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A B S T R A C T

Centralized optimization methods have been widely used to manage the operation of distribution systems.
However, these methods have some restrictions, such as the high computational cost, the reliance on a
centralized computer system, and the lack of data privacy. To overcome these limitations, decentralized
optimization methods have been proposed in recent years. Decentralized methods divide the control variables
of the centralized optimization problem over several controllers, and each controller solves its own subproblem
independently. This paper presents a multi-objective optimization framework for managing the operation of
distribution systems. The primary objective of the proposed method is to optimize the tap positions of voltage
regulators and charging and discharging powers for energy storage devices locally through a decentralized
coordination process. The used objective functions take into account the voltage profile within the network,
the lifetime of the devices, and the energy losses in the systems. Two decentralized methods, based on the
Advanced Arithmetic Optimizer algorithm and the Profile Steering approach, are proposed to address the
limitations of centralized optimization methods. The decentralized methods aim to improve the reliability and
efficiency of the optimization process, while also minimizing communication and computational costs. The
proposed methods are evaluated and compared to a centralized approach using the IEEE 33 and 69 bus systems.
The results demonstrate that the proposed decentralized methods can effectively resolve voltage problems,
minimize energy losses, and find high-quality solutions with improved computational efficiency compared to
the centralized approach.
1. Introduction

1.1. Background

Distribution system operators have encountered new difficulties in
recent years due to the incorporation of new components into distribu-
tion systems, such as renewable energy sources, Energy Storage Devices
(ESDs), and electric vehicles. As of 2017, a total capacity of about
178 GW of distributed generators (DGs) were installed globally, with
about 55% being solar Photovoltaic (PV) panels [1]. The increasing
penetration of DG units has a significant impact on the operation of the
conventional voltage control devices in Distribution System (DS) [2].
One of the main issues that have arisen is a higher degree of phase
imbalance [3], which can lead to problems with power quality and
system stability. In addition, the integration of these new elements has
also resulted in a wider range of technical problems for the DS, which
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can cause problems for both the DS and the end users who rely on it
for their electricity needs [4].

To effectively address these challenges, Distribution System Opera-
tors (DSOs) need to carefully evaluate the integration of new technolo-
gies and thoroughly assess their potential impact on the overall system
operation [5]. This entails shifting the perspective to view DG units
and ESDs as valuable resources rather than obstacles within the grid. It
also involves implementing novel control and management strategies,
as well as investing in infrastructure and equipment that facilitate the
integration of these elements [6]. Ultimately, the objective is to ensure
that DSOs can reliably deliver electricity to end users while embracing
the advantages offered by these new technologies [7].

With the rise in popularity of new technologies such as renewable
energy sources, DSOs must adapt their role by becoming active facili-
tators and service providers to support the energy transition [8]. This
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Nomenclature

𝛼, 𝜔, and 𝑢 Weighting factors for objective functions
h Constraints for power flow equations
𝛾 Function for maximizing the lifetime of VRs
𝛽 Upper limits for charge/discharge power
𝑋

Tap
Upper boundaries for taps of VRs

𝜏 Function for maximizing lifetime of ESDs
𝑆𝑂𝐶ref Reference point for SOC
𝜆 and 𝜆 Lower and upper limits for the state of

charge
𝑋Tap Lower boundaries for taps of VRs
𝑃 ESD Control variables for ESDs
𝑃 ESD* Best solution found for ESDs
𝑃 ESD
𝑘 Control variables for the 𝑘th local energy

community
𝑋⃗ Set of control variables for solutions in AAO
𝑋⃗TAP Control variables for VRs
𝐷 Number of control variables
𝐷𝐹 Decision factor for exploration and exploita-

tion phases
𝐸ESD Capacity of an ESD unit
𝐹 ∗ Best objective function value
𝑓centralized Either 𝑓𝑣 or 𝑓𝑙
𝑓𝑙 Objective function for the second goal
𝑓𝑣 Objective function for the first goal
𝑓𝑙𝑜𝑤𝑒𝑟 Objective function for lower-level problem

of decentralized method
𝑓𝑢𝑝𝑝𝑒𝑟 Objective function for upper-level of decen-

tralized method
𝑖𝑡𝑀𝑎𝑥 Maximum number of iterations
𝑙 Function for minimizing losses
𝐿𝐵 and 𝑈𝐵 Lower and upper boundaries of a control

variable in AAO
𝑚 Number of VRs
𝑁 Number of solution in AAO
𝑛 Number of ESDs
𝑁𝑏 Total number of Busses in DS
𝑁𝑙 Total number of lines in DS
𝑁𝑝 Total number of the phases in the system
𝑁𝑇 Maximum number of time intervals in the

simulation
𝑃 ESD Charge/discharge power of the ESDs
𝑃 Load Active power consumption of a load
𝑃 PV Generated power by PV panels
𝑃 𝑙 Power losses
𝑟1 and 𝑟2 Random numbers between 0 to 1
𝑆𝑂𝐶ESD State of charge for an ESD unit
𝑣 Function for minimizing voltage violations
𝑉𝑗,𝑡,𝑝ℎ Voltage magnitude for the 𝑝ℎth phase of

node j at the time interval t
𝑉𝑟𝑒𝑓 Reference voltage magnitude
𝑋∗ Best solution with value of objective func-

tion
𝑋exploitation Updated solution using exploitation phase

of AAO
𝑋exploration Updated solution using exploration phase of

AAO
𝑋𝑖𝑡+1 Position of a solution in the next iteration
2

C-AAO Centralized method using AAO optimization
algorithm

D-AAO-AAO Decentralized method using AAO as lower
and upper-level optimization algorithm

D-PS-AAO Decentralized method using PS as lower-
level optimization algorithm and AAO as an
upper-level optimization algorithm.

AAO Advanced arithmetic optimizer
AOA Arithmetic optimization algorithm
DGs Distributed generators
DS Distribution system
ESD Energy storage device
GWO Grey wolf optimization
PS Profile Steering
PSO Particle swarm optimization
PV Photovoltaic
Tap Tap position of a VR
VR Voltage regulator
x Random position for evaluation process

shift is mainly needed due to the integration of a significant number of
PV units into DSs. While the incorporation of PV units is advantageous
in reducing reliance on fossil fuels and greenhouse gas emissions, it can
also present difficulties for system operators [9]. Heavy integration of
PV units in medium and low voltage networks may result in voltage
fluctuations, imbalances, and violations [10].

To address these problems, system operators may use ESDs and
adjust their charging and discharging powers or dynamically adjust the
tap position of Voltage Regulator (VR) devices. An improved control
strategy for ESDs and VRs, which aims to maximize the lifetime of these
devices, can be effective in mitigating the impact of these issues from a
technological and economic perspective [11]. DSOs can guarantee the
delivery of reliable electricity to end users and optimize the advantages
of renewable energy integration by deploying these strategies. It is im-
portant to note that the approach to address these challenges depends
on the unique characteristics and requirements of the DS. Furthermore,
in several settings, the DSO is restricted in controlling local-level ESDs.

The goals of the control strategy for the ESDs at the local level
related to the local energy community may vary from the energy
management aims of the DSO. The local energy community hereby
is a group of consumers in a common area who shares similar inter-
ests. They may be grouped into energy communities that are locally
managed [12].

There are a number of factors to consider when developing a
control strategy for ESDs and VRs that aims to eliminate the mentioned
electrical system issues and maximize the lifetime of these devices from
a technological and economic perspective. Some key factors include the
following:

• Load forecasting [13]: Accurate load forecasting can help to opti-
mize the operation strategy of ESDs to minimize system overload
risk and extends the lifetime of ESDs and VRs.

• Power management [14]: Optimal adjustment of the charging
and discharging of ESDs based on renewable energy availability,
local goals, and dynamically altering VRs’ tap positions helps to
maintain voltage levels.

• Uncertainty planning [15]: It is important to consider contin-
gencies like equipment and communication failures, renewable
energy output uncertainties, and natural disasters for the oper-
ation of ESDs and VRs. A robust contingency plan with backup
systems protocols can minimize the impact of these events and
ensure effective system operation.
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• Integration of robust control and optimization algorithms [16]:
Advanced control and optimization algorithms can optimize the
operation strategy of ESDs and VRs to achieve predefined goals.
These goals commonly include maximizing renewable energy uti-
lization, minimizing environmental impact, operation and main-
tenance costs, and ensuring system reliability. Optimization algo-
rithms are widely used in the operation of DSs to achieve these
objectives.

To develop a control strategy for ESDs and VRs, it is crucial to
onsider the primary needs and characteristics of the system. This
ay require combining approaches and technologies, such as inte-

rating various control and optimization algorithms that collaborate
nd share data to achieve faster and more reliable solutions [17].
t is crucial to also consider the utilization of electrical power gen-
ration/consumption in DSs, as well as green electricity and energy
echnologies such as e.g., ESDs. Additionally, smart distributed energy
anagement systems in smart DSs, play a vital role in developing

ffective control strategies. Considering their scopes, a comprehensive
trategy is needed to optimize the performance of ESDs and VRs and
nhance the overall efficiency of the power system.

Most recent control techniques for VRs, such as On-Load Tap Chang-
rs (OLTCs), Step Voltage Regulators (SVRs), and Switchable Capacitors
SCs), are designed based on the assumption of unidirectional power
low in passive DSs. However, the integration of renewable energy
ources, such as PV panels and ESDs, can lead to multi-directional
ower flow in DSs, which can result in misleading situations for classic
ontrol strategies and cause issues such as voltage violations and tap
scillations of VR devices [1].

As the integration of DGs and ESDs into DSs becomes increasingly
idespread, the development of effective control strategies for these

echnologies has become a critical issue [2]. However, recent optimiza-
ion methods for DSs with high penetration of ESDs may have some
otential disadvantages, such as high computational cost and com-
lexity [18], interoperability between different strategies and methods,
ata privacy, and security concerns [16]. Therefore, to address the
hallenges posed by active DSs, it is necessary to carefully consider the
pecific problems in the system and the potential trade-offs between
ifferent approaches in solving them. In the following literature review,
arious control strategies that have been developed to optimize the
peration of ESDs and VRs in grids are explored.

.2. Literature review

Recently, there has been a lot of research on finding the best ways
o control devices in distribution systems. Researchers have developed
ontrol strategies for DGs, ESDs, and VRs using different methods such
s advanced control algorithms [19], reinforcement learning [20], and
euristic methods [21]. Additionally, there has been some research on
inding the best strategies to optimize the operation of power electronic
evices in DSs [1].

Recent research studies suggest two methods of operating devices in
Ss: centralized and decentralized operation strategies. In centralized
peration, a single controller has the responsibility of managing all
evices within the system. On the other hand, decentralized operation
elies on the collaborative efforts of multiple controllers. Researchers
ave extensively studied a range of techniques aimed at enhancing the
erformance of devices within the system. From them, the most popular
pproaches are data sharing [22], single optimization techniques [23],
ulti-objective optimization techniques [24,25], and neural network

pplications [20]. Hereby, most of the strategies found in the literature
re based on the centralized approach [26] and used to operate the
ystem towards specified optimization goals.

The main predefined goals of the optimization problem in studies
ith centralized control methods are minimizing voltage deviations,
3

mproving device lifetime and losses of the systems, or reducing peak
demand. Coordinating DGs, OLTCs, and SCs using a centralized control
method for day-ahead coordination is investigated in [27]. The same
method is used for managing the active and reactive power of DGs
in a grid [23], for sharing reactive power between several micro-
grids [28], and for voltage rise mitigation by controlling the charge
and discharge powers of ESDs [29]. Although these methods have
the potential to determine the best control strategies, they depend on
costly communication systems and may be less reliable compared to
decentralized methods.

Decentralized control strategies rely on local controllers and decision
making processes rather than a centralized control system. They involve
communication between different areas within the DS to coordinate the
operation of devices and the system. These strategies have been widely
applied to a range of tasks in DSs. Among them are several implementa-
tions of the decentralized methods in DSs, such as the charge/discharge
of ESDs [30], reactive power-sharing [31] and curtailment of the output
of DG units [26], and coordination among VRs and PV output [32].

Decentralized control approaches are generally considered to be
more reliable than centralized methods due to their inherent decen-
tralized nature, which makes them less sensitive to communication
failures. Moreover, these approaches enable the optimization of both
local and global goals in the optimization process. Local controllers
can effectively consider specific goals and constraints within their
respective areas while ensuring the safe operation of the system [33].

1.3. Contributions and organization

This study presents two decentralized optimization models to im-
prove the operation of ESDs in local low-voltage communities of DSs
and VRs in medium-voltage DSs. The models aim to simultaneously
minimize technical problems in the DSs and maximize the lifetime of
VRs and ESDs. Two DSs used to test the methodologies are the IEEE
33-bus and 69-bus systems. The considered technical problems in DSs
include minimizing voltage violations or minimizing energy losses in
the feeders. The proposed decentralized model determines the optimal
control strategy for ESDs locally at each low-voltage community using
two different methods: Profile Steering (PS) [34] and an Advanced
Arithmetic Optimizer (AAO). Additionally, the study proposes using the
AAO algorithm to determine near-optimal tap positions of VRs.

In addition to determining the optimal control strategy for VRs and
ESDs, this study proposes an improved version of the Arithmetic Op-
timization Algorithm (AOA) [35] called the AAO. The AAO algorithm
is designed to improve the convergence speed of the AOA to solve the
specific problem of voltage control in DSs. The proposed AAO algorithm
increases the search capability of the AOA and makes it better suited
for handling mixed-integer nonlinear programming (MINLP) problems.

Finally, this study tests the quality of the solutions found by the
proposed methods on the defined problem. For this, the optimization
results obtained from the proposed AAO method are compared to
those from the AOA, Grey Wolf Optimization (GWO) [36], and Particle
Swarm Optimization (PSO) [35] in terms of the speed of convergence
and the quality of the solutions. The key contributions of this article
within the scope of the operation and planning of green power/energy
technologies, smart DSs, and active network management include the
following:

• A new objective function for solving the voltage violations while
maximizing the lifetime of the used assets.

• A new objective function for minimizing energy losses of the
systems while maximizing the lifetime of the used assets.

• Investigation of the potential benefits of the proposed decentral-
ized methods for the operation of ESDs and the extension of the
control strategy by using VRs to eliminate voltage magnitude
deviations.

• Investigation of the potential benefits of the decentralized method
over a centralized approach for the proposed objective function
in the optimization process.
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• A novel AAO algorithm that solves MINLP problems using ad-
ditional stopping criteria to improve its convergence character-
istics and allows for finding better solutions compared to other
metaheuristic algorithms.

The structure of the paper is as follows. In Section 2, the state-
ent of the problem, including the objective functions and constraints

or both centralized and decentralized methods, is described. Sec-
ion 3 is devoted to the AAO and PS methods and the implementation
f the problem in centralized and decentralized methods. Section 4
resents the simulation results for the test systems application, and final
onclusions are provided in Section 5.

. Formulation of the problem

There are two goals for the optimization process under considera-
ion. The first goal aims to minimize deviations in voltage magnitude
rom a reference value in the busses, while also maximizing the lifetime
f ESDs and VRs in DSs. The objective is to ensure a reliable supply of
lectricity to end users. Similarly, using the same approach, a second
oal is to minimize energy losses in the feeders of the system, along
ith maximizing the lifetime of the devices. To attain optimal solutions

or these proposed goals, both centralized and decentralized methods
an be employed.

For the centralized approach, any optimization method for mini-
izing the objective function and finding the optimal set of control
ecisions for the VR and ESD units may be used. The optimization
lgorithms can be implemented in a central control center, where all
he necessary data is available to be used in the optimization process.

For the decentralized approach, we can use distributed optimization
lgorithms to achieve a set of control decisions for ESDs based on lower-
evel optimization for local load points and then obtain the optimal VRs
ap scheduling for the system as the upper-level optimization problem.
his approach allows each ESD to make its own control decisions based
n local information and communication with its neighbors to reduce
he complexity of the problem for upper-level controllers.

The modeling of the devices, corresponding problem formulations,
nd proposed objective function for both approaches are explained in
ections 2.1 and 2.2.

.1. Centralized approach

In the centralized approach, a central unit processes data from
he entire system and makes control decisions to achieve the desired
bjectives. To optimize the operation of the DS, we formulate an opti-
ization objective function that captures the key performance metrics

f the system. In order to balance the conflicting goals of minimizing
oltage deviation and energy losses while maximizing the lifetime of
he ESDs and VRs, two new objective functions are proposed. The sub-
ections below present the objective function, the constraint for the
entralized approach, and the optimization problem defined within the
entralized method.

.1.1. Objective function and constraints
The proposed objective function to minimize the voltage violation

hile maximizing the expected lifetime of the ESDs and VRs is denoted
y 𝑓𝑣. This objective function is used to optimize the operation of 𝑛
SDs (𝑃 ESD) and 𝑚 VRs (𝑋⃗TAP). Note that the types of control variables
or the problem are as follows: 𝑃 ESD represents the continuous control
ariables for the charge/discharge of ESDs and 𝑋⃗TAP are the integer
ontrol variables specifying the tap positions of VRs. The function is
omposed of three different terms, each representing a specific goal.
he first term, represented by 𝛼 ⋅𝑣, aims to minimize voltage violations
4

in the network by forcing the voltage magnitudes to be as close as possi-
ble to the reference voltage magnitude. The mathematical formulation
for this term is as follows:

𝑣 =
𝑁𝑏
∑

𝑗=1

𝑁𝑇
∑

𝑡=1

𝑁𝑝
∑

𝑝ℎ=1
(𝑉𝑗,𝑡,𝑝ℎ(𝑋⃗TAP, ⃗𝑃 ESD) − 𝑉𝑟𝑒𝑓𝑗,𝑡,𝑝ℎ )

2, (1)

here 𝑉𝑗,𝑡,𝑝ℎ is the output of a power flow analysis (voltage magnitude
btained by using the Laurent power flow [37]) for a DS with 𝑁𝑏 busses

and 𝑉𝑟𝑒𝑓𝑗,𝑡 is a predefined voltage magnitude reference for a bus at time
interval 𝑡.

The second term, ∑𝑛
𝑖=1 𝑤𝑖 ⋅ 𝜏𝑖, aims to maximize the lifetime of 𝑛

ESDs. The expected lifetime maximization for an ESD can be calculated
as follows:

𝜏 =
𝑁𝑇
∑

𝑡=1
(SOC𝑡( ⃗𝑃 ESD) − SOC𝑟𝑒𝑓𝑡 )

2, (2)

where the state of charge for an ESD at time 𝑡 is shown by SOC and
SOC𝑟𝑒𝑓 denotes to a reference SOC for the ESD.

The third term, ∑𝑚
𝜇=1 𝑢𝜇 ⋅𝛾𝜇 , aims to maximize the lifetime of 𝑚 VRs.

𝛾 for a VR is formulated as follows:

𝛾 =
𝑁𝑇
∑

𝑡=1

𝑁𝑝
∑

𝑝ℎ=1
(Tap𝑡,𝑝ℎ(𝑋⃗TAP) − Tap𝑟𝑒𝑓𝑡,𝑝ℎ )

2. (3)

Hereby, Tap𝑡,𝑝ℎ is denoting to 𝑝ℎ𝑡ℎ tap position of a VR at time
𝑡. Note that the weighting factors 𝛼, 𝑤, and 𝑢 are used to adjust the
importance of each goal in the overall objective function.

The formulation for the objective functions by combining all three
terms is as follows:

𝑓𝑣(𝑋⃗TAP, 𝑃 ESD) = 𝛼 ⋅ 𝑣 +
𝑛
∑

𝑖=1
𝑤𝑖 ⋅ 𝜏𝑖 +

𝑚
∑

𝜇=1
𝑢𝜇 ⋅ 𝛾𝜇 , (4)

The second objective function (𝑓𝑙) is proposed to minimize the
energy losses in the feeders while maximizing the expected lifetime
of the ESDs and VRs. The only difference with the previous objective
function is in the first term of the function (𝛼 ⋅ 𝑙) that aims to minimize
the energy losses. 𝑙 represents the value of the energy losses in kWh,
and 𝑃 𝑙𝑗,𝑡,𝑝ℎ is the output of a power flow analysis (losses) for a DS with
𝑁𝑙 lines.

𝑙 =
𝑁𝑙
∑

𝑗=1

𝑁𝑇
∑

𝑡=1

𝑁𝑝
∑

𝑝ℎ=1
𝑃 𝑙𝑗,𝑡,𝑝ℎ(𝑋⃗TAP, ⃗𝑃 ESD), (5)

The formulation for the objective functions (𝑓𝑙) is as follows:

𝑓𝑙(𝑋⃗TAP, 𝑃 ESD) = 𝛼 ⋅ 𝑙 +
𝑛
∑

𝑖=1
𝑤𝑖 ⋅ 𝜏𝑖 +

𝑚
∑

𝜇=1
𝑢𝜇 ⋅ 𝛾𝜇 , (6)

To calculate the value of 𝜏 in (2), a set of constraints for the
SOC of an ESD with a capacity of 𝐸 is needed. A formulation defines
the evolution of the SOC of the ESD over time. It states that the
SOC at time 𝑡 is equal to the SOC at the previous time step plus the
amount of charge/discharge power of the ESD within this interval. The
mathematical formulation for the constraint is as follows:

𝑆𝑂𝐶ESD
𝑡 = 𝑆𝑂𝐶ESD

𝑡−1 + 𝛥𝑡
𝐸ESD

∑

𝑝ℎ
𝑃 ESD
𝑝ℎ,𝑡 , ∀ 𝑡 ∈ 𝑁𝑇 (7)

The next constraint restricts the range of the SOC of the ESD by
stating that the SOC must be between lower and upper capacity bounds,
represented by 𝜆 and 𝜆, respectively.

𝜆𝐸ESD ≤ 𝑆𝑂𝐶ESD
𝑡 ≤ 𝜆𝐸ESD, ∀ 𝑡 ∈ 𝑁𝑇 (8)

The last constraint limits the range of the charge/discharge powers
f the ESD between a lower bound of -𝛽 and an upper bound of 𝛽. The
onstraint is as follows:

− 𝛽 ≤
∑

𝑃 ESD
𝑝ℎ,𝑡 ≤ 𝛽, ∀ 𝑡 ∈ 𝑁𝑇 . (9)
𝑝ℎ
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Note that a positive value for 𝑃 ESD
𝑗,𝑝ℎ,𝑡 expresses the charging of an

SD device, and a negative value corresponds to the discharging of the
SD. Finally, 𝛥𝑡 is the length of time intervals in the simulation.

To calculate the objectives (4) and (6), the power flows for a
iven DS considering the tap positions of VRs and 𝑃 ESD is needed. In
ddition to the power flow equations, it is necessary to incorporate a
ower balance at every node in order to enhance the self-consumption
apability of each node within the distribution system. The power
alance for the total power generated by PV systems and for the main
eeder, the charge/discharge of ESDs, and the power consumed by the
oads are formulated as follows:
(

𝑋⃗TAP, 𝑃 ESD
)

= 0 (10)

𝑗,𝑝ℎ,𝑡=𝑃 PV
𝑗,𝑝ℎ,𝑡+𝑃

ESD
𝑗,𝑝ℎ,𝑡−𝑃

Load
𝑗,𝑝ℎ,𝑡 ,

∀ 𝑗 ∈ 𝑁𝑏, 𝑡 ∈ 𝑁𝑇 , 𝑝ℎ ∈ 𝑁𝑝. (11)

Note that based on equality and inequality constraints, the injected
ower from local communities into the grid is unrestricted and depends
n the objective function used by the local communities to help the grid
n reducing losses.

.1.2. Problem formulation for the centralized approach
The centralized approach for optimizing the operation of the DSs is

s follows:

min
𝑤.𝑟.𝑡 𝑋⃗TAP ,𝑃 ESD

𝑓centralized(𝑋⃗TAP, 𝑃 ESD) (12)

𝑠.𝑡. (7), (8), (9), (10), (11),

Tap ≤ 𝑋Tap
𝑡,𝑝ℎ ≤ 𝑋

Tap

∀𝑋Tap ∈ 𝑋⃗TAP, 𝑡 ∈ 𝑁𝑇 , 𝑝ℎ ∈ 𝑁𝑝.

The goal hereby is to find optimal values for 𝑋⃗TAP and ⃗𝑃 ESD

whereby for the centralized objective 𝑓centralized (either 𝑓𝑣 or 𝑓𝑙 pre-
sented in (4) and (6)).

2.2. Decentralized approach

For the decentralized method, we can use a bi-level optimization
approach, where a local controller solves the lower-level optimization
problem to optimize the scheduling of the ESDs based on local com-
munity needs, and the upper-level optimization problem optimizes the
scheduling of VRs with respect to the obtained lower-level results and
the DS parameters. The problem formulation for the upper and lower
level controllers are explained in the following sub-sections.

2.2.1. Lower-level optimization
This problem for the lower-level optimization problem at 𝑘th con-

troller can be written as:

min
𝑤.𝑟.𝑡 𝑃 ESD

𝑘

𝑓𝑙𝑜𝑤𝑒𝑟(𝑃 ESD
𝑘 ) =

√

√

√

√

𝑁𝑇
∑

𝑡=1

(

𝑃 PV
𝑘,𝑝ℎ,𝑡+𝑃

ESD
𝑘,𝑝ℎ,𝑡−𝑃

Load
𝑘,𝑝ℎ,𝑡

)2
(13)

𝑠.𝑡.
(

𝑃 ESD
𝑘

)

= 0, (14)

𝑘,𝑝ℎ,𝑡=𝑃 PV
𝑘,𝑝ℎ,𝑡+𝑃

ESD
𝑘,𝑝ℎ,𝑡−𝑃

Load
𝑘,𝑝ℎ,𝑡,

∀ 𝑡 ∈ 𝑁𝑇 , 𝑝ℎ ∈ 𝑁𝑝 (15)

𝑂𝐶ESD
𝑘,𝑡 = 𝑆𝑂𝐶ESD

𝑘,𝑡−1 +
𝛥𝑡

𝐸ESD
𝑘

∑

𝑝ℎ
𝑃 ESD
𝑘,𝑝ℎ,𝑡,

∀ 𝑡 ∈ 𝑁𝑇 , 𝑝ℎ ∈ 𝑁𝑝 (16)

𝑘𝐸
ESD
𝑘 ≤ 𝑆𝑂𝐶ESD

𝑘,𝑡 ≤ 𝜆𝑘𝐸
ESD
𝑘 , ∀ 𝑡 ∈ 𝑁𝑇 (17)

− 𝛽𝑘 ≤
∑

𝑝ℎ
𝑃 ESD
𝑘,𝑝ℎ,𝑡 ≤ 𝛽𝑘, ∀ 𝑡 ∈ 𝑁𝑇 . (18)
5

L

Hereby 𝑃 ESD
𝑘 represents the control variables for local energy com-

unity 𝑘 and 𝑓𝑙𝑜𝑤𝑒𝑟(𝑃 ESD
𝑘 ) is the objective function for the lower-level

ptimization problem. The objective of the lower-level optimization
roblem is to flatten the local power profile, in order to decrease the
eak loads and valleys in the power profile. It is important to note that
n the event of overproduction at the local level, the objective function
rioritizes the maximization of energy community self-consumption.
ote that the best solutions (𝑃 ESD∗) found in lower-level optimization
roblems (𝑃 ESD∗

𝑘 , ∀𝑘 ∈ 𝑁𝑏) for each local community is the input to the
pper-level optimization.

.2.2. Upper-level optimization
The upper-level optimization problem is given by:

min
𝑤.𝑟.𝑡 𝑋⃗TAP ,𝑃 ESD*

𝑓𝑢𝑝𝑝𝑒𝑟(𝑋⃗TAP, 𝑃 ESD*) (19)

s.t,
(

𝑋⃗TAP
)

= 0 (20)

𝑗,𝑝ℎ,𝑡=𝑃 PV
𝑗,𝑝ℎ,𝑡+𝑃

ESD
𝑗,𝑝ℎ,𝑡−𝑃

Load
𝑗,𝑝ℎ,𝑡 ,

∀ 𝑗 ∈ 𝑁𝑏, 𝑡 ∈ 𝑁𝑇 , 𝑝ℎ ∈ 𝑁𝑝 (21)
Tap ≤ 𝑋Tap

𝑡,𝑝ℎ ≤ 𝑋
Tap

∀𝑋Tap ∈ 𝑋⃗TAP, 𝑡 ∈ 𝑁𝑇 , 𝑝ℎ ∈ 𝑁𝑝 (22)

𝑃 ESD∗
𝑘 = argmin

𝑤.𝑟.𝑡 𝑃 ESD
𝑘

𝑓𝑙𝑜𝑤𝑒𝑟(𝑃 ESD
𝑘 )

, ∀𝑘 ∈ 𝑁𝑏 (23)

s.t. (14)–(18). (24)

ere the best values for the control variables 𝑋⃗TAP and 𝑃 ESD* have to
e found with respect to the objective 𝑓𝑢𝑝𝑝𝑒𝑟 which can be either 𝑓𝑣 or
𝑙.

The goal for the upper-level objective function is to minimize a
echnical parameter of DSs, such as voltage violations or energy losses,
hile simultaneously maximizing the overall lifetime of the ESDs and
Rs within the DS.

. Solution methodology

The proposed solution methodology for managing the operation
f a DS is based on the problem outlined in the previous section
nd presented in this section by utilizing the AAO algorithm as the
ain tool. Additionally, the PS method is used to find the optimal

chedules of the ESDs in local communities. Finally, we describe how
e have implemented the AAO and PS algorithm in both centralized
nd decentralized settings.

.1. Advanced Arithmetic Optimizer

The AAO algorithm was developed to improve the searchability of
he AOA [35] in finding the global optimal solutions. The aim of the
AO is to improve the approximations of the global minimum solution

ound by the AOA algorithm. The optimization process in the AAO
lgorithm is comprised of steps given in the following subsections:

.1.1. Initializition
In the first step, a set 𝑋⃗ = {𝑋1,… , 𝑋𝑁} of 𝑁 possible solutions is

enerated randomly, whereby

𝑚 = [𝑋𝑚,1,… , 𝑋𝑚,𝐷], 𝑚 = 1, 2,… , 𝑁 (25)

ach represents a control variable restricted by the following bound-
ries:
B𝑛 ≤ 𝑋𝑚,𝑛 ≤ UB𝑛, 𝑚 = 1, 2,… , 𝑁 and 𝑛 = 1, 2,… , 𝐷, (26)



International Journal of Electrical Power and Energy Systems 153 (2023) 109330B. Ahmadi et al.

𝑈
F
p
a
v
e
v

𝑋

3

c
B
u
e
i
i
c
t

t
t
m
t
t
p
b
t
r
i
a

a
u
𝑚
𝑛
g
b
f
s
𝑋

t
a
e
v
o

s
a
a
a
i
e
s

b
c
t
i
w
s
d
o

t
C
b
t
e

A
p
c
c

𝑋

r
t
m
o
t

d
e
|

t
t

a
a
A

3

u
t
m
p
w
c
t
s
p
t
a

p
c
o
a
r
n
(

a
o
f
e
e
t
u

i
a
t

where 𝐷 is the number of control parameters in each solution. 𝐿𝐵𝑛 and
𝐵𝑛 are the lower and upper boundaries for the 𝑛th control parameter.
inally, each solution is valued using the objective function for the
roblem (𝑋𝑚 → 𝐹𝑚 where 𝐹𝑚 is the objective value for 𝑚th solution),
nd the best solution 𝐹 ∗ is selected for a solution with the best 𝐹
alue (smallest value from 𝐹 values for minimization problems) at
ach iteration. The corresponding solution for finding the best objective
alue is called the best solution and is illustrated by 𝑋∗.
∗ = [𝑋∗

1 ,… , 𝑋∗
𝐷] (27)

.1.2. Evaluation of the solutions
The main loop of the optimization process in the AAO algorithm [33]

onsists of two phases: an exploitation phase and an exploration phase.
oth phases aim to improve the value of the objective function by
pdating the solutions in an effort to find the optimal solution. The
xploration phase focuses on searching the entire solution space to
dentify promising new candidate solutions, thereby not getting stuck
n locally optimal solutions. The exploitation phase, on the other hand,
oncentrates on exploring the local areas of the solution space around
he candidates identified in the exploration phase.

The evaluation of solutions, either in the exploration phase or in
he exploitation phase at each iteration of the main loop, is based on
he following formulations. For the exploration phase, the method uses
ultiplication and division from the arithmetic operators to update

he solutions. The AAO algorithm employs a specific method to adjust
he 𝑛th control parameter of the 𝑚th solution during the exploration
hase. This is done by utilizing the 𝑛th control parameter of the current
est solution, denoted as 𝑋∗, and a random number generated by
he equation 2(𝑟1 − 0.5)((𝑈𝐵𝑛 − 𝐿𝐵𝑛)𝑟2 + 𝐿𝐵𝑛), where 𝑟1 and 𝑟2 are
andomly generated numbers between 0 and 1. This random number
s then multiplied or divided by the 𝑛th control parameter of 𝑋∗ with
probability of 50%. The resulting value is referred to as 𝑋exploration

𝑚,𝑛 .
For the exploitation phase, the subtraction and addition operators

re used to evaluate the positions of a solution. The AAO algorithm
ses a specific method to update the 𝑛th control parameter of the
th solution during the exploitation phase. The algorithm utilizes the
th control parameter of the best solution 𝑋∗

𝑛 , and a random number
enerated by 2(𝑟1−0.5)𝑋𝑚,𝑛, where 𝑟1 is a randomly generated numbers
etween 0 and 1. This random number is then added to or subtracted
rom the 𝑛th control parameter of 𝑋∗ with a probability of 50% for
ubtraction and addition operators to form an updated solution called

exploitation
𝑚,𝑛 .

The evaluation method used by the AAO algorithm to determine
he new value of the 𝑛th control parameter of the 𝑚th solution uses

decision factor 𝐷𝐹 . It is an exponential function that decreases
xponentially from 100% to 0% over the number of iterations. The new
alue of 𝑋𝑚,𝑛 is set to 𝑋exploration

𝑚,𝑛 with the chance of 𝐷𝐹 and the change
f evaluation to 𝑋exploitation

𝑚,𝑛 is 100% −𝐷𝐹 .
This process is repeated for each control parameter, and for each

olution. The AAO algorithm uses this method to adjust its solutions
nd converges to an optimal one. It uses a balance between exploration
nd exploitation. The exploitation is increased as the iteration progress,
nd the algorithm explores less and less the solution space, as the
teration progresses and gets closer to the maximum iteration, the
xploitation takes over, and the algorithm starts exploiting the best
olution it found so far.

For the proposed approach to be robust, it is important to have a
alance between the exploitation and exploration phases because this
an significantly affect the efficiency and effectiveness of the optimiza-
ion process. The exploitation phase generally focuses on refining and
mproving upon promising solutions that have already been identified,
hile the exploration phase seeks to identify new, potentially better

olutions by searching a wider area of the solution space. A well-
esigned strategy for switching between these two phases can help the
ptimization algorithm strike a balance between thoroughly searching
6

he solution space and efficiently zooming in on high-quality solutions.
omparing the optimization process in AAO to the AOA formulations,
oth the exploitation and exploration phases were modified to improve
he global search capability in the first iterations and improve the
xploitation in the last iterations.

In addition to modifying the exploitation and exploration phases,
AO also incorporates other techniques to improve the optimization
rocess. One such technique is the use of a new boundary check method
alled mirroring correction [35]. The formulation for the mirroring
orrection process is as follows:

𝑚,𝑛 =

⎧

⎪

⎨

⎪

⎩

LB𝑛 + (LB𝑛 −𝑋𝑚,𝑛), if 𝑋𝑚,𝑛 < LB𝑛;
UB𝑛 − (𝑋𝑚,𝑛 − UB𝑛), if 𝑋𝑚,𝑛 > UB𝑛;
𝑋𝑚,𝑛, otherwise.

(28)

The mirroring correction method ensures that the decision variables
emain within their defined bounds by projecting the variable back into
he feasible region if it falls outside the bounds. In the context of the
irroring process used for checking variable constraints in the AAO

ptimization method, mirroring correction is applied iteratively until
he variable remains within the specified boundaries.

Additionally, AAO utilizes a dynamic stopping criterion [23] to
etermine when the optimization process should terminate, further
nhancing its efficiency. Specifically, the AAO algorithm stops when
𝐹 ∗(𝑖𝑡𝑒𝑟) − 𝐹 ∗(𝑖𝑡𝑒𝑟 − 𝑛)| < 𝜖, where 𝜖 is a pre-specified tolerance, 𝑖𝑡𝑒𝑟 is
he current iteration number, and 𝑛 is a predefined integer number for
he comparison of the best solutions with 𝑛 solution before.

It is important to note that these modifications were made with the
im to improve the global search capability of the optimization process
nd achieving better results. The AAO algorithm steps are shown in
lgorithm 1.

.2. Profile Steering

Demand side management (DSM) encompasses the effective manip-
lation of electricity production and consumption through the utiliza-
ion of controllable appliances, such as flexible devices (e.g., washing
achines, electric vehicles, and batteries). Each of these appliances
ossesses individual flexibility constraints that dictate the extent to
hich their power profile can be adjusted. DSM algorithms play a

rucial role in determining the optimal operation time and mode for
hese appliances, taking into account their respective constraints. Con-
equently, a power profile is computed, which aggregates the power
rofiles of all appliances. The primary objective of a DSM approach is
o identify the most efficient operation of these appliances, with the
im of minimizing a defined objective function.

PS [19] is a heuristic DSM approach in which a desired power
rofile is used as the steering signal to control the production and
onsumption of electricity power in an electrical community. The goal
f PS is to minimize the distance between the desired power profile
nd the obtained power profile from the planning algorithm while
especting the constraints of the controllable appliances. Any vector
orm can be used to measure the distance between the two profiles
e.g., the Euclidean distance).

In the domain of DSM, the purpose of optimal planning for flexible
ppliances entails determining the optimal starting intervals for a set
f 𝑀 devices. This optimization seeks to minimize a specified objective
unction while adhering to the constraint that the total power within
ach interval remains below a predetermined maximum value. How-
ver, due to the computational complexity associated with calculating
he exact optimal solution, and therefore in PS, a heuristic algorithm is
sed as an alternative solution.

The PS algorithm for finding the optimal operation of the devices
n a DSM setting with multiple appliances starts with requesting each
ppliance to optimize its own power profile to be as close as possible
o a certain desired profile, which is a vector denoting the desired
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Algorithm 1: AAO algorithm.
Set the basic parameters of the algorithm (e.g., 𝑁 and 𝐷);
Set the input parameters of the problem and specify their boundaries (𝐿𝐵 and 𝑈𝐵);
Initialize the random solutions ( ⃖⃖⃗𝑋);
Initialize a random solution as the best solution (𝑋∗) and find the objective value for it (𝐹 ∗);
while iter ≤ iterMax do

for Each solution do

Calculate 𝐷𝐹 value based on iter using 𝐷𝐹 = 100 ⋅ exp
(

iter⋅ln( 1
100 )

iterMax

)

;

for Each control parameter do
Check the boundaries of the control parameters using the mirroring correction method ;
Generate 𝑟 within [0,100];
Generate 𝑅1 within [0,1];
if 𝑟 ≤ 𝐷𝐹 then

if 𝑅1 ≤ 0.5 then
𝑋exploration

𝑚,𝑛 = 𝑋∗
𝑛 ÷ 2(𝑟1 − 0.5)((𝑈𝐵𝑛 − 𝐿𝐵𝑛)𝑟2 + 𝐿𝐵𝑛),

else
𝑋exploration

𝑚,𝑛 = 𝑋∗
𝑛 × 2(𝑟1 − 0.5)((𝑈𝐵𝑛 − 𝐿𝐵𝑛)𝑟2 + 𝐿𝐵𝑛),

end
𝑋𝑚,𝑛 = 𝑋exploration

𝑚,𝑛 ;
else

if 𝑅1 ≤ 0.5 then
𝑋exploitation

𝑚,𝑛 = 𝑋∗
𝑛 + 2(𝑟1 − 0.5)𝑋𝑚,𝑛,

else
𝑋exploitation

𝑚,𝑛 = 𝑋∗
𝑛 − 2(𝑟1 − 0.5)𝑋𝑚,𝑛,

end
𝑋𝑚,𝑛 = 𝑋exploitation

𝑚,𝑛 ;
end

end
Calculate the value of the objective function (𝐹 ) for 𝑋𝑚;
Update 𝑋∗ and 𝐹 ∗ if 𝑋𝑚 solution with 𝐹 value is better;

end
iter = iter + 1;
Check if the dynamic stopping criterion is satisfied;

end
Return 𝑋∗ and 𝐹 ∗;
-

community power profile for a finite number of discrete time intervals.
The aggregated power profile of the appliances in the community is
then calculated. The difference between this aggregated power profile
and the desired profile is determined. Each appliance is requested to
propose a new candidate profile that reduces the difference between the
actual and desired household power profile. After generating the new
profile, the appliance reports its new profile. The algorithm chooses the
appliance that provides the best improvement to the objective value
(i.e., minimizes the Euclidean distance between the desired and aggre-
gated community profile the most), and its profile is replaced with the
proposed candidate profile. Note that the desired profile corresponds
to the optimal profile expected by the lower-level objective function.
This iterative process is repeated until no device provides a further
significant improvement. The PS algorithm is shown in Algorithm
2 [19].

3.3. Implementation of the optimization algorithms in centralized method

In the centralized method, a central controller is responsible for
optimizing the operation of the ESDs and VRs. The goal of the central
controller is to minimize the technical objective of the DSs (either
voltage deviation or energy losses) besides maximizing the lifetime of
the ESDs and VRs. The problem we are dealing with is an MINLP prob-
lem. In comparison to mathematical optimization techniques, heuristic
methods exhibit various advantages. They are particularly advanta-
geous for real-world applications due to their ease of implementa-
tion [38]. Moreover, heuristic methods offer significant benefits in
7

terms of computational efficiency and the ability to generate high-
quality solutions [39]. To solve the optimization problem presented in
Section 2.1.2, the AAO algorithm was utilized.

Within the AAO algorithm in the centralized method for optimizing
the operation of the ESDs and VRs, the central controller can follow
these steps:

1. Specify the objective function and the constraints that capture
the performance metrics and operational limits of the system.

2. Initialize the first candidate solutions randomly within the bound
aries of the control variables.

3. Check the control variables using the mirroring method to bring
the control variables within the boundaries.

4. Calculate the objective function value for the solutions.
5. Update the control variable of each candidate solution based

on the formulations for evaluating solutions within the explo-
ration/exploitation phase.

6. Repeat steps 3–5 until a stopping condition (maximum number
of iterations or dynamic stopping criteria) is met.

In order to collect data and send control signals, the central con-
troller needs to communicate with the ESDs and VRs. By utilizing the
AAO algorithm in this way, the central controller aims to minimize
voltage deviation/energy losses while simultaneously maximizing the
lifetime of the ESDs and VRs based on the objective function of the
process. The flowchart of the centralized optimization based on the
AAO method is shown in Fig. 1. Note that the control variables for the
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Fig. 1. Flowchart of the centralized optimization based on the AAO method.
Algorithm 2: PS algorithm for finding the optimal power profile of
an energy community.
Provide the algorithm with a desired objective function
formulation;

𝑃𝑚: request from each flexible device 𝑚 ∈ {1, ...,𝑀} a predicted
power profile ;
alculate aggregated power profile for the community with fixed
loads (𝑃𝐿) and flexible devices using 𝑃 = 𝑃𝐿 +

∑𝑀
𝑚=1 𝑃

𝑚 ;
while 𝜖𝑚 ≤ 𝜖 do

𝑑 = 𝑃 − 𝑃 ∗ (difference between this power profile and the
desired profile);
for 𝑚 ∈ {1, ...,𝑀} do

𝑑𝑚 = 𝑃𝑚 − 𝑑 ;
Find a new power profile 𝑃𝑚

𝑛𝑒𝑤 that minimizes
||𝑃𝑚

𝑛𝑒𝑤 − 𝑑𝑚||2;
Calculate the relevant flexibility (𝜖𝑚) for the device using
𝜖𝑚 = ||𝑃𝑚 − 𝑑𝑚||2 − ||𝑃𝑚

𝑛𝑒𝑤 − 𝑑𝑚||2;
end
Find the m𝑡ℎ device with maximum contribution 𝜖𝑚 ;
Update the power profile for m𝑡ℎ device 𝑃𝑚 = 𝑃𝑚

𝑛𝑒𝑤;
Update 𝑃 = 𝑃 − 𝑃𝑚 + 𝑃𝑚

𝑛𝑒𝑤;
nd
eturn 𝑃𝑚 for 𝑚 ∈ {1, ...,𝑀} ;

problem (being integer control variables (𝑋⃗TAP) and continuous control
variables (𝑃 ESD)) are the solutions of the set 𝑋⃗ in the AAO method, and
the 𝑈𝐵 and 𝐿𝐵 for the control variables are defined based on (9) and
(22). Moreover, 𝐹 in AAO is the value of the objective function for the
problem (either (4) or (6)).
8

3.4. Implementation of the optimization algorithms in decentralized method

In the decentralized method, a local coordinator determines the best
operation of ESDs in each energy community by using either PS or AAO,
and this best operation strategy is used in the upper-level optimization
problem to find the tap positions of the VRs by AAO. The goal is to
minimize voltage deviation or energy losses and maximize the lifetime
of the ESDs and VRs.

To implement the AAO algorithm and PS in the decentralized
method for optimizing the operation of the ESDs and VRs, each device
can take the following actions:

• Lower-level optimization

1. Define the lower-level optimization objective function and
constraints.

2. Solve the lower-level problem (Eqs. (13) to (18)) for an
ESD attached to the local controller using either the PS
method or the AAO method.

3. Communicate the best solution found by local controllers
to the upper-level controllers and define the upper-level
optimization objective function and constraints.

• Upper-level optimization

4. Initialize the first candidate solutions (𝑋⃗TAP) randomly
within the boundaries of the control variables (22).

5. Check the control variables using the mirroring method to
bring them into the boundaries.

6. Calculate the objective function value (𝑓𝑢𝑝𝑝𝑒𝑟(𝑋⃗TAP, 𝑃 ESD*))
for each solution.

7. Update the control variable of each candidate solution
using the exploration/exploitation phase evaluation formu-

lations of AAO algorithm.
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Fig. 2. Energy community locations in IEEE 33-bus system.
Fig. 3. Energy community locations in IEEE 69-bus system.
8. Repeat steps 5–7 until a stopping condition is met.
9. Report the best solution found for the upper-level opti-

mization problem.

By implementing the PS method or the AAO algorithm in this manner,
ESDs attached to local controllers can be optimized based on the
lower-level optimization problems. Besides, by implementing the AAO
algorithm for solving the upper-level optimization problems, the overall
goals of the decentralized problem can be met.

4. Test systems and results

4.1. Test systems and energy communities

The IEEE 33 and 69 bus DSs [40] are used in our simulation study.
Within these models, the main modifications are the addition of PV
systems and ESDs at several busses of the system referred to as the local
energy community in this paper. Real data concerning solar irradiation
and load curve behavior are used to model the PV yield and load
characteristics for the day-ahead optimization. For the test systems, the
locations and sizes of the VRs, PVs, and ESDs that are added to the
systems are given in [41].

In the IEEE 33-bus and 69-bus test systems, the PV and ESD are
connected to a local community attached to a bus of the system. The
locations of the local energy communities for lower-level optimization
in the test systems are shown in Figs. 2 and 3. The characteristic of local
energy communities are based on the same system characteristics of the
Aardehuizen community [42] in Olst, the Netherlands. This community
consists of 23 residential houses and one communing building. The
main goal behind this community is living responsibly with respect to
the environment. In this regard, the houses are built using sustainable
materials, and the goal is to satisfy their energy requirements using
sustainable sources such as PV panels. The proper sizes of the PV
units and ESDs in the Aardehuizen community are given in [22],
determined using a multi-objective optimization problem. Different
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Pareto solutions achieved with differing parameters [41] are used to
model different local communities attached to the test systems. The
Aardehuizen community configuration is shown in Fig. 4.

The centralized method of managing energy involves gathering
information on control variables and data such as load, PV, and ESD
units from households in a local community. This information is then
communicated to a centralized controller in the IEEE 33 and 69 bus
systems. It is worth noting that with this method the power profile of
each bus is aggregated, and system data is shared with the centralized
controllers.

On the other hand, the decentralized method utilizes a controller at
each local community to optimize the control variables for household
energy management. These local controllers then share the aggre-
gated power profile of the community with other controllers, thereby
facilitating the upper-level optimization process.

4.2. Results and discussion

To implement the optimization algorithms in a centralized manner,
a computer with 16 GB RAM, an Intel Core i7-7700 3.6 GHz processor
configuration, and MATLAB version 2021b are used to perform the
calculations. The result of the simulations for both test systems using
the centralized and decentralized methods is given in Section 4.2.1.
The comparisons between methodologies are based on the objective
values, computation cost based on execution time (ET), data privacy,
scalability of the methods, and reliability indices. Besides evaluating
the AAO algorithm on its stability to find near-optimal solutions, the
quality of the solutions found by the AAO method is also compared
with other heuristic methods (see Section 4.2.2).

4.2.1. Centralized and decentralized methods
By distributing the control variables of the centralized problem over

several controllers, the optimization problem is divided into smaller
subproblems, and each local ESD attached to a controller solves its own
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Fig. 4. The Aardehuizen micro-grid community, which is attached as a local
community to the IEEE 33 and 69 bus systems.

subproblem independently. This way, each controller makes its own
decision based on its local measurements and information and shares
the results with other units only if needed. The potential advantages
of this method over the centralized method are investigated in this
section.

The results obtained by the two different decentralized methods are
compared to the results of the centralized method (C-AAO scenario).
A scenario using AAO as well for optimizing the operation of ESDs
in lower-level optimization problems and also for the operation of
VRs in upper-level optimization is denoted by D-AAO-AAO. The other
decentralized method that uses PS for lower-level optimization is called
D-PS-AAO scenario.

In order to compare the results for all three scenarios, each method
is evaluated against five criteria.

• Objective function value: determining the best solutions with
respect to an objective function is a critical criterion for assessing
the effectiveness of a method.

• Data privacy: protecting the household power usage data is an
essential consideration, particularly when sensitive information,
such as household consumption profiles, is involved in finding
ESD operation strategies.

• Computational time: a key factor that directly impacts the effi-
ciency and the ability of the methods to handle complex problems
is to minimize the time to find the best solutions.

• Scalability: is an essential element that influences the capacity of
methods to address larger problems.

• Reliability: is an essential criterion to ensure that the method
produces consistent and accurate results, which can also affect
all previous criteria.

The insights achieved from analyzing the results of the method
based on all criteria can provide valuable information regarding the
strengths and weaknesses of each method, guiding the selection of the
most appropriate method for a specific task.

The number of control variables (𝐷 for the C-AAO method) for
the IEEE 33-bus test system is 2376, where 24 variables are integer
variables (the tap position of the VR unit 𝑋⃗TAP), and the rest of the
variables are continuous variables for the operation strategy of ESDs
in local communities. Note that this number depends on the number
of ESDs and the value 𝑁𝑇 for the optimization process. The variables
are divided over the local controllers in the decentralized methods.
Furthermore, each method is executed 50 times independently. The
detailed results of the simulations are provided in Table 1.

To check the scalability of the proposed decentralized method, the
methods are tested by doubling the number of control variables and
applying the method to solve the problem in the IEEE 69-bus system
10
with 12 local energy communities. The value of 𝐷 for the C-AAO
method now increases to 5232 control variables. Note that the numbers
are for simulations with 24 discrete time intervals. The discussion for
each criterion is based on the results in the table.
Lower objective values:

For determining the best scenario with respect to the objective
function values (lower is better), the quantitative results are compared
to each other. Based on the values in Table 1, it appears that the central-
ized method (C-AAO) generally has larger objective values compared to
the decentralized methods (D-AAO-AAO, D-PS-AAO) for both test cases
(IEEE 33-bus and 69-bus). For the 33-bus test case, the mean objective
value of the voltage-based objective 𝑓𝑣 for C-AAO is 0.890, while the
mean objective values for D-AAO-AAO and D-PS-AAO are 0.703 and
0.735, respectively. The best objective value for C-AAO is 0.521, while
the best objective values for D-AAO-AAO and D-PS-AAO are 0.424 and
0.502, respectively. Comparing the mean and the best objective values
for C-AAO to the best-found solution (𝑓𝑣 = 0.424), it appears that the
centralized method has difficulties in finding a solution with a low
objective value, especially for IEEE 69-bus system.

The results for the loss-based objective function 𝑓𝑙 follow the same
behavior considering objective values, but in this case, the centralized
method found a better mean value compared to decentralized methods.
The centralized method found a better mean value for 𝑓𝑙 in the IEEE 33-
bus system compared to the decentralized method. The best mean value
in C-AAO is 0.676, and D-AAO-AAO scenario finds the best solution
with an objective value of 0.551.

Similarly, for solving the problem of 𝑓𝑣 in the IEEE 69-bus test
case, the mean objective value for C-AAO is 0.759, while the mean
objective values for D-AAO-AAO and D-PS-AAO are 0.728 and 0.675,
respectively. For the 𝑓𝑙 problem, the best mean value is found by the
D-AAO-AAO method.

The table also includes the details of the best results obtained in
each scenario, represented by the values 𝑣, 𝑙, 𝛾, and 𝜏. Since the
majority of the values for voltage violation and energy losses are the
same, choosing the best method that can find a better lifetime for the
devices is important. The table indicates that the D-PS-AAO and D-
AAO-AAO methods generally provide the best results for 𝑣 and 𝛾, both
in IEEE 33-bus and 69-bus test cases. Regarding the best results for 𝑙,
the methods found similar results while considering the 𝜏 values. The
D-AAO-AAO method found a better operation strategy for ESDs that
results in improving the lifetime of the devices.

Therefore, it can be seen that the decentralized methods generally
have lower objective values than the centralized method, indicating
that the decentralized methods may be more efficient in solving the
optimization problem.
Lower computation cost:

Table 1 also gives the execution time for all three scenarios. The
mean, standard deviation, and best execution time are used as the
criteria for the computational cost. Note that the execution time is
measured in seconds. This table allows for selecting a faster method
for determining the best operation strategy for ESDs and VRs.

The table shows that the execution time of the decentralized meth-
ods (D-AAO-AAO and D-PS-AAO) is generally shorter than the central-
ized method (C-AAO) for both the IEEE 33-bus and 69-bus systems,
and the best execution time for the decentralized methods are found
by D-PS-AAO. For the problems with 2376 control variables in the IEEE
33-bus system, the decentralized method, in general, is faster than the
centralized method by 54%, and this number is 84% for scaling up the
number of control variables in the IEEE 69-bus system.

The D-PS-AAO method generally has the lowest execution time
among the decentralized methods. Based on the table, the mean execu-
tion time of the D-PS-AAO method is 6.2 s faster than the D-AAO-AAO
method on average. D-PS-AAO is 73% faster than C-AAO on IEEE
33-bus system and 89% faster than C-AAO on IEEE 69-bus system.
Finally, with respect to the ET results, the decentralized method is
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Table 1
Comparison of the decentralized methods to the centralized method in solving the optimization problem.

Method Objective value ET [s] best

mean std. best mean std. best 𝑣 𝑙 𝛾 𝜏

33-bus

𝑓𝑣
C-AAO 0.890 0.219 0.521 44.6 26.6 19.3 0.142 0.199 0.333 0.045
D-AAO-AAO 0.703 0.142 0.424 17.8 6.1 10.4 0.112 0.199 0.289 0.024
D-PS-AAO 0.735 0.138 0.502 11.9 3.6 7.8 0.124 0.199 0.347 0.031

𝑓𝑙
C-AAO 0.676 0.060 0.571 37.8 13.4 19.4 0.196 0.199 0.328 0.044
D-AAO-AAO 0.685 0.087 0.551 17.4 7.6 7.6 0.223 0.200 0.325 0.026
D-PS-AAO 0.704 0.067 0.624 17.3 6.0 5.2 0.112 0.198 0.394 0.031

69-bus

𝑓𝑣
C-AAO 0.759 0.318 0.560 158.3 61.2 34.9 0.205 0.238 0.313 0.043
D-AAO-AAO 0.728 0.167 0.590 29.1 4.4 26.2 0.187 0.237 0.375 0.027
D-PS-AAO 0.675 0.034 0.612 17.5 4.3 11.1 0.186 0.238 0.394 0.033

𝑓𝑙
C-AAO 0.672 0.029 0.633 171.2 32.5 51.8 0.226 0.238 0.351 0.045
D-AAO-AAO 0.666 0.018 0.622 30.5 4.0 25.0 0.271 0.238 0.356 0.027
D-PS-AAO 0.669 0.022 0.624 26.6 6.7 9.4 0.282 0.238 0.354 0.033
I

I

h
n
t
t
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faster than the centralized method, and among them, the faster method
is D-PS-AAO.
Data privacy:

For determining the best scenario considering data privacy, the
sharing of the data between the devices with the control units and how
much data is needed at household levels are the main important factors
to consider.

In both decentralized methods, each ESD unit only needs to share its
local measurements with a local control unit that is directly connected
to it rather than sending all the data to a central controller. This can
increase the security and privacy of the system, as sensitive data does
not need to be transmitted over long distances and can be kept within
the local community of the ESD units. So, as a result, the privacy of
the household data in both D-AAO-AAO and D-PS-AAO is better than
the centralized method. Comparing the decentralized methods, both
are equivalent since, during the optimization process, both need an
expected power profile from each household and perform the optimiza-
tion for ESDs based on that. Also, the expected power profile will be
used in the local community, and the aggregated power profile of the
community is communicated to other controllers if necessary.

In the decentralized method, each unit only needs to share its local
measurements and decisions with the units it is directly connected
to rather than sending all the data to a central controller. This can
increase the security and privacy of the system, as sensitive data does
not need to be transmitted over long distances and can be kept within
the neighborhood of the unit.
Scalability:

As the number of units in the system increases, the centralized
method for solving the optimization problem may become impractical.
This is because there are a large number of control variables that need
to be evaluated in the optimization process. To compare the methods,
the number of control variables in the problem is increased by 120%,
and the convergence curve of the methods is compared to each other.
This is done to see how the convergence curve changes as the number
of control variables increases.

The convergence curves of the methods for the individual execution
of the simulations are shown in Figs. 5, 6, 7, and 8. The figures show
the convergence curve for different scenario cases of solving 𝑓𝑣 and 𝑓𝑙
problems in the IEEE 33-bus and 69-bus systems. The horizontal-axis
represents the iteration number (it), and the vertical-axis represents the
objective function value defined for each problem. The light-colored
convergence curves represent the convergence behavior of the methods
for different individual runs of the methods from 50 runs, and the
convergence curve with vivid colors is a representative convergence
curve from the 50 runs.

As shown in Figs. 5 and 6, the maximum number of iterations for the
methods to converge are similar. On the other hand, when the number
of devices in the system increases, the centralized method for solving
the optimization problem needs more iterations in the optimization
process (approximately five times more iterations). The figures show
11

p

Fig. 5. Convergence curve for the different scenario cases of solving 𝑓𝑣 problem in
EEE 33-bus system.

Fig. 6. Convergence curve for the different scenario cases of solving 𝑓𝑙 problem in
IEEE 33-bus system.

Fig. 7. Convergence curve for the different scenario cases of solving 𝑓𝑣 problem in
EEE 69-bus system.

ow the convergence curve changes for the centralized method as the
umber of control variables increases, while for decentralized methods,
he average number of iterations for converging to the best solutions is
he same.
eliability:

In centralized control, a central controller alone handles all com-
utations and determines optimal control variables for each device,
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Table 2
Comparison of the heuristic methods in solving the distribution system problem.

AAO AOA GWO PSO

mean std. best mean std. best mean std. best mean std. best

IEEE 33-bus

𝑓𝑣 value 0.602 0.074 0.424 0.693 0.147 0.424 0.632 0.142 0.427 0.706 0.101 0.561
ET [s] 48 2 45 35 7 27 37 2 32 31 1 29

𝑓𝑙 value 0.582 0.055 0.551 0.644 0.062 0.552 0.678 0.091 0.571 0.799 0.397 0.551
ET [s] 34 3 30 38 2 33 49 2 45 31 1 30

IEEE 69-bus

𝑓𝑣 value 0.628 0.062 0.571 0.641 0.044 0.5839 0.671 0.026 0.641 0.679 0.045 0.593
ET [s] 43 7 28 49 5 40 48 3 43 48 1 47

𝑓𝑙 value 0.635 0.021 0.622 0.647 0.014 0.622 0.651 0.013 0.630 0.658 0.016 0.641
ET [s] 53 12 36 56 16 30 57 8 42 58 10 36
Fig. 8. Convergence curve for the different scenario cases of solving 𝑓𝑙 problem in
IEEE 69-bus system.

exposing the system to the risk of a single point of failure. In the de-
centralized method, each local community can function independently
and can make decisions, even if communication with other units is lost.
Besides the reliability advantage of the decentralized methods from
a failure point of view, the reliability of the optimization process is
also in decentralized methods better than the centralized method. The
reason for that is in decentralized methods, the search space for the
AAO method decreased, and as a result, the quality of the obtained
solutions will be better. Comparing the decentralized method, the D-
PS-AAO is more reliable since the chance of getting stuck in a local
optimum at the lower-level of the optimization problem is negligible
compared to using AAO at the lower-level.

4.2.2. Quality of AAO solutions
To confirm the superiority of the AAO algorithm, a comprehen-

sive evaluation was carried out by comparing the solutions obtained
through AAO with those obtained through other heuristics. This com-
parison was designed to demonstrate that AAO is capable of deter-
mining near-optimal solutions, thereby reinforcing the validity of the
solutions presented in previous sections. The outcome of this compar-
ison offers a thorough understanding of the strengths and limitations
of the AAO approach, highlighting avenues for further improvement.
Furthermore, this evaluation sheds light on the dependability and
sturdiness of the AAO algorithm, affirming its potential as a reliable
and robust optimization tool.

The objective function values in the IEEE 33 and 69 bus systems,
obtained through the decentralized optimization approach (AAO for
VRs at the upper-level problem and AAO for the ESDs at the local
energy communities) are presented in Table 2. The result obtained
by the AAO method is compared to the results obtained by the AOA
(AOA for VRs and AOA for the ESDs), GWO (GWO for VRs and GWO
for the ESDs), and PSO (PSO for VRs and PSO for the ESDs) methods
for the same number of iteration (Max-it) and neglecting the dynamic
stopping criteria for the centralized implementation method. The table
compares the performance of the different methods in terms of the
average (mean), standard deviation (STD), and best objective function
(best) values based on 50 independent runs. Additionally, the table
also compares the convergence speed of the heuristic methods based on
12
computational time. Note that the execution time in seconds is denoted
by ET in the table.

The details of the simulations and heuristic parameters are as fol-
lows. The maximum number of iterations for simulations is set to 100
iterations for IEEE 33-bus and IEEE 69-bus systems. For all the heuristic
methods, the number of solutions for the optimization process is set
to 30 solutions. Besides the number of maximum iterations and the
number of solutions, for PSO, there are several parameters that can be
adjusted to control the behavior of the optimization process. The inertia
weight, which controls how much the current velocity of a particle
affects its next position, is set to 0.72 with a damping ratio of 0.9 over
the iterations. The cognitive and social learning rates, which control the
influence of the personal best and global best positions, are set to 1.49
on the particle’s position update. Note that the AAO, AOA, and GWO
are parameters-free and that the other parameters are found after initial
experimental results.

The performance of the four different heuristic methods (AAO, AOA,
GWO, PSO) is evaluated using the results of the two objective functions
and also ET. The table presents the mean, standard deviation (std.), and
best values of 𝑓𝑙, 𝑓𝑣, and ET for each method and the two systems (IEEE
33-bus and IEEE 69-bus).

For the IEEE 33-bus system, the AAO method has the best mean
value for both 𝑓𝑣 and 𝑓𝑙 with a value of 0.3080 and 0.4267, respec-
tively, and the best value for 𝑓𝑣 is 0.2875 and for 𝑓𝑙 is 0.4193. The
execution time for this method is 60 s for 𝑓𝑣 and 83 s for 𝑓𝑙 in the
AAO method. For the IEEE 69-bus system, the AAO method has the best
mean value for 𝑓𝑣 with a value of 0.4813, and the best value for 𝑓𝑣 is
0.4089. The execution time for this method is 116 s. For the results of 𝑓𝑙
together with AOA, they found the best mean values and best solutions
with the GWO method.

Overall, it seems that the AAO method performs the best for both
systems in terms of both 𝑓𝑙 and 𝑓𝑣 objective function values and
execution time.

5. Conclusion

This paper introduces a multi-objective optimization framework for
managing the operation of VRs and ESDs in DSs. The framework aims
to optimize the tap positions of VRs and to locally optimize charging
and discharge powers for ESDs using a decentralized approach that
considers a predefined objective function. Two objective functions are
proposed to optimize the technical parameters of DSs, while maximiz-
ing the expected lifetime of VRs and ESDs. The objective functions take
into account the voltage profile of the network, lifetime improvement
of VRs and ESDs, energy losses, and device lifetime.

Two decentralized methods, based on the AAO algorithm and the
PS approach, were proposed to address the limitations of centralized
optimization methods. The decentralized methods aim to improve the
reliability and efficiency of the optimization process while improving
the scalability and privacy disadvantages of the centralized methods.
Based on simulation results from the IEEE 33 and 69 bus systems,
the proposed methods were evaluated and compared to a centralized
approach.
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The results of the simulations demonstrate that the proposed de-
centralized methods can effectively resolve voltage problems, minimize
energy losses, and find high-quality solutions with improved compu-
tational efficiency compared to the centralized approach. The D-AAO-
AAO and D-PS-AAO methods performed the best for both systems in
terms of both objective functions (𝑓𝑙 and 𝑓𝑣) and execution time. The
erformance of the AAO method is tested by comparing the results of
he optimization process to four heuristic methods (AAO, AOA, GWO,
SO) with the same number of iterations. For this purpose, each method
s implemented in the decentralized method using a heuristic method
or VRs at the upper-level problem and the same method for the ESDs
t local energy communities at the lower-level problem.

The proposed decentralized approach has several advantages over
he centralized approach, including increased data privacy, improved
eliability, and reduced computation costs. Furthermore, it is important
o note that a centralized implementation may not be suitable for
ystems with a high number of control variables. This research provides
nsights into the strengths and weaknesses of each method, guiding the
election of the most suitable approach for specific needs. Based on the
chieved results, it may be concluded that multi-objective optimization
ith a different set of goals at local levels could be a potential area of

uture work studies for improving the operation of systems.
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