or Ishikawa diagrams in a knowledge graph is still largely 

unexplored. 

The choice of core technology also has an effect on the peripheral technologies of the knowledge graph 

(and hence on its characteristics such as the queryable/explorable aspects mentioned above). For 

example, SPARQL is an out-of-the-box query language for ontologies, and we have been using GraphQL 

for querying metamodel-based knowledge graphs. 

The main advantage of using knowledge graphs in the data analysis phase of the AI lifecycle for 

manufacturing systems is that they make data, information and knowledge available in a unified way, at 

the knowledge domain level rather than the technical implementation level, thereby breaking the 

traditional data silos. Currently, knowledge graphs in AI for manufacturing are not yet common ground. 
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This especially limits the application of AI on the system level, as it is very hard to find the relevant 

scattered data and knowledge when conducting data analysis. In manufacturing companies, the amount 

of collected data is huge, as well as the amount of implicit knowledge about the data and the 

manufacturing processes that hide behind them. Especially in the manufacturing industry there is a lot of 

unleveraged domain knowledge, more than in other (purely data-driven) application domains. If an 

organization is able to capture and unify such extensive knowledge using a knowledge graph, we believe 

that this will be a key enabler to leverage their AI potential and reduce the time necessary for carrying out 

data analytics activities on the one hand and increase the success ratio of building AI systems for the 

manufacturing industry. 

5.2 Platforms & infrastructure for AI-based decision-making in manufacturing 
Heterogeneous and distributed data structures, variety of digital implementation frameworks, hybrid 

edge-cloud architectures, lack of standards for the semantic description and interoperability between 

heterogenous systems and devices, latency requirements as well as lack of standardized AI solution 

components management imply making huge effort to manage share datasets and AI models between 

stakeholders and industrial assets avoiding efficient and agile production (Lukas Rauh et al 2022). There 

are various principles to reduce effort and push industrial AI by focusing on the comprehensive lifecycle 

(S. Amershi et al. 2019, L. Baier et al, 2019, R. S. Peres et al 2020): 

- Data Governance including Policies to ensure that data is accurate, consistent, complete, 

secure, private, accurate, available, and usable. About 80% of the time consumed in most AI and 

ML projects is related to data management, preparation, and engineering (Cognilytica, Ed “Data 

Preparation & Labeling for AI 2020,” 2020). 

- High Degree of Automation including high quality process. 

- Flexible manufacturing process to allow workloads and strategies to customized production in 

the face of external changes. 

- Standardization Interoperability – Plug and Produce: Standardization and interoperability are key 

for the successful implementation of this digitalization strategy (Iñigo, M. A. et al. 2020). Standardized 

Digital twin per each industrial device for multiple conversations and operations for compatible 

manufacturing environment.  

- AI Semantics would ensure transfer immediately in a federated ecosystem the use of data and 

algorithms for a specific context. 

- Federated Environment. Multiple Nodes using data from similar devices would improve AI 

models and productivity. 

- Standards: Data structure from definition of devices using AAS, communication through OPC-

UA, MQTT and Structure Business Layer with AAS submodels including AI semantics would 

facilitate operations along value chain. 

Today, it is mandatory to access a trusted infrastructure to ensure the continuum of data from the field 

to the cloud to host and manage data. This continuum is a vital infrastructure whose security and 

sovereignty must be ensured so that companies can trust and take full advantage of digitization. The lack 

of secure and sovereign solutions for the cloud on the edge (also called far edge) remains the missing link 

slowing down the digitization and slowing down manufacturing industry. The "far edge" requires business 

knowledge and the need to take into account interfaces with the legacy environment over long periods 

of time. The opportunity is exciting as hyperclouders are slow to address it. Aligned with this need the 
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french project called OTPaaS 15( Platform as a service for OT) targets the massive digitization of companies 

by offering a cloud suitable for the digitization of the field that is compatible with Gaia-X and easy to use 

by companies including SMEs. The OTPaaS project relies on technology providers to build sovereign 

solutions for the distribution of data and processing capacities between IoT, IT and the cloud and aims to 

expand in a second step to European suppliers to offer a strong infrastructure with large services. 

Several architectures have been proposed for the combination of shopfloor data with edge and cloud 

computing services. For instance, Figure 50 shows a suggested architecture towards exploiting edge, and 

cloud capabilities for processing data from the shopfloor with AI-based approaches. A number of relevant 

features includes the coupling of AI to digital twins, data modeling, incorporated engineering knowledge, 

interactive visualization, ontologies/semantics and different data sources (PLM, Sensors). Moreover, 

adjustable data granularity, and flexible/Purpose oriented data collection is enabled, whereas cloud and 

IIoT services can be used based on authorization to ensure security to people or algorithms. In this way it 

is possible to overcome barriers due to lack of access to data, lack of data, limited data, split to atomic 

process steps, or unbalanced data.  

On a manufacturing shop floor, context-aware intelligent service systems can be used to provide AI 

services to people on the shop floor and back office. Industrial Internet of things (IIoT) context-aware 

information systems (Alexopoulos et al., 2018) can be employed to support decision support for mobile 

or static operators and supervisors. Such systems may combine key IIoT concepts such as multi-layered, 

service-oriented architecture, which integrates several subsystems, such as sensor data acquisition with 

concepts for developing AI systems that utilized contextual information collected. As discussed in 

(Alexopoulos et al., 2020), such architectures can be combined with the digital twin concept into building 

frameworks for deploying AI applications in manufacturing settings (Figure 50). 

 
Figure 50. Digital twin for the development of machine learning-based applications for smart 

manufacturing, (Alexopoulos et al., 2020)   

 
15 https://www.linkedin.com/company/otpaas/?viewAsMember=true%20) 

https://www.linkedin.com/company/otpaas/?viewAsMember=true%20)
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5.3 Data spaces for AI development and deployment 
Data and data sharing are key ingredients for the implementation of AI. However, to solve the challenge 

of fueling AI models with enough quantities of quality data a collaboration between organizations is 

needed that enables a) data sharing for AI, and b) execution of AI algorithms. Organizations in order to 

share their data, they should have been guaranteed some level of trust and some level to which they stay 

in control over who can access their data and for what use, i.e. data sovereignty16. Recently, the concept 

of data spaces has emerged for the implementation of industrial data spaces under data sovereignty 

principles and the most notable initiatives are the Gaia-X17 and International Data Spaces Association 

(IDSA)18.   

Gaia-X “is an initiative that develops a software framework of control and governance and implements a 

common set of policies and rules that can be applied to any existing cloud/ edge technology.  They have 

several lighthouse pilots aiming to demonstrate Gaia-X capabilities in manufacturing such as Catena-X19 

focusing on the automotive value chain and EuProGigant20 which is cross-sectorial and cross-the-border 

in the manufacturing value chain.  Similarly, IDSA envisions “to create a future where trusted partners, of 

all sizes and from all industries, can securely share data while maintaining self-determination and control.”  

The Smart Connected Supplier Network (SCSN) 21 , driven by TNO and BrainportIndustries in The 

Netherlands, is a data standard that makes the exchange of information in the supply chain more efficient, 

so that companies can share data more easily, reliably and quickly over trusted dataspaces such as IDSA 

and Gaia-X. Another stream of stakeholders that have a key role in supporting industry into the adoption 

of advanced AI technologies such as the integration to common data spaces are the Digital Innovation 

Hubs (DIH) as well as the Testing and Experimentation Facilities (TEF) for manufacturing22. TEFs are 

expected to contribute with sharing of data (e.g., robotics operations or production equipment data from 

OPC-UA servers) for enabling the development of smart manufacturing AI services. In a similar manner, 

under the Digital Europe Program (DEP) the DataSpace4.023 Coordination and Support Action (CSA) is 

creating a pathway and governance model for scale-up of cross-sectorial data spaces for manufacturing.  

On a smaller scale research and innovation activities have been launched in the context of EU research 

and innovation framework.  These projects validate data sharing technologies in targeted value chains 

and help to remove the technical obstacles when setting and deploying manufacturing dataspace.  

MARKET4.0 24  H2020 has employed IDSA technology to develop a marketplace for manufacturing 

equipment and services based on trusted data and services. MUSKETEER H202025 is using IDSA technology 

for setting-up federated AI for manufacturing companies. AMABLE H202026 provides digital services to 

enable uptake of Additive Manufacturing for SMEs on top of IDSA powered data ecosystem. FLEX4RES27 

 
16 NL AI Coalition, 2022, Towards a Federation of AI Data Spaces 
17 Gaia-X 2022, www.gaia-x.eu  
18 IDSA 2022, https://internationaldataspaces.org/  
19 Catena-X, 2022, https://catena-x.net/en/  
20 EuProGigant 2022, https://euprogigant.com/en/  
21 SCSN 2022, https://www.brainportindustries.com/en/factoryofthefuture/smart-connected-supplier-network  
22 AI-Matters, https://ai-matters.eu/, accessed online April 2023 
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utilizes data spaces for developing AI services to support resiliency in manufacturing data spaces 

(Alexopoulos et al., 2023). However, although these projects have produced some preliminary positive 

outcomes, they are still fragmented in terms of semantic interoperability (i.e., different standard or 

format are used for similar purposes), technical interoperability (e.g., different data connectors are used 

in different projects that are not necessarily compatible) as well in terms of data governance structures 

and data policies. 

Figure 51 presents a conceptual approach for building and deploying AI applications over data spaces 

technology utilizing the IDSA Reference Architecture. Data are shared between the data providers/owners 

(e.g., OEMs) and data consumers (e.g., data analytics developer) for developing data-driven (e.g., Deep 

Learning) AI applications. Then through a secured App Store these AI applications can be used by the 

users. 

 
Figure 51: AI in data spaces (adapted schema based on IDS RA28) 

 

5.4 Digital Twin for Synthetic Data Generation 
AI applications based on Machine Learning (ML) methods are widely accepted as promising technologies 

in manufacturing. However, ML techniques require large volumes of quality training datasets and in the 

case of supervised ML, manual input is usually required for labeling those datasets.  Such an approach is 

expensive, prone to errors and labor as well as time intensive, especially in a highly complex and dynamic 

environment as those of a production system.  Digital Twin models can be utilized for accelerating the 

training phase in ML by creating suitable training datasets as well as by automatic labeling via the 

simulation tools chain and thus alleviating the user’s involvement during the training phase. Frameworks 

for generating synthetic datasets (e.g., synthetic images) through the use of simulation tools and the DT 

concept to serve the development of ML models have been presented (Alexopoulos et al., 2020). The 

 
28 IDSA 2019, Reference Architecture Model 3.0 
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architecture in Figure 52 represents the main entities of such a framework which are the following: a) the 

CPS that links the physical world, such as a machine or robot on the factory floor, to the cyber through 

the creation of a digital thread between them, thus formulating Cyber-Physical-Production System and b) 

the DT that represents the virtual model of the physical system or process, it is linked with CPS entity 

through the data communication channel and it is capable of replicating aspects of the behavior of the 

CPS system. Both CPS and DT stacks are defined and implemented based upon the same layered 

architecture approach. However, the layers are different for each stack, DT and CPS, as they are 

implemented and can be deployed independently. 

 
Figure 52.  DT-driven ML for self-adaptable handling of product variations by an industrial robot, 

(Alexopoulos et al., 2020) 

 

5.5 Education and training aspects 
The accelerated technological evolution creates a dynamic environment regarding the required future 

skills and competencies. In particular, the development of AI technologies is expected to stimulate 

important changes in jobs, as well as the necessary skills that employees must incorporate. Diverse 

challenges regarding gaps and shortages of workforce skills and competencies, can be identified in 

different industrial sectors, which in turn have stimulated the funding of several projects to cover the 

knowledge and competences gap by using novel knowledge delivery mechanisms, and modern ICTs. A 

number of relevant research projects have treated the improvement of educational schema with respect 

to Industry 4.029, or they have focused on delivering effective training courses to enable the uptake of 

 
29 https://www.eitmanufacturing.eu/news-media/activities/smart-educational-framework-for-digitalization-smartdigi/  

https://www.eitmanufacturing.eu/news-media/activities/smart-educational-framework-for-digitalization-smartdigi/
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industrial Internet of Things (IIoT) technologies and smart manufacturing systems30 e.g. tutorials on cyber 

physical production systems 31.  

The EU community needs to structure services to train the next generations of young people so that they 

can easily cope with the new models of more automated and connected industry, with the skills and 

abilities that the work market demands in light of AI-based technologies. Likewise, it is also necessary that 

the new generations incorporate a critical spirit regarding the design, implementation and development 

of these technologies, as well as uniting education in values that prioritize reflexivity, inclusiveness, 

diversity, equity, sustainability or responsibility. That is why coordinated approaches are needed between 

administration, industry, academia, and civil society, to facilitate these transformations that enable the 

training of active workers who will face this transition, as well as the new generations that will lead these 

processes of change. Tools that could enhance training efficiency include Mixed Reality tools, which 

provide online support to workers on various tasks being executed and offline training for various 

manufacturing processes.  

In addition, the education services should be grounded on successfully implemented education paradigms 

in manufacturing, such as the Teaching Factory concept. The Teaching Factory concept has introduced as 

a two-way knowledge communication between academia and industry (Mavrikios, Georgoulias, and 

Chryssolouris 2018). The Teaching Factory paradigm provides a real-life environment for students and 

research engineers to develop their skills and comprehend the challenges involved in everyday industrial 

practice (Chryssolouris, Mavrikios, and Rentzos 2016) and has been applied in a case study about the 

collaborative design of machine tools (Stavropoulos, Bikas, and Mourtzis 2018), real-life industrial pilots 

involving construction equipment factories (Rentzos et al. 2014) as well as industrial automation 

companies (Rentzos, Mavrikios, and Chryssolouris 2015). In more detail, the Teaching Factory paradigm 

aims to align manufacturing teaching and training to the needs of modern industrial practice. This is 

achieved by educating future engineers and upskilling/reskilling professionals and workers with new 

curricula to cope with the increasing industrial requirements of the factories of the future, whereas the 

innovative ICT configuration is employed to facilitate the interaction between industry and academia.  

It is expected that a centrally coordinated pan-European network of teaching factories providing training 

and upskilling services will accelerate the enabling the workforce transition towards smart. This Network 

will provide an orchestrated effort in providing access to a common training framework (methodology, 

content, and material) linked with professional education and certification based on in-situ training and 

access to latest advanced manufacturing technologies. For instance, the teaching factories network could 

establish links with VET and C-VET programmes. The teaching factories network should comprise physical 

testbeds and DIHs (coming from previous R&D results) revamped and integrating the baseline 

technologies and the overall digital and AI-based manufacturing concept. The physical testbeds will serve 

on-site training on the emerging AI-based technologies.   

 

 
30 https://www.eitmanufacturing.eu/news-media/activities/factorybricks-smart-learning-home-for-the-management-of-connected-factories/  
31 https://www.eitmanufacturing.eu/news-media/activities/the-smart-manufacturing-paradigm-a-tutorial-introduction-on-cyber-physical-
production-systems/  

https://www.eitmanufacturing.eu/news-media/activities/factorybricks-smart-learning-home-for-the-management-of-connected-factories/
https://www.eitmanufacturing.eu/news-media/activities/the-smart-manufacturing-paradigm-a-tutorial-introduction-on-cyber-physical-production-systems/
https://www.eitmanufacturing.eu/news-media/activities/the-smart-manufacturing-paradigm-a-tutorial-introduction-on-cyber-physical-production-systems/
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5.6 Ethical use of AI 
AI has shown great progress during the last decade, but at the same time has also raised great questions 

surrounding its development and implementation in various sectors (Stahl and Wright 2018). AI 

applications including facial recognition, predictive prognosis, biometric markers or conversational 

interfaces has created a long list of socio-ethical dilemmas to be addressed (Echeverría and Tabarés 2017; 

Floridi et al. 2021). Focusing on the industrial manufacturing sector, the socio-ethical challenges relate to 

the opacity that accompanies a large number of AI systems (Robbins 2020), as well as the inability to 

understand the decision-making logic that in turn lead to a lack of trust by the people who use them in 

their daily routines. That is why these AI systems are commonly seen as "black boxes", since even the 

designers of these systems have difficulty understanding them. Therefore, the end users of these systems 

manifest their ignorance about what is happening inside the data-driven models and are completely 

unaware of the logic that is used, or the data based on which decisions were made. That is why it can 

generate anxiety and mistrust on the part of users. 

At the same time, the introduction of AI in industrial environments also raises fears and doubts about the 

surveillance and control to which workers are subjected with the excuse of collecting data of all kinds that 

can feed these systems. That is why the introduction of these technologies in industrial environments 

must be done responsibly. Possible breaches of obligations by employers can put at risk the privacy and 

other types of labor rights that workers have. This and similar types of arguments align with a growing 

number of criticisms of the biases that AI technologies have. The biases, coupled with the underlying 

uncertainty in AI in an increasing number of sectors and domains, have also highlighted the need for 

“responsible AI” (Dignum 2017). This Responsible AI is characterized by the inclusion, protection and 

safeguarding of various values of civil society that the development of technology can put at risk, and that 

can be displaced or not taken into account by the development of technology itself (Buruk, Ekmekci, and 

Arda 2020). Thus, values such as gender equality, social justice, personal autonomy, the right to privacy 

and others, are recurrently confronted by the development of these systems and the data with which they 

are built. We must not forget that the multitude of databases on which these systems are based reproduce 

the numerous inequalities on which our societies have been built. 

That is why regulation and legislation is important, but it is not enough. For example, in Europe and within 

the legal framework provided by the General Data Protection Regulation (GDPR) there is the right to 

explanation32 that requires a user to be informed when they have been the subject of a decision made by 

an algorithm and based on what parameters the decision has been made. Collecting this right is a first 

step, but it is clear that, as these systems are developed, there will be needs both at the regulatory level 

and in others. The GDPR is a pioneering legislation that does not exist in countries that are absolute 

leaders in this type of technology such as the US or China. 

In addition to these social implications of technology that are closely related to principles of fairness and 

non-discrimination, the development of AI in industrial settings also feeds various anxieties regarding 

automation and mass unemployment (Bassett and Roberts 2020). A concern that is not new and that has 

been common throughout history due to the dynamics of technological change and its introduction in 

factories. New fears around this massive unemployment have been described by recent academic works 

that have explored the degree of automation of current professions in the hands of AI and that draw a 

less optimistic future in this regard, especially in professions that had not been targeted by automation 

 
32 https://gdpr.eu/recital-71-profiling/ 
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(Frey and Osborne 2017). However, there is still a high degree of uncertainty about how these 

technologies will be deployed in various sectors and domains, and what their impacts will be on the work 

market. The constant and incessant acceleration of the needs of the work market are stimulated by the 

dynamics fostered by technological change and this causes social transformations with a high degree of 

instability and uncertainty33. 

For this reason, it is also important to "relativize" the role of automation around "possible mass 

unemployment" caused by technological change, since automation is only a tool and "there is nothing 

automatic in automation" 34. In addition, recent studies seem to show that the problem of low demand 

for workforce in factories and industrial environments is not directly associated with industrial automation 

but rather with various factors including global deindustrialization, lack of investment, overproduction 

and limits of economic growth itself35. A responsible development of AI becomes even more important, 

since the development of these technologies will entail important changes in jobs, the necessary skills 

that employees must incorporate into manufacturing processes, etc. 

Key enabling technologies – KETs – are knowledge and capital-intensive technologies, pervasive and with 

a systemic relevance for all industrial and economic sectors. They are expected to have an impact on high 

quality jobs creation, life quality improvement and sustainable development. KETs have the potential to 

transform existing modes of production, and thus change relationships along the whole value chain of 

product development, between manufacturers, suppliers, businesses, users, policy makers, and citizens. 

EUC has already acknowledged the need to research towards developing technologies for the benefit of 

society, thus there have been some projects addressing such issues such as TAILOR36, SocKETs37 however, 

the wide range of topics and issues that accompany the ethical use of AI require for consistent and 

coordinated research.  

5.7 Explainability of AI for manufacturing 
Some AI solutions potentially involve high number of parameters, which is not easy to process by human 

mind ––some neural networks like GPT-3 (Brown et al., 2020) comprise more than one hundred billion of 

adjustable parameters––, such models are no longer considered simulatable (Lipton, 2018). Here, 

simulatability refers to the property that a “human should be able to take the input data together with 

the parameters of the model and in reasonable time step through every calculation”. In many applications 

in manufacturing, employing black-box machine learning models is not an issue as long as the accuracy or 

performance of these models is sufficiently good and comprehensibility of the model’s reasoning is not a 

requirement. The application of such models becomes critical if they are applied in strongly regulated 

environments like medical device manufacturing or in applications with high safety requirements like in 

human-robot collaboration. In such situations, there is a growing demand for so-called white-box models 

that are human comprehensible. To satisfy this demand, the research field of explainable AI (XAI) gained 

increasing interest in research and application. XAI aims for providing the meaning or the explanation of 

 
33 Brynjolfsson, E., & McAfee, A. (2014). The Second Machine Age. New York: Norton & Company. 
34 Smith, A., Fressoli, M., Frisancho, M. G., & Moreira, A. (2020). Post-automation: report from an international 
workshop. In Post-Automation Workshop. 
35 Benanav, A. (2020). Automation and the Future of Work. London & New York: Verso. 
36 https://tailor-network.eu/ 
37 https://sockets-cocreation.eu/ 
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the outcomes of a machine learning model in a human understandable form. According to Figure 53, there 

are several ways to achieve this goal (Burkart & Huber, 2021): 

(1) Explainable by nature (ante-hoc approach): Instead of using opaque black-box models, the 

learning problem at hand is solved by means of a white-box model such as linear regression 

models or short decision trees. For many applications, white-box models provide sufficient 

accuracy and some researchers even state that in case of highly critical applications, one should 

avoid black-box models (Rudin, 2019). Especially in robotics, which often requires processing high-

dimensional and highly complex sensor signals, white-box models are often not accurate enough 

and thus, one has to rely on grey-box or black-box models. In such cases, the ante-hoc approach 

is not applicable and the following two ways of XAI remain. 

 
Figure 53. Different ways of explaining a black-box machine learning model 

(2) Model explanations: here, a black-box model is used and XAI is used to explain the model as a 

whole. There are two approaches; 1) post-hoc model explanations, which take the black-box 

model as is and provide model insights afterwards and is usually model agnostic, i.e., it works for 

different kinds of machine learning models. Famous examples of post-hoc explanations are partial 

dependency plots (Friedman, 2001), which show the relation of one or two input features to the 

model’s outcome, or feature importance values. 2) Surrogate approaches (Schaaf et al., 2019) 

involve learning a white-box model in addition to the black-box model, where the white-box 

model is used to explain the outcomes of the black-box model. Common surrogates are decision 

trees or rule-based systems. 

(3) Instance explanations: in contrast to model explanations, so-called instance or local explanation 

methods do not explain the whole model. Instead, explanations for individual data instances are 

provided. A famous representative of the instance explanation methods are saliency maps, which 

are often applied for image data. Here, the image is overlaid with a heatmap that is highlighting 

those parts of the image that contribute most or least to the outcome of the black-box machine 

learning model. Other often-applied methods are SHAP (Lundberg & Lee, 2017) and LIME (Ribeiro 

et al., 2016). 
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In safety-critical domains like human-robot collaboration, where machine learning models may only be 

applied after some rigorous verification step, surrogate models form a promising subfield of XAI. In 

(Bastani et al., 2018) it has been shown that it is possible to extract a verifiable surrogate model based on 

a decision tree from a black-box neural network control policy. Closely related to XAI research field are 

uncertainty quantification methods (Abdar et al., 2021) and physics-informed machine learning 

(Vonrueden et al., 2019).  

Uncertainty quantification aims at providing information about the reliability or certainty of the machine 

learning model’s outcome. There are two sources of uncertainty in machine learning in general: aleatoric 

uncertainty refers to the variation of the model’s outcome due to random effects, while epistemic 

uncertainty is caused by a lack of knowledge. To reflect the uncertainty of the model’s outcome, often 

Bayesian learning, and inference methods are used, where the outcome is no longer a point estimate but 

a random variable. In physics-informed machine learning, one tries to enrich the purely data-driven 

learning approach with prior information or domain knowledge, which might be available in form of 

algebraic equations, physical laws, simulation models or logical rules. When combing the resulting model 

is often called a gray-box, which is not fully transparent to the human, but at least some parts of the model 

are comprehensible. Informed machine learning allows addressing one major weak point of machine 

learning, which is its weak extrapolation behavior. That is, the model only provides reliable outcomes for 

input data that is well represented in the training data. If the input is outside the distribution of the 

training data, the model may behave arbitrary and is no longer trustworthy. 

 

5.8 Regulatory framework for AI in manufacturing  
The integration of AI with manufacturing technologies and systems is expected to allow mid- and long-

term competitiveness and welfare for Europe. Currently, the blend of a number of general frameworks, 

developed standards and ethical regulations are used as the foundation for AI assets development, where 

the objective is typically to produce trustworthy AI in the sense of legal, ethical, and robust modules. 

Regulatory frameworks that deal with a series of AI relevant aspects include among others the General 

Data Protection Regulation (GDPR), e-Privacy Directive, Electronic Communications Framework, and the 

Regulatory framework proposal on artificial intelligence38. Yet, the absence of specific regulations and 

standards for AI components and the low understanding of the algorithms and processes among key 

stakeholders may create critical challenges and complications hampering the broad adoption of AI. For 

instance, the lack of broad specificity on the regulatory landscape leads to gaps between the defined 

principles and their translation into practical requirements and development actions. In this context, the 

next paragraphs discuss several articles of the Regulatory framework proposal on artificial intelligence 

and their implications for industrial practice.  

5.8.1 Article 5: Prohibited artificial intelligence practices 
Article 5 sets out a list of prohibited AI practices. This list includes for instance the development of AI 

systems that can cause physical or psychological harm to individuals, and result in discrimination against 

individuals or groups of individuals on the grounds of age, physical or mental disability. Subsequently, the 

application of Article 5 will be discussed for the case of hybrid production systems. As a starting point, 

hybrid systems including robots and other AI-controlled machinery can be considered high-risk systems. 

 
38 https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai  

https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
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Therefore, formal risk assessment methods are needed to prevent the potential implications of AI 

stochasticity. AI is being researched to bridge the human and AI systems worlds, i.e., to enable smart 

reactions from machines, but also the implementation of efficient and usable means of human machine 

interaction. The collection of data related to human status, intentions, and preferences is needed to adjust 

the robot and machinery behavior accordingly, and on the other hand humans need interfaces providing 

them with the required did and information while optimizing cognitive effort. Special care must be taken 

to ensure fundamental prohibitions outlined by EU legislation are taken into account and formally applied, 

including restrictions on direct physical or psychological harm, but also the avoidance of subliminal 

techniques for manipulating human judgment, preventing exploitation of personal vulnerabilities, and 

promoting inclusion of people with disabilities. Since in many cases the optimization of the individual user 

experience relies on their identification, profiling or social scoring, methods that can guarantee the 

elimination of the prohibited practices need to be employed.  

5.8.2 Article 9: Risk management system 
Article 9 of the proposed regulation on artificial intelligence focuses on risk management systems for AI. 

This means that AI developers need to implement risk management systems to assess and manage risks 

posed by AI systems in order to minimize the risks posed to individuals, the environment, but also the 

public interest. Risk assessments are already performed in current industrial practice, where experts are 

engaged to perform risk assessment of new machinery introduced into factories focusing especially on 

potential risks imposed due to the particular new machinery. Assuming that the amount of AI tools to be 

introduced to the factories of tomorrow is expected to rise dramatically, a new set of approaches for 

running risk assessment is required. The conduction of regular risk assessments, the development of risk 

mitigation strategies, the monitoring of AI systems to detect and timely respond to potential risks, the 

consideration of cyber security risks together with regularly updating the risk management system and 

providing training to the users of AI systems are key actions that derive from Article 9. Several of these 

processes need to be standardized and automated, supported largely by software tools that can perform 

a large part of the process and thus reducing cost and time. 

Potential risks in AI that are relevant to the manufacturing sector include but are not limited to the 

mismatch of models and reality, incomplete testing and/or verification of the AI modules, bias, incomplete 

definition of data for training, inadequate selection of performance measures and metrics, high error rate, 

as well as selection of incorrect objective functions. Consequently, strategies to prevent such risks, detect 

the occurrence of unwanted behaviors, as well as countermeasures to eliminate or restrict the 

consequences of the risks occurrence should be defined. This process should be supplemented by 

incorporating methods for workforce training and upskilling on how to use the AI enhanced machinery 

and tools. The factory personnel need to be adequately educated in order to reduce the risk of misuse 

and the compliance of the usage to the intended purpose of the AI system. 

5.8.3 Article 10: Data and data governance 
Article 10 refers to data, data governance, and management practices including data collection, data 

preparation processing operations (annotation, labeling, cleaning, aggregation, etc.). Although there is a 

plethora of AI applications developed for the manufacturing industry, training of data sets based on data 

coming from the manufacturing industry is rather lacking today. Several factory applications being 

developed are making use of models trained by non-factory datasets making them unsuitable for the 

purpose. Therefore, a new range of trained models is required. For that objective to take place, data 

management and governance that would be suitable for the practices of manufacturing industry is 
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required. The requirements range depending on the size and nature of manufacturing company and 

different approaches need to be piloted and investigated in practice. Ensuring that data sets come 

structured and free of errors structured based on well-defined formulations and assumptions can help to 

increase dramatically the acceptance by industry in sharing data and thus develop mature models fit for 

the purpose. Research on tools for rapid creation of datasets, as well as initiatives where businesses 

share datasets on European level should be encouraged.  

5.8.4 Article 11: Technical documentation - Article 12: Record-keeping – Article 18: 
Obligation to draw up technical documentation 

Technical documentation of high-risk AI systems should be present, to ensure correct integration and 

usage of such systems by experienced or unexperienced personnel. Structured technical documentation 

as well as instructions should be delivered and made available via interactive and easy to use mechanisms, 

such as dedicated platforms, that may also serve training purposes. 

Considering the complexity of AI based systems with regards to the aspects of keeping track of records, a 

broad set of new requirements is emerging on that article. High risk AI providers have to consider logging 

data and release software updates throughout product’s lifecycle. Also, high risk AI recalls need to take 

place IF log data prove incapability to conform on technical directives. Deeper investigation is required on 

structuring approaches for keeping records on how AI systems have been trained, possible decisions they 

may have made, false or true positives and several other aspects in correlation with the actual 

manufacturing process that has been controlled. Special attention needs to be paid on aspects of 

manufacturing shop floor conditions, machinery, configuration of production line, product characteristics, 

materials properties at the time of decision making. A broad set of investigations is required to help 

structure properly a reliable record keeping approach. The challenge becomes greater when expanding 

to the engineering and management decision making, which entails a large number of heterogeneous 

data formats that are used per production step. The advances in CAx tools have facilitated the use of AI 

algorithms in several product/process life cycle stages such as design, planning, scheduling, etc., which 

cannot be neglected when considering documentation and record keeping aspects. However, the large 

amount of heterogeneous data makes the link of consecutive steps and the identification of the sources 

of error hard to identify. An effort to enhance traceability and facilitate record-keeping is launched 

through creating Digital Threads connecting modules that are used in engineering, production, and 

management, as well as the use of neutral data formats to link the produced information to the 

engineering software that was used to produce it.  

5.8.5 Article 13: Transparency and provision of information to users 
Aspects of transparency in the process of decision making are deemed to be critical in factory operations 

planning and control aiming to help interpret systems’ output. A broad range of factors influencing the 

way the AI system performs need to be considered and studied, for example data structures, data formats, 

data accessibility, quality of training data and quality of operating data, condition of machinery, sensors 

and actuators and several other aspects that need to be evaluated carefully and in a structured and 

coordinated manner. Graphical interfaces depicting a) what dataset or Neural Networks parameters are 

affecting the results, b) what changes training causes and on which extent, and c) what is the system’s 

objective during unsupervised training are needed. 
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5.8.6 Article 14: Human oversight 
Designing and developing human-machine interaction tools has been traditionally a key feature of 

charactering technology. However, with the emergence of AI technology, these tools need to be radically 

reconsidered at all stages of the manufacturing lifecycle helping people to manage both the variety of 

data as well as the evolution of AI modules over time. Human oversight is expected to be rather 

challenging area to regulate due to the direct involvement of people, different people profiles and levels 

of training, education, age as well as the broad range of manufacturing and machinery related 

particularities such as parameters and variables to model and link to AI decision making logic.  GDPR and 

legal rights require several technology considerations to be efficiently applied considering factory 

planning and operations both at the shop floor as well as the supply chain and customer interaction levels.  

The design of the AI systems directly affects the performance of humans when overseeing the system’s 

operation. Especially when intelligent manufacturing systems are designed based on techno-centered 

approaches and involve human operators to only handle difficult situations or require quick reactions to 

correct system’s failures, the human oversight becomes harder. Research effort should be oriented 

towards human-centric design of the operators’ role to cover for system design deficiencies that result 

from the neglection of the operators’ expectations, capabilities, characteristics, and limitations including 

situation awareness, interpretation of visual input, anomaly detection, decision-making, but also the level 

of trust to automation.  

The trust in automation is linked with the ability of operators to interpret the system’s decision-making. 

The AI tools have been considered in the past as “black boxes”. This has been acting as a barrier for the 

industrial users to adopt such technologies in their manufacturing system. On this basis, appropriate 

human-AI system interfaces need to be designed and implemented allowing the factory personnel to 

interact with the AI tools. New methods that enable the explainability of the AI decision-making systems 

can be integrated in intuitive interfaces. These should provide the involved human operator with the 

ability to: a) monitor the operation of the AI tools through structured visualizations, b) identify/estimate 

errors or unexpected outcomes, c) encapsulate her/his experience in the decision-making process, d) 

intervene to / bypass the output decision in case this is considered in appropriate. 

5.8.7 Article 15: Accuracy, robustness and cybersecurity 
Article 15 discusses the aspects of accuracy or business in cybersecurity related to high-risk AI systems. 

The robustness and accuracy of an AI system are significantly affected by the algorithm development 

phase and the training data which are utilized to initiate and train the system. Accordingly, efficient 

methodologies to evaluate the accuracy of an AI system during its utilization are required. The evaluation 

could be based on prognostics able to estimate a set of specific KPIs relevant to the AI system accuracy 

and robustness. The evaluation may investigate the performance of all the components of the AI system 

(models, data structures and others) aiming to estimate the level of uncertainty/inaccuracy for each one 

and how they affect accuracy of the complete system. Besides accuracy, cybersecurity should also be 

considered with the development of dedicated modules protecting middlewares and datasets from 

“poisoning”. An approach could be the use of independent networks and processing units running in 

parallel with at least, one processing unit being isolated from the factory’s network during normal 

operation. Both processing results should be compared and in case differences that exceed particular 

thresholds are detected, then safety functions should be triggered. On top of that, functional safety 

norms for AI systems should be developed, meaning that the AI modules will actively prevent the failure 

of the whole system or the causing of harm to people and property in case of error/ violation/ damage.  
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5.8.8 Article 16: Obligations of providers of high-risk AI systems 
The definition of high-risk AI systems involves such technologies that have access to personal data, are 

connected to critical infrastructures, law enforcement, border control and other public or administration 

services. In the manufacturing landscape, this can be related mainly to the safety-related hardware and 

the decisions taken based on its signals. The provider of such AI-based components should ensure that 

the safety systems would work in a timely manner, assuring the human safety under any circumstance. At 

the same time, the AI-based safety components should be able to understand the human activity and 

intention, avoiding unnecessary drops in the production rate or even stoppages by random human activity 

that is not related to the production and, of course, doesn’t impose any safety risk to the human operator. 

5.8.9 Article 17: Quality management system 
Quality management is a key aspect in manufacturing in terms of providing products of certain standards 

and remaining competitive in a continuously changing market. The AI-based systems which can be 

deployed inside the spectrum of quality, will be based on the use of data deriving from multiple 

manufacturing resources involving in many cases the human factor. Strategies shall be proposed in order 

to ensure that the integration of data sources will comply with the EU and national regulations. 

Examinations/validations have to be undertaken in order to ensure a safe and unbiased use of the 

provided technologies. The accuracy of the AI-based systems should be monitored easily through 

interactive tools upon deployment. The degree and velocity of self-learning for the AI-based systems shall 

be in-depth documented and validated in real-case scenarios of industrial requalification. In addition, the 

systems’ impact on humans should be examined focusing on aspects such as operational managerial 

decision-making in quality-related issues. After-market monitoring should be encouraged taking into 

account customer report/incidents and correlating them with industrial malfunctions from different levels 

of abstraction. 

5.8.10 Article 20 Automatically generated logs 
Log files help the programmers identify system status and detect potential errors or warnings that occur. 

Similar, AI-based systems should keep such logs and help the programmers understand how the AI 

algorithm has worked during both the training period and the execution period. Also, the algorithm when 

categorizing the different datasets, should require human assistance to ensure the proper classification. 

Lastly, the AI algorithms should be trained to recognize keywords from the logs helping themselves 

identify issues that may occur or ensure that they are running as expected. Especially in the cases of high-

risk AI systems, logging plays an important role to identify unexpected hazards. 

5.8.11 Article 21 Corrective actions 
In relation to Article 20, once unexpected activity is logged in the system, corrective actions should be 

taken, ideally by the AI system itself, depending on the severity of the error and its category, i.e., if it is a 

production error or a human operator safety error. If the error has a higher level of severity and cannot 

be automatically handled, then the programmer should intervene and take the necessary corrective 

measures to help the system overcome it. If the error is simpler and corrective actions can be 

automatically applied by the AI-algorithm itself, then the necessary messages should be logged to inform 

the programmers and the system should proceed without any interruption. Corrective actions also include 

keeping the AC system distributors posted on the deviations of the systems regarding the expected 

behavior in order to advise the end user when it is needed to perform actions to bring the system into 

conformity, to withdraw the system or recall it. 
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5.8.12 Article 22: Duty of information 
The automatically logging system, described in article 20, as well as the corrective actions, should be 

shared with all the necessary actors of the production chain. This also includes the programmers and/or 

the integrators of the AI system in the production lines to help them improve the future algorithms. 

5.8.13 Article 29 Obligations of users of high-risk AI systems 
When integrating AI decision making tools and / or AI enhanced machinery in the manufacturing value 

chain, it is critical to ensure its appropriate usage from the involved personnel. Dedicated training 

platforms should be created, comprising of a variety of training mechanisms, such as user manuals, visual 

in the form of presentations and videos, online and on-site training sessions. A closed loop between the 

technology provider and the industrial users can be established allowing the latter to report back any 

identified malfunctions, unexpected incidents during the usage of the AI tools. The industrial workforce 

needs to be well educated in the definition of the proper data types and amount needed as input to the 

AI decision making tools to ensure the proper usage and exploitation of the AI systems’ capabilities.  

Therefore, the existing regulatory frameworks should be extended and further developed to support the 
implementation of synchronized standardization activities on AI and related digital technologies in 
manufacturing in member state, European, and global levels. Standardization and international 
collaboration are indispensable to support the AI solutions deployment.  
 

5.9 Consolidation of AI application for cross-cutting aspects in manufacturing  
 

As presented in previous sections, AI modules are currently dedicated on specific product/production 

stages and digital processes are implemented in silos. AI should be integrated in multi-processes covering 

the complete lifecycle. An end-to-end Digital Twin enabling to share product-process-resources data 

among design, engineering, management, and production agents would increase responsiveness, 

effectiveness, and precision and at the same time minimize design and engineering iterations. This will be 

achieved by the implementation of a framework to integrate data models, data-driven algorithms, and 

digital twins of assets and products enabling the continuous update of the parameters of digital models 

according to production feedback. Cross-correlation between simulation data, process monitoring and 

quality control will provide knowledge on the process that will be translated into process models updates. 

Figure 54 is an extension of Figure 6 enhanced with data and information flows that can act as feedback 

loop to the applications of previous stages of the product/process lifecycle, which illustrates the described 

concept. 

Nevertheless, the implementation of the Digital Twin is accompanied with requirements on data 

collection, processing, exchange, and storage. Connectivity should be ensured despite the different data 

sources (CAD, CAM, CAE and CAPP software, quality control reports, sensor data etc.) and the 

heterogeneous data formats (text, images, audio, CAD files, etc.). Common semantic models describing 

the manufacturing processes can enable connectivity and integration of the different manufacturing 

instances. In particular, linking of the product, process, material, and metrology models can be enhanced 

by using neutral formats such as STEP (product design), PSL (Process Specification Language, 

manufacturing processes), and QIF (Quality Information Framework, dimensional measuring). 

AutomationML can support modelling and data exchange among the several different engineering tools.  
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Furthermore, metamodels should be developed for data indexing to facilitate data access and traceability. 

At the same time, developers should ensure data integrity, security, but also clearly define access rights 

by humans or software.  

 

 
Figure 54. Data connectivity, data access and sharing among data models in the digital twin 
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Figure 55. Pluggable and connectable AI modules concept 

Figure 55 is based on Figure 5 enhanced with the visualization of beneficial modules interactions and 

exchange of information which can improve the performance of the AI-based solutions, especially in the 

case of non-symbolic AI, by enabling access to more data that can be used for modules’ training. Enabling 

the communication between the AI modules can provide several benefits, especially when the data 

integrity, cleanliness, and wealth are not ensured. The data exchange between the modules can be utilized 

among others for ensuring the 1. quick training of AI modules e.g., data and information from the 

shopfloor’s digital twin can speed up the training of machinery predictive maintenance 2. quality-by-

design by providing data from the production to the engineering, 3. cross-correlation between data 

gathering from simulation, process monitoring and quality control for acquiring knowledge and updating 

process models, 4. evaluation of models for any non-accepted parameter values in real-time, and 5. self-

adaptive online control to correct deviations. To this end, modular system architectures should be 

adopted including interfaces for data exchange, while handling the connectivity with different digital 

manufacturing ecosystems (e.g., Mindsphere, Teamcenter, Azure), enabling the communication between 

new and legacy systems, but also between proprietary and open-standards. This can be achieved by 

implementing connectors and mediators such as IoT gateways, context brokers. In turn, this would require 

an integration interface (lightweight middleware such as ROS, MQTT, EtherCAT, etc.) for orchestration, 

vertical integration and storage of manufacturing and product data. Also, the OPC UA protocol can 

promote seamless and secure communication among manufacturing assets and modules.  
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Figure 56. Adaptive AI modules concept over the lifecycle of the product 

Aside from exchanging data among several stages of one product variant’s lifecycle, it is worth 

investigating the exploitation of data from previous product variants. Focusing on the AI modules level, 

the use of the already existing data along with strategies for synthetic data generation and learning 

methodologies can contribute into enabling the adaptability of the AI modules i.e. the ability of the 

module to adapt to different scenarios, requirements, and constraints. Optimization will be performed 

from variant to variant by altering model, simulation, control, etc. parameters over time aiming to 

improve performance against the relevant KPIs e.g., cost, flexibility, time, quality. This will require to 

define data models that will remain relevant over time, strategies for maintaining and updating data 

models, as well as for data storage. 
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Figure 57. Optimization of the product lifecycle 
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Figure 58. Current status and Future Vision for the adoption of AI at the Manufacturing level 

 

 
Figure 59. Degree of vision achievement  

XAI is a relatively young research area, but it has the potential to be a key driver to support the integration 

and adoption of AI approaches in industrial robotics. However, XAI faces some open challenges. For 

instance, choosing the most appropriate XAI approach for the problem at hand is often not systematic. A 

standard procedure is missing that allows measuring, quantifying and comparing the performance of 

different XAI methods. From the algorithmic side, surrogate models are a promising approach when 

verification and safety are paramount. However, the quality and fit of surrogate models is currently not 

increasing with the same pace as the representational power of deep neural networks. The main 

constraint that has been reported is the computation time that is needed, especially for automated 

planning and reasoning. A solution to this challenge could be the use of quantum computing.  
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Quantum computing is an emerging computing paradigm that seems promising towards supporting 

complex computations. One of the most well-known examples is the seminal algorithm developed by 

Peter Shor (Shor, 1999), which allows to efficiently factor prime numbers which is a substantial speed-up 

compared to the best-known classical alternative which requires a super-polynomial runtime. While the 

early excitement around quantum computing was primarily driven by theoretical considerations, the 

technology has received an increased interest that is fueled by technological and scientific breakthroughs 

such as the first experimental demonstration of quantum supremacy (Arute et al., 2019) and the 

increasing availability of cloud-accessible quantum computers. Nevertheless, quantum computing is a 

relatively young technology that has only recently made the transition from purely fundamental research 

to potential applications.  

The current application of quantum computing is thus often limited by the technological development of 

the hardware. Due to the nature of quantum systems, any kind of interaction with the external world, e.g. 

for state manipulation or read-out, necessarily results in the disturbance of the system which in turn 

results in noisy calculations. If the noise is beneath a certain threshold, error correction codes can be 

implemented which allow for fault-tolerant computations. This, however, requires substantial 

technological advances with results expected on the timescale of several years (Gambetta, 2020). 

Currently, the field is mostly concerned with either improving conventional machine learning algorithms 

with quantum computing or with adapting known concepts to quantum systems. Among the most 

prominent methods are quantum neural networks and kernel methods. The first term subsumes a diverse 

class of algorithms whose main commonality is that they have a layer-wise structure which is trained 

variationally using a classical computer. Although promising results hint at potential exponential speed-

ups (Liu et al., 2021) , finding useful kernels which can efficiently be calculated using a quantum computer 

while being hard for classical computers is an ongoing research question. The applications for quantum 

machine learning in manufacturing are very similar to conventional machine learning methods and include 

problems like quality assurance, anomaly detection or predictive maintenance. One of the most critical 

active research topics, which is expected to remain one of the most important research questions in the 

upcoming years, is to find relevant industrial use-cases where the possible speed-ups can be translated 

into a real advantage. As a next step, quantum computing is expected to be applied to complex 

optimization problems such as materials and process design. From the manufacturing perspective it will 

be very interesting when quantum computing will be used for designing the materials-manufacturing 

cycle so that one can design totally new materials, structures, and processes in order to get the optimized 

component or product from the life-cycle perspective. Also, quantum computing will be a breakthrough 

technology for cybersecurity which will concern also manufacturing industries. 

Another interesting topic is the robustness of the AI solutions, as there is high temporal uncertainty in the 

manufacturing systems that causes drifting of prediction models, which in turn invites for developing 

methods for self-evolution of prediction models. On top of that, the dynamic conditions of manufacturing 

systems at all the discussed levels would be highly favoured by the development of self-configurable 

algorithms. Furthermore, the incorporation of expert knowledge is of high importance for manufacturers 

as retaining worker specific knowledge is valuable to ensure product quality, responsiveness to production 

deviations, and explainable reasoning for decisions made automatically.  
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6 Conclusions 
European industry has made significant progress in adopting Artificial Intelligence technologies in recent 

years. AI has become a key driver of innovation and competitiveness for EU industries, and many 

companies are investing in research and development to explore new applications for AI. As an overview 

AI has enabled us to improve the engineering, execution, and monitoring of manufacturing processes, the 

ergonomics of operators but also overall their well-being. In detail, AI-empowered tools have relieved 

operators from physical and mental discomfort through the enabling of human robot collaboration, the 

implementation of smart exoskeletons, as well as wearables and interfaces that enrich the operators’ 

situational awareness, support memory demanding operations, and assist decision making. Furthermore, 

solutions have been provided to cover the design, engineering, and operation of the manufacturing 

systems, including the design of production lines, work management, knowledge transferring, as well as 

optimization of operations’ planning. Several technical problems have been dealt with already from the 

early period of AI emergence, whereas others such as explainable, ethical, and responsible AI belong to 

the list of emerging research topics. The achieved results that are gathered in Figure 60 seem promising, 

however, there is a number of open issues for fulfilling industrial expectations. 

The deployment of AI solutions validated in laboratories, relevant industrial environments, or on the 

shopfloor has helped to identify shortcomings of the AI-based methodologies and algorithms. The 

common conclusion is that despite the significant progress of the research community, and the promising 

results that have been accomplished, more effort is needed until AI solutions can be trusted and widely 

adopted by industry. In more detail, it is needed to address a list of barriers that have been identified. 

One amongst the most critical barriers has been data collection. This aspect is linked with both technical 

challenges such as the selection of data to be collected, managing the large volume of data, selecting the 

means for data collection, cleaning and pre-processing of data, as well as selecting data formats, digital 

platforms, and communication standards to be used. At the same time, there are more and more concerns 

about privacy, security, inclusiveness, equity, traceability, and data governance. Moreover, the upgrade 

of legacy equipment to support the implementation of AI solutions is deemed one of the most interesting 

topics, as acquiring new equipment with advanced sensory capabilities is usually not economically feasible 

considering that legacy machines are functional. On the other hand, the upgrade of legacy machines is 

typically accompanied by extra fees and licenses to machine providers for integrating updates towards 

machine digitalization, discouraging the adoption of the emerging AI solutions. As a result, research on IT 

infrastructures supporting the management of data, the implementation of interoperable digital 

pipelines, digital twins, and standardized integration of data processing and AI modules is needed.  

Another point that has occurred is the application of AI in multiple processes instead of applying AI 

dedicated to process steps in support of process optimization towards zero defect manufacturing, 

sustainability, and minimization of environmental the impact of manufacturing systems. This is also 

connected to the implementation of intelligent machines and the time needed for programming and 

commissioning of new robotic applications for flexible and resilient production. This has motivated AI 

research to exploit feedback coming from the process (e.g. cutting) parameters to avoid scrap, material 

and time waste, but also the need for reworks. In the same view and given the strategic goal to achieve 

climate neutral manufacturing, researchers have provided a number of models predicting and optimizing 

machinery operation for the reduction of energy consumption.  
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Figure 60: Roadmap for AI R&D activities 

Besides technical factors, AI has the potential of significantly improving the everyday life of the humans 

involved in manufacturing systems. To this end, it is important to provide tools for accessible visualization 

of data regardless of the humans’ background, mother tongue, gender, sight, hearing and other 

capabilities. It is important for technology acceptance to not only simplify the interaction of operators, 

engineers, managers, and the rest of the manufacturing stakeholders with data, but also to ensure that 
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the derivation of the results is explainable. Ontologies, mental models, and data semantics are the 

backbone of these solutions, so it is expected to remain relevant for the years to come. Additionally, it is 

worth developing solutions for the personalization of data visualization beyond dashboards because this 

may improve the understanding and situational awareness of individuals and thus improve productivity, 

efficiency, and at the same time prevent process and/or automation failures due to human error. Also, it 

is possible that research on AI for decision support significantly reduces stress that is needed due to 

making decisions, needing to memorize large sequences of operations, extended catalogs of products, 

complex processes, and the location of several resources on the shop floor.  

Another barrier is the affordability of AI solutions considering the limited availability of financial resources 

for investments in technology, which are even more restricted in the case of SMEs. Due to the capital-

intensive nature of innovative technologies and the risk aversion mentality of the manufacturing sector, 

unwillingness among companies to adopt new processes is often. Therefore, adopting digital based 

processes is perceived as a risky step, due to the lack of relevant published case studies and industrial 

secrecy of early adopters. promoting success stories through key market leaders releasing relevant 

technology information, benchmarking and assessment for further replication.  

It seems that in the next years SMEs will rely on interoperable solutions and data-exchange formats, 

aligned with industry initiatives. On the other hand, since the adoption of new production technologies 

requires massive knowledge acquisition (staff and operators) and trustiness methodologies addressing 

these issues are expected to flourish in the next years, whilst education and attraction of new talents will 

also be enhanced even in the context of coordinated regional ecosystems. Moreover, methodologies for 

the valorization of AI are needed.  

In the future the integration of AI solutions is expected to be facilitated by enabling deployable AI units. 

Researchers are working on simplifying the generalization of AI solutions, which will be the foundation of 

deployable AI units together with the faster automated modelling of the environment, processes, human 

behaviour, parts, etc., but also the simplification of multi-process modelling. Effort is also needed to 

produce methodologies that will guide end-user into selecting the right AI tool for their case. For instance, 

methods to “Design for AI”, reduce the complexity of scaling up, as well as facilitate AI-based solutions 

acceptance and develop hybrid skills are needed. Additionally, methods to ensure agile development, 

safety, privacy preservation, reproducibility,  

Additionally, the manufacturers need evidence of profit before investing, as well as assessments of their 

competitiveness if they adopt AI solutions. Another key factor regarding the AI approach to be deployed 

has to do with its acceptance and natural integration in the manufacturing ecosystem. The AI solution 

should strongly support human interaction with the learning and reasoning process. As a consequence, 

the explainability of the deployed AI and the interpretability of recommendations made must be assured. 

In the case of human-robot collaboration and automation, the capability to predict human behavior can 

crucially improve the usability, efficiency, effectiveness, and proper trust and confidence to the designed 

systems. Proper human behavior modelling is expected to pave the way for the transition from the 

contemporary solutions that are dealt with reluctancy due to the expected cycle times to highly efficient, 

seamless, and safe human robot collaboration, reaching even the level of social human-robot interaction. 

In addition to that, the accurate and real-time perception of the robot’s surroundings can improve the so 

far achieved results in HRC in tandem with the enabling of resource aware dependable behaviors and also 

increase the reliability of robotics solutions. Focusing on machinery related aspects, it is expected that 
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perception will be enhanced, for instance enabling the fast training of AI algorithms for new product 

variants, for wider ranges of ambient conditions (lighting, etc.), backgrounds, and with extended tolerance 

to electromagnetic noise.  

Moreover, there is yet effort to be made on identifying, implementing, and promoting the adoption of 

new education processes. On top of that, the community should seek methods to close the reality gap 

between developers and users of AI solutions, but also define new job profiles, which are needed to 

develop, implement, integrate, and maintain AI-based solutions. Methods to identify, clarify, and 

communicate the currently uncertain path from data to profit would substantially favour the adoption of 

AI by industry same as the clarification of the starting points for new AI adopters. Innovation leads to the 

development of new technologies that involve novel manufacturing concepts not covered by existing 

rules, normative standards, and industry practices. As such it occurs that industry standards and 

requirements will be required to be met without hampering the exploitation of the technology.  Equally 

important will be to address gaps related to IPR and civil liability for AI-enabled produced parts, the 

provision of education services, the identification of protocols for technology qualification and 

certification. To conclude, despite the achievements nowadays, there is yet research and implementation 

work to be done to fully realize the potential of AI in the EU industry and address open challenges, such 

as the need for human-centric, democratic, and resilient manufacturing systems, complying with the 

requirements for sustainability, and minimized environmental impact.  
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