ORIGINAL ARTICLE

Trends in postpartum hemorrhage and manual removal of the placenta and the association with childbirth interventions: A Dutch nationwide cohort study

Anna E. Seijmonsbergen-Schermers RM, PhD 1,2,3,4 | Ellen T. C. Rooswinkel RM, MSc 1,2,3,4 | Lilian L. Peters PhD 1,2,3,4 | Corine J. Verhoeven RM, PhD 1,2,4,5,6,7 | Suze Jans RM, PhD 8 | Kitty Bloemenkamp MD, PhD 9 | Ank de Jonge RM, PhD 1,2,3,4 | D

Correspondence

Anna E. Seijmonsbergen-Schermers, Department of Midwifery Science, AVAG and APH Research Institute, Location VUmc, Room G102-d, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.

Email: a.seijmonsbergen@ amsterdamumc.nl

Abstract

Background: Because the cause of increasing rates of postpartum hemorrhage (PPH) and manual placental removal (MROP) is still unknown, we described trends in PPH, MROP, and childbirth interventions and examined factors associated with changes in rates of PPH and MROP.

Methods: This nationwide cohort study used national perinatal registry data from 2000 to 2014 (n = 2,332,005). We included births of women who gave birth to a term singleton child in obstetrician-led care or midwife-led care. Multivariable logistic regression analyses were used to examine associations between characteristics and interventions, and PPH ≥ 1000 mL and MROP.

Results: PPH rates increased from 4.3% to 6.6% in obstetrician-led care and from 2.5% to 4.8% in midwife-led care. MROP rates increased from 2.4% to 3.4% and from 1.0% to 1.4%, respectively. A rising trend was found for rates of induction and augmentation of labor, pain medication, and cesarean section, while rates of episiotomy and assisted vaginal birth declined. Adjustments for characteristics and childbirth interventions did not result in large changes in the trends of

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2023 The Authors. *Birth* published by Wiley Periodicals LLC.

98 \

¹Amsterdam UMC Location Vrije Universiteit Amsterdam, Midwifery Science, Amsterdam, The Netherlands

²Midwifery Academy Amsterdam Groningen, InHolland, Amsterdam, The Netherlands

³Amsterdam Public Health, Quality of Care, Amsterdam, The Netherlands

⁴Department of Primary and Long-term Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands

 $^{^5}$ Department of Obstetrics and Gynaecology, Maxima Medical Centre, Veldhoven, The Netherlands

⁶Division of Midwifery, School of Health Sciences, University of Nottingham, Nottingham, UK

⁷Amsterdam Reproduction and Development, Amsterdam, The Netherlands

⁸Department of Child Health, TNO, Netherlands Institute of Applied Sciences, Leiden, The Netherlands

⁹Department of Obstetrics, Birth Centre Wilhelmina's Children Hospital, Division Woman and Baby, University Medical Centre Utrecht, Utrecht, The Netherlands

1523536x, 2024, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/birt.12765 by Cochrane Netherlands, Wiley Online Library on [19/02/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com

ons) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenso

PPH and MROP. After adjustments for childbirth interventions, in obstetrician-led care, the odds ratio (OR) of PPH in 2014 compared with the reference year 2000 changed from 1.66 (95% CI 1.57–1.76) to 1.64 (1.55–1.73) among nulliparous women and from 1.56 (1.47–1.66) to 1.52 (1.44–1.62) among multiparous women. For MROP, the ORs changed from 1.51 (1.38–1.64) to 1.36 (1.25–1.49) and from 1.56 (1.42–1.71) to 1.45 (1.33–1.59), respectively.

Conclusions: Rising PPH trends were not associated with changes in population characteristics and rising childbirth intervention rates. The rising MROP was to some extent associated with rising intervention rates.

KEYWORDS

interventions, manual removal of the placenta, postpartum hemorrhage, trends

1 | INTRODUCTION

Over the last years, rising rates of postpartum hemorrhage (PPH) of more than 1000 mL in high-income countries have been reported. 1,2 Although maternal mortality is very rare in these countries, PPH is one of its major causes as well as a cause of severe maternal morbidity.³ Therefore, the fact that PPH rates are rising is a subject of concern. Only a few studies provide insight into possible contributing factors to these rising rates.⁴⁻⁷ One study showed that the rising rate was primarily due to an increase in uterine atony, which was not associated with rising childbirth intervention rates.⁸ In contrast, another study showed that this trend was associated with rising rates of previous cesarean section (CS) and augmentation of labor. However, both studies neglect the association between PPH and manual removal of the placenta (MROP). A retained placenta is associated with approximately 18% of cases of PPH. Conversely, a retained placenta is accompanied by PPH in 61% of cases. 10 Because PPH and MROP are strongly correlated, these outcomes cannot be seen as independent of each other. However, simply adjusting the outcomes for one another neglects the potential causal pathway between MROP and PPH. Besides, other childbirth interventions may be associated with PPH.^{2,11} A rise in incidence of some childbirth interventions, such as the global CS rate which has increased from 12% in 2000 to 21% in 2015, ¹² raises questions about the contributing factor of childbirth interventions to the rising PPH rate in highincome countries.

In the Netherlands, low-risk women give birth under the responsibility of community midwives, i.e., midwifeled care, and can choose to give birth at home or in the hospital. If risks increase, complications occur, or childbirth interventions such as induction or augmentation of labor, request for pain relief, assisted vaginal birth, or cesarean section are needed, women are referred to obstetrician-led care. ¹³ Also in the Netherlands, rates of some childbirth interventions have risen over the last years. ² Describing the incidence of PPH and MROP over earlier years in both obstetrician-led care and midwife-led care will provide more insight into contributing factors to the increase in these adverse maternal outcomes among both medium-or high-risk and low-risk women (i.e., obstetrician-led care or midwife-led care). In this study, trends in incidences of PPH, MROP, and childbirth interventions from 2000 to 2014 were described, and factors were examined which may be associated with the trends in MROP and PPH among subgroups of women in obstetrician-led care or midwife-led care.

2 | METHODS

2.1 Data collection

For this nationwide study, data were used from the Dutch national perinatal registry 'Perined', which covers 98% of all births in the Netherlands. ¹⁴ Births in midwife-led care are registered in the national perinatal database 1, births in obstetrician-led care in the national perinatal database 2, and data from pediatric care in the national neonatal register. These databases are combined by means of a validated linkage method into a complete Perined register. ¹⁵

We included all births of single-term children between 2000 and 2014 registered in the perinatal database. We excluded cases with missing information on gestational age, on whether there was a multiple pregnancy, or on parity. Women who were referred from midwife-led care to obstetrician-led care during or after labor were also excluded if information from database 1 was missing.

2.2 | Selection of variables

For most variables, Perined has created combined variables based on the different national perinatal databases. However, not all combined variables were appropriate for the analyses of the current study. Therefore, we redefined the following variables: PPH, MROP, ethnic background, socioeconomic status, disorders in the current pregnancy, previous PPH/MROP/CS, augmentation of labor, and pain medication.

2.2.1 Definition of outcomes

Primary outcomes were PPH of ≥1000 mL in the first 24h after birth and MROP, both defined as yes or no. Blood loss was estimated and measured by the attending care provider in either obstetrician-led care or midwife-led care. For MROP, women with a CS were excluded, because the placenta is always manually removed during the operation.

2.2.2 Definition of characteristics

Maternal characteristics were as follows: parity (nulliparous, multiparous para 1-2, multiparous ≥3); maternal age (<20, 20-24, 25-29, 30-34, 35-9, ≥40 years); ethnic background (Dutch, non-Dutch); socioeconomic status (low, middle, high); hypertensive disorders (yes, no); coagulation disorders (yes, no); previous CS among multiparous women (yes, no); previous PPH among multiparous women (yes, no); and previous MROP among multiparous women (yes, no). Socioeconomic status was based on the level of education, employment, and income of the total population in the Netherlands for each postal code, as calculated by the Netherlands Institute for Social Research (SCP). Hypertensive disorders comprised hypertension, preeclampsia, HELLP-syndrome, eclampsia, and non-infectious proteinuria in the current pregnancy. Coagulation disorders included all codes for HELLP and coagulation disorders in the current pregnancy.

Neonatal characteristic was birthweight (<3000, 3000–3999, \ge 4000g). Birth characteristics were as follows: gestational age at birth (37+0-37+6, 38+0-40+6, 41+0-41+6, \ge 42 weeks) and obstetric anal sphincter injury (yes, no). Care provider characteristic was as follows: responsible care provider at the time of birth (obstetrician, midwife).

2.2.3 | Childbirth interventions

Induction of labor included all pharmacological and mechanical methods to stimulate uterine contractions before spontaneous rupture of membranes and uterine contractions. Women with an induced labor were excluded from the variable augmentation of labor. Prelabor CS was defined as a CS before rupture of membranes and uterine contractions. A CS which occurred after the membranes ruptured or the start of uterine contractions was defined as intrapartum CS. Women with a prelabor CS were excluded from the variable pain medication during labor. Other methods for pharmacological pain relief were specified in the Perined register as sedatives, non-opioid analgesia, and opioid analgesia. Mostly, this would have been pethidine injections or patient-controlled remifentanil. Women with a prelabor or intrapartum CS were excluded from the analyses for episiotomy.

2.3 Data analyses

2.3.1 | Characteristics and trend graphs

Characteristics were described in numbers and percentages of the total study population, and in percentages in the years 2000 and 2014. Trend graphs were shown for the incidences of primary outcomes and childbirth interventions and the significance (p < 0.05) was estimated with a chi-squared test.

2.3.2 | Trend analyses

Incidences of PPH and MROP were described in both obstetrician-led care and midwife-led care in the years 2000 and 2014, stratified for parity. The ratio of CS to assisted vaginal births was calculated by dividing the CS rate by the assisted vaginal birth rate.¹⁷ Univariable logistic regression analyses were conducted to estimate the odds ratio (OR) with accompanying 95% confidence intervals (CI) of the primary outcomes for each year compared with the year 2000 as the reference. In addition, multivariable logistic regressions were conducted to examine which factors were associated with the trend in the primary outcomes. In model 1, adjustments were made for population characteristics and in model 2, adjustments were added for induction or augmentation of labor, cesarean section, and pain medication, because the rate of these interventions has increased over the study period. For women in midwife-led care, only model 1 was performed, because interventions in model 2 are not performed in midwife-

We did not apply adjustments for MROP when analyzing the trend in PPH, and vice versa. PPH and MROP can be causally related to each other. However, the direction of the causal path is not similar in all cases. By adjusting

ns) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Comm

BIRTH WILL FY WILL FY

for the other outcome variable, we would assume that in all cases in the analyses, the causal direction is similar and that the other outcome variable may be associated with the trend. In this cohort study, it is not possible to examine the direction of the causal pathway with respect to these outcome variables.

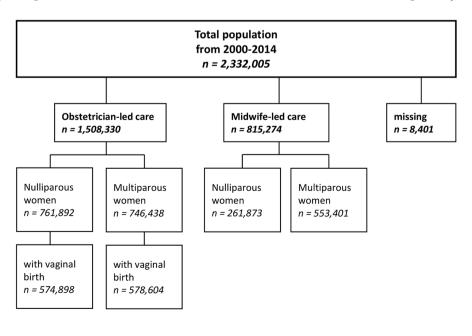
2.3.3 Childbirth interventions

All analyses concerning childbirth interventions and primary outcomes were stratified for parity. Descriptive analyses and univariable logistic regression analyses were performed to show the numbers, incidences, and OR (95% CI) of primary outcomes for each childbirth intervention. Multivariable logistic regression analyses were conducted to adjust for possible confounding. In model 1, adjustments were made for maternal age, ethnic background, socioeconomic status, hypertensive disorders, coagulation disorders, birth weight, and year of birth. For multiparous women, adjustments for previous CS, previous PPH, and previous MROP were added. In model 2, adjustments for induction of labor, augmentation after spontaneous onset of labor, mode of birth, pain medication during labor, and episiotomy were added. We decided not to adjust for differences in gestational age, because of collinearity with induction of labor. Equally, induction and augmentation of labor were combined in one variable for the adjustments because of collinearity. For CS, no adjustments were made for episiotomy, because an episiotomy in combination with cesarean section rarely occurs.

In all logistic regression analyses, a CI of 95% was used. The percentage of missing data was lower than 5% for all variables and therefore, multiple imputation was

not performed. Statistical analyses were performed using STATA version 14 (StataCorp).

3 | RESULTS


3.1 | Characteristics

The total number of women in this study was 2,332,005 (Figure 1). Population characteristics are shown in Table 1. Women in 2014 were older and more frequently of non-Dutch ethnic background compared with women in 2000. In addition, the incidence of hypertensive disorders decreased from 6.4% to 6.2% and the previous CS rate increased from 11.1% to 14.4%. The incidence of a birthweight \geq 4000g decreased from 16.4% in 2000 to 14.5% in 2014 and a gestational age of \geq 42 weeks decreased from 6.1% to 1.4%. While 40.1% of women in 2000 received midwife-led care at the time of birth, this percentage decreased to 29.1% in 2014.

The overall incidences in the total study population for the years 2000–2014 were 4.9% for PPH and 2.5% for MROP (data not shown).

3.2 | Trends of PPH and MROP

Trends of incidences in primary outcomes between 2000 and 2014 are shown in Figures 2A,B. Figure 3 shows the trend in incidences of childbirth interventions. All trends were significant with a *p*-value <0.001. For women in obstetrician-led care at the time of birth, incidences of primary outcomes increased from 4.3% to 6.6% for PPH over the years, and from 2.4% to 3.4% for MROP. In midwife-led care, incidences of primary

FIGURE 1 Flowchart of the included study population.

TABLE 1 Maternal, neonatal, birth, and care provider characteristics of births for the years 2000 and 2014 separately (n=2,332,005).

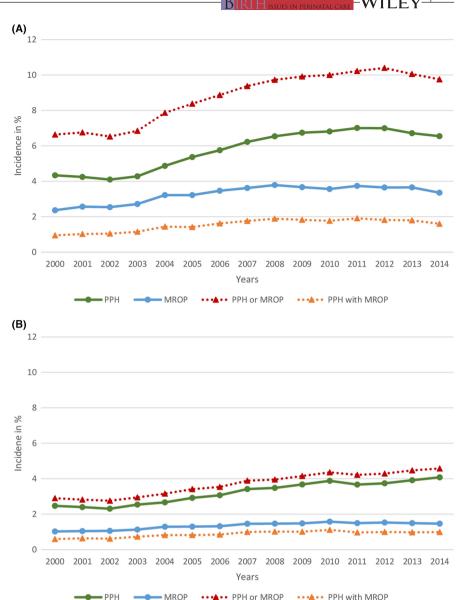
	Total, n	% in 2000	% in 2014
Maternal characteristics			
Parity			
Nulliparous	1,028,656	44.8	43.9
Multiparous para 1–2	1,171,717	49.4	50.2
Multiparous para ≥3	131,632	5.8	5.9
Maternal age			
<20 years	33,961	1.7	1.0
20-24 years	232,422	9.5	9.5
25–29 years	681,839	30.5	30.9
30-34 years	902,168	40.5	38.2
35–39 years	413,027	15.7	17.2
≥40 years	65,831	2.1	3.3
Ethnic background			
Dutch	1,856,938	82.4	77.3
Non-Dutch	456,789	17.6	22.8
Socioeconomic status			
Low	615,726	26.0	27.4
Middle	1,075,151	47.5	47.1
High	598,861	26.5	25.5
Hypertensive disorders			
Yes	144,686	6.4	6.2
No	2,187,319	93.6	93.8
Coagulation disorders			
Yes	14,669	0.7	0.6
No	2,317,336	99.3	99.4
Previous CS among multipa	arous women		
Yes	165,852	11.1	14.4
No	1,137,497	88.9	85.6
Previous PPH among multi	parous women		
Yes	33,850	3.2	2.8
No	1,269,499	96.8	97.2
Previous MROP among mu	ltiparous women		
Yes	12,587	1.1	1.0
No	1,290,762	98.9	99.0
Neonatal characteristics			
Birthweight			
<3000 g	323,359	14.5	14.4
2000 2000 ~	1,627,872	69.1	71.1
3000-3999 g	1,027,072	07.1	, 1.1

TABLE 1 (Continued)

		% in	% in
	Total, n	2000	2014
Birth characteristics			
Gestational age at birth			
37 + 0 - 37 + 6 weeks	153,035	6.5	7.6
38 + 0 - 40 + 6 weeks	1,643,191	69.1	73.1
41 + 0 - 41 + 6 weeks	437,691	18.3	17.9
≥42 weeks	98,088	6.1	1.4
Obstetric anal sphincter in	jury		
Yes	52,599	2.4	2.5
No	1,930,589	97.6	97.5
Care provider			
Responsible care provider	at the time of birt	h	
Obstetrician	1,508,330	59.9	70.9
Midwife	815,274	40.1	29.1

Note: Percentages of missing data: 0% for parity, 0.1% for maternal age, 0.8% for ethnic background, 1.9% for socioeconomic status, 0% for hypertensive disorders, 0% for coagulation disorders, 0% for previous CS, 0% for previous PPH, 0% for previous MROP, 0.1% for birthweight, 0% for gestational age at birth, 1.1% for obstetric anal sphincter injury, and 0.4% for responsible care provider.

outcomes increased from 2.5% to 4.1% for PPH over the years, and from 1.0% to 1.5% for MROP.

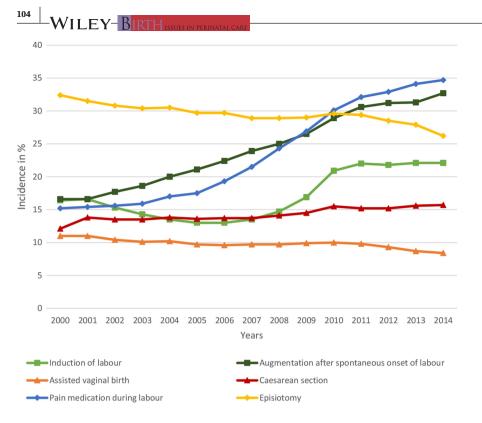

Rates of the following childbirth interventions increased: pain medication, augmentation of labor, induction of labor, and CS, whereas rates of assisted vaginal birth and episiotomy decreased. The ratio of CS to assisted vaginal births increased from 1 CS to 1 assisted vaginal birth in 2000 to 2 CSs to 1 assisted birth in 2014.

The increase in primary outcomes was statistically significant for both primary outcomes and remained significant after adjustments for available characteristics (Tables 2 and 3 and Supplementary Tables S1-S4). Adjustments for characteristics and childbirth interventions did not alter the ORs of the PPH trend. The increased trend of MROP was larger after adjustments for characteristics and decreased after adjustments for induction or augmentation of laborand pain medication during labor among women in obstetrician-led care.

3.3 Childbirth interventions

All birth interventions provided for either nulliparous or multiparous women, except for other pharmacological pain relief, showed significant positive or negative associations with PPH and MROP. After adjustments, these associations slightly decreased but the estimator of interest remained significant (Table 4 and 5), except for the

FIGURE 2 (A) Trend in incidences of postpartum hemorrhage (PPH) and manual removal of the placenta (MROP) between 2000 and 2014 for women in obstetrician-led care at the time of birth (n=1,508,330). (B) Trend in incidences of PPH and MROP between 2000 and 2014 for women in midwife-led care at the time of birth (n=815,274). [Color figure can be viewed at wileyonlinelibrary.com]


association between induction of labour without oxytocin and MROP and other pharmacological pain relief and MROP among nulliparous women (Table 4).

A higher incidence of induction of labor with oxytocin use was found, compared with induction without oxytocin use. The aOR (model 2) of the association between induction and PPH was 1.29 (95% CI 1.26–1.32) among nulliparous and 1.34 (95% CI 1.31–1.37) among multiparous women. The association between induction with oxytocin and MROP among nulliparous women was comparable to PPH and slightly stronger among multiparous women (1.60; 95% CI 1.54–1.66). A similar pattern was found for augmentation of labor, with stronger associations between augmentation and MROP than PPH.

Although the incidence of PPH was lower for women who gave birth by CS compared with vaginal birth if they were nulliparous, this incidence was higher in multiparous women. A higher incidence of MROP was found among both nulliparous and multiparous women with an assisted vaginal birth compared with spontaneous birth. After adjustments, the aOR was 1.11 (95% CI 1.08–1.15) and 1.17 (95% CI 1.10–1.24), respectively.

Among nulliparous women, the lowest aOR in the association between mode of birth and PPH was reported for intrapartum CS, with an aOR of 0.53 (95% 0.52–0.55), followed by an aOR of 0.71 (95% 0.68–0.75) for prelabor CS compared with spontaneous birth.

Among both nulliparous and multiparous women, we found higher incidences of PPH and MROP among both nulliparous and multiparous women with epidural analgesia and other pharmacological pain relief compared with no pain medication. The significant association between other pharmacological pain relief and PPH became negative among nulliparous women after adjustments (aOR 0.96; 95% CI 0.94–0.98) and was not significant for MROP.

FIGURE 3 Trend in incidences of childbirth interventions during labor between 2000 and 2014 (n = 2,332,005). [Color figure can be viewed at wileyonlinelibrary.com]

Incidences and ORs of both PPH and MROP were increased for women with an episiotomy compared with women with no episiotomy.

4 DISCUSSION

This nationwide cohort study carried out in the Netherlands showed a rising trend in PPH and MROP among term singleton pregnancies in both obstetrician-led care and midwife-led care at the time of birth. Rates of induction and augmentation of labor, pain medication, and CS were shown to be higher in 2014 compared with 2000, but rates of assisted vaginal birth and episiotomy (only vaginal births) in 2014 were lower when compared with those in 2000. The rising trend in PPH was not associated with a change in population characteristics or rate of childbirth interventions over the years. The rising trend in MROP was to some extent associated with rising incidences of induction or augmentation of labor and pain medication during labor.

4.1 | Limitations and strengths

Some important variables with known associations with the primary outcomes were not available in the data set, such as the maternal body mass index, underlying diseases, detailed ethnic backgrounds, and smoking. Besides, a previous study reported that the occurrence of previous CS was underreported for approximately 25% of women with a previous CS in the Dutch perinatal

registry.¹⁸ Despite this underreporting, adjusting for previous CS still influenced the ORs in our current study. Another issue in routinely collected data is reporting bias of subjective outcomes. This is particularly true for PPH, the primary outcome of this study, as the amount of blood loss is established by the responsible care provider, and is known to be underestimated when it is not weighed.¹⁹

A major strength of this study was the use of a nationwide registration database enabling the use of a large number of birth data, including almost all births in the Netherlands in the included years. Furthermore, most studies focus on PPH solely, without investigating MROP, or only including MROP as a confounding factor, because MROP is also a risk factor for PPH.^{2,20} In our study, we were able to show that the trends for both outcomes are rising and that the number of women with both PPH and MROP followed a similar trend. Moreover, we were able to distinguish women giving birth in obstetrician-led care from women giving birth in midwife-led care at the time of birth, which clarified which subgroups' rising trends were more prevalent. Last, we were able to distinguish nulliparous from multiparous women, which is absent in most previous studies.^{2,21–23}

4.2 | Interpretation and further research

Rising trends in PPH and MROP have been described previously.^{1,2,23} Van Stralen et al. (2016) showed an increasing trend in the rate of PPH in the Netherlands and a decreasing trend in the rate of blood transfusion,

BIRTH ISSUES IN PERINATAL CARE—WILEY—

Unadjusted and adjusted ORs of trend in PPH between 2000 and 2014 in obstetrician-led care (n = 2,332,005) and midwife-led care (n = 815,274) at the time of birth. TABLE 2

		PPH in obs	stetrician-l	PPH in obstetrician-led care at the time of birth	irth		PPH in mi	dwife-led	PPH in midwife-led care at the time of birth	h
Year T	Total n	Total n	%	OR (95% CI)	aOR ^a (95% CI)	aOR ^b (95% CI)	Total n	%	OR (95% CI)	aOR ^c (95% CI)
Nulliparous women	<i>теп</i>									
2000 69	69,395	47,442	4.6	1.00	1.00	1.00	21,953	3.3	1.00	1.00
2014 60	66,539	53,621	7.0	1.56 (1.48–1.65)	1.66 (1.57–1.76)	1.64 (1.55–1.73)	12,918	5.4	1.68 (1.51–1.87)	1.70 (1.53–1.90)
Multiparous women	отеп									
2000 80	86,069	45,255	4.1	1.00	1.00	1.00	40,814	2.0	1.00	1.00
2014 8	84,850	53,770	6.1	1.53 (1.44–1.62)	1.56 (1.47–1.66)	1.52 (1.44–1.62)	31,080	3.5	1.76 (1.61–1.93)	1.79 (1.63–1.96)

Obstetrician-led care: adjusted for maternal age, ethnic background, socioeconomic status, hypertensive disorders, coagulation disorders, birthweight, gestational age, and obstetric anal sphincter injury.

Adjusted for the factors mentioned above, and for the following childbirth interventions: induction or augmentation of labor, cesarean section, and pain medication for pain relief during labor.

'Midwife-led care: adjusted for maternal age, ethnic background, socioeconomic status, birthweight, gestational age, and obstetric anal sphincter injury.

TABLE 3 Unadjusted and adjusted ORs of trend in MROP among vaginal births between 2000 and 2014 in obstetrician-led care (n = 2,332,005) and in midwife-led care at the time of birth (n=815,274).

		MROP in c	bstetricia	MROP in obstetrician-led care at the time of birth	fbirth		MROP in n	nidwife-le	MROP in midwife-led care at the time of birth	rth
Year	Total <i>n</i>	Total n %	%	OR (95% CI)	aOR ^a (95% CI)	aOR ^b (95% CI)	Total n	%	OR (95% CI)	aOR ^c (95% CI)
Nulliparous women	мо <i>те</i> п									
2000	58,386	36,344	2.5	1.00	1.00	1.00	22,042	1.3	1.00	1.00
2014	53,674	40,711	3.5	1.39 (1.27–1.51)	1.51 (1.38–1.64)	1.36 (1.25–1.49)	12,963	2.2	1.67 (1.42–1.98)	1.72 (1.45–2.03)
Multiparous women	мотеп									
2000	77,140	36,383	2.2	1.00	1.00	1.00	40,757	6.0	1.00	1.00
2014	71,710	40,443	3.2	1.49 (1.36–1.63)	1.56 (1.42–1.71)	1.45 (1.33–1.59)	31,267	1.2	1.36 (1.17–1.57)	1.39 (1.20–1.62)

^aObstetrician-led care: adjusted for maternal age, ethnic background, socioeconomic status, hypertensive disorders, coagulation disorders, birthweight, gestational age, and obstetric anal sphincter injury.

b Adjusted for the adjustments mentioned above, and for the following childbirth interventions: induction or augmentation of labor and pain medication for pain relief during labor.

'Midwife-led care: adjusted for maternal age, ethnic background, socioeconomic status, birthweight, gestational age, and obstetric anal sphincter injury.

-WILEY-BIRTH

Unadjusted and adjusted associations between childbirth interventions and PPH and MROP for nulliparous women.

TABLE 4

aOR^b (95% CI) 1.29 (1.24-1.33) 1.36 (1.32-1.41) 1.04 (0.98-1.11) 1.71 (1.65-1.78) 1.11 (1.08-1.15) 1.12 (1.08-1.16) 1.01 (0.98-1.04) 1.08 (1.05-1.11) 1.0 1.0 1.0 1.0 aOR^a (95% CI) 1.42 (1.38-1.47) 1.53 (1.47-1.58) 1.86 (1.80-1.91) 1.33 (1.29-1.37) 1.45 (1.41-1.50) 1.25 (1.22-1.28) 1.09 (1.03-1.17) 1.22 (1.19-1.26) 1.0 1.0 1.0 1.0 1.60 (1.55-1.65) 2.00 (1.95-2.06) 1.47 (1.43-1.51) 1.55 (1.50-1.60) 1.34 (1.30-1.37) 1.72 (1.67-1.78) 1.22 (1.14-1.30) 1.21 (1.18-1.25) OR (95% CI) $MROP^{c}$ (n = 813,943) 1.0 1.0 1.0 1.0 1.0 Total, n (%) 10,898 (2.6) 13,480 (3.5) 18,553 (2.7) 17,349 (2.7) 13,920 (2.6) 5716 (4.3) 4656 (4.6) 9238 (4.1) 7053 (4.0) 5412 (4.2) 5646 (3.5) 1060 (3.3) 9401 (2.1) 1.35 (1.31-1.38) 1.10 (1.08-1.13) aORb (95% CI) 1.29 (1.26-1.32) 1.12 (1.08-1.17) 1.28 (1.24-1.31) 0.53 (0.52-0.55) 0.71 (0.68-0.75) 1.10 (1.08-1.13) 0.96 (0.94-0.98) 1.35 (1.32-1.38) 1.0 1.0 1.0 1.0 1.0 1.08 (1.04-1.13) 1.27 (1.25-1.30) 0.61 (0.58-0.64) 1.21 (1.18-1.24) 1.41 (1.39-1.44) 1.36 (1.33-1.39) aOR^a (95% CI) 1.30 (1.27-1.32) 1.20(1.18-1.23)1.11(1.08-1.13)0.60(0.58-0.62)1.0 1.0 1.0 1.0 1.0 1.13 (1.08-1.18) 1.46 (1.43-1.49) 0.63 (0.60-0.66) 1.41 (1.38-1.44) 1.61 (1.58-1.63) 1.47 (1.44 - 1.50)1.59(1.55-1.63)0.73 (0.71-0.75) 1.15 (1.13-1.18) 1.33 (1.31–1.36) OR (95% CI) PPH (n=1,003,782)1.0 1.0 1.0 1.0 1.0 Augmentation after spontaneous onset of labor Total, n (%) 18,435 (6.5) 20,579 (4.8) 28,578 (7.1) 42,516 (5.2) 13,069 (7.4) 10,539 (8.0) 14,969 (1.5) 22,192 (4.6) 35,621 (5.5) 13,152 (7.3) 17,054 (1.7) 32,797 (5.0) 12,340 (7.2) 11,835 (6.2) 18,753 (1.8) 2530 (5.8) 5025 (4.1) 1743 (3.6) 9470 (1.2) 3652 (0.4) Induction without oxytocin Pain medication during labor Induction with oxytocin Other pharmacological Assisted vaginal birth Birth interventions Epidural analgesia Intrapartum CS Induction of labor pain relief Spontaneous Prelabor CS Mode of birth Episiotomy Missing Missing Missing Missing Missing Yes Yes % N_o 9 N

Adjusted for characteristics (maternal age, ethnic background, socioeconomic status, hypertension, coagulation disorders, and birth weight) and year of birth.

badjusted for characteristics, year of birth, and interventions in the table (induction of labor, augmentation after spontaneous onset of labor, mode of birth, pain medication during labor, and episiotomy). Induction and augmentation are combined due to collinearity; adjustment for episiotomy was not conducted for the outcome of cesarean section.

^cData for MROP are shown for women with a vaginal birth only.

^dpain medication during labor: total numbers exceed the total number of women in the study because more than one method can be used.

Unadjusted and adjusted associations between childbirth interventions and PPH and MROP for multiparous women. TABLE 5

	PPH $(n=1,273,102)$	3,102)			MROP ^c $(n=1,107,884)$	107,884)		
Birth interventions	Total, <i>n</i> (%)	OR (95% CI)	aOR ^a (95% CI)	aOR ^b (95% CI)	Total, <i>n</i> (%)	OR (95% CI)	aOR ^a (95% CI)	aOR ^b (95% CI)
Induction of labor								
No	41,880 (4.0)	1.0	1.0	1.0	16,494(1.8)	1.0	1.0	1.0
Yes	12,677 (6.2)	1.60(1.57-1.63)	1.46 (1.43–1.49)	1.34 (1.31–1.37)	6366 (3.4)	1.92 (1.87–1.98)	1.68 (1.63–1.73)	1.49 (1.45–1.54)
Induction with oxytocin	9857 (6.7)	1.73 (1.69–1.77)	1.54 (1.51 - 1.58)	1.41 (1.37–1.44)	5053 (3.7)	2.12 (2.05-2.18)	1.81 (1.75–1.87)	1.60 (1.54–1.66)
Induction without oxytocin	2820 (4.9)	1.25 (1.21 - 1.30)	1.24 (1.19–1.29)	1.16 (1.11–1.21)	1,313 (2.5)	1.42(1.35-1.51)	1.31 (1.24–1.39)	1.20 (1.13–1.28)
Missing	14,969 (1.5)							
Augmentation after spontaneous onset of labor	us onset of labor							
No	29,160 (3.5)	1.0	1.0	1.0	12,251 (1.5)	1.0	1.0	1.0
Yes	8502 (6.3)	1.86(1.81-1.90)	1.54 (1.50 - 1.58)	1.38 (1.34–1.43)	4333 (3.7)	2.47 (2.39–2.56)	2.14 (2.06–2.22)	1.87 (1.79–1.95)
Missing	9470 (1.2)							
Mode of birth								
Spontaneous	44,381 (4.1)	1.0	1.0	1.0	21,540 (2.0)	1.0	1.0	1.0
Assisted vaginal birth	2633 (6.3)	1.57 (1.51-1.63)	1.46 (1.40 - 1.53)	1.27 (1.21–1.32)	1437 (3.5)	1.75 (1.66 - 1.85)	1.60(1.51-1.70)	1.17 (1.10–1.24)
Intrapartum CS	3365 (5.6)	1.39 (1.34–1.44)	1.19 (1.14–1.24)	1.06 (1.02–1.10)		I	I	I
Prelabor CS	4256 (4.7)	1.13 (1.10–1.17)	0.97 (0.93-1.00)	1.18 (1.14–1.23)		I	1	1
Missing	17,054 (1.7)							
Pain medication during labor ^d								
No	42,701 (4.0)	1.0	1.0	1.0	17,174 (1.8)	1.0	1.0	1.0
Epidural analgesia	4727 (7.1)	1.75(1.70-1.80)	1.49 (1.44–1.53)	1.14 (1.10–1.18)	2200 (4.0)	2.08 (1.99–2.18)	1.72(1.64-1.81)	1.20 (1.14–1.26)
Other pharmacological pain relief	7566 (5.9)	1.46 (1.43–1.50)	1.32 (1.28–1.35)	1.06 (1.03–1.09)	3736 (3.2)	1.67 (1.61–1.73)	1.48 (1.43–1.54)	1.11 (1.07–1.16)
Missing	18,753 (1.8)							
Episiotomy								
No	35,232 (3.7)	1.0	1.0	1.0	17,848 (1.9)	1.0	1.0	1.0
Yes	11,996 (6.9)	1.81 (1.77–1.85)	1.74 (1.70–1.78)	1.66 (1.62–1.70)	5082 (3.0)	1.56(1.51-1.61)	1.45 (1.40 - 1.50)	1.27 (1.22–1.31)
Missing	3652 (0.4)							

^bAdjusted for characteristics, year of birth, and interventions in the table (induction of labor, augmentation after spontaneous onset of labor, mode of birth, pain medication during labor, and episiotomy). Induction and ^aAdjusted for characteristics (maternal age, ethnic background, socioeconomic status, hypertension, coagulation disorders, previous CS, previous PPH, previous MROP, and birth weight) and year of birth. augmentation are combined due to collinearity; adjustment for episiotomy was not conducted for the outcome of cesarean section.

^cData for MROP are shown for women with a vaginal birth only.

^dPain medication during labor: total numbers exceed the total number of women in the study because more than one method can be used.

suggesting an increase in mild cases of PPH, but a decrease in severe PPH.2 However, other studies show increasing incidences of severe cases of PPH in other high-income countries, 21,22 and the rate of blood transfusion is largely influenced by local or national policies and guidelines. 24,25

There are many possible explanations for the rise in PPH and MROP. First, although studied changes in population characteristics over the years were not associated with the rising trend in PPH and MROP, variables such as maternal body mass index and birth characteristics such as the duration of labor, may have been contributors to the rising trend.²⁶ Second, although the rising incidences in induction or augmentation of labor, pain medication, and CS were not associated with the rising trend in PPH, rising incidences in induction or augmentation of labour and pain medication were associated with the rising trend in MROP to some extent. Previous studies indicate that some childbirth interventions may increase the risk of PPH. 10,11,20,22,27-34 Graugaard and Maimburg (2021) found an increased risk of PPH among women receiving oxytocin during induction or augmentation of labor, also after adjustments for population characteristics, pain medication, and assisted vaginal birth, which is consistent with our findings. Comparable to our results, after adjustments for other interventions, the association between epidural analgesia and PPH was no longer significant, 27 suggesting that the higher risk of PPH after epidural analgesia is mediated by other childbirth interventions.³⁵ However, a positive association between epidural analgesia and MROP was established after adjustments for other interventions in two cohort studies in Israel. 20,28 A positive association between induction or augmentation of labor and PPH or MROP has been found in many other cohort studies, 10,11,20,28-33 but the association between induction of labor and PPH is not consistent with several randomized controlled trials. 36-38 Although randomized controlled trials are the only design to establish causality, they were limited by selective populations as 34%-73% of women refused participation. Childbirth interventions are very important in reducing maternal and neonatal morbidity and mortality.³⁹ However, they are, as with every intervention and treatment, accompanied by side effects. An increase in the use of interventions without indication results in too many women being exposed to the disadvantages of these interventions. 40 It is important to find a balance between 'too little, too late' and 'too much, too soon' in the administration of oxytocin during labor and to use it only among women with a clear medical indication. 40

The literature is not consistent on the association between CS and PPH. 22,33,41 A meta-analysis of eight studies showed a lower incidence of PPH >1000 mL among women with a CS without medical indication, but no

difference in the blood transfusion rate.⁴¹ Other studies described higher incidences of blood transfusion. 42,43 Most studies did not stratify by parity. Our results showed a lower incidence of PPH after CS among nulliparous women, but a higher incidence among multiparous women. Women with a previous CS have an increased risk of repeat CS. This might explain the higher rate of PPH among multiparous women, due to a higher risk of abnormal placentation among women with a scarred uterus,²⁷ which is underpinned by studies showing a positive association between previous CS and MROP after vaginal birth. 20,28 Another explanation for the conflicting findings may be that women with a PPH during CS more often have a very severe PPH, but less frequently a PPH of just more than 1000 mL.²¹ In our study, we were not able to distinguish the severity of blood loss over 1000 mL.

A third explanation may be the increased awareness by care providers of the subjectivity of estimating blood loss postpartum leading to underestimation. This has led to recommendations of weighing blood loss which may have led to more cases of PPH being diagnosed. 44 However, this awareness already exists for several years and PPH rates are still rising. Equally, recommendations on management of the third stage of labor have changed in many countries. In the Netherlands, the recommended timing to initiate MROP changed from a third-stage duration of 60 min or more in 2004⁴⁵ to 30 min in 2015. ¹⁰ The World Health Organization defines a retained placenta as a third stage lasting more than 30 min. The World Health Organization advises to manually remove the placenta at this stage if bleeding occurs. 46 The change in recommendations may be an explanation for the risen MROP rates. However, despite these recommendations and increased interventions in the third stage of labor, the incidence of PPH has increased rather than decreased from 2003 onwards. Randomized controlled trials on the optimal timing for intervention are lacking and it is, therefore, unknown what the effect of different time intervals is on the incidence of PPH in high-income countries. 47-49

Furthermore, routine use of oxytocin is recommended during the third stage of labor and its use has increased in the Netherlands between 1995 and 2011 in both obstetrician-led care and midwife-led care. 50 However, in the Netherlands, this has not led to a decrease in PPH and MROP. This supports findings from the Cochrane review of Begley et al. (2019) that the evidence for active management of the third stage among low-risk women in highincome countries is unclear. 19,49

Clinical studies are needed to examine the effects of different types of management during the third stage of labor, and more research is needed to show how this has changed over the years, as well as to re-evaluate current recommendations of management during the third stage of labor.

BIRTH ISSUES IN PERINATAL CARE—WILEY

5 | CONCLUSIONS

PPH and MROP rates have increased, both among medium- and high-risk women in obstetrician-led care and among low-risk women in midwife-led care. Rising PPH rates were not associated with changes in studied population characteristics and childbirth intervention rates. Rising MROP rates were to some extent associated with rising incidences of induction and augmentation of labor and pain medication. More research is needed to explain rising trends and to evaluate current recommendations of management in the third stage of labor with additional clinical studies. Besides, more research is needed to investigate the influence of changes in body mass index, which could not be assessed in the current study.

ACKNOWLEDGMENTS

We thank Perined for the use of the national database and Jos Twisk for giving advice on the statistics.

FUNDING INFORMATION

There was no external funding for this study. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication. The funders had no role in study design, data collection, and analysis, decision to publish, or preparation of the manuscript.

CONFLICT OF INTEREST STATEMENT

The authors have declared that no competing interests exist.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from Perined (contact through info@perined.nl) for researchers who meet the criteria for access to confidential data, and if Perined gives permission. Restrictions apply to the availability of these data, which were used under license for this study. Data are available from the Department of Midwifery Science of Amsterdam UMC, location VUmc. with the permission of Perined.

ORCID

Anna E. Seijmonsbergen-Schermers https://orcid.org/0000-0002-5946-2205

Lilian L. Peters https://orcid.org/0000-0003-2342-0799 Corine J. Verhoeven https://orcid.

org/0000-0002-0001-0888

Suze Jans https://orcid.org/0000-0001-7086-9412

Kitty Bloemenkamp https://orcid.

org/0000-0002-1377-4625

Ank de Jonge https://orcid.org/0000-0002-5384-3744

REFERENCES

- Knight M, Callaghan WM, Berg C, et al. Trends in postpartum hemorrhage in high resource countries: a review and recommendations from the international postpartum hemorrhage collaborative group. BMC Pregnancy Childbirth. 2009;9:55.
- 2. van Stralen G, von Schmidt Auf Altenstadt JF, Bloemenkamp KW, van Roosmalen J, Hukkelhoven CW. Increasing incidence of postpartum hemorrhage: the Dutch piece of the puzzle. *Acta Obstet Gynecol Scand.* 2016;95(10):1104-1110.
- 3. Say L, Chou D, Gemmill A, et al. Global causes of maternal death: a WHO systematic analysis. *Lancet Glob Health*. 2014;2(6):e323-e333.
- Mehrabadi A, Hutcheon JA, Lee L, Kramer MS, Liston RM, Joseph KS. Epidemiological investigation of a temporal increase in atonic postpartum haemorrhage: a population-based retrospective cohort study. *BJOG*. 2013;120(7):853-862.
- 5. Joseph KS, Sheehy O, Mehrabadi A, et al. Can drug effects explain the recent temporal increase in atonic postpartum haemorrhage? *Paediatr Perinat Epidemiol*. 2015;29(3):220-231.
- 6. Mehrabadi A, Hutcheon JA, Liu S, et al. Contribution of placenta accreta to the incidence of postpartum hemorrhage and severe postpartum hemorrhage. *Obstet Gynecol.* 2015;125(4): 814-821.
- Kramer MS, Dahhou M, Vallerand D, Liston R, Joseph KS. Risk factors for postpartum hemorrhage: can we explain the recent temporal increase? *J Obstet Gynaecol Can*. 2011;33(8):810-819.
- 8. Callaghan WM, Kuklina EV, Berg CJ. Trends in postpartum hemorrhage: United States, 1994-2006. *Am J Obstet Gynecol*. 2010;202(4):353 e1-6.
- Al-Zirqi I, Vangen S, Forsen L, Stray-Pedersen B. Prevalence and risk factors of severe obstetric haemorrhage. BJOG. 2008;115(10):1265-1272.
- 10. Bais JM, Eskes M, Pel M, Bonsel GJ, Bleker OP. Postpartum haemorrhage in nulliparous women: incidence and risk factors in low and high risk women. A Dutch population-based cohort study on standard (> or = 500 ml) and severe (> or = 1000 ml) postpartum haemorrhage. Eur J Obstet Gynecol Reprod Biol. 2004;115(2):166-172.
- Oyelese Y, Ananth CV. Postpartum hemorrhage: epidemiology, risk factors, and causes. Clin Obstet Gynecol. 2010;53(1):147-156.
- 12. Boerma T, Ronsmans C, Melesse DY, et al. Global epidemiology of use of and disparities in caesarean sections. *Lancet*. 2018;392(10155):1341-1348.
- Offerhaus PM, de Jonge A, van der Pal-de Bruin KM, Hukkelhoven CW, Scheepers PL, Lagro-Janssen AL. Change in primary midwife-led care in The Netherlands in 2000-2008: a descriptive study of caesarean sections and other interventions among 789,795 low risk births. *Midwifery*. 2014;30(5):560-566.
- Stichting Perinatale Registratie Nederland. Perinatale Registratie Nederland Grote Lijnen 1999–2012. [The Netherlands Perinatal Registry Trends 1999–2012]. Utrecht; 2013 2013.
- Stichting Perinatale Registratie Nederland. PRN Koppelingsprocedure 2013 (LVR1, LVRh, LVR2 en LNR-Deelregistraties). [PRN-Foundation Procedure of Linkage Four Dutch Perinatal Registries]. 2014.
- Schuurhuis A, Roumen FJ, De Boer JB. Practice guideline 'Pharmaceutical pain treatment during labour'; the woman's request is sufficient indication. Ned Tijdschr Geneeskd. 2009;153:A551.

ns) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenso

- 17. Dominico S, Bailey PE, Mwakatundu N, Kasanga M, van Roosmalen J. Reintroducing vacuum extraction in primary health care facilities: a case study from Tanzania. BMC Pregnancy Childbirth. 2018;18(1):248.
- 18. de Jonge A. Mesman JA. Manniën J. et al. Severe adverse maternal outcomes among women in midwife-led versus obstetrician-led care at the onset of labour in The Netherlands: a Nationwide cohort study. PLoS One. 2015;10(5):e0126266.
- 19. Jans S, Herschderfer K, Van Diem M, et al. The LENTE study: the effectiveness of prophylactic intramuscular oxytocin in the third stage of labor among low-risk women in primary care midwifery practice: a randomized controlled trial. Int J Childbirth. 2016;6(3):173-182.
- Anteby M, Many A, Ashwal E, Yogev Y, Shinar S. Risk factors and complications of manual placental removal after vaginal delivery—how common are additional invasive procedures? J Matern Fetal Neonatal Med. 2019;32(3):384-388.
- 21. Flood M, McDonald SJ, Pollock W, Cullinane F, Davey MA. Incidence, trends and severity of primary postpartum haemorrhage in Australia: a population-based study using Victorian perinatal data collection data for 764 244 births. Aust N Z J Obstet Gynaecol. 2019;59(2):228-234.
- 22. Joseph KS, Rouleau J, Kramer MS, Young DC, Liston RM, Baskett TF. Investigation of an increase in postpartum haemorrhage in Canada. BJOG. 2007;114(6):751-759.
- 23. Cheung WM, Hawkes A, Ibish S, Weeks AD. The retained placenta: historical and geographical rate variations. J Obstet Gynaecol. 2011;31(1):37-42.
- 24. Hutcheon JA, Chapinal N, Skoll A, Au N, Lee L. Inter-hospital variation in use of obstetrical blood transfusion: a populationbased cohort study. BJOG. 2020;127(11):1392-1398.
- 25. Patterson JA, Roberts CL, Isbister JP, et al. What factors contribute to hospital variation in obstetric transfusion rates? Vox Sang. 2015;108(1):37-45.
- 26. Durmaz A, Komurcu N. Relationship between maternal characteristics and postpartum hemorrhage: a meta-analysis study. J Nurs Res. 2018;26(5):362-372.
- 27. Graugaard HL, Maimburg RD. Is the increase in postpartum hemorrhage after vaginal birth because of altered clinical practice? A register-based cohort study. Birth. 2021;48:338-346.
- Ashwal E, Melamed N, Hiersch L, Wiznitzer A, Yogev Y, Peled Y. The incidence and risk factors for retained placenta after vaginal delivery—a single center experience. J Matern Fetal Neonatal Med. 2014;27(18):1897-1900.
- Ford JB, Roberts CL, Simpson JM, Vaughan J, Cameron CA. Increased postpartum hemorrhage rates in Australia. Int J Gynaecol Obstet. 2007;98(3):237-243.
- 30. Al-Zirqi I, Vangen S, Forsen L, Stray-Pedersen B. Effects of onset of labor and mode of delivery on severe postpartum hemorrhage. Am J Obstet Gynecol. 2009;201(3):273.e1-9.
- 31. Grotegut CA, Paglia MJ, Johnson LN, Thames B, James AH. Oxytocin exposure during labor among women with postpartum hemorrhage secondary to uterine atony. Am J Obstet Gynecol. 2011;204(1):56.e1-56.e6.
- 32. Belghiti J, Kayem G, Dupont C, Rudigoz RC, Bouvier-Colle MH, Deneux-Tharaux C. Oxytocin during labour and risk of severe postpartum haemorrhage: a population-based, cohortnested case-control study. BMJ Open. 2011;1(2):e000514.
- 33. Rossen J, Okland I, Nilsen OB, Eggebø TM. Is there an increase of postpartum hemorrhage, and is severe hemorrhage

- associated with more frequent use of obstetric interventions? Acta Obstet Gynecol Scand. 2010;89(10):1248-1255.
- Dahlen HG, Thornton C, Downe S, et al. Intrapartum interventions and outcomes for women and children following induction of labour at term in uncomplicated pregnancies: a 16-year population-based linked data study. BMJ Open. 2021;11(6):e047040.
- 35. Petersen A, Poetter U, Michelsen C, Gross MM. The sequence of intrapartum interventions: a descriptive approach to the cascade of interventions. Arch Gynecol Obstet. 2013;288(2):245-254.
- Keulen JK, Bruinsma A, Kortekaas JC, et al. Induction of labour at 41 weeks versus expectant management until 42 weeks (INDEX): multicentre, randomised non-inferiority trial. BMJ. 2019;364:1344.
- 37. Koopmans CM, Bijlenga D, Groen H, et al. Induction of labour versus expectant monitoring for gestational hypertension or mild pre-eclampsia after 36 weeks' gestation (HYPITAT): a multicentre, open-label randomised controlled trial. Lancet. 2009:374(9694):979-988.
- Boers KE, Vijgen SM, Bijlenga D, et al. Induction versus expectant monitoring for intrauterine growth restriction at term: randomised equivalence trial (DIGITAT). BMJ. 2010;341:c7087.
- Kassebaum NJ, Bertozzi-Villa A, Coggeshall MS, et al. Global, regional, and national levels and causes of maternal mortality during 1990-2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2014;384(9947):980-1004.
- 40. Miller S, Abalos E, Chamillard M, et al. Beyond too little, too late and too much, too soon: a pathway towards evidence-based, respectful maternity care worldwide. Lancet. 2016;388(10056):2176-2192.
- Mascarello KC, Horta BL, Silveira MF. Maternal complications and cesarean section without indication: systematic review and meta-analysis. Rev Saude Publica. 2017;51:105.
- Souza JP, Gülmezoglu A, Lumbiganon P, et al. Caesarean section without medical indications is associated with an increased risk of adverse short-term maternal outcomes: the 2004-2008 WHO Global Survey on Maternal and Perinatal Health. BMC Med. 2010;8:71.
- 43. Kolin DA, Shakur-Still H, Bello A, Chaudhri R, Bates I, Roberts I. Risk factors for blood transfusion in traumatic and postpartum hemorrhage patients: analysis of the CRASH-2 and WOMAN trials. PLoS One. 2020;15(6):e0233274.
- 44. Smit M, Chan KL, Middeldorp JM, van Roosmalen J. Postpartum haemorrhage in midwifery care in the Netherlands: validation of quality indicators for midwifery guidelines. BMC Pregnancy Childbirth. 2014:14:397.
- 45. Deneux-Tharaux C, Macfarlane A, Winter C, Zhang WH, Alexander S, Bouvier-Colle MH. Policies for manual removal of placenta at vaginal delivery: variations in timing within Europe. BJOG. 2009;116(1):119-124.
- World Health Organization. WHO Recommendations for the Prevention and Treatment of Postpartum Haemorrhage. WHO;
- 47. Franke D, Zepf J, Burkhardt T, Stein P, Zimmermann R, Haslinger C. Retained placenta and postpartum hemorrhage: time is not everything. Arch Gynecol Obstet. 2021;304:903-911.
- Edwards HM, Svare JA, Wikkelsø AJ, Lauenborg J, Langhoff-Roos J. The increasing role of a retained placenta in postpartum blood loss: a cohort study. Arch Gynecol Obstet. 2019;299(3):733-740.

- BIRTH ISSUES IN PERINATAL CARE WILEY 1111
- 49. Begley CM, Gyte GM, Devane D, McGuire W, Weeks A, Biesty LM. Active versus expectant management for women in the third stage of labour. *Cochrane Database Syst Rev.* 2019;2(2):Cd007412.
- Smit M, Van Stralen G, Wolterbeek R, Van Dillen J, Van Roosmalen J, Slootweg Y. Survey of prophylactic use of uterotonics in the third stage of labour in the Netherlands. *Midwifery*. 2013;29(8):859-862.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article. How to cite this article: Seijmonsbergen-Schermers AE, Rooswinkel ETC, Peters LL, et al. Trends in postpartum hemorrhage and manual removal of the placenta and the association with childbirth interventions: A Dutch nationwide cohort study. *Birth*. 2024;51:98-111. doi:10.1111/birt.12765