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1 Overview of Al in manufacturing

Manufacturing is traditionally an early adopter of technical innovation and digital transformation, which
is also observed for Al related technologies. The ConnectedFactories 2 CSA project! has clustered the
available Al solutions for manufacturing into the following six categories of technological enablers:
Machine vision and Robotics, Embedded Al in Products (Smart Products), Machine Learning and
Knowledge Discovery, Al Forecasting and Prediction, Al Diagnosis and Maintenance, Recommendation
and Decision Support System. As for the maturity of Al solutions, the project has categorized it in five
levels driven by the autonomy in the Human-Al interaction, which are namely the following: Humans in
Control, Al Assistance, Al Recommendation, Collaborative Al, Al in Control (Figure 1). Al approaches have
been tested for facilitating the design, planning, control, management, and integration of products and
processes, and they are expected to empower companies to scale up and move from conventional
manufacturing to autonomous factories. Relevant Al applications include cognitive systems and robotics,
predictive maintenance, fault diagnosis and quality inspection, which have been enabled by Al algorithms
such as Deep Learning and Artificial Neural Networks.
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Figure 1. Al maturity levels from the human-ai interaction viewpoint, ConnectedFactories2 CSA project *

Even though several Al algorithms and applications are well-known, the status of the implementation of
Al in manufacturing, as well as the unmet needs remain vague. A comprehensive taxonomy of existing
solutions and manufacturers' expectations can improve the understanding of the Al achievements and
the gaps that will stimulate the steps forward. Al-enhanced applications address varying requirements at
different levels of the Reference Architectural Model Industry 4.0 (RAMI) hierarchy, which can be grouped
into three levels: manufacturing systems, workstation, and manufacturing process (Figure 2). These levels
are mapped to the RAMI model and include aspects from product and field devices to complete work
centers and enterprise interactions with external instances.

1 Connected Factories 2 Supported by the European Commission through the Factories of the Future PPP (Grant Agreement Number 873086)
CSA, https://www.connectedfactories.eu/ai-manufacturing-pathway
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Integration

Asset

Figure 2. From the RAMI model to the Hierarchical model (adapted schema based on the Reference
Architecture Model 4.0°)

Each level is characterized by different complexity, i.e., number of components, correlations between
components, parameters, and the like. In turn, the sources producing data, the data types, and the
amounts of data that need to be collected, stored, and processed are different at each level. Furthermore,
the decision-making horizon depends on the situation, and the level of decision-making. At the
manufacturing process level, detailed decisions are required that should be made in near real-time, they
usually affect the production of one product, and they are based on data of high certainty. On the other
hand, at the systems level, it is needed to make strategic decisions for which longer time horizons are
available nevertheless the available information is usually of limited certainty and the impact of the
decisions can affect the whole company. Other requirements include the performance of the Al-based
solutions in terms of runtime, latencies, human-in-the-loop to approve decisions, etc. Aside from the
requirements that are relevant for each level, cross-cutting aspects also stimulate research around Al for
topics such as Ethics, Explainability, Data availability, Legislation, Education, etc. Figure 3 provides an
indicative list of research items that are relevant for each level, whereas sections 3, 4, 5, and 6 provide
more details about the implemented solutions.

2 https://www.plattform-i40.de/IP/Redaktion/EN/Infographics/reference architecture model 40.html
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Figure 3. Industrial application areas and objectives for using Al in Manufacturing per hierarchical level
(Chryssolouris, Alexopoulos & Arkouli, 2023).

» Zero Defects Manufacturing

Practitioners and academics have produced Al solutions for each of the hierarchical levels in
manufacturing. As depicted in Figure 4, these solutions are often built-up to Al capabilities that have been
typically incubated in other sectors such as the e-games industry, autonomous driving, language
translation, etc. In turn, the Al functions such as computer vision, data generation, reasoning, and learning
have been enabled by the application of Al methods. Based on Pedro Domingos Al methods can be
classified into symbolic Al, connectionist Al, evolutionary Al, Bayesian Al, and Analogizer Al3. The
application of Al in manufacturing has started with the use of symbolic Al in 1970s, however today the
application of all the types of methods is met in the Al applications in manufacturing. It seems that the
attention today is mainly on connectionist Al, where Convolutional Neural Networks algorithms seem to
be amongst the most popular especially for machine vision.

3 Domingos, P. Prologue to The Master Algorithm.
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Al Applications in Manufacturing
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[

Figure 4. Al solutions hierarchy from basic Al methods to Al applications in Manufacturing

Figure 5 illustrates an indicative break-down of several application areas over the product/process
lifecycle following the system, machine, and manufacturing process taxonomy. Additionally, a number of
Key Performance Indicators (KPIs) typically used to assess the performance of the Al modules are
demonstrated. Time, production rate, quality, footprint, worker’s comfort, and user satisfaction in
tandem with legal and ethical factors are some of the aspects that are frequently evaluated. Figure 5 also
illustrates that solutions are usually designed to address a specific set of the lifecycle stages. On the other
hand, the connectivity among the modules often relies on the humans, whereas the heterogeneity of the
file formats of different design, engineering, and so forth applications usually undermines the use of data
among different applications.

However, manufacturing is a ‘wide’ area of complex systems and sub-systems that are interconnected
with myriads of dynamic connections. Manufacturing is achieved by a combination of processes, such as
product and process design, production equipment design and commissioning, production, after sales,
recycling and remanufacturing. Production itself is a complex activity that includes several resources and
tasks such as dynamic scheduling, workforce management, warehouse management and many more.

8|Page ©2023 AIM-NET
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Figure 5. Overall map of Al application in Manufacturing. Horizontally are the Lifecycle stages of the
Manufacturing system and Vertically the Physical Department involved in the creation of a product.

The limitations of the currently provided solutions derive of a series of barriers that have been reported
to hamper the wider adoption of Al in industry, which are both technical and non-technical. In particular,
technical issues seem to focus on but not be limited to access to quality data, management of large
volumes of heterogeneous data, low traceability of the methods, and demand for faultless methods with
low configuration and engineering effort. By means of illustration, Figure 6 aims to depict the complexity
that arises in data management through the product/production lifecycle that involves several data types
and formats. Different stages of the lifecycle generate new data of different types in different formats
increasing the accumulated data that is produced and thus perplexing data management. The
accumulation of data from product design to production and product use is illustrated with the number
of boxes that increases from stage to stage. For instance, product design involves mainly the product
drawings in CAD files, whereas production is based on CAD and CAM files, process plans, schedules, etc.
that flow from the previous engineering stages, but also produce data from sensors, machines, and quality
control.

Equally important are the challenges related to skills, trust, ethical and legal aspects, and vulnerability,
whereas many manufacturing companies report a lack of relevant expertise to adopt Al methods. In
addition, manufacturing companies are usually very experienced in buying machinery but when it comes
to digital tools and Al, it might be challenging to find the right technology and estimate the return on
investment. Also, the long lifetime of manufacturing infrastructure slows down the adoption of Al in
production. The barrier related to trust and ethics are underpinned by the field of social Al
Understandability, explainability and trustworthiness are critical for the adoption and growth of the Al
era. In general, it is deemed that people do not sufficiently understand technology or even the outcome
or behaviour of Al in a human-comprehensible way. This limits the technology acceptance and the amount
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of trust from the bottom-up level since the adoption starts with a certain ground feeling of understanding
and being understood. It is in human nature to want and be able to explain the behaviour of things in
order to be able to predict and anticipate.
Product Use,>
Maintenance &
Repairing

. Preliminary Production Construction
Product Design /. oduction Production System and REL Production
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Sequence Planning Commissioning
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CAD CAD CAD CAD CAD CAD
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] V]
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User satisfaction
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Returns

Type of Defects

Frequency of Defect
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Figure 6. Evolution of Digital twin & data growth over the product/production lifecycle

The viewpoint of the industry stakeholders on the presented solutions and the expected next steps has
been captured by several surveys. Indicatively, a poll from the EFFRA community indicated that the factory
level optimization has the highest potential for Al in manufacturing, non-symbolic Al seems more
important amongst the existing approaches, and the challenges regarding Al in manufacturing are related
to Al and security, interaction of Humans and Al, explanatory Al, Al and business models, data availability,
and finally digital skills*. Regarding revenue generation and cost reduction that can be achieved, Figure 7
shows that a limited number of responders can see benefit from Al in these areas®. Additionally, McKinsey
& Company’ conclude that Industry 4.0 has assisted companies improve KPIs in the following five areas of
impact 1) sustainability KPls (greenhouse-gas emissions), 2) productivity (as factory output), 3) agility
(lead-time), 4) other speed-to-market KPIs, and 5) customization.

4 https://cloud.effra.eu/index.php/s/4n4Y09ZvKnbfx1n#pdfviewer
5 https://www.mckinsey.com/business-functions/operations/our-insights/transforming-advanced-manufacturing-through-industry-4-0
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revenue generation.
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Most responders do not feel that Al solution deployment
in their organization helped with cost reduction.
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20% responders felt Al could reduce cost in
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Al impact: revenue generation Al impact: Cost reduction

Human Resources
Human Resources

fi
Strategy and corporate finance Strategy and corporate finance

Service operations Service operations

Manufacturing Manufacturing

Supply-chain management Supply-chain management

Product and service development Product and service development

Marketing and sales Marketing and sales

% 10% 20% 30% 40% S0% 60% 70% 80% 90% 100% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

o

[= " Not appiicable B Increase by < 5% Increase by 6-10% Increase by >10% |

Figure 7. Survey on the revenue increase and cost reduction by Al adoption®

In addition to the existing surveys, AIM-NET has held a workshop on its own to directly receive feedback
on the industrial perspective about Al. The scope of the workshop was mainly to investigate 1) the
knowledge of companies about the Al capabilities, 2) why Al might have lower priority in the R&D activities
of industries, 3) discover any gaps requiring the development of new Al-based applications, as well as
investigate 4) how to promote Al among the industrial community. Additionally, it was of interest to
explore the availability of Al-related expertise in companies and their current organization and identify
whether guidelines on new education processes, expertise organization, and job design are needed. For
instance, the adoption of Al may introduce different roles or extend the current ones e.g. line planners,
autonomous robotics experts, vision experts, gripper designers, actuation analyst, and so forth.
Furthermore, it was in scope to explore the expected impacts of Al and identify the ones that are more
popular e.g., repurposing, resilience, quality improvements, lower emissions, reduction of operating
costs, increase of industry competitiveness, etc.

The workshop was attended by industry professionals from several fields including automotive,
aeronautics, electronics, manufacturing, and industrial automation. The workshop was organized in three
parts: 1) presentation of ongoing Al-related activities, 2) structured discussion, and 3) open discussion on
the interest in Al, Al adoption, barriers for adoption, successful implementations, and AIM-NETs potential
contribution on enhancing the adoption of Al.

During the open discussion, a number of additional points were raised. Some points that were raised
include but are not limited to the need of Al solutions for bridging the gap between manufacturing and
product design and enriching discussions by including Al from the design perspective as well. Intelligent
machines and exploiting data from the field are needed so as to optimize process parameters and avoid
scrap, reduce waste, etc. A very important aspect is also the reduction of energy consumption, which can
also be enabled by reducing the needed machine energy, e.g. by using models to reduce the energy
consumption. Maintenance management is no data friendly, therefore Al-based support is needed and
moving towards predictive maintenance seems very interesting. However, the integration of Al solutions
is not yet wide due to the need for support of the management of different IT systems (e.g. it is often

6 https://ai.eitcommunity.eu/assets/docs/EIT-UrbanMobility-Emerging-Al-and-Data-Driven-Business-Models-in-Europe.pdf
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highly complex to clean up data). Moreover, the integration and (generalized) profitability of new
technologies (XAl, quantum, surrogate models, security’, cloud and big data®, democratized & responsible
Al°) is not clear. The output of the workshop has been summarized in Figure 8, where key points of the
industry feedback have been classified in the following categories: 1. applications of interest, 2. existing
implementations, 3. barriers, 4. AIM-NET expectation, 5.

APPLICATIONS OF INTEREST BARRIERS FUTURE Al APPLICATIONS

Vagueness in Deficient Unclear
data t es & infrastructure integration
and legacy procedures
|nfrastructure machinery & Shortage of
for data expertise
collection
Fuzzy |mpact ROI hot Lac of Al
on already evident knowledge at
installed base Business 5|de

--- Vast amount of data, but limited quality data
AIM-NET EXPECTATION
EXISTSING IMPLEMENTATIONS

W Applications of interest I Existing |mp|ementatlons Barriers M AIM-NET expectation M Future Al applications

Anomaly
detection and
inspection
Intelligent
monitoring
Logistics and
supply chains
Maintenance
Quality
control
Reasoning
and decision
making
Toolwear
monltonng

Figure 8. AIM-NET industry feedback

The existing implementations recap the areas where Al has already been used, and industry thinks the
results are positive. Intelligent monitoring, anomaly detection and inspection, together with quality
control, maintenance, as well as tool wear monitoring are the first cluster of implemented Al solutions.
Additionally, reasoning and decision making as well as logistics and supply chain management are the
second set of solutions.

The next step towards future implementation of Al is reflected in the applications of interest field. In more
detail, intelligent production monitoring, inspection, and quality control anomaly detection, and smart
maintenance reflect the need to further advance the functionalities already provided, and progress with
processing large amounts of heterogeneous data towards reducing error propagation in the
manufacturing chain and reduce downtimes and maintenance costs. The operation of manufacturing
systems requires support in reasoning and decision making, with the worthiest to mention aspects being
the inventory management, task planning and scheduling, management of logistics and supply chain but
also energy management. Additionally, cognitive automation and robotics require Al-enhanced solutions
to achieve the desired levels of efficiency. Finally, the design of production systems and products could
also benefit from Al solutions.

Although the results so far are promising, the flourishing of the aforementioned Al-based applications in
the industrial field remains uncertain. Topics that should be addressed to pave the way for broader Al
adoption include among others many aspects that relate to the management of data from data sharing
to infrastructures and old machinery along with the limited amount and quality of data. Human resources
are also important for the adoption of Al thus, shortage of expertise hinders the adoption of Al. The
reported technical barriers also include challenges that arise from the integration stage and also the

7 https://www.marktechpost.com/2022/03/02/top-emerging-machine-learning-trends-for-2022/
8 https://www.geekwire.com/2016/future-machine-learning-5-trends-watch-around-algorithms-cloud-iot-big-data/
9 https://www.techtarget.com/searchenterpriseai/tip/9-top-Al-and-machine-learning-trends
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uncertainty of impact on the already installed base. The non-technical barriers include but are not limited
to the lack of Al knowledge at business side, as well as the obscureness around the expected ROI.

The needs for the step forward are expressed into the expectations from AIM-NET, which can be clustered
into technical and non-technical subjects. For instance, broadening the understanding of Al in
manufacturing, mapping the Al services to industrial needs, providing realistic or event real world Al
demonstrators, and setting simple measurable Al KPIs and measurable targets are some of the non-
technical expectations. On the other hand, research and techniques to manage the lack of data, e.g. the
automated annotation of features such as defects on images, or the complexity of data and the
management the integration of older to new IT systems. Additionally, methods are needed to enhance
the design aspects, bridge the gap between product design and manufacturing, and enable to involve
multi-actors in developing Al models. Nevertheless, methods to model deployment are also required.
Moreover, Al solutions to serve for process parameters collection and model tuning in tandem with data
and information visualization are indispensable. Finally, among others modelling the energy use and the
manufacturing shop floor space availability are some of the applications that industrial stakeholders aspire
to have in the future.

It is expected that the reported challenges will be gradually addressed towards realizing the Industry 5.0
in short-term, and autonomous factories in the long-term. In particular, in the next 5 to 10 years it is
expected that Al will enable among others to perform automated optimization, widely adopt advanced
manufacturing technologies, and deploy flexible manufacturing cells. In the upcoming paradigm of
industry 5.0 it is expected that the body of knowledge coming from the fields of philosophy, cognitive
psychology/science, and social psychology, will be infused in the industrial research fields, giving raise to
the notion of trustworthy Al and thereby to the real adoption of Al in autonomous and hybrid factories.
Additionally, the future interactive data visualization will become more automated, adaptive, and
personalized to guide the manufacturing users in the visual analytics process and easily detect data
changes, and the most relevant insights.

In the next 10-20 years, it is expected that with the help of Al, production systems could operate
independently with little, or no human interaction and the digital supply chains would optimize
themselves automatically. Regarding the Sustainability and Green aspects enabled by Al, production,
supply chain management, and product design optimization are expected to provide several benefits.
Production optimization may enable to produce more with less resources (energy, materials, human
resources, ...), produce more customized products with improved scheduling, improve availability of
industrial equipment with predictive maintenance. On the other hand, supply chain optimization could
enable us to adapt logistics to the production and the customer requests with low impact. Figure 9
summarizes the current state and goals for the future years.

TODAY MID-TERM (5 -10 years) LONG TERM (10 - 20 years)
Modern factory Agile factory Hyper-agile cognitive industry
Industry 4.0 Fitfor 53, Industry 5.0 Green deal, Autonomous Factories
Manual data processing Automated optimization Real-time autonomy
Dedicated digital processes- silos Advanced Manufacturing Technologies Actionable Al
Cases & demonstrators Flexible Manufacturing cells Green & Sustainable partner ecosystems

Figure 9. Mapping of the White Paper parts to Al applications maturity and Industry paradigms

Despite the described goals being well-known, the roadmap towards achieving them or even the research
areas that should be promoted in order to enable this vision to seem currently obscure for the European
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manufacturing community. The discussion in the next sections aims to shed light on the capabilities of the
Al-based tools that have been implemented, along with discussing in more detail the challenges, barriers,
and limitations that are present at each level of the discussed hierarchical levels (manufacturing
processes, workstations, systems), as well as the potential that are expected within the next 5-10 and 10-
20 years. Subsequently, the roadmap for the future will be outlooked by prioritizing research areas that
need to be further enhanced.

2 Al at the Process level

The manufacturing industry has a profound impact on economy and societal progress. Technological
changes and innovations are essential sources for that progress; more profitable and efficient sectors and
firms displace less productive and profitable ones. Thus, technological change is in the center of modern
economic growth; as industrial production, is currently inspired by global competition. For that reason,
there is a need for fast adaptation of production to the ever-changing market requests. This is a challenge,
however, that is quite case-dependent. This implies the need for tailoring the solutions down to each case,
not only from a technical point of view, since each machine and each environment are unique, but also
there are business challenges to Al deployment, such as strategy enforcement (Lopez-Garcia et al, 2022).

The applicability of Al at manufacturing processes level has to do with many different aspects (Figure 10).
To begin with, complexity manipulation, for the desire of the so-called Digital Twins is to be addressed, as
the workflows have to be digitized. Then, more specifically, what could be required, potentially also as
operations of the digital twins, are:

e quality monitoring, requiring to a large extent machine learning

e cognitive process control, where, depending on the sensors, deep learning can also be needed

e alarms generation and management, utilizing data science and Al (for instance heuristics or
Genetic algorithms)

e Process control, where time-series can be utilized

The complexity is varying across applications and is dependent on many criteria, like:

e the process mechanism; for instance, conventional processes involve mechanical interactions
and non-conventional processes thermal or chemical ones

e the sensor type; sampling rate may be a key parameter, or even the sensors plethora can lead to
data variety

e the level of detail to which we are interested in; i.e., classifying the weld in the case of many types
of defects increases the complexity

e and finally, the application itself; e.g., real-time (adaptive) process control requires smaller time
scales than quality monitoring

All these facts can be summarized in the diagram hereafter, where the various techniques are matched
against the needs for Al within digitalized process optimization workflow (Papacharalampopoulos et al,
2020; Panagiotis et al, 2020; Stavropoulos et al, 2020b; Garcia-Diaz et al, 2018; Papacharalampopoulos et
al, 2019).
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Figure 10. Manufacturing process level operations requiring Artificial Intelligence, (Stavropoulos,
Papacharalampopoulos, & Athanasopoulou 2020), (Garcia-Dia, et al. 2018), (Stavropoulos, et al. 2020),
(Papacharalampopoulos, et al. 2020), (Papacharalampopoulos, Stavropoulos, & Stavridis, 2018)

2.1 Intelligent quality monitoring & control

In any case, the various challenges that have been mentioned have to be addressed individually, as they
are unique with respect to their theoretical and implementation-related needs. A very indicative problem
that reflects this fact lies in the area of quality monitoring and link with process control. The characteristic
factor is that everything must be done in real-time or at least near-real-time, especially in the case where
the policy adopted is zero-defect manufacturing. This is slightly different than traditional quality control,
i.e., six-sigma, in the sense that defects must be prevented; the table provides us with some extra details.
Thus, everything must be done in time scales smaller than processing times and include countermeasures
at the same time for every single part being produced.

The solution comes with the embedding of the concept of Cyber-Physical Systems (CPS) (Stavropoulos et
al, 2020b). Also, 14.0 offers networking possibilities as its key ingredient; thus, Al can flourish here with
related applications. Al is implemented in multiple CPS levels as indicated in the figure below (Figure 11),
with some cognition characteristics than can even have distributed (networked) character.
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Figure 11. CPS aspects of quality monitoring and control, (Stavropoulos et al, 2020b)

It is also worth mentioning the diversity with respect to the elaboration of sensor data. The Al in the case
of laser welding quality monitoring, for example, involves fusing data from different sensors, namely
thermal images (or rather videos, since laser welding refers to seams) at different parts of the spectrum
(Near-Infrared and Mid-wavelength infrared) which are then “reduced” down to features. These features
can either be geometrical (GFE) or statistical (SFE). The first ones regard primarily the size of the melt-
pool and the others have to do with pixels providing us with maximum information. Then, a classifier
(Support Vector Machine in the case of Figure 12) uses these features as input and decides on the “frame”
quality. The two extra steps have to do with fusing these decisions towards seam quality and part quality.
Hidden Markov Models can be used to this end. Each one of these stages corresponds to integrating
different 14.0 KETs.

Stage II; Stage I Stage IV: Stage IVb:
Stage I: Feature Decision per Deciston per ‘Decision per
Sensing Extroction frome stitch _port
NIR frame GFE
* input: Single z":m {MWIR) HMM
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P & Networked Big Data 1
1= x erson Al Robust Manufacturing

Figure 12. Hierarchical Quality monitoring digital twin based on Al techniques, (Stavropoulos et al., 2020)

An example of how Al can help process and quality engineers tackle the problem of fast and robust in-line
detection of process anomalies is presented in Colosimo and Grasso (2018) and in Bugatti and Colosimo
(2022). The application regards the in-line and in-situ detection of so called “hot-spot” events in laser
powder bed fusion, one of most widespread metal AM processes in industry. A hot-spot is a local anomaly
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consisting of excessive heat accumulation as a consequence of diminished heat dissipations, commonly
related to critical geometrical features, like overhang regions, acute corners and thin walls. Hot-spots are
known to be drivers of geometrical and/or internal defects in the part, and hence they shall be detected
as soon as possible. High-speed video imaging (in the order of hundreds or thousands of frames per
second) can be used to determine the stability of the laser-material interaction during the exposure of the
powder bed in every layer. The big challenge consists of being able to automatically detect the onset of a
hot-spot event despite the highly time-varying patterns captured in video image data, minimizing the false
alarm rate while maximizing the detection performances. Figure 13 shows an example form Colosimo and
Grasso (2018), where a spatially weighted variant of the Principal Component Analysis (PCA) was
combined with a K-means clustering-based alarm rule aimed at capturing the spatiotemporal signature of
the process enclosed in the monitored video image data and detecting the onset of a local hot-spot.
Indeed, pixels belonging to regions affected by hot-spot events were known to be characterized by a
temporal cooling pattern that has high similarity within the anomalous cluster, but different from other
video image pixels. The same problem was tackled by Bugatti and Colosimo (2021), by comparing the
unsupervised k-means-based approach against other two Al-based monitoring solutions: one exploiting
Support Vector Machines (SVMs) for the hot-spot classification, and one exploiting a fully connected
neural network for the same purpose.
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Figure 13. Example of hot-spot detection in additive manufacturing via spatial Principal component
analysis (PCA) combined with K-means clustering (Colosimo and Grasso, 2018)

2.2 Tool wear assessment & prediction

Another class of problems is that of monitoring and predicting indirectly tool-wear. Tool-wear affects
partially quality and in sensitive applications the part may be completely destroyed due to tool condition.
However, the harsh environmental conditions (referring to process’ environment) restrict the use of
specific sensors, while the existence of legacy systems as well as the cost prevent the operators from
integrating force sensors, in many cases. Thus, a solution would be to integrate sensors, such that
vibrations and electric current one, that are only indirectly used to monitor tool-wear (Stavropoulos,
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2016). So, the objective here is to monitor tool-wear indirectly and, if possibly predict tool-wear
progression, while running the machine, through sensors, such as accelerometers and inductive clamps.

The procedure involves data collection from two different sensors, features extraction (i.e., spectrum
related indicators). Subsequently, these features are fused, and a classifier based on thresholds for classes
is used to decide on the toolwear level. Physics may be used to augment this (Figure 14).
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Figure 14. Toolwear assessment with physics-informed Al, (Stavropoulos et al., 2015)

The next step would be to fuse those results into a single diagram, using the features retrieved from these
two signals. Acceleration feature and spindle electric current feature can be used at the same time to
define thresholds separating low from medium and form high toolwear levels. The complex character of
this application is revealed from the fact that the thresholds are typically not perpendicular to the
acceleration or the current axes. As a matter of fact, they are also dependent on the cutting speed and
they are not necessarily straight lines in some cases.

Despite the amount of literature devoted to studying multi-stream RNNs in machine tool monitoring, the
powerful advantages coming from their application are underexploited in current applications. One
example of their implementation for one-cycle-ahead multisensory data prediction in milling operations
was presented in Garghetti et al. (2022) (Figure 15). In this case a Gated Recurrent Uni (GRU) neural
network was used to predict future process outcome in different manufacturing scenarios, including the
prediction of one-cycle-ahead of multi-axis spindle current signals in milling and the prediction of the
machine health condition on the basis of periodically repeated no-load operations. The GRU network was
compared against a wavelet modelling technique. Results showed that the GRU was more effective and
accurate in predicting next process outcomes in non-stationary conditions, whereas in highly repeated
and stationary process states, the most traditional wavelet method one preferred. This result also
provides evidence of the fact that the actual benefits provided by Al strongly depends on the nature of
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the problem and the data pattern. The actual boundaries for convenient use of Al in place of other
statistical methods is still not fully explored and consolidated and represents a relevant field of
investigation.
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Figure 15. Gated Recurrent Uni (GRU) neural network for one-cycle-ahead prediction of process data in
milling (Garghetti et al., 2022)

Tool wear prediction is an important factor which affects the machined surface characteristics, because
during the machining processes those surfaces get more or less destroyed. Surface integrity is one of the
most relevant parameters used for evaluating the quality of finish machined surfaces. The predictions of
tool life in machining have become a challenging task for proper optimization of the process, mainly
because they play an important role in the economic aspects of metal cutting operations. Machine
learning regression techniques can be used to predict the tool wear using as predictive or input variables
the cutting force components.

2.3 Smart modelling & digital twins

Moving on to a different class of potential operations within the framework of a digital twin, integration
of Al in process modelling is required to keep up with the various aspects of a digitalized workflow. To
begin with, Al could be used to accelerate theoretical (physics-oriented) process models, towards their
running in near-real time (Foteinopoulos et al, 2018). Their use could be multifold; responding to what-if
scenarios, designing process control, or even studying the inner state of a part (i.e., in terms of quality). It
is also noted that the concept of “near-real time” (decision making or optimization) refers to being able
to react to optimization requests within a fraction of process time.

An additional example would be utilizing a set of models seamlessly, in a way that is able to provide
uncertainty management and process control for manufacturing processes. It is seen in (Stavropoulos et
al, 2021) that at least four different models are cooperating to achieve this. At the same time, Al can be
in charge of the workflow and the exchange of information among the aforementioned models. This
results in a complex CPS that is a result of rather severe integration, as per the guidelines that have already
been given. Then, with the help of process control, a variation of classical control theory, the behaviour
of the process can be regulated within the desired specifications (Figure 16).
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Figure 16. Robust manufacturing implementation, (Stavropoulos et al., 2015)

The augmentation of a digital twin towards ZDM is also potential with the help of Al
(Papacharalampopoulos et al, 2021). The use of Al at process level, however, does not end here. In
modern manufacturing, multi-criteria optimization is a major demand, given the environmental and social
challenges. Energy and quality joint problems occur this way and Al, besides optimization and control
could intervene also in hierarchical use of process models; the case of molecular dynamics is characteristic
(Panagiotis et al, 2020); local information has to be fed to higher-level process simulations, providing extra
information about the KPlIs.

Finally, as enlisted at the beginning, energy, quality, or any other KPI related alarms can be manipulated
through Al. The fusion of Al with theoretical models is a powerful tool; in the following figure, a very
specific illustration is given, for the case of an FDM 3D printer (Papacharalampopoulos et al, 2021b). It can
be seen that, depending on the direction of planar printing, the energy consumption may have some
differentiations. It is up to Al to decide if this has to trigger an alarm and a suggestion on whether this is
an issue of the printer (process), or the monitoring system itself.

2.4 Al for Process optimization

Process optimization requires adequate knowledge about a wide range of parameters and variables that
impact the process results. Optimization of industrial processes should be a task for industrial process
experts. The complexity of the processes has required the help of mathematical techniques able to
manage huge quantity of data that extract the intrinsic relations and keys that are hidden in those data.
Likewise, the complexity of these mathematical techniques requires the participation of data analytics
engineers to help the industrial process engineers. They have to cooperate in order to disentangle the
industrial process keys hidden in the data, but this complementary work is not always efficient. In the end,
the ideal situation would require only industrial process experts, and so, the question to be faced would
be: is there any possible approach to provide the industrial process experts with the necessary tools to
optimize their process?
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The first stage is always to understand the details of the industrial process, which is specific of every
industry (Figure 17). Once the process is understood the next stage is the modelling of the process, setting
up the prediction model to estimate the desired key performance indicators (KPIs) based on the relevant
process parameters (PPs). Once the prediction model is set up, the final stage is the optimization one,
where one or more combination of process parameters is selected to reach an optimum KPI.
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Figure 17. Optimization framework for decision making in manufacturing

In the case of process parameters optimization, the ultimate goal is to produce high quality products with
less cost. Meta-heuristic Al algorithms such as, genetic algorithm, simulated annealing, particle swarm
optimization, artificial bee colony optimization and ant colony optimization can be used. The aim of these
optimization problems is to find the best combination of process parameters in order to optimize a KPI
related to the process efficiency. In some cases, various criteria can be used simultaneously, turning the
optimization problem into multi-objective optimization problem. Also, some constraints are usually used
to assure that the quality requirements of the final product are fulfilled. Due to the complex nature of the
processes, the modelling of the KPI (objective function) and constrains are usually performed using data-
driven models instead of employing simple linear functions.

An additional benefit, as stated also, in section 3.2, is the complementarity with physics modelling. For
instance, even part of modelling could be substituted by Al. In the case of spring-back modelling in
particular, the proposed mechanism uses a novel point series representation to capture local geometries
that then form a global bank of geometries for general use. Each point series can then be associated with
a predicted springback value generated using deep or machine learning. Experiments are reported using
a Long Short-Term Memory (LSTM) model coupled with a Multilayer Perception Network (MLP), and a
Support Vector Machine (SVM) regression model (Binggian et al, 2022). There have also been attempts to
develop a visual evaluation method to diagnosis the quality installation of blind fasteners with Al (Del Val
et al, 2022).

The customization in data elaboration is obvious, since the machines are subject to unique surroundings,
leading to customized noise. Subsequently, technical challenges are to obtain more reliable models in
order to reduce the uncertainty of the data by applying more sophisticated Al techniques. As such,
generative adversarial networks can be used to balance the distributions of the target data that usually
do not present too high or too low values. In addition, data management calls for a whole different class
of IT backbone. All these imply, in addition, the use of a differentiated workflow during both design and
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operation phases. This causes specific business hinders in the industry operation, since there are financial,
social and communicational challenges that are formed from this technological transition. Another issue
here is to imply actively the human (operator) in the loop. This would help to have more supervised data
of the process, thus having more certainty and robustness in the data.

In some industrial processes, there are variables which are difficult to measure on-line due to technical or
economic limitations. A solution for this type of problem comes on the hand of the software sensor (SS)
paradigm, which provides a reliable and stable estimation. A soft-sensor is a predictive model which is
responsible for the online forecasting of certain variables that play an indispensable role in the quality
control of an industrial process. In this paradigm we must include the fact of the degradation of the
predictive model. Therefore, it is necessary to consider and plan a continuous readjustment through the
detection and retraining of the model.

2.5 Utilization of data in process design and operation

Generative models, as a particular technique within the Al landscape is a relatively new field whose
applications are growing each year in different domains. The techniques englobed under this term, such
as Generative Adversarial Networks (GANs) (Goodfellow et al, 2014) or Variational Autoenconders (VAE)
(Kingma et al 2020.) are widely used for data generation or dimensionality reduction problems in fields
such as medicine (Uzunova et al, 2022), chemistry (Dan et al, 2020) or material science, and recently
Manufacturing frameworks (Kim et a, 2021) started to adopt also these non-supervised solutions for
particular problems. Apart from the most obvious application of Generative modelling for the design of
products, also performance-oriented materials or design synthetic data generation has been
demonstrated as a remarkable solution for data augmentation.

One bottleneck for the efficient application of some ML techniques that rely in the use of Artificial Neural
Networks (ANN) is the large amount of data required for training. In particular, many Quality Inspection
procedures are based on Convolutional Neural Networks (CNN) for image processing that need large
number of images for it. Given that factories try to minimize the existence of defects, the acquisition of
large numbers of images of defects tends to be difficult. In addition, defects usually appear in a way that
can be classified by some common features meaning that different defect typologies can be identified for
the same process and the frequency at which the different typologies appear is usually different. Which
means that examples of some defect typology can be massively acquired and examples of some other can
be rarely seen. As a result, quality control procedures might show really good results for some typology
while remaining almost blind to the detection of another. The use of generative models to generate
synthetic image data for training of such CNN-based systems allows significant enhancement of the
volume of data for training with its consequent impact on the detection ratios. This type of application is
probably the most mature application of generative models reaching TRLs between 5 and 6.

Another application of generative models includes product design. Specifically Deep Generative Design
tools such as Generative Adversarial Networks (GANs) and Variational Autoencoders (VAE) have been
shown as powerful frameworks to provide solutions in a wide range of complexity dimensional reduction
problems and generation as active tools for 3D shapes generation of specific products (Figure 18). This
application of Al can enhance the co-creation of fully customized products can be achieved though the
exchange of data and processes between members of a community (Ding et al, 2013; Duray, 2002;
Mohajeri, 2015). This is the essence of social manufacturing (SM), a novel approach where such data is
shared within a cyber-physical social space (CPSS), triggering massive decentralized co-creation processes.
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One can visualize the cyber-physical social space as a multidimensional one, with multiple channels
holding information flows in terms of services, technology or design each of them with different degree
of explicitness regarding agent (community member) knowledge. One key element within the SM
landscape is the so-called prosumer, a consumer that participates actively in social manufacturing
assuming also the role of a producer. The more involved the prosumers (agents), the more reach the final
product results through self-organizing and social-enabled mechanism. However, contrary to what would
be an ideal SM context, where all the members of a community are pure prosumers, the current approach
to SM shows the presence of customers and services providers in an independent way. In such scenario,
the symmetrical conditions of the assumed roles distribution, or the fact that all the actors might not be
equally active, results in a potential weakness of the whole SM workflow for the emergence of a collective
production.
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Figure 18. Generative Design in manufacturing, (Gonzalez-Val and Muifios-Landin, 2020).

In order to achieve customization of products based on collective behavior, one particularly critic channel
that captures the interactions within the CPSS is the one composed by the information related with
product design. Such criticality comes not just from the above-mentioned risks regarding the possible
absence of agents providing such knowledge to the CPSS. But also, from the intrinsic difficulty to define
variables that hold the essence of a design, to represent it as information to be stored, shared and
customized. To overcome such issue Artificial Intelligence provides different approaches (Gonzalez-Val
and Muifios-Landin, 2020), as shown in Figure 18. The application of Generative approaches in this domain
rely on a very experimental phase with TRLs between 3 and 4.
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Complementarily to the Al-based design of customized products, Al has enabled to promote the fast and
inexpensive production of such products. Manufacturing companies need to meet the customer demand
for products tailored to specific, individual needs, which in turn introduces the challenge of design and
produce fast and cost-efficiently easily adaptable goods of high quality. The development of modular
design architectures has proven capable to meet this challenge. In this perspective, novel Al-based
clustering methods have been developed to cluster product’s components into modules towards the
effective creation of modular design architectures (Pandremenos & Chryssolouris, 2011). Neural
Networks in combination with Design Structure Matrices and multi-criteria decision-making approaches
have been used to reorganize the components of a product in clusters to efficiently generate and evaluate
different clustering alternatives (Figure 19).
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Figure 19. Design Structure Matrices for Body in White (Pandremenos & Chryssolouris, 2011)

Furthermore, generative approaches have been used for the development of high-performance materials.
High-performance materials are a key tool for several reasons. On the one hand, their use brings obvious
progress in the performance of the pieces where they are used in fields such as aeronautics, construction,
or biotechnology. On the other hand, high-performance materials also allow more efficient use of energy
in industrial processes where the use of such energy becomes intensive with its consequences in terms of
environmental and economic sustainability. For these reasons, the emergence of high-performance
materials has captured the attention of industry and researchers within the last years. However, the
development of these materials requires a large amount of time and money invested in the design,
synthesizability evaluation, construction, and characterization of such compounds. The use of Al for the
design of materials, even in its current infancy status, provides a valuable tool to accelerate the initial
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phases of materials design and HEAs, where the high number of combinations brings a perfect scenario
for the deployment of Machine Learning techniques. In this context, Generative models start to be used
to generate synthetic compounds or alloys for highly intensive industrial processes. In this scenario, the
application of Generative models relies in a very initial phase due mostly to the implications of its
deployment. Meaning that this technology in this domain remains in a TRL between 2 and 3.

The nature of the algorithms themselves makes generative approaches difficult to quantify or to stablish
standard indicators that might quantify their performance. However, depending on the application some
KPlIs can be established for the solutions developed using generative approaches. For instance, in case of
using Generative approaches for data augmentation, the improvement of the performance of the
algorithm for which the data is generated for, is a direct measurement of the impact that the generative
approach is having of the global system. In the case of using Generative models for materials design, one
indicator of its performance is the number of compounds generated within the requirements stablished
by the case of study. The most difficult scenario to evaluate the performance of the generative model is
the design case. Here, if the design implies certain functionality, again the amount of candidate solutions
within the requirements constraints can be established as an indicator. However, if the design is provided
in a creative context, only the variability within the latent space can provided hints about the performance
of the algorithm.

2.6 Consolidation of Al application at the process level

The use of Al in the scope of manufacturing process optimization is a multi-fold issue, that affects every
other operation, and can result in overall KPls enhancement. However, this multi-objective optimization
does not come at no cost. The implications in the technical workflow, as well as in the business operation
can cause some turbulence that requires for some steps, not necessarily in a linear scenario, but rather in
an iterative way:

a) Selection of monitoring systems

b) Choice of data management system

c) Standardized Data structure/format

d) Document physics-based knowledge, due to materials and geometries interaction
e) Choice of Al model

f) Selection of way of giving feedback to the system

g) Define the role of humans

h) Training the system

i) Train the personnel

j) Operation with a different workflow

k) Evaluation of the Al system with respect to the requirements

The implementation of Al at the manufacturing process levels has provided several benefits including
reduced assembly time and easier automation solutions, improved quality control and detection of
process deviations, increased overall throughput, and decreased NDT inspection. For instance, Al has
shown to be a reliable option for controlling manufacturing processes and improving efficiency for
fastening processes. The technology has achieved high scores in laboratory trials, but it is currently at a
TRL level 4. Additionally, using Al in fastening can have a positive impact on sustainability by reducing the
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weight of aircraft and reducing fuel consumption, CO2, NOx, and noise emissions since there are about

1.5-2 million rivets and bolts in a large aircraft °.
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Figure 20. Current status and Future Vision for the adoption of Al at the Manufacturing Process level

Over the next 5-10 years, it is expected that Al-based solution at the manufacturing processes level will
become increasingly integrated into automated processes reducing substantially processing waste and
energy use. Over the next 10-20 years, it is expected that the technology will continue to evolve and
improve, leading to even greater benefits and improvements in energy efficiency, raw material use, and
sustainability.
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10Biao Mei, Zengsheng Liang, Weidong Zhu, Yinglin Ke, Positioning variation synthesis for an automated drilling system in wing assembly, Robotics
and Computer-Integrated Manufacturing, Volume 67, 2021, https://doi.org/10.1016/j.rcim.2020.102044
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3 Al at the workstation level

The increasingly growing requirement to accommodate the fluctuations of market demand along with the
trend for highly personalized products has also influenced the configuration of manufacturing
workstations. So far, automation has enabled increasing production rates and quality consistency,
reduced production costs, and achieving competitive delivery times. However, further advancement is
needed in the selection of the automation degree and the work cell configuration since automation and
flexibility are usually inversely proportional. To this end, cooperating machinery has been proposed
meaning the cooperation of pieces of machinery equipment between themselves, but also the
cooperation of machinery with human operators (Makris, 2021; Arkouli et al., 2021; Michalos, Kousi, et
al.,, 2018). Therefore, the potential of Al-based tools to facilitate the implementation of collaborative
production systems where people, robots, and parts coexist is investigated as a means to realize the new
Hybrid Production paradigm (Figure 22) is discussed.

This coexistence of humans and robots induces several decision-making problems related to the design,
planning of operation, and control of the workstations (Michalos et al., 2022). For instance, layout design,
task allocation, coordination of the resources, adaptation of the behavior of the automated resources to
the requirements and needs of the individual workers, adjustment of the behavior of the resources based
on the status of the process and environment, and so forth. On top of that, Human-Robot Collaboration
(HRC) entail challenges in physical interactions, i.e. always guaranteeing the safety of human operators,
and activities coordination, toward improving cell productivity. Hence, robust controllers capable of
preserving productivity and enforcing human safety are required (Freitag & Hildebrandt, 2016).
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Figure 22. Hybrid Production Systems (Michalos et al. 2014)

27|Page ©2023 AIM-NET



;AIM-NET

The inclusion in the industry of more sophisticated robots invites the use of new Al techniques since more
and more data is computed to obtain very precise results in the shortest possible time. Focusing on the
dynamic task planning systems, which can derive critical productivity benefits flexible plan-based
solutions can be a key enabling feature of HRC controllers where robot motions must be continuously
adapted to the presence of humans, which act as uncontrollable “agents” in the environment. Moreover,
the integration of Planning and Scheduling (P&S) technology with Knowledge Engineering solutions and,
more specifically, with verification and validation techniques is a key element to synthesize safety critical
systems in robotics (Orlandini et al., 2014). The aforementioned conditions synthesize the challenges
which academia and research have been dealing with by developing several Al-enhanced solutions that
will be analyzed in the following paragraphs. In more detail, the next paragraphs present applications of
Al extracted from projects like Sherlock, Thomas, Odin, Remodel, Romoflex, among others, which have
demonstrated how the industry can benefit from Al. The contents of the following paragraphs are the
following:

Hierarchical knowledge modelling for robot programming, task & workspace planning
Intelligent ergonomics assessment for workstation layout design

Al for dynamic task and motion planning

Al for flexible and precise robotics

Al for dynamic operator support

Al-enhanced human-robot interaction

Al for predictive maintenance

NoukrwhNheRk

3.1 Hierarchical knowledge modelling for robot programming, task & workspace
planning

Decision-making in manufacturing systems aims to achieve performance requirements e.g. cycle times,
costs, and so forth, by selecting values for particular values of decision-variables e.g. location of
machinery, allocation of tasks, etc. Typically, the mapping of decision variables to the expected
performance has been accomplished with techno-economical models, however with the introduction of
new requirements such as the integration of various systems for production, the simplification of robot
programming, and the increase in robots’ accuracy the types of models is more and more extended
(Chryssolouris, Alexopoulos & Arkouli, 2023).

For instance, semantic models have been used to facilitate the integration between various systems for
production, coordination and interaction, and they are becoming more and more part of industrial
solutions Semantic models, originally used for symbolic reasoning and descriptions of linked-data sets.
Semantic knowledge modeling is a process of creating a computer interpretable model of knowledge or
standard specifications about a kind of process and/or about a kind of product. The semantic models are
expressed in a knowledge representation language or data structure that enables humans and automated
software components to interpret the meaning of the data in a consistent manner. Knowledge models
are used to guide the creation of a product. Also processes imply the use of semantic models, a process
model is in fact a semantic description of how to go from one step in the process to another, involving an
action on a particular product. Similarly, a knowledge model of an assembly physical object is a
decomposition structure that specifies the components of the assembly and possible the sub-components
of the components and its processes.
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The effort to simplify robot programming and increase the intuitiveness in Human-Robot Interaction (HRI)
has frequently stimulated research about representing human, robot, or shared human-robot activities.
Task-oriented robot programming that focuses on ‘what’ is to be done, as opposed to the motion-oriented
programming that focuses on ‘how to be done’ is deemed to be more aligned with the efforts for intuitive
programming (Makris et al., 2014) as it can enable the development of interfaces that will assist humans
to transfer high level commands to a sequence of robot motions and actions. In this view, methods for
robot programming grounded on the hierarchical decomposition of complex activities into simpler ones
concurrently with the definition the sequence of operations and the creation of robot libraries including
simpler robot tasks have been suggested (Makris et al., 2014). For instance, the method Figure 23 is based
on three modules for the programming of a dual arm robot: the robot language, the human intention
recognition and the human language. The robot language involves the high layer robotic library for the
bimanual tasks, e.g., BI-APPROACH, BI-INSERT, etc. to support the dual arm motion control. The human
language includes all the sensors/interfaces and the selected methodology for interaction including
gestures, voice commands and graphical user interfaces (GUIs). The arguments for each operation such
as start and target robot position are defined from human interfaces, voice commands and gestures. The
human intention recognition maps the recognized human gestures to robot language commands. The
implementation of the approach was based on a service-oriented architecture developed in ROS realizing
an assembly task coming from the automotive industry achieving important reduction of programming
steps and thus, of the overall programming effort.
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Figure 23. Robot process hierarchical modelling, (Makris et al., 2014)

The concurrent modelling of human and robot tasks together with the existing resources in a unified
model have been proposed to support the Human Robot Collaborative (HRC) workplace design, as well as
the automatic task allocation. Methodologies based on hierarchical models may address the workstation
layout design problem but also the task allocation. The approach in Figure 24, firstly locates all the
components and following maps tasks to resources using a smart decision-making framework (Tsarouchi
et al., 2016). The evaluation of the alternative HRC workplace layouts is based on multiple criteria such as
ergonomics, whereas the system has been integrated with a user interface into a 3D simulation tool and
tested on an automotive industry case study. Reduced time for redesign and reconfiguration of
workplaces and process plans was noted.
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Figure 24. Workplace and resources hierarchical modelling, (Tsarouchi et al., 2016)

The design of automated cells currently requires considerable time and a working team of engineers,
designers, system integrators, robot specialists, etc. The integration of rules and knowledge about cell
design in Al-algorithms into the automated generation of good quality workstation designs in short time
have attracted research interest. The prerequisite steps of such module should involve the modeling of
the problem the definition of different criteria, (which are either calculated analytically or
computationally), and then a set of algorithms, e.g. heuristics-based search algorithms (Tsarouchi et al.,
2017), for generating design alternatives, before selecting the most appropriate one. The modeling of the
system is typically performed by combining rational data, or data from different sources and their
geometrical counterparts that enable to model, of the actual production system, as well as the kinematic
and dynamic constraints. Popular criteria for the alternative selection may be the payload, reachability,
dexterity, number of required resources for a task, etc. The impact of using such methods includes the
efficient design of work cells with reduced space utilization, and optimized resource utilization.
Furthermore, Kokotinis et al., 2023) have worked on the quantification of the quality of human-robot
collaboration, which can significantly support the ranking of human-robot collaboration scenarios based
on human-centric viewpoint.

3.2 Intelligent ergonomics assessment for workstation layout design

As workplace layout is closely related to the worker wellbeing, physical fatigue but also productivity, and
production costs the investigation of the impact it has on human operators are gradually investigated to
a greater extent. Until recently, workplace optimization has been based on observational methods and
software simulations which may not be as insightful to prevent workstation layout redesigns and
interventions when the actual setup is in-place. On the other hand, full size prototypes entail high costs
and implementation time. An alternative which can significantly reduce costs for physical prototypes
construction and workplace design, as well as prevent redesign iterations deriving from the operators’
requirements and needs is the simulation in Virtual Environments with simultaneous data capturing.
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Virtual Reality (VR) has been proposed for simulation of industrial operations and optimization of shop
floors and workflow design (Rentzos et al., 2014). A review of the available methods together with a
decision-support framework for the selection of the proper ergonomics evaluation method depending on
the use case requirements has been presented (Arkouli, Michalos, and Makris, 2022) In this view,
frameworks allowing inexpert users to create 1:1 replicas of industrial shop floors in an efficient manner,
rapid modelling of tasks and actions for the preparation of Virtual Reality based assembly simulations
(Dimitropoulos et al., 2020). The exploitation of VR simulation to analyse and enhance industrial
workplaces by collecting more realistic data involving operators performing their actual task on a
simulated environment is another area where researchers have focused (Michalos et al., 2018) to enable
the tracking of (multiple) users virtually performing assembly tasks, with simultaneous visualization of
KPIs (e.g. completion time, traveled distance, ergonomics) to support the relevant decision making.

Detailed simulation of the Analysis of the simulationand
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= Realistic representation of the actual shop floor = Real-time ergonomic analysis

Implementation of the RULA
ergonomic worksheet. Color
coded results for every joint
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Figure 25. Human centred workspace design

3.3 Al for dynamic task and motion planning

Planning is another problem that requires notable effort and can be simplified with the use of Al based
tools (Evangelou et al., 2021). A planning problem is typically modelled by identifying a set of relevant
components whose temporal evolution must be controlled to obtain a desired behavior. Planning for real
world problems with explicit temporal constraints is a challenging problem. Among different approaches,
the use of flexible timelines in Planning and Scheduling P&S has been shown to be successful in a number
of concrete applications, such as, for instance, autonomous space (Amedeo Cesta et al., 2007; Jénsson et
al., 2000). Timeline-based planning has been introduced by Muscettola (N. Muscettola, 1994), under a
modelling assumption inspired by classical control theory. Components represent logical or physical
subsystems whose state may vary over time.
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Since a decade, a research initiative has been started to investigate the possible integration of a timeline-
based planning framework (Cesta et al., 2008) and validation and verification techniques based on Timed
Game Automata (TGA) to automatically synthesize a robot controller that guarantees robustness and
safety properties (Cesta et al., 2011; Orlandini et al., 2013). Unfortunately, these systems do not allow an
explicit representation of uncontrollability features. Consequently, the resulting controllers are not
endowed with the robustness needed to deal with the temporal uncertainty of HRC scenarios and
controllability issues (Morris & Muscettola, 2005). These systems usually rely on replanning mechanisms
that may however strongly penalize the production performance. The execution of a flexible plan is usually
under the responsibility of an executive system that forces value transitions over the timelines dispatching
commands to the concrete system, while continuously accepting feedback and, thus, monitoring plan
execution. In such cases, the execution time of controllable tasks should be chosen so that they can face
uncontrollable events. This is known as the controllability problem (Vidal & Fargier, 1999).

In (Cesta et al., 2016) the general pursued approach is presented aiming at realizing controllers capable
to dynamically coordinate tasks according to the behaviors of human workers. Umbrico et al. presented
a task planning and execution framework (PLATINUm) and its integration with a Knowledge Engineering
solution describing its deployment in safe and effective solutions for manufacturing HRC scenarios
(Umbrico et al., 2018). PLATINUm is a timeline-based planning system capable of supporting flexible
temporal planning and execution with uncertainty. PLATINUm has been used to introduce an innovative
integrated motion planning and scheduling methodology that (i) provides a set of robot trajectories for
each task as well as an interval on the robot execution time for each trajectory and (ii) optimizes, at
relevant time steps, a task plan, minimizing the cycle time through trajectory selection, task sequence and
task allocation (Pellegrinelli et al., 2017). PLATINUm has been used to combine task and motion planning
efficiently in HRC pursuing a control-based approach based on two layers, i.e., task planning and action
planning. Each layer reasons at a different level of abstraction: task planning considers high-level
operations without considering their motion properties; action planning optimizes the execution of high-
level operations based on current human state and geometric reasoning. Also, connections with
ontologies and semantic technologies are provided to demonstrate how abstractions and meta-reasoning
can bring additional advantages in terms of adaptability and effectiveness in dealing with uncertainty
(Borgo et al., 2016; Umbrico et al., 2020).

In the perspective of increasing the responsiveness of production, collaborative Mobile Robots have been
put on the spotlight to endow dynamic re-organization of the work in production systems. Mobile robots
however call for dynamic generation and evaluation of the mobile robots’ task sequences, as well as the
respective motions. The planning and optimization of the mobile robot paths has been addressed with
several approaches illustrated in Figure 26 breakdown into sub-problems. Two main categories can be
distinguished in the highest level i) global and ii) local planning. Each one of the two path planning modes
requires modeling, optimization criteria, and searching. Especially the searching part can be enhanced by
the implementation of Al-based applications such as the Artificial potential field. Robot abilities that are
addressed include autonomous navigation (optimization of 2D trajectory) and manipulation (optimization
of 3D trajectories). Including dynamic obstacle avoidance and online re-planning. Applications that require
path planning in manufacturing include but are not limited to the following: delivery, autonomous car,
logistics, fleet management of AGV and AMR to achieve better cycle times through offline simulations and
online optimization calculations.
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Figure 26. Mobile robots path planning problem analysis

Approaches on planning for hybrid production model considering not only the robot actions but also the
tasks and resources have been proposed. In some approaches hierarchical models of the tasks and
resources are used to add context for decision-making and in scope of ensuring that the context is always
relevant, the digital twin concept has been used (Kousi et al. 2019). In the application depicted in (Figure
27) the digital model of the workstation is updated with data coming from the field, whereas the target
of the proposed digital twin-based approach is to enable decision-makers to acquire context on the
current shopfloor status and have up-to-date information about the actual production process.

Figure 27. Scheduling and motion planning of mobile robots
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This is achieved by firstly realizing the virtual twin of the system, i.e., modeling the parameters of the
production system at different levels including assembly process, production station, and line level. The
models capture both geometrical information and semantics.
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Figure 28. Digital Twins for Human-centric reconfigurable manufacturing lines, (Kousi et al., 2021).

The models can be used together with an Al logic to generate alternative configurations of the production
systems. In particular, for the implementation of (Kousi et al., 2021) the suggested digital world model
infrastructure involves three main functionalities: 1) Virtual representation of the shopfloor, synthesizing
multiple sensor data and CAD models. The digital shopfloor is rendered in the 3D environment benefiting
from the capabilities provided by Robot Operating System (ROS) framework, 2) Semantic representation
of the world through the implementation of a unified data model for the representation of the
geometrical and the workload state, and 3) Dynamic update of the digital twin based on real time sensor
and resource data coming from the physical shopfloor. The communication and integration layer among
the physical and the virtual agents is implemented on top of the ROS framework (Kousi et al., 2021). The
developed infrastructure has been applied to an industrial case study coming from the automotive
industry focusing on a car’s front axle assembly. Nevertheless, it is designed to be generic enough to
accommodate cases. The impact that was achieved by implementing this approach involved reduced time
to adapt the production system and respond to unforeseen situations (Kousi et al., 2019).

3.4 Al for flexible and precise robotics

The manipulation of complex parts by industrial robots is a challenging application due to the uncertainty
of the parts’ positioning, the distribution of the part’s weight, as well as the gripper’s grasping instability
that has been favored by the use of vision systems. The instability is a result of non-symmetrical and
complex geometries that may result in a slightly variable orientation of the part after being grasped, which
is outside the handling/assembly process tolerance. In order to address this challenge, machine learning
methods can be employed to recognize the parts and estimate their position and orientation after they
have been grasped. The implementation of such approaches can increase the number of successful
operations, the tolerance to the object’s initial positioning, but also to the part’s compliance, and the
object’s geometrical complexity (Aivaliotis et al., 2017).
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The growth of industrial sectors (automotive, aeronautics, clothing industry, etc.), whose processes
involve deformable parts such as textiles and composites, has stimulated the automation of the
manipulation and assembly of deformable parts. This research area up until recently was not very active
due to the challenges related to flexible material deformability that are enhanced by the limitations of
robot dexterity and perception during the deformable parts handling. Some solutions have though been
presented.

The robot manipulation and assembly of linear non-rigid components including the safe flexible material
supply, part detection and grasping (Figure 29) and cross section recognition (in case of non-symmetrical
parts) was addressed in (Andronas et al., 2022). Also, the identification of the most convenient grasping
point, which is troubling due to the stochastic positioning and configuration of the objects, it is described
by Sardelis et al. (2020).

o

y: 0.217644
dist: 0.27554

Figure 29. Grasping of a randomly positioned flexible part: (a) detection, (b) detection results (c) edge
localization (d) part grasping (Andronas et al., 2022).

Human-robot or multi-robot fabric co-manipulation has also been addressed. A model-based closed-loop
control framework for seamless co-manipulation has been developed to exploit the potentials of HRC in
this application field in (Andronas et al., 2021). A mass-spring model is used for simulating ply distortion
and generating optimal grasping points’ spatial localization. The model is enriched with real-time
operator’s handling actions, as captured from the implemented perception system. The proposed sensor
and model-based controlling framework incorporates robot motion planners for operator support,
through non-rigid object co-manipulation, or synchronization of cooperative robots within fully
automated tasks. An experimental setup was used for validating system’s handling cognition during
collaborative manipulation showing that there is potential for important improvements in the quality
consistence, the ergonomics of the operator, but also the resilience into pandemics (Andronas et al.,
2021).
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Figure 30. Co-manipulation of flexible parts, (Makris et al., 2022)

Other researchers focused on increasing the accuracy of machine equipment modelling in order improve
their accuracy, energy efficiency, and so forth. Nowadays, robot manipulators are far from the
traditionally heavy and stiff structures, which in turn leads to less accurate positioning of the robot end
effector due to the flexibility of robots’ links and gearboxes complementary to the friction phenomena
that are present in the motor’s gear box. To this end, Aivaliotis et al. proposed an easy-to-use method for
the identification of an industrial robot’s dynamic parameters based on physics-based simulation models.
Robot motion data from both the digital and the physical robot together with an intelligent algorithm
were employed to estimate the robot’s dynamic parameters and eventually adjust the control of the robot
motion to improve accuracy (Aivaliotis et al., 2020).

3.5 Al for dynamic operator support

Al-based computer vision modules usually include a set of tools and methods that allow obtaining,
processing, and analyzing images of the real world so that they can be processed by a computer. Common
applications in the manufacturing field are: inspection and recognition of failures, quality control,
perception of the environment, detection and tracking. Apart from that, they can be used to provide
support to human operators. In this context, systems to detect errors as they are being performed, and
prevent their propagation to the upcoming production steps are required. An object and human hands
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detection vision system in combination with intention identification based on Convolutional Neural
Networks (CNNs) are proposed to automatically monitor the execution of human-based assembly
operations. The error handling is addressed by the provision of dynamic step-by-step instructions that are
provided to the operators via multi-modal user interfaces (Andrianakos et al., 2020).
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Figure 31. Al-empowered process surveillance and dynamic step-by-step instructions, (Andrianakos et al.,
2020)

ViTroVo is another similar solution involving an artificial intelligence framework capable of (1)
autonomously building a graph of assembly steps via trial-and-error (in vitro Assembly Search) and (2)
presenting relevant instructions to a human operator and, by autonomously detecting her progress and
affective state, adapting accordingly (in vivo Adaptive Operator Guidance). The power of ViTroVo resides
in its versatile way to manipulate a given product’s component Augmented Computer Aided Design
(CAD+) models throughout the whole assembly task (Grappiolo et al. 2021).
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Figure 32. Artificial Intelligence creates assembly instructions from CAD, (Grappiolo et al. 2021)
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3.6 Al-enhanced human-robot interaction

Research on human robot interaction so far has addressed the improvement of the collaboration between
humans and robots, mainly focusing on task sharing and allocation, safety, awareness, and cognitive
support in form of Augmented Reality based instructions. For instance, the Robot Companion platform
(Gosselin et al, 2022) integrates various technological bricks enabling to meet the needs of factories of
the future in an iterative and agile way (Figure 33). The main components (apart mechatronics and
embedded systems) are digital twin, vision sensors and algorithms (recognition and localization of
objects), environment monitoring (analysis of the presence and activity of the operator), orchestration
and task-planning (planning and execution of robotic actions), robot control, and communication
protocols between the different components of the robot and between the robot and its environment.
Gesture recognition and analysis of human-robot interaction as well as natural language interactions are
also expected in the longer term. Several systems with similar objectives have been developed in different
laboratories or by industrial companies over the last decades (MIT, Willow Garage, Halodi Robotics,
University of Washington, Waseda University, DLR, TUM, KIT, Toyota Research Institute, Fetch Robotics,
Robotnik, Pal Robotics,...). However, their use is often limited to demonstrations in laboratory
environments, home or logistics. Industrial Robot Companions (e.g. Kawada, Epson) remain confidential
and are mainly used as a showcase for their manufacturers. Only collaborative robots (Universal Robots,
Kuka, ABB) are more widely distributed, but they do not have all the characteristics of a Robot Companion.
Indeed, the vision defined above can only be realized if all the technologies used to make robots more
efficient, more interactive, more intelligent, more communicative and safer reach a sufficient level of
performance and maturity.

The demonstrator in Figure 34 addresses the assembly of randomly deposited mechanical parts on a fixed
base and presents various challenges, in particular for vision (small, similar and shiny parts), capture and
assembly (smooth parts, of very variable sizes, insertions with very little play, screwing) and integration
of various technologies. A new demonstrator with two arms is being built to perform tasks more smoothly
and quickly. The ambition is also for the robot(s) to be able to handle cases where not all objects are
visible or reachable at the beginning, forcing the system to have dynamic adaptation capabilities with re-
planning during execution to be able to adapt to unexpected situations. The medium-term objective is to
have a demonstrator capable of learning and performing new tasks and in the longer term to be able to
perform different assemblies on the fly with full autonomy and mobility.

38| Page ©2023 AIM-NET



;AIM-NET

Textual description o
System orchestration
Natural language of the scenario/ | =5 Y — Dataflow and
Digital Twin ] = i 0S models
(T asE rehearsal) understanding ancﬂp - 7 = a
interpretation i N S F‘J?l

Programming by Time Sensitive

1
— T

~
demonstration # - = e Network
L g Sl —— Centralized User
! Configuration
N
_il
Object Recognition

Situation Awareness and Localization

Gesture
Recognition

Digital Twin
(Grasp and path
planner)
Expertise towards ) I
an embedded
controller . Robotic Skills

e .

Object : . F
Manipulation

Speed x 4

Recognition (2D) and Generation and execution of
localization (3D) grasping paths

Speed 4

Speed x 4 Speed x 4

Return to the initial configuration Assembly skills Move to the assembly Grasping skills
and launch the next step configuration

Figure 34. Assembly of randomly deposited mechanical parts using Al-based vision capabilities

Apart from light-weight collaborative robots, researchers has also worked on enabling high payload
collaborative robots to work side-by-side with humans. This in turn required dynamically reconfigurable
safety monitoring systems and smart Human Robot interfaces allowing the seamless integration of
operators and robots in a common workflow has been presented in (Dimitropoulos et al., 2020). Among
others, the presented solution can support a variety of hardware to easily fit in various industrial
scenarios, and it has been tested in two case studies inspired by the elevators production and industrial
modules production fields. The results of the testing and validation procedure indicate reductions in cycle
time, operator idle times, but also improved operator satisfaction, and operator ergonomics
(Dimitropoulos et al., 2021).
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3.7 Al for predictive maintenance

The maintenance of machining processes is one of the most studied topics in manufacturing industry, due
to its relevance for the process behavior and the economic impact on the production plans. Two different
maintenance methods are applied in most of the industries; On the one hand, preventive maintenance,
based on the theoretical life of the tool. On the other hand, predictive maintenance uses strategies such
as inferring the remaining useful life (RUL) of the tool, which mostly depends on the wear measurements
(Cerquitelli et al., 2021a, Cerquitelli et al., 2021b). It is critically important to assess the RUL of an asset
while in use since it has impacts on the planning of maintenance activities, spare parts provision,
operational performance, and the profitability of the owner of an asset. The objective of predictive
maintenance is to predict when equipment failure may occur and to prevent a failure by performing
maintenance. ldeally, this approach enables the system to have the lowest possible maintenance
frequency.

The field of prognostic maintenance (Giordano et al., 2021) aims at predicting the remaining time for a
system or component to continue being used under the desired performance. This time is usually named
as Remaining Useful Life (RUL). In order to enable such approaches in a cyber-physical production system,
a deep learning algorithm is used (Bampoula et al., 2021) - Figure 36, allowing for maintenance activities
to be planned according to the actual operational status of the hot rolling mill machine and not in advance.
The rolling mill is composed of two rolling cylinders, rotating using torque motors. The lower rolling
cylinder has a fixed position and only the upper can move linearly (vertical) The segments have a wear-
resistant coating that degrades over time. The machine has mounted sensors, measuring cylinder
hydraulic forces and segment surface temperatures. The approach aims on enabling Predictive
Maintenance (PdM) for the coating segments of a hot rolling mill machine, through estimating in real-
time their RUL. Monitoring the wear stage of machine components can lead to improved scheduling of
maintenance activities. An autoencoder-based methodology is employed for classifying real-world
machine and sensor data, into a set of condition-related labels. Real-world data collected from
manufacturing operations are used for training and testing a prototype implementation of Long Short-
Term Memory autoencoders for estimating the remaining useful life of the monitored equipment.
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Other approaches involve correlation analysis and recurrent Neural Networks for machine failure
forecasting. In this case, having the operational parameters of the positive displacement pump machines
(e.g.: temperature, humidity, voltage, torque, force, etc.), and some Operation & Maintenance (O&M)
records that indicate the date when the machines had some kind of abnormal behaviour, the Al-based
approach would consist of correlating both sources of information to produce a health status of the
machines and study how it evolves over time in a prognosis framework. To do so, a semisupervised self-
learning method is first applied to the O&M data since they are imprecisely categorized and have
unreliable dates. Then an anomaly score is defined and a recurrent neural network is fit to it in order to
forecast when a machine failure is going to occur given the previous trend.

Deep Neural Networks have been employed for anomaly detection and identification of
underperformance Figure 37. Given the vibrations of the blowers and pumps acquired by accelerometers
and the operational context of the assets (e.g.: damper opening degree, composition of the combustion
gases, etc.), a deep neural network-based model for anomaly detection is first learned. Then an adaptive
strategy based on a context drift detector is deployed to automatically adapt the deep model to changing
and dynamic production conditions, and thus detecting when the performance of the assets is not optimal
given the current operational context.
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Research on predictive maintenance so far has involved mainly data-driven prognostic techniques for
machinery equipment individual components. Simulation capabilities can address the lack of historical
data but also any challenges that are induced by the intricate design of industrial machines, e.g. robots
that are frequently reported. In this perspective, a generic framework for the enhancement of advanced
physics-based models with degradation curves has been proposed (Aivaliotis, Georgoulias, et al., 2019).
The creation of a robot’s simulation model can play an important role in the accuracy of the simulation
results (Arkouli, Aivaliotis, Makris, 2021). Moreover, due to the variations of the behaviour of the
machinery equipment that stem from their use and the relevant fatigue invite for the continuous
monitoring and update of the digital model parameters, which can be based on data and information
extracted from degradation curves of the robot’s components. The health status of the robot can be
monitored using a Digital Twin based approach that ensures the convergence of the simulated to the
actual robot behaviour (Aivaliotis et al. 2023). The simulation can estimate the future behaviour of the
robot and predict the quality of the products to be produced, as well as to estimate the robot’s Remaining
Useful Life. The proposed approach is applied in a case study coming from the white goods industry, where
it is investigated whether the robot will experience some failure within a predefined timeframe. The
expected outcomes involve improved resource availability, product quality, etc. (Aivaliotis et al., 2021).
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Figure 38. RUL prediction enabled by physics based models enhanced with degradation curves, (Aivaliotis
etal.,, 2021)
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3.8 Consolidation of Al application at the Machine and Station level

Industry and academia have been working on solutions to increase productivity fulfill the market demand
for highly customized products. Although those have been ongoing research issues for some decades and
many of the proposed solutions over the years have managed to improve the productivity and flexibility
of factories, it seems that more effort is needed towards reducing integration costs, improve agility, and
cover the requirements for an increased level of qualification and skills of operators. As an example,
robotics, which has been widely deployed in industry over the last decades, is still often restricted to fully
automated mass production applications that justify the implementation of perfectly controlled and
monitored dedicated environments, with integration costs representing up to 70 to 80% of the cost of the
production cell and development times that can range from a few days to several months.

This has motivated the integration of Al techniques in manufacturing applications. There have been
several calls for European projects where project proposals are presented that include different Al
techniques. Thanks to these calls, Al techniques are increasingly sophisticated and with greater
applicability in industrial processes. For logistics tasks for example, within its great breadth and diversity,
the inclusion of Al has helped a great deal. Intelligent trajectory planning, dynamic obstacle avoidance,
large fleet management of AGV and AMR to achieve better cycle times through offline simulations and
online optimization calculations.

Al for workstation layout, task allocation, and dynamic planning have dealt with fast reconfigurations,
optimized performance, reduction of idle times, and dealing with unforeseen events. These items have
been addressed combining the benefits of simulation and data-driven approaches, for the generation of
alternatives while search-based intelligent algorithms using heuristics have provided promising solutions.
Mixed Reality tools, further increase the information content that is available for decision-making by
introducing human factors in the design loop, e.g., by enabling to measure the physical effort that is
required for a specific task. As for the Digital Twin concept, it has been frequently employed to improve
the quality of the decision-making by providing continuous contextual information on the actual shopfloor
condition, including the availability of resources, space, and materials.

Al is also linked to the enabling of a number of robot skills that allowed to automate several processes,
such as the manipulation of deformable parts, that would otherwise remain strictly manual. Vision
systems allow to adjust the robot behaviour based on the status of its surroundings not only to prevent
collisions, but also to guarantee stable processing/manipulation of parts. Human-Robot
Collaboration/Interaction, broadens the range of applications that may benefit from automation. In this
context, Al is responsible to endow the robot to perceive the status of the operator and then automatically
adjust its behaviour in order to promote a safe but at the same time comfortable interaction/collaboration
with the operator by respecting its needs and preferences. The needs may refer to the physical effort that
is required by the operator (e.g. selection of robot trajectory so that the operator avoids the assumption
of uncomfortable postures when processing a part that is held by the robot), the operators feelings
concerning any stress that might be introduced by the motion profile of the robot (motion speed, and
acceleration), as well as the effort and expertise that is needed to program the robot. Additionally, there
is a growing demand comprehensible by the human’s models that are used for decision-making, especially
when it comes to critical applications, such as safety in human-robot collaboration. This item is addressed
by the research field of explainable Al (XAl).
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Besides robots, Al has also enriched the capabilities of humans by providing the right information when
needed, e.g., surveillance of manual assembly for the detection of errors and provision of step-by-step
instructions for error handling. Finally, Al can act enabling to predict the status of the machines or detect
anomalies in the machinery equipment operation. CNNs seem to be a part of the majority of the
approaches that have been presented so far. On the other hand, physics-based simulations may offer
additional insight on the machineries internal condition, which stimulates efforts towards hybrid models.

Figure 39 depicts the implemented Al solutions so far, as well as the achieved impact together with the
expected results for the years to come. Regarding the efficiency of hybrid productions systems, theoretical
and experimental work is still needed to improve the performance and stability of the control of such
increasingly complex systems. This work is expected within the next 5-10 years and can exploit model- or
data-driven approaches, capitalizing on the most recent advances in artificial intelligence as proposed for
example by Alphabet/Intrinsic, and taking into account both the robot and perirobotic components such
as sensors, environmental perception and scanning functions, and dedicated effectors (e.g. inspection,
NDT, assembly, welding, ...).

Performance improvement also requires working on software and embedded systems, with the objective
of minimizing the sensor latencies and/or optimizing the execution times, energy efficiency or even the
size (and therefore weight and consumption) of the embedded electronics. Example critical functions that
can benefit from this work cover the data fusion of heterogeneous sensors to monitor the system’s and
environment’s state, the acceleration of vision/recognition/localization functions thanks to the
optimization of image processing, or the acceleration of collision-free motion/path planning as proposed
by RealTime Robotics who implemented Georgia Tech algorithms on FPGAs with a 100x gain. These
developments are the basic components allowing the development of advanced robotic functions
(mobility, gripping, bi-manual handling, man-robot collaboration, etc.), themselves at the heart of task or
mission planning functions that can benefit from the digital twin of the robot(s) and their environment.
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Figure 39. Current status and Future Vision for the adoption of Al at the Manufacturing Workstation level
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The notions of interoperability, safety and security (physical but also cyber) are of course also central to
hybrid production systems. Previous research indicates bottlenecks from the interaction of the operators
with such supportive systems. The cause for these bottlenecks is the fact that both the direct interaction
approaches (use of push buttons) or indirect-gesture based interaction require operators to constantly
occupy their hands performing the relevant button presses or gestures (Dimitropoulos et al., 2020).
Moreover, a great number of the proposed approaches are hardware dependent and need a lot of
customization before being integrated with the rest of the hybrid system’s components. Furthermore, it
is for example extremely difficult to certify equipment at the hardware and software level, which can
exclude some technologies. Demonstrating compliance with standards can therefore become crucial for
the implementation of the technology. To enable early assessment of concerns such as performance,
safety, security, reliability, etc., advanced software architecture design tools will be needed. These next
generation systems engineering tools will be central for reducing design iterations and costly and time-
consuming design cycles. These tools are also crucial for the development of interoperable solutions that
allow such robots to be easily adapted to new tasks and environments, e.g. by communicating with other
sensors (e.g. surveillance camera) and equipment in the plant. This requires efficient and secured
communication capabilities, with dynamic safety and security features able to adapt to changing
configurations and environments. These elements are central to the development of intelligent and
trusted collaboration and cooperation functions, whether between several robots, between the robot(s)
and their environment, or between the robot(s) and human operators.

Productivity

25

2
. 15 Time to
Environment

1 market

0.5 Today
0 5-10years

10 - 20 years
. Worker well-
Society .
being
Resilience

Figure 40. Degree of vision achievement

The long-term future involves the improvement of the intelligence of collaborative that will be capable of
learning from themselves (e.g. deep reinforcement learning). In this context, the coupling of robots (and
their environment) to their digital twin could allow the development of hybrid approaches combining
learning in simulation and in the real world (e.g. Sim2real approach). We can also rely on the operators to
teach the robots, with the possibility of exploiting very intuitive and natural interaction paradigms to
manipulate the robots and show them the actions to be performed without any knowledge of
programming or robotics (programming by demonstration, by imitation). Federated learning or symbolic
Al are also enablers to give the robot better reasoning and reaction capabilities. The co-existence of robots
and human operators in future factories also requires robots that are sufficiently expressive for operators
to immediately understand what they are doing and to be able to work with confidence at their contact
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or in their proximity. Intuitive multimodal HMIs (e.g. gesture, touch, speech, vision) are also required for
natural and efficient interactions.

Additionally, Al solutions respecting the existing standards make it possible to envisage systems easier to
integrate into existing legacy environments (‘plug and produce’ concept) in the long-term future.
However, it should be taken into account that standardization has not equally progressed in all the
industrial sectors, for instance e.g., OPC-UA has been proposed for the automotive industry, while other
domains (e.g. micro-electronics, food industry) are currently less structured and still use proprietary
solutions. In addition, challenges remain in implementing modular and interoperable software
architectures and solutions that guarantee the safety (compliance with current safety regulations, e.g.
15066) and cybersecurity of machinery equipment, which requires, in particular, the certification of the
codes of the various components.

Maintaining and even relocating factories in Europe requires investing in manufacturing tools that are
more efficient in order to guarantee the European competitiveness, more agile to adapt to a growing
demand for customized and personalized products, and more responsible, keeping the human operators
in the heart of factories. These challenges require the development of a whole new generation of plug-
and-produce robots, i.e., very easy to install and use, making it possible to multiply the capacities of
human operators by physically assisting them, by helping them to work more efficiently, or by performing
part of their work autonomously, after learning from them.

4 Al at the System level

It has been observed that there is no commonly agreed definition of manufacturing systems level, as
usually the definitions given by researchers or people in the industry differ. In this work, with
manufacturing systems, a combination of machines, cells, intra-logistics devices, and other peripheral
devices used on the factory floor as well as the relevant software is assumed. Moreover, the value chain
of manufacturing systems including logistics is being considered under this hierarchical level. At this level,
the complexity and interrelations among the entities increases, the volume of data also increases as it
aggregates data from lower levels, and uncertainty, non-linearity, and stochasticity also increase. All these
inherited attributes make transparency, predictability, and adaptability more challenging tasks for Al.
However, at the same time as uncertainty and stochasticity increase, the need for accuracy of the models’
results decreases, at least compared to the Al models in the lower hierarchical levels, and usually there
are longer time frames available for decision making. The challenges in the industry at the system level
mainly concern process efficiency and energy consumption maintaining the quality of the final product.
Moreover, important challenges are the optimization of the available space while ensuring that all the
necessary elements are included in the layout design and the workspace is safe and accessible, as well as
ensuring accurate reporting to allow for effective management and decision-making. It is important to
weigh each objective in each situation of the process and product lifecycles since the objectives are
opposed. In this regard this section will discuss the following cases that fit onto this hierarchical level:

1. Design of manufacturing systems

2. Work management with Al

3. Planning and scheduling the production of IPPS

4. Industrial reports based on Natural Language Processing
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4.1 Design of manufacturing systems

Manufacturing of products requires the combined and coordinated effort of human resources,
equipment, and machinery. The design of manufacturing systems can become highly complicated due to
the multitude of possible solutions and the geometrically increasing engineering time needed to find an
optimal solution. As the number of variables and constraints, which depend on the types of products,
resources, and processes, in the system design problem increases, traditional optimization algorithms
struggle to find the optimal solution in a reasonable amount of time. This issue stems from the fact that
the design of manufacturing systems falls under the classification of NP-hard problems, for which no
efficient algorithm currently exists to find the optimal solution. Therefore, the design of manufacturing
systems requires innovative approaches and techniques to overcome these challenges and find the best
possible solution.

Al can play a crucial role in the case of manufacturing systems design as it can effectively handle the
complexity and scale of these problems. By utilizing advanced algorithms such as machine learning and
deep learning, Al can analyze large amounts of data, uncover patterns, and provide insights that inform
the design process. The implementation of Al in the manufacturing systems design enables automated
search processes, allowing human resources to undertake other tasks. Furthermore, Al can serve to
identify trade-offs between different design decisions and provide insights into the impact of changes to
the manufacturing system. In practice, Al can be employed for predictive modeling and optimization using
machine learning algorithms, and design and simulation through Al-powered simulations. Thus, the
integration of Al into the design of manufacturing seems to have the potential to significantly improve the
efficiency and effectiveness of the design process while improving the outcome and yielding more
efficient production processes.

In this perspective, several methods of deriving assembly line design alternatives and evaluating them
against multiple user-defined criteria have been presented (Michalos et al., 2012). Process requirements
such as the process plan, and alternative possible solutions, such as the joining technology to be used can
be provided as input to the Al system (Figure 41). The system based on the input generates and searches
a large number of technically feasible designs. Then the alternative design is evaluated under a number
of multiple criteria e.g., investment cost, availability, equipment reuse, production volume, and flexibility.
As a result, suitable alternative cell designs are generated and proposed to the designer (Figure 42). The
discussed method can translate a cell design decision-making problem into a search one, and it can,
therefore, be attacked in a more systematic way using Al. The method was implemented in the form of a
decision support tool, capable of identifying good quality solutions. An intelligent search algorithm was
employed to solve the design problem at hand.
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Figure 41. Alternative designs for product design, (Michalos et al., 2012)
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Figure 42. Alternative cell designs created through a generative design process, (Michalos et al., 2012)

4.2 Work management with Al

The manufacturing work environment is increasingly becoming digital. In the digitalized factories, there is
a need for new kind of collaboration between production systems and factory workers. Capacity planning
of human and material resources can be done holistically to maximize productivity and well-being at work
simultaneously. Different work tasks can be measured, physical and cognitive workload can be followed
and worker information can be considered. Combining the information of the work environment and
worker preferences and skills can greatly enhance the wellbeing and satisfaction of the workers and
empowering work communities.

The Al Foreman concept solution that carries out work management with Al has been proposed as a
counter measure. The pilot is part of the Reboot loT Factory initiative where one of the main goals was to
study how new technologies can be used to improve the well-being and productivity of human workers™?.
Al Foreman tracks production and records skills data to a matrix that collects the expertise of each worker.
The tasks are allocated based on a worker’s digital twin, which includes personal preferences and skills.
Each employee can then access their own personal data through the MES system. Also, feedback of

11 Reboot loT Factory, https://rebootiotfactory.fi/labor-at-digital-work-environment/)
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various work phases can be collected and used so that the employee’s day consists of pleasant and
sensible tasks. The system monitors the daily progress, resourcing and how the goals are met. It helps to
ensure that the team has as little obstacles as possible disturbing their work. In a longer term, the
information can also be used for adopting new skills and career development.

Figure 43. Al Foreman concept*?

When optimising work practices, it is essential to consider ethical and legal aspects and engage workers.
Making decisions and gathering data about human resources requires empathy, control, involvement as
well as agile, appropriate, and data-intensive tools. Al Foreman has shown promising results and the
feedback from the employees is very positive. This paves the way towards Al-powered work communities
and collaborative human-Al systems, where human operators can pre-process data, critically interpret the
Al results and train Al solutions similarly as new colleagues.

4.3 Planning and scheduling the production of IPPS

In product-oriented Industrial Product Service Systems (IPSSs) the customers benefit from the
combination of a product that offers some functionalities and a set of services. IPSS supports the provision
of services which can be offered by the product manufacturer. The services can offer a wide range of
functionalities that can range from ensuring the product’s original functionality to augmenting the original
functionality of the product. The shifting of a company to IPSS poses many challenges such as the changing
of the company’s business model. One of the most important challenges for the establishment of IPSS is
the appropriate planning of the resources for production, deployment, and installation into the
customers’ site. In (Alexopoulos et al., 2017) a multi-criteria resource planning method and tool for
optimizing the production, delivery, and installation of IPSS has been developed. The solution employs an
Al technique for generating alternative IPSS production and installation plans and evaluating them on
performance measures for production and installation such as time and cost. Moreover, through the
integration of the planning tool with the IPSS design phase, information for generating the Bill of Process
and Materials is presented. The objective of the Al planning method is to find an optimal solution that
decides what IPPS equipment (e.g., sensors) suppliers to select, which resources (e.g. IPSS service
installation technicians), and when they should perform which processes/tasks at IPSS provider or
customer site. The planning method proposed in this work is based on the approach proposed by

12 https://rebootiotfactory.fi/rebootiotfactory/future-work-with-ai-foreman-in-digital-factory/
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Chryssolouris and Lee (1994) and it defines the approach for assigning a set of resources to a set of tasks
under multiple and often conflicting optimization criteria.
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Figure 44. Industrial Product Service System production and installation planning flowchart (left);
intelligence search for evaluating different option (right), (Alexopoulos et al., 2018)

4.4 Industrial reports based on Natural Language Processing

Production, maintenance or inspection processes require semi-structured reports containing metadata,
text and images. They serve as a support for the transmission or capitalisation of information. Due to the
lack of available time and the working environment, the reports are poorly written and/or incomplete,
making them difficult to exploit through automatic processing. In addition, reports are written "on the
way back to the office", which often results in a loss of information. NLP tools could be used to simplify
the report writing process by automatically structuring dictated reports for integration into automated
processes.

Written reports are one of the main ways that organizations capture and pass on knowledge. But to be
effective, an organization's knowledge management system needs complete, clearly-written reports. For
instance, DIVORA is a smart voice-dictation tool, developed in the scope of Factory Lab, that can automate
the generation of written reports. The idea is for users to be able to dictate their reports into a mobile
device right from the worksite. DIVORA prototype aims to simplify the process of writing structured
reports in the industrial context by adapting automatic written language processing tools for the analysis
and interpretation of voice dictation.
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In the DIVORA® prototype, a first module leverages a speech recognition technology to convert speech
into text. The text then goes through a second module, built on CEA-List's LIMA* multilingual analyzer,
where significant terms of the report and the semantic relationships between these terms are identified.
One problem with this type of tool is the difficulty of adapting the artificial intelligence models to the
domain of the use cases treated: specific vocabularies, syntaxes, languages and knowledge. To do this,
the CLIMA tool (LIMA Configurator) facilitates the configuration.

The development of demonstrators focused on two use cases: the generation of an inspection report for
a forklift truck and the generation of a report for site monitoring. The demonstrators are functional and
produce clear reports, possibly presented in the form of tables. In addition to saving time, they guarantee
optimal information quality. DIVORA will soon be adapted to other professions, notably in the fields of
health and e-commerce.

Work is being carried out to integrate data-mining tools into Electronic Document Management (EDM)
technologies. Al technologies will ease extraction of technical terminology, document matching,
document categorization, structuring of business concepts. Al will also drastically improve semantic
search engines, synthetic view of documents and adaptation to the domain for greater user autonomy.

The technological stakes are multiple and ambitious: making LIMA/CLIMA evolve for the needs of EDM,
capitalization of evolutions of the search engine according to the cases of use treated (Search by
keywords, entities, relations...) and cross-document exploration, development and the automatic
terminology structuring theme.
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Figure 45. Semi-automated term clustering for terminology structuring by identifying key concepts of the
domain (grouping of instances)

13 cea ialv, DIVORA BV, (Nov. 04, 2020). Accessed: Sep. 01, 2021. [Online Video]. Available:
https://www.youtube.com/watch?v=FrwnB6XDzpU
14 “Home - aymara/lima Wiki,” GitHub. https://github.com/aymara/lima (accessed Sep. 01, 2021).

51|Page ©2023 AIM-NET


https://www.youtube.com/watch?v=FrwnB6XDzpU

;AIM-NET

4.5 Consolidation of Al application at the System level

The Al-based enhancement of the manufacturing system’s level can support multiple processes from the
system’s design to the digital infrastructures and ICT technologies that are required for its seamless
operation. The impact that can be brought by Al solutions is possible to be reflected in KPI values. The
majority of existing solutions evaluate their performance based on KPIs such as the design time required
to produce Al models/Digital twins.

Regarding the design time required to produce Al models/Digital Twins, data scientists typically spent 60
to 80% of their time in ‘data collection’. The knowledge graph approach (TRL 3-4) we put forward should
allow to significantly reduce the time needed to collect that data. Nuance: there is a setup cost, so
currently the benefit is for companies that systematically want to invest in Al for manufacturing, and less
for ‘one-off’ implementations.

A lot of attempts to create Al models in the manufacturing domain fail due to the fact ‘black-box
approaches’ are used to infer cause-effect relations on the one hand and train models on the other hand.
Especially in a high-mix-low-volume context with limited data and many process and configuration
parameters, these approaches do not yield successful Al algorithms. By capturing explicit and implicit

knowledge in the knowledge graph, a much higher success rate can be achieved.
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Figure 46. Current status and Future Vision for the adoption of Al at the Manufacturing System level
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Figure 47. Degree of vision achievement

If the data that is going to fit the Al model is not representative enough of the problem to be addressed,
the probability of success drastically decreases for obvious reasons. The proper digitization of the system
or systems under study is crucial in order to be able to compute and measure the KPIs over time and
optimize them by means of an Al-based, data-driven approach. This is done by having a clear idea about
what to measure and how from the system under study, at the conceptualization and design stage of the
Al solution. The expert knowledge and a deeper problem understanding from a business perspective must
support this process.

5 Cross-cutting aspects of Al in Manufacturing

This chapter deals with aspects that are relevant to all the levels of the defined manufacturing hierarchy
and the identified technologies. Issues such as knowledge representation, synthetic data generation, and
platforms for Al applications in manufacturing are discussed.

5.1 Knowledge representation: Modelling & Semantics as enablers of smart
decision-making

Alin manufacturing covers a very diverse range of applications from defect detection to more complicated
applications such as plant predictive maintenance, as presented in the previous sections. Al is especially
beneficial in supporting tactical (fi. ‘where should | install an additional Ql system’) and operational
decision making (fi ‘optimally combining parts to ensure the end-of-line quality’) at the level of the design
and (re-configuration) complete factory lines, or even reaching beyond the manufacturing silo towards
the product design (‘Based on my end-of-line test, do | really need such a tight geometrical tolerance on
this shaft in order to have the desired performance’). A crucial step in the “Al lifecycle” of all these
applications, is the analysis of (raw) data recorded by sensors and software, often carried out by data
scientists, in order to generate actionable insights. Typically, this is a complex and cumbersome process.
The reasons for this are manifold:

e Data is often physically spread across multiple silos within the organization. This makes it hard for a
data scientist to keep a correct overview of all data, and how it is connected.

e The data sources (inputs from human operators and designers, Manufacturing Operations
Management software, machine sensors) and types are very heterogeneous: data may be relational
(product X was tested by operator XYZ and assembled in workstation ABC), blob data (e.g., images
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from quality inspection systems), timeseries data (fi. Cooling liquid temperatures), graph data, etc.
and therefore, also typically stored in different storage mechanisms.

e Technical level data does rarely correspond to domain level data: a concept in a problem domain
often maps to multiple technical data concepts (e.g., tables), data may not be organized or named in
an intuitive way, data formats may not correspond their semantics, etc. In one of our industrial cases,
retrieving all orders for a customer involved joining more than 10 tables.

e Important context information about the data is often implicit: data may be recorded under different
conditions, by different operators etc. and this meta-data is often not captured.

e  Existing production knowledge (fi. process FMEAs, Ishikawa diagrams, operator experience) are most
often still tacit knowledge and not easily reusable.

e Previously obtained insights typically take the form of ad-hoc analysis scripts (in e.g., Databricks) and
reports. This makes it hard to reuse those previous insights and knowledge when starting a new data
analysis experiment.

Knowledge graph approaches have been proposed to make the data analysis processes for Al applications
more efficient. The knowledge graph is used as the harbor of all data, information and knowledge related
to a manufacturing system. It is structured according to the conceptual model of a knowledge domain,
i.e., product design and its manufacturing process. Therefore, domain experts can use real-world
concepts, vocabulary and relationships between these concepts to describe and solve problems related
to the domain (e.g., what-if analysis, training Al models, etc.). During the Al lifecycle, the manufacturing
knowledge graph is the gateway to find and store all knowledge about a manufacturing process that exists
within an organization. It specifies what historical data exists, how it is related, from which sensors this
data was collected, to which manufacturing process it was related, who was involved, what correlations
may exist, what physics models are involved, which data experiments have been conducted in the past,
what machines, sensors, products, operations exists and how they are used in the manufacturing process,
etc. All this data, information and knowledge together form the “historical digital twin” of the
manufacturing system. The term “historical” digital twin is used since this digital twin contains the
historical information of the manufacturing system, as opposed to the more traditional “streaming” digital
twin that mirrors the live state based on streaming data of a manufacturing system. The approach is
illustrated in Figure 48 .
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Figure 48. Knowledge Graphs for Al in manufacturing, (Meyers et al., 2022)

In order to being able to support the data analytics step in the Al lifecycle, the manufacturing knowledge
graph has to exhibit a number of characteristics:

More than data: it models data, but also information and knowledge about this data, where all
concepts are defined in terms of the problem domain, making them intuitive to domain experts.
For instance, to avoid that, data scientists have to perform an enormous amount of black box
correlation analysis, known or suspected influence relationships can be captured in the
knowledge graph.

Typed graph: the knowledge graph can be seen as linked concepts, so it has a graph structure by
nature. Concepts are explicitly typed in order to define and impose structure.

Explorable: given the potentially large span of content of the knowledge graph, it must be possible
to explore its structure, to learn what concepts exists and how they are related.

Queryable: during the Al lifecycle, data scientists must be able to query specific data, information
and knowledge, without needing to know its technicalities, e.g., where data are stored, with what
tool, etc. Users may query for data, but also for information and knowledge, e.g., have we done a
data science experiment that investigates the correlation between two given physical entities?
Virtual data: Given the large amount of data in an organization, and the highly optimized storage
of this data, the knowledge graph needs to support data virtualization. Existing technologies like
Spark data frames (in e.g., Databricks) provide such support and are thus, interesting for data
scientists. Alternatively, querying the knowledge graph may result in technical-level queries. In
any case, the user is shielded from having to compose the technical database queries, having to
learn their format, location, schema, etc. Furthermore, on-demand (on-the-fly) calculations of
data, by e.g., using an algorithm or simulation model can be stored explicitly in the knowledge
graph and be executed on demand.

Evolving: as the manufacturing system produces new data and structurally changes over time, by
definition, the knowledge graph evolves with it, as also implied by the term ‘historical digital twin’.
This means that a query to the knowledge graph, is in fact a query to that particular snapshot in
time of the knowledge graph. The same query may yield a different result at a different point in
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time. The evolution of the knowledge graph needs to be made explicit in order to make e.g., data
experiments reproducible, and reusable.
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Figure 49. Data, Information, Knowledge, Wisdom (DIKW) pyramid

The implementation of the concept of manufacturing knowledge graphs has been performed using two
major technology stacks, i.e., metamodeling and semantic web technology. A metamodel-based
knowledge graph focuses more on strong typing and constraining all concepts in the domain. It provides
a more natural integration in a software engineering process. A semantic web based knowledge graph,
sometimes called ontological knowledge graph, focuses on common vocabulary, categorization and
relationships of concepts for large domains. In contrast to metamodeling, it allows automated reasoning
based on an open-world assumption, which often maps better to reality. Ontology engineering has been
used in several disciplines to gain a better common understanding about a domain. In software
engineering-related projects, RDF and OWL are de facto standards, popularized by the Semantic Web,
which intends to make the Internet machine-readable by structuring its metadata. Well known success
stories in other domains are DBpedia, a formalization attempt for Wikipedia that allows querying its
resources and links to related resources, and the Google Knowledge Graph, which is able to extract specific
information on search results in an infobox. In different areas, ontologies emerged that standardize the
complete domain. Especially in life sciences this proved to be very successful (e.g., the Gene Ontology in
bioinformatics, Plant Ontology in biology, etc.). In manufacturing, similar initiatives exist, like the Ontology
for Sensors, Observations, Samples, and Actuators (SOSA). Yet, in contrast to the successful examples from
other domains, knowledge graphs in manufacturing are still very rare, mainly due to the very
heterogeneous data and knowledge that has to be dealt with. For instance, how to formally encode
existing knowledge from process FMEA and or Ishikawa diagrams in a knowledge graph is still largely
unexplored.

The choice of core technology also has an effect on the peripheral technologies of the knowledge graph
(and hence on its characteristics such as the queryable/explorable aspects mentioned above). For
example, SPARQL is an out-of-the-box query language for ontologies, and we have been using GraphQL
for querying metamodel-based knowledge graphs.

The main advantage of using knowledge graphs in the data analysis phase of the Al lifecycle for
manufacturing systems is that they make data, information and knowledge available in a unified way, at
the knowledge domain level rather than the technical implementation level, thereby breaking the
traditional data silos. Currently, knowledge graphs in Al for manufacturing are not yet common ground.
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This especially limits the application of Al on the system level, as it is very hard to find the relevant
scattered data and knowledge when conducting data analysis. In manufacturing companies, the amount
of collected data is huge, as well as the amount of implicit knowledge about the data and the
manufacturing processes that hide behind them. Especially in the manufacturing industry there is a lot of
unleveraged domain knowledge, more than in other (purely data-driven) application domains. If an
organization is able to capture and unify such extensive knowledge using a knowledge graph, we believe
that this will be a key enabler to leverage their Al potential and reduce the time necessary for carrying out
data analytics activities on the one hand and increase the success ratio of building Al systems for the
manufacturing industry.

5.2 Platforms & infrastructure for Al-based decision-making in manufacturing
Heterogeneous and distributed data structures, variety of digital implementation frameworks, hybrid
edge-cloud architectures, lack of standards for the semantic description and interoperability between
heterogenous systems and devices, latency requirements as well as lack of standardized Al solution
components management imply making huge effort to manage share datasets and Al models between
stakeholders and industrial assets avoiding efficient and agile production (Lukas Rauh et al 2022). There
are various principles to reduce effort and push industrial Al by focusing on the comprehensive lifecycle
(S. Amershi et al. 2019, L. Baier et al, 2019, R. S. Peres et al 2020):

- Data Governance including Policies to ensure that data is accurate, consistent, complete,
secure, private, accurate, available, and usable. About 80% of the time consumed in most Al and
ML projects is related to data management, preparation, and engineering (Cognilytica, Ed “Data
Preparation & Labeling for Al 2020,” 2020).

- High Degree of Automation including high quality process.

- Flexible manufacturing process to allow workloads and strategies to customized production in
the face of external changes.

- Standardization Interoperability — Plug and Produce: Standardization and interoperability are key
for the successful implementation of this digitalization strategy (Ifiigo, M. A. et al. 2020). Standardized
Digital twin per each industrial device for multiple conversations and operations for compatible
manufacturing environment.

- Al Semantics would ensure transfer immediately in a federated ecosystem the use of data and
algorithms for a specific context.

- Federated Environment. Multiple Nodes using data from similar devices would improve Al
models and productivity.

- Standards: Data structure from definition of devices using AAS, communication through OPC-
UA, MQTT and Structure Business Layer with AAS submodels including Al semantics would
facilitate operations along value chain.

Today, it is mandatory to access a trusted infrastructure to ensure the continuum of data from the field
to the cloud to host and manage data. This continuum is a vital infrastructure whose security and
sovereignty must be ensured so that companies can trust and take full advantage of digitization. The lack
of secure and sovereign solutions for the cloud on the edge (also called far edge) remains the missing link
slowing down the digitization and slowing down manufacturing industry. The "far edge" requires business
knowledge and the need to take into account interfaces with the legacy environment over long periods
of time. The opportunity is exciting as hyperclouders are slow to address it. Aligned with this need the
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french project called OTPaaS **( Platform as a service for OT) targets the massive digitization of companies
by offering a cloud suitable for the digitization of the field that is compatible with Gaia-X and easy to use
by companies including SMEs. The OTPaaS project relies on technology providers to build sovereign
solutions for the distribution of data and processing capacities between 1oT, IT and the cloud and aims to
expand in a second step to European suppliers to offer a strong infrastructure with large services.

Several architectures have been proposed for the combination of shopfloor data with edge and cloud
computing services. For instance, Figure 50 shows a suggested architecture towards exploiting edge, and
cloud capabilities for processing data from the shopfloor with Al-based approaches. A number of relevant
features includes the coupling of Al to digital twins, data modeling, incorporated engineering knowledge,
interactive visualization, ontologies/semantics and different data sources (PLM, Sensors). Moreover,
adjustable data granularity, and flexible/Purpose oriented data collection is enabled, whereas cloud and
lloT services can be used based on authorization to ensure security to people or algorithms. In this way it
is possible to overcome barriers due to lack of access to data, lack of data, limited data, split to atomic
process steps, or unbalanced data.

On a manufacturing shop floor, context-aware intelligent service systems can be used to provide Al
services to people on the shop floor and back office. Industrial Internet of things (lloT) context-aware
information systems (Alexopoulos et al., 2018) can be employed to support decision support for mobile
or static operators and supervisors. Such systems may combine key IloT concepts such as multi-layered,
service-oriented architecture, which integrates several subsystems, such as sensor data acquisition with
concepts for developing Al systems that utilized contextual information collected. As discussed in
(Alexopoulos et al., 2020), such architectures can be combined with the digital twin concept into building
frameworks for deploying Al applications in manufacturing settings (Figure 50).

Shop-Floor
Application/Business Al App

Layer

ML model

Services Al Service

Layer ML model

Reasoning and
Information
Processing

Complex Event
Processing (CEP)

Context Engine
Context Builder
e
RDF Store

Communication HTTP, MQTT, ROS
Layer

Integration Data Acquisition and
Layer Representation

Information
Layer

CPS
Figure 50. Digital twin for the development of machine learning-based applications for smart
manufacturing, (Alexopoulos et al., 2020)
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5.3 Data spaces for Al development and deployment

Data and data sharing are key ingredients for the implementation of Al. However, to solve the challenge
of fueling Al models with enough quantities of quality data a collaboration between organizations is
needed that enables a) data sharing for Al, and b) execution of Al algorithms. Organizations in order to
share their data, they should have been guaranteed some level of trust and some level to which they stay
in control over who can access their data and for what use, i.e. data sovereignty®. Recently, the concept
of data spaces has emerged for the implementation of industrial data spaces under data sovereignty
principles and the most notable initiatives are the Gaia-X'’ and International Data Spaces Association
(IDSA) .

Gaia-X “is an initiative that develops a software framework of control and governance and implements a
common set of policies and rules that can be applied to any existing cloud/ edge technology. They have
several lighthouse pilots aiming to demonstrate Gaia-X capabilities in manufacturing such as Catena-X*°
focusing on the automotive value chain and EuProGigant?® which is cross-sectorial and cross-the-border
in the manufacturing value chain. Similarly, IDSA envisions “to create a future where trusted partners, of
all sizes and from all industries, can securely share data while maintaining self-determination and control.”
The Smart Connected Supplier Network (SCSN)?', driven by TNO and Brainportindustries in The
Netherlands, is a data standard that makes the exchange of information in the supply chain more efficient,
so that companies can share data more easily, reliably and quickly over trusted dataspaces such as IDSA
and Gaia-X. Another stream of stakeholders that have a key role in supporting industry into the adoption
of advanced Al technologies such as the integration to common data spaces are the Digital Innovation
Hubs (DIH) as well as the Testing and Experimentation Facilities (TEF) for manufacturing??. TEFs are
expected to contribute with sharing of data (e.g., robotics operations or production equipment data from
OPC-UA servers) for enabling the development of smart manufacturing Al services. In a similar manner,
under the Digital Europe Program (DEP) the DataSpace4.0?* Coordination and Support Action (CSA) is
creating a pathway and governance model for scale-up of cross-sectorial data spaces for manufacturing.

On a smaller scale research and innovation activities have been launched in the context of EU research
and innovation framework. These projects validate data sharing technologies in targeted value chains
and help to remove the technical obstacles when setting and deploying manufacturing dataspace.
MARKET4.02* H2020 has employed IDSA technology to develop a marketplace for manufacturing
equipment and services based on trusted data and services. MUSKETEER H2020% is using IDSA technology
for setting-up federated Al for manufacturing companies. AMABLE H2020% provides digital services to
enable uptake of Additive Manufacturing for SMEs on top of IDSA powered data ecosystem. FLEX4RES?

16 NL Al Coalition, 2022, Towards a Federation of Al Data Spaces

17 Gaia-X 2022, www.qaia-x.eu

18 IDSA 2022, https://internationaldataspaces.org,

19 Catena-X, 2022, https://catena-x.net/en,

20 EuProGigant 2022, https://euprogigant.com/en/

21 SCSN 2022, https://www.brainportindustries.com/en/factoryofthefuture/smart-connected-supplier-network
22 Al-Matters, https://ai-matters.eu/, accessed online April 2023

23 DataSpace4.0, https://manufacturingdataspace-csa.eu/, accessed online April 2023
24 MARKET4.0 H2020, www.market40.eu

25 MIUSKETEER H2020, https://musketeer.eu,

26 AMABLE H2020, https://www.amable.eu,

27 FLEX4RES HE, https://www.flex4res.eu/, accessed online April 2023
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utilizes data spaces for developing Al services to support resiliency in manufacturing data spaces
(Alexopoulos et al., 2023). However, although these projects have produced some preliminary positive
outcomes, they are still fragmented in terms of semantic interoperability (i.e., different standard or
format are used for similar purposes), technical interoperability (e.g., different data connectors are used
in different projects that are not necessarily compatible) as well in terms of data governance structures
and data policies.

Figure 51 presents a conceptual approach for building and deploying Al applications over data spaces
technology utilizing the IDSA Reference Architecture. Data are shared between the data providers/owners
(e.g., OEMs) and data consumers (e.g., data analytics developer) for developing data-driven (e.g., Deep
Learning) Al applications. Then through a secured App Store these Al applications can be used by the
users.

App Store

Connector
Data Provider

Data
Source

Connector Data
Consumer

Data Sink

Data Connector
Data Provider

Source

Broker Meta

Figure 51: Al in data spaces (adapted schema based on IDS RA%)

5.4 Digital Twin for Synthetic Data Generation

Al applications based on Machine Learning (ML) methods are widely accepted as promising technologies
in manufacturing. However, ML techniques require large volumes of quality training datasets and in the
case of supervised ML, manual input is usually required for labeling those datasets. Such an approach is
expensive, prone to errors and labor as well as time intensive, especially in a highly complex and dynamic
environment as those of a production system. Digital Twin models can be utilized for accelerating the
training phase in ML by creating suitable training datasets as well as by automatic labeling via the
simulation tools chain and thus alleviating the user’s involvement during the training phase. Frameworks
for generating synthetic datasets (e.g., synthetic images) through the use of simulation tools and the DT
concept to serve the development of ML models have been presented (Alexopoulos et al., 2020). The

28 |DSA 2019, Reference Architecture Model 3.0
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architecture in Figure 52 represents the main entities of such a framework which are the following: a) the
CPS that links the physical world, such as a machine or robot on the factory floor, to the cyber through
the creation of a digital thread between them, thus formulating Cyber-Physical-Production System and b)
the DT that represents the virtual model of the physical system or process, it is linked with CPS entity
through the data communication channel and it is capable of replicating aspects of the behavior of the
CPS system. Both CPS and DT stacks are defined and implemented based upon the same layered
architecture approach. However, the layers are different for each stack, DT and CPS, as they are
implemented and can be deployed independently.
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(Alexopoulos et al., 2020)

5.5 Education and training aspects

The accelerated technological evolution creates a dynamic environment regarding the required future
skills and competencies. In particular, the development of Al technologies is expected to stimulate
important changes in jobs, as well as the necessary skills that employees must incorporate. Diverse
challenges regarding gaps and shortages of workforce skills and competencies, can be identified in
different industrial sectors, which in turn have stimulated the funding of several projects to cover the
knowledge and competences gap by using novel knowledge delivery mechanisms, and modern ICTs. A
number of relevant research projects have treated the improvement of educational schema with respect
to Industry 4.0%°, or they have focused on delivering effective training courses to enable the uptake of

2 https://www.eitmanufacturing.eu/news-media/activities/smart-educational-framework-for-digitalization-smartdigi/

61|Page ©2023 AIM-NET


https://www.eitmanufacturing.eu/news-media/activities/smart-educational-framework-for-digitalization-smartdigi/

;AIM-NET

industrial Internet of Things (IloT) technologies and smart manufacturing systems®® e.g. tutorials on cyber
physical production systems 3.

The EU community needs to structure services to train the next generations of young people so that they
can easily cope with the new models of more automated and connected industry, with the skills and
abilities that the work market demands in light of Al-based technologies. Likewise, it is also necessary that
the new generations incorporate a critical spirit regarding the design, implementation and development
of these technologies, as well as uniting education in values that prioritize reflexivity, inclusiveness,
diversity, equity, sustainability or responsibility. That is why coordinated approaches are needed between
administration, industry, academia, and civil society, to facilitate these transformations that enable the
training of active workers who will face this transition, as well as the new generations that will lead these
processes of change. Tools that could enhance training efficiency include Mixed Reality tools, which
provide online support to workers on various tasks being executed and offline training for various
manufacturing processes.

In addition, the education services should be grounded on successfully implemented education paradigms
in manufacturing, such as the Teaching Factory concept. The Teaching Factory concept has introduced as
a two-way knowledge communication between academia and industry (Mavrikios, Georgoulias, and
Chryssolouris 2018). The Teaching Factory paradigm provides a real-life environment for students and
research engineers to develop their skills and comprehend the challenges involved in everyday industrial
practice (Chryssolouris, Mavrikios, and Rentzos 2016) and has been applied in a case study about the
collaborative design of machine tools (Stavropoulos, Bikas, and Mourtzis 2018), real-life industrial pilots
involving construction equipment factories (Rentzos et al. 2014) as well as industrial automation
companies (Rentzos, Mavrikios, and Chryssolouris 2015). In more detail, the Teaching Factory paradigm
aims to align manufacturing teaching and training to the needs of modern industrial practice. This is
achieved by educating future engineers and upskilling/reskilling professionals and workers with new
curricula to cope with the increasing industrial requirements of the factories of the future, whereas the
innovative ICT configuration is employed to facilitate the interaction between industry and academia.

It is expected that a centrally coordinated pan-European network of teaching factories providing training
and upskilling services will accelerate the enabling the workforce transition towards smart. This Network
will provide an orchestrated effort in providing access to a common training framework (methodology,
content, and material) linked with professional education and certification based on in-situ training and
access to latest advanced manufacturing technologies. For instance, the teaching factories network could
establish links with VET and C-VET programmes. The teaching factories network should comprise physical
testbeds and DIHs (coming from previous R&D results) revamped and integrating the baseline
technologies and the overall digital and Al-based manufacturing concept. The physical testbeds will serve
on-site training on the emerging Al-based technologies.

30 https://www.eitmanufacturing.eu/news-media/activities/factorybricks-smart-learning-home-for-the-management-of-connected-factories/
31 https://www.eitmanufacturing.eu/news-media/activities/the-smart-manufacturing-paradigm-a-tutorial-introduction-on-cyber-physical-
production-systems/
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5.6 Ethical use of Al

Al has shown great progress during the last decade, but at the same time has also raised great questions
surrounding its development and implementation in various sectors (Stahl and Wright 2018). Al
applications including facial recognition, predictive prognosis, biometric markers or conversational
interfaces has created a long list of socio-ethical dilemmas to be addressed (Echeverria and Tabarés 2017;
Floridi et al. 2021). Focusing on the industrial manufacturing sector, the socio-ethical challenges relate to
the opacity that accompanies a large number of Al systems (Robbins 2020), as well as the inability to
understand the decision-making logic that in turn lead to a lack of trust by the people who use them in
their daily routines. That is why these Al systems are commonly seen as "black boxes", since even the
designers of these systems have difficulty understanding them. Therefore, the end users of these systems
manifest their ignorance about what is happening inside the data-driven models and are completely
unaware of the logic that is used, or the data based on which decisions were made. That is why it can
generate anxiety and mistrust on the part of users.

At the same time, the introduction of Al in industrial environments also raises fears and doubts about the
surveillance and control to which workers are subjected with the excuse of collecting data of all kinds that
can feed these systems. That is why the introduction of these technologies in industrial environments
must be done responsibly. Possible breaches of obligations by employers can put at risk the privacy and
other types of labor rights that workers have. This and similar types of arguments align with a growing
number of criticisms of the biases that Al technologies have. The biases, coupled with the underlying
uncertainty in Al in an increasing number of sectors and domains, have also highlighted the need for
“responsible Al” (Dignum 2017). This Responsible Al is characterized by the inclusion, protection and
safeguarding of various values of civil society that the development of technology can put at risk, and that
can be displaced or not taken into account by the development of technology itself (Buruk, Ekmekci, and
Arda 2020). Thus, values such as gender equality, social justice, personal autonomy, the right to privacy
and others, are recurrently confronted by the development of these systems and the data with which they
are built. We must not forget that the multitude of databases on which these systems are based reproduce
the numerous inequalities on which our societies have been built.

That is why regulation and legislation is important, but it is not enough. For example, in Europe and within
the legal framework provided by the General Data Protection Regulation (GDPR) there is the right to
explanation3? that requires a user to be informed when they have been the subject of a decision made by
an algorithm and based on what parameters the decision has been made. Collecting this right is a first
step, but it is clear that, as these systems are developed, there will be needs both at the regulatory level
and in others. The GDPR is a pioneering legislation that does not exist in countries that are absolute
leaders in this type of technology such as the US or China.

In addition to these social implications of technology that are closely related to principles of fairness and
non-discrimination, the development of Al in industrial settings also feeds various anxieties regarding
automation and mass unemployment (Bassett and Roberts 2020). A concern that is not new and that has
been common throughout history due to the dynamics of technological change and its introduction in
factories. New fears around this massive unemployment have been described by recent academic works
that have explored the degree of automation of current professions in the hands of Al and that draw a
less optimistic future in this regard, especially in professions that had not been targeted by automation

32 https://gdpr.eu/recital-71-profiling/
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(Frey and Osborne 2017). However, there is still a high degree of uncertainty about how these
technologies will be deployed in various sectors and domains, and what their impacts will be on the work
market. The constant and incessant acceleration of the needs of the work market are stimulated by the
dynamics fostered by technological change and this causes social transformations with a high degree of
instability and uncertainty®.

For this reason, it is also important to "relativize" the role of automation around "possible mass
unemployment" caused by technological change, since automation is only a tool and "there is nothing
automatic in automation" 34, In addition, recent studies seem to show that the problem of low demand
for workforce in factories and industrial environments is not directly associated with industrial automation
but rather with various factors including global deindustrialization, lack of investment, overproduction
and limits of economic growth itself*. A responsible development of Al becomes even more important,
since the development of these technologies will entail important changes in jobs, the necessary skills
that employees must incorporate into manufacturing processes, etc.

Key enabling technologies — KETs — are knowledge and capital-intensive technologies, pervasive and with
a systemic relevance for all industrial and economic sectors. They are expected to have an impact on high
quality jobs creation, life quality improvement and sustainable development. KETs have the potential to
transform existing modes of production, and thus change relationships along the whole value chain of
product development, between manufacturers, suppliers, businesses, users, policy makers, and citizens.
EUC has already acknowledged the need to research towards developing technologies for the benefit of
society, thus there have been some projects addressing such issues such as TAILOR3®, SocKETs*” however,
the wide range of topics and issues that accompany the ethical use of Al require for consistent and
coordinated research.

5.7 Explainability of Al for manufacturing

Some Al solutions potentially involve high number of parameters, which is not easy to process by human
mind —some neural networks like GPT-3 (Brown et al., 2020) comprise more than one hundred billion of
adjustable parameters—, such models are no longer considered simulatable (Lipton, 2018). Here,
simulatability refers to the property that a “human should be able to take the input data together with
the parameters of the model and in reasonable time step through every calculation”. In many applications
in manufacturing, employing black-box machine learning models is not an issue as long as the accuracy or
performance of these models is sufficiently good and comprehensibility of the model’s reasoning is not a
requirement. The application of such models becomes critical if they are applied in strongly regulated
environments like medical device manufacturing or in applications with high safety requirements like in
human-robot collaboration. In such situations, there is a growing demand for so-called white-box models
that are human comprehensible. To satisfy this demand, the research field of explainable Al (XAl) gained
increasing interest in research and application. XAl aims for providing the meaning or the explanation of

33 Brynjolfsson, E., & McAfee, A. (2014). The Second Machine Age. New York: Norton & Company.

34 Smith, A., Fressoli, M., Frisancho, M. G., & Moreira, A. (2020). Post-automation: report from an international
workshop. In Post-Automation Workshop.

35 Benanav, A. (2020). Automation and the Future of Work. London & New York: Verso.

36 https://tailor-network.eu/

37 https://sockets-cocreation.eu/
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the outcomes of a machine learning model in a human understandable form. According to Figure 53, there
are several ways to achieve this goal (Burkart & Huber, 2021):

(1)

Explainable by nature (ante-hoc approach): Instead of using opaque black-box models, the
learning problem at hand is solved by means of a white-box model such as linear regression
models or short decision trees. For many applications, white-box models provide sufficient
accuracy and some researchers even state that in case of highly critical applications, one should
avoid black-box models (Rudin, 2019). Especially in robotics, which often requires processing high-
dimensional and highly complex sensor signals, white-box models are often not accurate enough
and thus, one has to rely on grey-box or black-box models. In such cases, the ante-hoc approach
is not applicable and the following two ways of XAl remain.

Model explainability (global): Explain how a particular model works as a whole.
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Instance explainability (local): Explain why input x leads to certain output y.

Figure 53. Different ways of explaining a black-box machine learning model

Model explanations: here, a black-box model is used and XAl is used to explain the model as a
whole. There are two approaches; 1) post-hoc model explanations, which take the black-box
model as is and provide model insights afterwards and is usually model agnostic, i.e., it works for
different kinds of machine learning models. Famous examples of post-hoc explanations are partial
dependency plots (Friedman, 2001), which show the relation of one or two input features to the
model’s outcome, or feature importance values. 2) Surrogate approaches (Schaaf et al., 2019)
involve learning a white-box model in addition to the black-box model, where the white-box
model is used to explain the outcomes of the black-box model. Common surrogates are decision
trees or rule-based systems.

Instance explanations: in contrast to model explanations, so-called instance or local explanation
methods do not explain the whole model. Instead, explanations for individual data instances are
provided. A famous representative of the instance explanation methods are saliency maps, which
are often applied for image data. Here, the image is overlaid with a heatmap that is highlighting
those parts of the image that contribute most or least to the outcome of the black-box machine
learning model. Other often-applied methods are SHAP (Lundberg & Lee, 2017) and LIME (Ribeiro
et al., 2016).
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In safety-critical domains like human-robot collaboration, where machine learning models may only be
applied after some rigorous verification step, surrogate models form a promising subfield of XAl In
(Bastani et al., 2018) it has been shown that it is possible to extract a verifiable surrogate model based on
a decision tree from a black-box neural network control policy. Closely related to XAl research field are
uncertainty quantification methods (Abdar et al., 2021) and physics-informed machine learning
(Vonrueden et al., 2019).

Uncertainty quantification aims at providing information about the reliability or certainty of the machine
learning model’s outcome. There are two sources of uncertainty in machine learning in general: aleatoric
uncertainty refers to the variation of the model’s outcome due to random effects, while epistemic
uncertainty is caused by a lack of knowledge. To reflect the uncertainty of the model’s outcome, often
Bayesian learning, and inference methods are used, where the outcome is no longer a point estimate but
a random variable. In physics-informed machine learning, one tries to enrich the purely data-driven
learning approach with prior information or domain knowledge, which might be available in form of
algebraic equations, physical laws, simulation models or logical rules. When combing the resulting model
is often called a gray-box, which is not fully transparent to the human, but at least some parts of the model
are comprehensible. Informed machine learning allows addressing one major weak point of machine
learning, which is its weak extrapolation behavior. That is, the model only provides reliable outcomes for
input data that is well represented in the training data. If the input is outside the distribution of the
training data, the model may behave arbitrary and is no longer trustworthy.

5.8 Regulatory framework for Al in manufacturing

The integration of Al with manufacturing technologies and systems is expected to allow mid- and long-
term competitiveness and welfare for Europe. Currently, the blend of a number of general frameworks,
developed standards and ethical regulations are used as the foundation for Al assets development, where
the objective is typically to produce trustworthy Al in the sense of legal, ethical, and robust modules.
Regulatory frameworks that deal with a series of Al relevant aspects include among others the General
Data Protection Regulation (GDPR), e-Privacy Directive, Electronic Communications Framework, and the
Regulatory framework proposal on artificial intelligence®. Yet, the absence of specific regulations and
standards for Al components and the low understanding of the algorithms and processes among key
stakeholders may create critical challenges and complications hampering the broad adoption of Al. For
instance, the lack of broad specificity on the regulatory landscape leads to gaps between the defined
principles and their translation into practical requirements and development actions. In this context, the
next paragraphs discuss several articles of the Regulatory framework proposal on artificial intelligence
and their implications for industrial practice.

5.8.1 Article 5: Prohibited artificial intelligence practices

Article 5 sets out a list of prohibited Al practices. This list includes for instance the development of Al
systems that can cause physical or psychological harm to individuals, and result in discrimination against
individuals or groups of individuals on the grounds of age, physical or mental disability. Subsequently, the
application of Article 5 will be discussed for the case of hybrid production systems. As a starting point,
hybrid systems including robots and other Al-controlled machinery can be considered high-risk systems.

38 https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
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Therefore, formal risk assessment methods are needed to prevent the potential implications of Al
stochasticity. Al is being researched to bridge the human and Al systems worlds, i.e., to enable smart
reactions from machines, but also the implementation of efficient and usable means of human machine
interaction. The collection of data related to human status, intentions, and preferences is needed to adjust
the robot and machinery behavior accordingly, and on the other hand humans need interfaces providing
them with the required did and information while optimizing cognitive effort. Special care must be taken
to ensure fundamental prohibitions outlined by EU legislation are taken into account and formally applied,
including restrictions on direct physical or psychological harm, but also the avoidance of subliminal
techniques for manipulating human judgment, preventing exploitation of personal vulnerabilities, and
promoting inclusion of people with disabilities. Since in many cases the optimization of the individual user
experience relies on their identification, profiling or social scoring, methods that can guarantee the
elimination of the prohibited practices need to be employed.

5.8.2 Article 9: Risk management system

Article 9 of the proposed regulation on artificial intelligence focuses on risk management systems for Al.
This means that Al developers need to implement risk management systems to assess and manage risks
posed by Al systems in order to minimize the risks posed to individuals, the environment, but also the
public interest. Risk assessments are already performed in current industrial practice, where experts are
engaged to perform risk assessment of new machinery introduced into factories focusing especially on
potential risks imposed due to the particular new machinery. Assuming that the amount of Al tools to be
introduced to the factories of tomorrow is expected to rise dramatically, a new set of approaches for
running risk assessment is required. The conduction of regular risk assessments, the development of risk
mitigation strategies, the monitoring of Al systems to detect and timely respond to potential risks, the
consideration of cyber security risks together with regularly updating the risk management system and
providing training to the users of Al systems are key actions that derive from Article 9. Several of these
processes need to be standardized and automated, supported largely by software tools that can perform
a large part of the process and thus reducing cost and time.

Potential risks in Al that are relevant to the manufacturing sector include but are not limited to the
mismatch of models and reality, incomplete testing and/or verification of the Al modules, bias, incomplete
definition of data for training, inadequate selection of performance measures and metrics, high error rate,
as well as selection of incorrect objective functions. Consequently, strategies to prevent such risks, detect
the occurrence of unwanted behaviors, as well as countermeasures to eliminate or restrict the
consequences of the risks occurrence should be defined. This process should be supplemented by
incorporating methods for workforce training and upskilling on how to use the Al enhanced machinery
and tools. The factory personnel need to be adequately educated in order to reduce the risk of misuse
and the compliance of the usage to the intended purpose of the Al system.

5.8.3 Article 10: Data and data governance

Article 10 refers to data, data governance, and management practices including data collection, data
preparation processing operations (annotation, labeling, cleaning, aggregation, etc.). Although there is a
plethora of Al applications developed for the manufacturing industry, training of data sets based on data
coming from the manufacturing industry is rather lacking today. Several factory applications being
developed are making use of models trained by non-factory datasets making them unsuitable for the
purpose. Therefore, a new range of trained models is required. For that objective to take place, data
management and governance that would be suitable for the practices of manufacturing industry is
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required. The requirements range depending on the size and nature of manufacturing company and
different approaches need to be piloted and investigated in practice. Ensuring that data sets come
structured and free of errors structured based on well-defined formulations and assumptions can help to
increase dramatically the acceptance by industry in sharing data and thus develop mature models fit for
the purpose. Research on tools for rapid creation of datasets, as well as initiatives where businesses
share datasets on European level should be encouraged.

5.8.4 Article 11: Technical documentation - Article 12: Record-keeping — Article 18:
Obligation to draw up technical documentation

Technical documentation of high-risk Al systems should be present, to ensure correct integration and

usage of such systems by experienced or unexperienced personnel. Structured technical documentation

as well as instructions should be delivered and made available via interactive and easy to use mechanisms,

such as dedicated platforms, that may also serve training purposes.

Considering the complexity of Al based systems with regards to the aspects of keeping track of records, a
broad set of new requirements is emerging on that article. High risk Al providers have to consider logging
data and release software updates throughout product’s lifecycle. Also, high risk Al recalls need to take
place IF log data prove incapability to conform on technical directives. Deeper investigation is required on
structuring approaches for keeping records on how Al systems have been trained, possible decisions they
may have made, false or true positives and several other aspects in correlation with the actual
manufacturing process that has been controlled. Special attention needs to be paid on aspects of
manufacturing shop floor conditions, machinery, configuration of production line, product characteristics,
materials properties at the time of decision making. A broad set of investigations is required to help
structure properly a reliable record keeping approach. The challenge becomes greater when expanding
to the engineering and management decision making, which entails a large number of heterogeneous
data formats that are used per production step. The advances in CAx tools have facilitated the use of Al
algorithms in several product/process life cycle stages such as design, planning, scheduling, etc., which
cannot be neglected when considering documentation and record keeping aspects. However, the large
amount of heterogeneous data makes the link of consecutive steps and the identification of the sources
of error hard to identify. An effort to enhance traceability and facilitate record-keeping is launched
through creating Digital Threads connecting modules that are used in engineering, production, and
management, as well as the use of neutral data formats to link the produced information to the
engineering software that was used to produce it.

5.8.5 Article 13: Transparency and provision of information to users

Aspects of transparency in the process of decision making are deemed to be critical in factory operations
planning and control aiming to help interpret systems’ output. A broad range of factors influencing the
way the Al system performs need to be considered and studied, for example data structures, data formats,
data accessibility, quality of training data and quality of operating data, condition of machinery, sensors
and actuators and several other aspects that need to be evaluated carefully and in a structured and
coordinated manner. Graphical interfaces depicting a) what dataset or Neural Networks parameters are
affecting the results, b) what changes training causes and on which extent, and c) what is the system’s
objective during unsupervised training are needed.
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5.8.6 Article 14: Human oversight

Designing and developing human-machine interaction tools has been traditionally a key feature of
charactering technology. However, with the emergence of Al technology, these tools need to be radically
reconsidered at all stages of the manufacturing lifecycle helping people to manage both the variety of
data as well as the evolution of Al modules over time. Human oversight is expected to be rather
challenging area to regulate due to the direct involvement of people, different people profiles and levels
of training, education, age as well as the broad range of manufacturing and machinery related
particularities such as parameters and variables to model and link to Al decision making logic. GDPR and
legal rights require several technology considerations to be efficiently applied considering factory
planning and operations both at the shop floor as well as the supply chain and customer interaction levels.

The design of the Al systems directly affects the performance of humans when overseeing the system’s
operation. Especially when intelligent manufacturing systems are designed based on techno-centered
approaches and involve human operators to only handle difficult situations or require quick reactions to
correct system’s failures, the human oversight becomes harder. Research effort should be oriented
towards human-centric design of the operators’ role to cover for system design deficiencies that result
from the neglection of the operators’ expectations, capabilities, characteristics, and limitations including
situation awareness, interpretation of visual input, anomaly detection, decision-making, but also the level
of trust to automation.

The trust in automation is linked with the ability of operators to interpret the system’s decision-making.
The Al tools have been considered in the past as “black boxes”. This has been acting as a barrier for the
industrial users to adopt such technologies in their manufacturing system. On this basis, appropriate
human-Al system interfaces need to be designed and implemented allowing the factory personnel to
interact with the Al tools. New methods that enable the explainability of the Al decision-making systems
can be integrated in intuitive interfaces. These should provide the involved human operator with the
ability to: a) monitor the operation of the Al tools through structured visualizations, b) identify/estimate
errors or unexpected outcomes, c) encapsulate her/his experience in the decision-making process, d)
intervene to / bypass the output decision in case this is considered in appropriate.

5.8.7 Article 15: Accuracy, robustness and cybersecurity

Article 15 discusses the aspects of accuracy or business in cybersecurity related to high-risk Al systems.
The robustness and accuracy of an Al system are significantly affected by the algorithm development
phase and the training data which are utilized to initiate and train the system. Accordingly, efficient
methodologies to evaluate the accuracy of an Al system during its utilization are required. The evaluation
could be based on prognostics able to estimate a set of specific KPIs relevant to the Al system accuracy
and robustness. The evaluation may investigate the performance of all the components of the Al system
(models, data structures and others) aiming to estimate the level of uncertainty/inaccuracy for each one
and how they affect accuracy of the complete system. Besides accuracy, cybersecurity should also be
considered with the development of dedicated modules protecting middlewares and datasets from
“poisoning”. An approach could be the use of independent networks and processing units running in
parallel with at least, one processing unit being isolated from the factory’s network during normal
operation. Both processing results should be compared and in case differences that exceed particular
thresholds are detected, then safety functions should be triggered. On top of that, functional safety
norms for Al systems should be developed, meaning that the Al modules will actively prevent the failure
of the whole system or the causing of harm to people and property in case of error/ violation/ damage.

69| Page ©2023 AIM-NET



;AIM-NET

5.8.8 Article 16: Obligations of providers of high-risk Al systems

The definition of high-risk Al systems involves such technologies that have access to personal data, are
connected to critical infrastructures, law enforcement, border control and other public or administration
services. In the manufacturing landscape, this can be related mainly to the safety-related hardware and
the decisions taken based on its signals. The provider of such Al-based components should ensure that
the safety systems would work in a timely manner, assuring the human safety under any circumstance. At
the same time, the Al-based safety components should be able to understand the human activity and
intention, avoiding unnecessary drops in the production rate or even stoppages by random human activity
that is not related to the production and, of course, doesn’t impose any safety risk to the human operator.

5.8.9 Article 17: Quality management system

Quality management is a key aspect in manufacturing in terms of providing products of certain standards
and remaining competitive in a continuously changing market. The Al-based systems which can be
deployed inside the spectrum of quality, will be based on the use of data deriving from multiple
manufacturing resources involving in many cases the human factor. Strategies shall be proposed in order
to ensure that the integration of data sources will comply with the EU and national regulations.
Examinations/validations have to be undertaken in order to ensure a safe and unbiased use of the
provided technologies. The accuracy of the Al-based systems should be monitored easily through
interactive tools upon deployment. The degree and velocity of self-learning for the Al-based systems shall
be in-depth documented and validated in real-case scenarios of industrial requalification. In addition, the
systems’ impact on humans should be examined focusing on aspects such as operational managerial
decision-making in quality-related issues. After-market monitoring should be encouraged taking into
account customer report/incidents and correlating them with industrial malfunctions from different levels
of abstraction.

5.8.10 Article 20 Automatically generated logs

Log files help the programmers identify system status and detect potential errors or warnings that occur.
Similar, Al-based systems should keep such logs and help the programmers understand how the Al
algorithm has worked during both the training period and the execution period. Also, the algorithm when
categorizing the different datasets, should require human assistance to ensure the proper classification.
Lastly, the Al algorithms should be trained to recognize keywords from the logs helping themselves
identify issues that may occur or ensure that they are running as expected. Especially in the cases of high-
risk Al systems, logging plays an important role to identify unexpected hazards.

5.8.11 Article 21 Corrective actions

In relation to Article 20, once unexpected activity is logged in the system, corrective actions should be
taken, ideally by the Al system itself, depending on the severity of the error and its category, i.e., ifitis a
production error or a human operator safety error. If the error has a higher level of severity and cannot
be automatically handled, then the programmer should intervene and take the necessary corrective
measures to help the system overcome it. If the error is simpler and corrective actions can be
automatically applied by the Al-algorithm itself, then the necessary messages should be logged to inform
the programmers and the system should proceed without any interruption. Corrective actions also include
keeping the AC system distributors posted on the deviations of the systems regarding the expected
behavior in order to advise the end user when it is needed to perform actions to bring the system into
conformity, to withdraw the system or recall it.
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5.8.12 Article 22: Duty of information

The automatically logging system, described in article 20, as well as the corrective actions, should be
shared with all the necessary actors of the production chain. This also includes the programmers and/or
the integrators of the Al system in the production lines to help them improve the future algorithms.

5.8.13 Article 29 Obligations of users of high-risk Al systems

When integrating Al decision making tools and / or Al enhanced machinery in the manufacturing value
chain, it is critical to ensure its appropriate usage from the involved personnel. Dedicated training
platforms should be created, comprising of a variety of training mechanisms, such as user manuals, visual
in the form of presentations and videos, online and on-site training sessions. A closed loop between the
technology provider and the industrial users can be established allowing the latter to report back any
identified malfunctions, unexpected incidents during the usage of the Al tools. The industrial workforce
needs to be well educated in the definition of the proper data types and amount needed as input to the
Al decision making tools to ensure the proper usage and exploitation of the Al systems’ capabilities.

Therefore, the existing regulatory frameworks should be extended and further developed to support the
implementation of synchronized standardization activities on Al and related digital technologies in
manufacturing in member state, European, and global levels. Standardization and international
collaboration are indispensable to support the Al solutions deployment.

5.9 Consolidation of Al application for cross-cutting aspects in manufacturing

As presented in previous sections, Al modules are currently dedicated on specific product/production
stages and digital processes are implemented in silos. Al should be integrated in multi-processes covering
the complete lifecycle. An end-to-end Digital Twin enabling to share product-process-resources data
among design, engineering, management, and production agents would increase responsiveness,
effectiveness, and precision and at the same time minimize design and engineering iterations. This will be
achieved by the implementation of a framework to integrate data models, data-driven algorithms, and
digital twins of assets and products enabling the continuous update of the parameters of digital models
according to production feedback. Cross-correlation between simulation data, process monitoring and
quality control will provide knowledge on the process that will be translated into process models updates.
Figure 54 is an extension of Figure 6 enhanced with data and information flows that can act as feedback
loop to the applications of previous stages of the product/process lifecycle, which illustrates the described
concept.

Nevertheless, the implementation of the Digital Twin is accompanied with requirements on data
collection, processing, exchange, and storage. Connectivity should be ensured despite the different data
sources (CAD, CAM, CAE and CAPP software, quality control reports, sensor data etc.) and the
heterogeneous data formats (text, images, audio, CAD files, etc.). Common semantic models describing
the manufacturing processes can enable connectivity and integration of the different manufacturing
instances. In particular, linking of the product, process, material, and metrology models can be enhanced
by using neutral formats such as STEP (product design), PSL (Process Specification Language,
manufacturing processes), and QIF (Quality Information Framework, dimensional measuring).
AutomationML can support modelling and data exchange among the several different engineering tools.
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Furthermore, metamodels should be developed for data indexing to facilitate data access and traceability.
At the same time, developers should ensure data integrity, security, but also clearly define access rights
by humans or software.
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Figure 54. Data connectivity, data access and sharing among data models in the digital twin
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Figure 55. Pluggable and connectable Al modules concept

Figure 55 is based on Figure 5 enhanced with the visualization of beneficial modules interactions and
exchange of information which can improve the performance of the Al-based solutions, especially in the
case of non-symbolic Al, by enabling access to more data that can be used for modules’ training. Enabling
the communication between the Al modules can provide several benefits, especially when the data
integrity, cleanliness, and wealth are not ensured. The data exchange between the modules can be utilized
among others for ensuring the 1. quick training of Al modules e.g., data and information from the
shopfloor’s digital twin can speed up the training of machinery predictive maintenance 2. quality-by-
design by providing data from the production to the engineering, 3. cross-correlation between data
gathering from simulation, process monitoring and quality control for acquiring knowledge and updating
process models, 4. evaluation of models for any non-accepted parameter values in real-time, and 5. self-
adaptive online control to correct deviations. To this end, modular system architectures should be
adopted including interfaces for data exchange, while handling the connectivity with different digital
manufacturing ecosystems (e.g., Mindsphere, Teamcenter, Azure), enabling the communication between
new and legacy systems, but also between proprietary and open-standards. This can be achieved by
implementing connectors and mediators such as loT gateways, context brokers. In turn, this would require
an integration interface (lightweight middleware such as ROS, MQTT, EtherCAT, etc.) for orchestration,
vertical integration and storage of manufacturing and product data. Also, the OPC UA protocol can
promote seamless and secure communication among manufacturing assets and modules.
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Figure 56. Adaptive Al modules concept over the lifecycle of the product

Aside from exchanging data among several stages of one product variant’s lifecycle, it is worth
investigating the exploitation of data from previous product variants. Focusing on the Al modules level,
the use of the already existing data along with strategies for synthetic data generation and learning
methodologies can contribute into enabling the adaptability of the Al modules i.e. the ability of the
module to adapt to different scenarios, requirements, and constraints. Optimization will be performed
from variant to variant by altering model, simulation, control, etc. parameters over time aiming to
improve performance against the relevant KPlIs e.g., cost, flexibility, time, quality. This will require to
define data models that will remain relevant over time, strategies for maintaining and updating data
models, as well as for data storage.
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Figure 57. Optimization of the product lifecycle
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Figure 59. Degree of vision achievement

XAl is a relatively young research area, but it has the potential to be a key driver to support the integration
and adoption of Al approaches in industrial robotics. However, XAl faces some open challenges. For
instance, choosing the most appropriate XAl approach for the problem at hand is often not systematic. A
standard procedure is missing that allows measuring, quantifying and comparing the performance of
different XAl methods. From the algorithmic side, surrogate models are a promising approach when
verification and safety are paramount. However, the quality and fit of surrogate models is currently not
increasing with the same pace as the representational power of deep neural networks. The main
constraint that has been reported is the computation time that is needed, especially for automated
planning and reasoning. A solution to this challenge could be the use of quantum computing.

76 |Page ©2023 AIM-NET



;AIM-NET

Quantum computing is an emerging computing paradigm that seems promising towards supporting
complex computations. One of the most well-known examples is the seminal algorithm developed by
Peter Shor (Shor, 1999), which allows to efficiently factor prime numbers which is a substantial speed-up
compared to the best-known classical alternative which requires a super-polynomial runtime. While the
early excitement around quantum computing was primarily driven by theoretical considerations, the
technology has received an increased interest that is fueled by technological and scientific breakthroughs
such as the first experimental demonstration of quantum supremacy (Arute et al., 2019) and the
increasing availability of cloud-accessible quantum computers. Nevertheless, quantum computing is a
relatively young technology that has only recently made the transition from purely fundamental research
to potential applications.

The current application of quantum computing is thus often limited by the technological development of
the hardware. Due to the nature of quantum systems, any kind of interaction with the external world, e.g.
for state manipulation or read-out, necessarily results in the disturbance of the system which in turn
results in noisy calculations. If the noise is beneath a certain threshold, error correction codes can be
implemented which allow for fault-tolerant computations. This, however, requires substantial
technological advances with results expected on the timescale of several years (Gambetta, 2020).
Currently, the field is mostly concerned with either improving conventional machine learning algorithms
with quantum computing or with adapting known concepts to quantum systems. Among the most
prominent methods are quantum neural networks and kernel methods. The first term subsumes a diverse
class of algorithms whose main commonality is that they have a layer-wise structure which is trained
variationally using a classical computer. Although promising results hint at potential exponential speed-
ups (Liu et al., 2021), finding useful kernels which can efficiently be calculated using a quantum computer
while being hard for classical computers is an ongoing research question. The applications for quantum
machine learning in manufacturing are very similar to conventional machine learning methods and include
problems like quality assurance, anomaly detection or predictive maintenance. One of the most critical
active research topics, which is expected to remain one of the most important research questions in the
upcoming years, is to find relevant industrial use-cases where the possible speed-ups can be translated
into a real advantage. As a next step, quantum computing is expected to be applied to complex
optimization problems such as materials and process design. From the manufacturing perspective it will
be very interesting when quantum computing will be used for designing the materials-manufacturing
cycle so that one can design totally new materials, structures, and processes in order to get the optimized
component or product from the life-cycle perspective. Also, quantum computing will be a breakthrough
technology for cybersecurity which will concern also manufacturing industries.

Another interesting topic is the robustness of the Al solutions, as there is high temporal uncertainty in the
manufacturing systems that causes drifting of prediction models, which in turn invites for developing
methods for self-evolution of prediction models. On top of that, the dynamic conditions of manufacturing
systems at all the discussed levels would be highly favoured by the development of self-configurable
algorithms. Furthermore, the incorporation of expert knowledge is of high importance for manufacturers
as retaining worker specific knowledge is valuable to ensure product quality, responsiveness to production
deviations, and explainable reasoning for decisions made automatically.
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6 Conclusions

European industry has made significant progress in adopting Artificial Intelligence technologies in recent
years. Al has become a key driver of innovation and competitiveness for EU industries, and many
companies are investing in research and development to explore new applications for Al. As an overview
Al has enabled us to improve the engineering, execution, and monitoring of manufacturing processes, the
ergonomics of operators but also overall their well-being. In detail, Al-empowered tools have relieved
operators from physical and mental discomfort through the enabling of human robot collaboration, the
implementation of smart exoskeletons, as well as wearables and interfaces that enrich the operators’
situational awareness, support memory demanding operations, and assist decision making. Furthermore,
solutions have been provided to cover the design, engineering, and operation of the manufacturing
systems, including the design of production lines, work management, knowledge transferring, as well as
optimization of operations’ planning. Several technical problems have been dealt with already from the
early period of Al emergence, whereas others such as explainable, ethical, and responsible Al belong to
the list of emerging research topics. The achieved results that are gathered in Figure 60 seem promising,
however, there is a number of open issues for fulfilling industrial expectations.

The deployment of Al solutions validated in laboratories, relevant industrial environments, or on the
shopfloor has helped to identify shortcomings of the Al-based methodologies and algorithms. The
common conclusion is that despite the significant progress of the research community, and the promising
results that have been accomplished, more effort is needed until Al solutions can be trusted and widely
adopted by industry. In more detail, it is needed to address a list of barriers that have been identified.
One amongst the most critical barriers has been data collection. This aspect is linked with both technical
challenges such as the selection of data to be collected, managing the large volume of data, selecting the
means for data collection, cleaning and pre-processing of data, as well as selecting data formats, digital
platforms, and communication standards to be used. At the same time, there are more and more concerns
about privacy, security, inclusiveness, equity, traceability, and data governance. Moreover, the upgrade
of legacy equipment to support the implementation of Al solutions is deemed one of the most interesting
topics, as acquiring new equipment with advanced sensory capabilities is usually not economically feasible
considering that legacy machines are functional. On the other hand, the upgrade of legacy machines is
typically accompanied by extra fees and licenses to machine providers for integrating updates towards
machine digitalization, discouraging the adoption of the emerging Al solutions. As a result, research on IT
infrastructures supporting the management of data, the implementation of interoperable digital
pipelines, digital twins, and standardized integration of data processing and Al modules is needed.

Another point that has occurred is the application of Al in multiple processes instead of applying Al
dedicated to process steps in support of process optimization towards zero defect manufacturing,
sustainability, and minimization of environmental the impact of manufacturing systems. This is also
connected to the implementation of intelligent machines and the time needed for programming and
commissioning of new robotic applications for flexible and resilient production. This has motivated Al
research to exploit feedback coming from the process (e.g. cutting) parameters to avoid scrap, material
and time waste, but also the need for reworks. In the same view and given the strategic goal to achieve
climate neutral manufacturing, researchers have provided a number of models predicting and optimizing
machinery operation for the reduction of energy consumption.
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Figure 60: Roadmap for Al R&D activities

Besides technical factors, Al has the potential of significantly improving the everyday life of the humans
involved in manufacturing systems. To this end, it is important to provide tools for accessible visualization
of data regardless of the humans’ background, mother tongue, gender, sight, hearing and other
capabilities. It is important for technology acceptance to not only simplify the interaction of operators,
engineers, managers, and the rest of the manufacturing stakeholders with data, but also to ensure that
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the derivation of the results is explainable. Ontologies, mental models, and data semantics are the
backbone of these solutions, so it is expected to remain relevant for the years to come. Additionally, it is
worth developing solutions for the personalization of data visualization beyond dashboards because this
may improve the understanding and situational awareness of individuals and thus improve productivity,
efficiency, and at the same time prevent process and/or automation failures due to human error. Also, it
is possible that research on Al for decision support significantly reduces stress that is needed due to
making decisions, needing to memorize large sequences of operations, extended catalogs of products,
complex processes, and the location of several resources on the shop floor.

Another barrier is the affordability of Al solutions considering the limited availability of financial resources
for investments in technology, which are even more restricted in the case of SMEs. Due to the capital-
intensive nature of innovative technologies and the risk aversion mentality of the manufacturing sector,
unwillingness among companies to adopt new processes is often. Therefore, adopting digital based
processes is perceived as a risky step, due to the lack of relevant published case studies and industrial
secrecy of early adopters. promoting success stories through key market leaders releasing relevant
technology information, benchmarking and assessment for further replication.

It seems that in the next years SMEs will rely on interoperable solutions and data-exchange formats,
aligned with industry initiatives. On the other hand, since the adoption of new production technologies
requires massive knowledge acquisition (staff and operators) and trustiness methodologies addressing
these issues are expected to flourish in the next years, whilst education and attraction of new talents will
also be enhanced even in the context of coordinated regional ecosystems. Moreover, methodologies for
the valorization of Al are needed.

In the future the integration of Al solutions is expected to be facilitated by enabling deployable Al units.
Researchers are working on simplifying the generalization of Al solutions, which will be the foundation of
deployable Al units together with the faster automated modelling of the environment, processes, human
behaviour, parts, etc., but also the simplification of multi-process modelling. Effort is also needed to
produce methodologies that will guide end-user into selecting the right Al tool for their case. For instance,
methods to “Design for Al”, reduce the complexity of scaling up, as well as facilitate Al-based solutions
acceptance and develop hybrid skills are needed. Additionally, methods to ensure agile development,
safety, privacy preservation, reproducibility,

Additionally, the manufacturers need evidence of profit before investing, as well as assessments of their
competitiveness if they adopt Al solutions. Another key factor regarding the Al approach to be deployed
has to do with its acceptance and natural integration in the manufacturing ecosystem. The Al solution
should strongly support human interaction with the learning and reasoning process. As a consequence,
the explainability of the deployed Al and the interpretability of recommendations made must be assured.
In the case of human-robot collaboration and automation, the capability to predict human behavior can
crucially improve the usability, efficiency, effectiveness, and proper trust and confidence to the designed
systems. Proper human behavior modelling is expected to pave the way for the transition from the
contemporary solutions that are dealt with reluctancy due to the expected cycle times to highly efficient,
seamless, and safe human robot collaboration, reaching even the level of social human-robot interaction.
In addition to that, the accurate and real-time perception of the robot’s surroundings can improve the so
far achieved results in HRC in tandem with the enabling of resource aware dependable behaviors and also
increase the reliability of robotics solutions. Focusing on machinery related aspects, it is expected that
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perception will be enhanced, for instance enabling the fast training of Al algorithms for new product
variants, for wider ranges of ambient conditions (lighting, etc.), backgrounds, and with extended tolerance
to electromagnetic noise.

Moreover, there is yet effort to be made on identifying, implementing, and promoting the adoption of
new education processes. On top of that, the community should seek methods to close the reality gap
between developers and users of Al solutions, but also define new job profiles, which are needed to
develop, implement, integrate, and maintain Al-based solutions. Methods to identify, clarify, and
communicate the currently uncertain path from data to profit would substantially favour the adoption of
Al by industry same as the clarification of the starting points for new Al adopters. Innovation leads to the
development of new technologies that involve novel manufacturing concepts not covered by existing
rules, normative standards, and industry practices. As such it occurs that industry standards and
requirements will be required to be met without hampering the exploitation of the technology. Equally
important will be to address gaps related to IPR and civil liability for Al-enabled produced parts, the
provision of education services, the identification of protocols for technology qualification and
certification. To conclude, despite the achievements nowadays, there is yet research and implementation
work to be done to fully realize the potential of Al in the EU industry and address open challenges, such
as the need for human-centric, democratic, and resilient manufacturing systems, complying with the
requirements for sustainability, and minimized environmental impact.
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