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Abstract

Switching max-plus linear system (SMPLS) models are an apt formalism for performance
analysis of discrete-event systems. SMPLS analysis is more scalable than analysis through
other formalisms such as timed automata, because SMPLS abstract pieces of determinate
concurrent system behavior into atomic modes with fixed timing. We consider discrete-event
systems that are decomposed into a plant and a Supervisory Controller (SC) that controls the
plant. The SC needs to react to events, concerning e.g. the successful completion or failure
of an action, to determine the future behavior of the system, for example, to initiate a retrial
of the action. To specify and analyze such system behavior and the impact of feedback on
timing properties, we introduce an extension to SMPLS with discrete-event feedback. In
this extension, we model the plant behavior with system modes and capture the timing of
discrete-event feedback emission from plant to SC in the mode matrices. Furthermore, we use
I/0O automata to capture how the SC responds to discrete-event feedback with corresponding
mode sequences of the SMPLS. We define the semantics of SMPLS with events using new
state-space equations that are akin to classical SMPLS with dynamic state-vector sizes. To
analyze the extended models, we formulate a transformation from SMPLS with events to
classical SMPLS with equivalent semantics and properties such that performance properties
can be analyzed using existing techniques. Our approach enables the specification of discrete-
event feedback from the plant to the SC and its performance analysis. We demonstrate our
approach by specifying and analyzing the makespan of a flexible manufacturing system.

Keywords Max-plus linear systems - Modeling and analysis - Discrete event systems -
Flexible manufacturing systems

1 Introduction

Model-based design is an approach in which systems are designed using models that are
both understandable by engineers and amenable to mathematical analysis. The system imple-
mented by this approach should behave as predicted by the mathematical model, and therefore
can be analyzed and improved using this model. Examples of such modeling formalisms are
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Petri Nets (Peterson 1981), Synchronous Dataflow (Lee and Messerschmitt 1987), Timed
Automata (Alur and Dill 1994) (TA), and Max-Plus Linear Systems (Baccelli et al. 1992).

Max-Plus Linear Systems (MPLS) are used to model a wide variety of discrete-event
systems (DES) (Geilen and Stuijk 2010; Geilen 2010; De Schutter and De Moor 1998; De
Schutter and van den Boom 2001). They offer performance analysis methods through linear
max-plus operators, which contributes to the scalability of the analysis. An extension to
MPLS is the class of Switching Max-Plus Linear Systems (SMPLS) (van den Boom and De
Schutter 2006). This extension is used to model and analyze systems that switch between
different modes of operation. In each mode, the system is described by a Max-Plus Linear
(MPL) state-space model.

(S)MPLS have scalability advantages over alternative performance-oriented models such
as Timed Petri Nets or TA for the analysis of DES. SMPLS allow modeling and analysis of
concurrent system behavior that would lead to state-space explosion in other formalisms. For
instance, comparisons between TA and MPLS-based analysis were made in van der Sanden
etal. (2016); Skelinetal. (2015). SMPLS models reduce state-space explosion by aggregating
concurrent, but determinate pieces of behavior into atomic modes with a fixed timing captured
in matrices. In Skelin et al. (2015), the authors use MPLS and TA models to analyze a realistic
case study from the multimedia domain, and compare their analysis times. For similar analysis
types (maximum response delay and maximum inter-firing latency) MPLS analysis methods
are significantly faster than their TA counterparts and require noticeably fewer resources.
The tools used were SDF3 (Stuijk et al. 2006) for MPLS analysis and UPPAAL (Behrmann
et al. 2006) for TA analysis.

SMPLS are used to specify and analyze a variety of DES such as synchronous dataflow
graphs (Geilen and Stuijk 2010; Geilen 2010) and flexible manufacturing systems (FMS)
(van der Sanden et al. 2016). To demonstrate our approach, in this article we use an FMS as
our running example. An FMS is defined as “an integrated, computer-controlled, complex
of automated material handling devices and machine tools that can simultaneously process
multiple types of parts while reducing the overhead time, effort, and cost of changing produc-
tion line configurations in response to changing requirements” (Stecke 1983). These features
that are required in FMS, result in more complex systems, making the design process more
difficult (EIMaraghy 2005). Therefore, it is necessary to automate the design process to han-
dle the complexity of design. SMPLS provides a mathematical framework to model all the
parts of an FMS in a formal way so that they can be analyzed and reasoned about. System
operations are abstracted into a set of modes and their effect on the system is captured using
max-plus matrices while the state of the system is captured in a vector. The overall behavior
of the system is modeled as switching between the modes. Analysis of the system is then
performed using max-plus-linear matrix-vector multiplications. Modeling and timing anal-
ysis of these systems is an important step toward performance optimization and automated
design.

Although SMPLS are a powerful formalism for timing analysis and performance optimiza-
tion, SMPLS abstract from discrete-event feedback that is sent from plant to SC (Ramadge
and Wonham 1987). This concerns, on the one hand, the information about the feedback, for
instance, acknowledgment of completion of an action, confirmation of success or indication
of failure. On the other hand, it also concerns the impact of this feedback on the flow and
timing of future operations that depend on it. SMPLS traditionally deal with a different type
of feedback in the form of observed variations in system timing as perturbations recorded
in the state vector. In contrast, this article focuses on discrete-event feedback from plant to
SC and the interactions between these control layers. We introduce an extension to SMPLS
to specify such discrete-event feedback and capture the interactions between SC and plant,
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including their timing. We show how these SMPLS with events can be analyzed by a reduc-
tion to classical SMPLS without discrete-event feedback, but with equivalent performance.
We focus on the domain of FMS to demonstrate and evaluate our approach, but it is applicable
in other domains as well in which systems are modelled and analyzed using SMPLS.

Figure 1 shows an overview of our contributions (colored green) next to the state of the
art (colored blue). In classical SMPLS, a system is specified using a set of modes, matrices
with a fixed size corresponding to each mode, and a mode automaton that specifies the
possible sequences of modes. The corresponding SMPLS state-space equations then give
the semantics of the system, in the form of the set of possible state-vector sequences. On
the semantics, we define the properties of interest for the system (in this article, makespan).
Max-plus automata (Gaubert 1995), constructed from the SMPLS specifications, are used
for analysis.

Our contributions in this article are summarized as follows (Fig. 1, green colored):

e Weintroduce an extension of SMPLS, with events, to capture discrete-event feedback. We
use [/O automata to succinctly specify the SC that captures the allowed mode sequences
including the emission and processing of events. Each mode is characterized by a max-
plus matrix that captures the timing of mode execution on the system state and the timing
of event emission.

e We introduce the semantics of SMPLS with events by transforming a specification con-
sisting of an I/O automaton with mode matrices to state-space equations with dynamic
state-vector sizes to capture the timing of event emission and processing.

e We introduce a transformation from SMPLS with events to classical SMPLS, to facilitate
re-use of existing performance analysis techniques.

e We prove that the transformed SMPLS has the same set of state-vector sequences as
the SMPLS with events. The transformed SMPLS can therefore be used to analyze the
performance properties of the SMPLS with events.

e We show how the maximum makespan of an SMPLS can be analyzed using max-plus
automata.

The remainder of the article is organized as follows. Section 2 presents our running
example. In Section 3, we demonstrate how to model and analyze this example using a
baseline SMPLS approach. In Section 4, we extend the example with discrete events and
we demonstrate our approach. In Section 5, we evaluate the approach on a realistic FMS

Equal

. SMPLS Analysis
properties

max-plus automaton

SMPLS Specification SMPLS
modes, matrices, automaton equations, semantic

Classical (Definition 1) sequences of state v (Theorem 1) makespan analysis
SMPLS (M, 4, Y, n) with static size, makespan
(Equation (1))
Transform Equival ics/
(Definition 19, quivalent sema_ntlcs
Definition 20, Equal properties
Proposition 1) (Theorem 2)
SMPLS with Events Spec SMPLS with Events
SMPLS modes, matrices, I/O automaton equations, semantics, properties
with events, event-mode relations sequences of state vectors with
Events (Definition 14) dynamic sizes, makespan

(M,E,U,0,v,Ac,Ac, Y, 1) (Equation (5))

Fig. 1 Overview of our approach, where the green parts indicate our contributions presented in this article
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Step = ===-
Scan

Fig.2 A schematic overview of a wafer being exposed. Redrawn from Fig. 15 in Butler (2011)

example. In Section 6, we examine related literature and compare the state of the art to our
approach. In Section 7, we conclude this article.

2 Running example

We introduce our work using a running example in the application domain of lithography
scanners (Jonk et al. 2019). Lithography scanners are highly complex cyber-physical systems
used to manufacture integrated circuits (Butler 2011). These machines use an optical system
to project an image of a pattern onto a photosensitive layer deposited on a substrate, called
a wafer. A single pattern is repeatedly projected many times on a wafer. The wafer needs
to be repositioned each time. Figure 2 (redrawn from Butler 2011) shows two types of
operations executed to expose one wafer. The Scan operation exposes one field of the wafer
to light, while the Step operation adjusts the wafer to Scan the next field. We aggregate each
Step operation and its subsequent Scan operation into a Step/Scan operation. A full wafer
exposure is defined as a series of Step/Scan operations which are to be tracked with nanometer
positional accuracy. While performing these Step/Scans, the system can experience physical
disturbances. System-wide sensor data from previous scans are therefore collected to adjust
the setpoints for each Step/Scan operation. AdjustSetpoint is an operation that computes
these setpoint adjustments. The Step/Scan operations have a functional dependency on the
AdjustSetpoint operations. Operations are executed on resources. In our running example,
a Stage resource executes the Step/Scan operations and a Compute resource executes the
AdjustSetpoint operations.

To minimize the wafer exposure time, the AdjustSetpoint and Step/Scan operations must
be executed in a pipeline. In our running example, the pipeline depth is assumed to be two.
The result of a Step/Scan operation is used to make decisions to either continue performing
a next AdjustSetpoint and Step/Scan operation or to execute a Calibrate operation!. The
Calibrate operation simultaneously uses the Stage and Compute resources.

This system is modeled using two approaches. In the baseline approach, the system is
specified and analyzed based solely on a feed-forward mechanism. Step/Scans are assumed
to execute with sufficient accuracy so that no feedback is required and operations can be
queued in a fully feed-forward fashion. We present this approach in Section 3 to provide the
theoretical preliminaries and establish the basis for our feedback approach. The feedback
approach is presented in Section 4.

1 This behavior differs from the behavior of actual wafer scanners, to concisely illustrate our approach.

@ Springer



Discrete Event Dynamic Systems

3 Feed-forward modeling and analysis

In this section, we present the baseline analysis technique, and illustrate it with the running
example (van der Sanden et al. 2016). We introduce the background material and literature
used in our research as a baseline to which we compare our modeling and analysis technique.
We introduce the concepts of max-plus algebra used to reason about the timing of systems.
Then we model and analyze our running example in subsections concerning specification,
semantics and analysis (in line with the breakdown in Fig. 1). This feed-forward approach
lacks the necessary concepts and mechanisms to succinctly specify discrete-event feedback
from the plant to the SC and the SC’s reaction to such feedback. We introduce the extension
in the next section.

3.1 Max-plus algebra

The approaches that we present in this article use max-plus algebra and the theory of max-
plus linear systems to specify and analyze FMS. In this subsection, we introduce the required
max-plus concepts. The max-plus semiring R, is the set T = R U {—o00}, called the
max-plus time domain, equipped with the operators addition (a & b = max(a, b)) and
multiplication (a ® b = a + b) (Akian et al. 2006). Both operators are commutative and
associative. Multiplication binds stronger than addition in the notation of expressions. The
zero element is —oo, meaning that forallx € 7, x @ —o0o = x and x ® —o0 = —o00. The
unit element for multiplication is 0, meaning x ® 0 = x for all x. The sum over an empty set
is considered to be equal to the unit element of addition, i.e., —oo.

A max-plus matrix is a matrix over time domain 7'. For a max-plus matrix A € T"*",
we let A;; denote the element in the ith row and the jth column. 0 denotes a zero matrix
of appropriate size in the context where it is used. 0%V denotes a zero matrix of size u x v.
A max-plus (column) vector is a max-plus matrix with a single column. We denote the ith
element in vector X by ;. The norm of vector X, denoted by |x|, is defined as: |x| = €p; ;.
I is the max-plus version of the identity matrix, having 0 elements on the diagonal and —oo
elements elsewhere. For matrix A of size m x [ and matrix B of size / x n, the max-plus
matrix product C = A ® B with size m x n is defined as Cjx = EBJ- Aij ® Bji.

For notational convenience and to avoid case distinctions, we allow vectors to be of length
zero, and we allow matrices to have zero rows and/or zero columns with the following
convention. A matrix of zero rows, when multiplied with another matrix yields a matrix
which has again zero rows and hence, when multiplied with a vector yields a vector of length
zero. A matrix with zero columns can be multiplied with a matrix with zero rows. The result
is a matrix containing the value —oo, as —oo is the result of the ‘empty’ inner product that
is computed, i.e., the max-plus sum of an empty set.

3.2 Feed-forward specification

Figure 3 illustrates the feed-forward approach in modeling an FMS where an SC executes
modes on a plant and does not receive discrete-event feedback from the plant. We specify
the system behavior of our running example as an SMPLS.

Definition 1 An SMPLS is a tuple (M, A, Y, n), with

e afinite set M of modes;
e afunction A : M — T"*" that maps each mode to an n-by-n max-plus matrix;
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Automaton

Execution

Fig. 3 Interaction between plant and SC modeled in the feed-forward approach

e a finite state automaton ¥ = (Q, S, I, M, F) that specifies the possible sequences of
modes, where Q is a finite set of states, S C Q is a set of initial states, A C O x M x Q
is a mode-labelled transition relation, and F C Q is a set of final states;

e and the state-vector size n.

We model the feed-forward case for our running example as our Reference System RS =
(Mgs, Ars, Yrs, ngs). We model each ‘AdjustSetpoint followed by Step/Scan’ pattern by
a mode that we call Scan. We also define a Calibrate mode that performs the Calibrate
operation of the system. We assume that after executing the Scan mode twice, the system
may either calibrate the stage or continue scanning without calibration. The system halts after
having executed four Scan modes. We thus have Mgs = {Scan, Calibrate} and automaton
Ygs as depicted in Fig. 4, where ¢ is the initial state (marked by an arrow) and ¢4 is the final
state (marked by a double-walled circle). The mapping Ags of modes to mode matrices of
size ngg is presented below after we have discussed the modes.

In SMPLS, a mode matrix captures the effect of executing the mode on a state vector.
In our context, we are interested in availability times of the system resources. Hence, the
elements of the state vector capture resource availability times. An execution of the Scan
mode in RS claims the Compute resource to perform the AdjustSetpoint operation, releases
the Compute resource and claims the Stage resource, performs the Step/Scan operation, and
finally releases the Stage resource. Each mode of RS is mapped to a mode matrix (by function
ARgs) of size ngs = 2 that describes how the availability times of the resources change by
executing the mode. Each mode matrix captures the timing dependencies between resource
claims and releases, and the max-plus multiplication of state vectors and matrices determines
the resource availability times after executing the mode. We assume that AdjustSetpoint,
Step/Scan, and Calibrate operations take 2, 3, and 4 time units, respectively. The matrices
associated with the Scan and Calibrate modes of RS are then as follows:

2 —o0

A(Scan) = [5 3 :| , A(Calibrate) = I:j j]

Because the system has two resources, we have state vectors and mode matrices of size
2. In a mode matrix, the indices of rows and columns correspond to resource numbers.

(% Scan @ Scan_ /7™ Scan @ Scan @
n

q
Calibrate

Fig.4 Mode automaton of a batch of four scans (Ygs)
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Each element A;; corresponds to the minimum time that the mode takes between claiming
resource j and releasing resource i. As an example, consider A(Scan). Index 1 refers to
resource Compute and index 2 refers to resource Stage. The value 2 in the matrix denotes
that resource 1 is claimed and that it takes at least 2 time units before it is released. The value
—oo implies the absence of a timing dependency between claiming resource 2 and releasing
resource 1. Value 5 means that it takes at least 5 time units to release resource 2 after claiming
resource 1, due to a dependency between the operations AdjustSetpoint and Step /Scan. This
value corresponds to the summed durations of the individual operations.

Figure 5 shows the Gantt charts of executing the two possible mode sequences specified by
the automaton in Fig. 4. The execution of operations is pipelined, based on the availability of
the system resources that they use and their timings. Figure 5(a) corresponds to mode sequence
Scan, Scan, Scan, Scan, and Fig. 5(b) corresponds to mode sequence Scan, Scan, Calibrate,
Scan, Scan. The arrows show functional dependencies between the AdjustSetpoint and the
Step/Scan operations that are respected when executing a Scan mode. Each row in the chart
represents a system resource. On top of each chart, the resource availability state vectors are
shown.

3.3 Feed-forward semantics

The semantics of an SMPLS is defined as the set of possible sequences of state vectors. Such
a sequence is denoted by x (k). For the running example, there are two sequences, which are
shown in Fig. 5. Formally, the semantics of an SMPLS is defined as follows.

Definition2 A word in an SMPLS (M, A,Y,n) with Y = (Q, S, A, M, F) is a finite
sequence of modes. A word w = my,my,...,m; € M* is accepted by automaton Y
if and only if there exists a sequence qo, g1, ...,q; € Q of states such that gy € S,
(qk, miy1, qr+1) € Aforall0 < k < j,and g; € F. The language £(Y) of an automaton
Y is the set of all words that are accepted by the automaton Y.

Definition 3 Givenawordw = my, m», ..., mj € M*, we define the corresponding sequence
of state vectors x (k) for 0 < k < j using the following equation:

X(k+1) = A(mpy1) ® x(k) ey

e ] I 4 N I 1 WA

c Adjust Adjust
ompute . 2
Setpoint | Setpoint
Stage Step/Scan
0 2 4 5 6 8 11 14
(a) without calibration
State 0 2 4 12 14 16
Vectors [0] [5] [8] 12] [17 [20
Compute SAdju}stt SAdju'stt SAdju'stt SAdjulstt
etpoin etpoint Calibrate etpoin etpoint
Stage Step/Scan Step/Scan Step/Scan Step/Scan
0 2 4 5 6 8 12 14 16 17 20

(b) with calibration

Fig.5 Gantt charts of a batch of four pipelined Scan modes, without (a) and with (b) calibration
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where initial state vector X (0) = 0. For the example, this means that all resources are assumed
to be initially available at time O.

Equation 1 provides the basis for the semantics of SMPLS (see Fig. 1).

Definition 4 The semantics of an SMPLS is the set of sequences of state vectors defined by
Eq. 1 corresponding to the words in £(Y).

We apply worst-case makespan analysis to demonstrate one type of performance analysis
that can be performed on SMPLS. To define the makespan of an SMPLS, we first define the
makespan of a mode sequence.

Definition 5 Let w € M* be a word. We let X (w) denote the state vector after execution of
the sequence w of modes. The makespan of a word w is then defined as u(w) = |x(w)|. The
makespan of SMPLS (M, A, Y, n) is defined as w(M, A, Y,n) = SUP e (v) m(w).

The makespan of w equals the time at which the last mode in w has completed execution.
For example, the makespans of the sequences in Fig. 5(a) and (b) are 14 and 20, respec-
tively. We define the makespan of an SMPLS as the worst-case makespan of all of its mode
sequences. Hence, the makespan of the system in Fig. 5 is 20. Note that the makespan over
an infinite language may be infinite.

3.4 Max-plus automata

For the running example, we can find the makespan by enumerating all mode sequences. In
general, this is not feasible, because it does not scale well, and infinitely many of them may
exist. To obtain a generic analysis method, we transform an SMPLS to a max-plus automaton
to analyze its timing properties. A max-plus automaton is a generalization of a finite state
automaton that not only defines a set of accepted words, but also assigns weights to those
words. It assigns a weight to each transition, so that by adding the weights of the transitions
of a word, we obtain the weight of that word.

Definition 6 A max-plus automaton (Gaubert 1995) is a five-tuple A = (Q, X, «, 8, D),
with

a finite set Q of states;

a finite alphabet X;

a function @ : Q — T that assigns an initial weight to every state;
afunction 8 : Q — T that assigns a final weight to every state;
afunction D : Q x £ x Q — T that assigns a weight to every transition.

A max-plus automaton defines transitions for all pairs of states and all symbols. It therefore
may be non-deterministic. It rules out unwanted transitions (and hence unwanted words) by
assigning the weight —oo to them. Transitions are further labeled with a symbol of the
alphabet.

Definition 7 Let path p = go,q1,....,q; € Q/'+1 and let w = ay,az, ...,a; € /. The
weight of word w on path p is defined as weight(w, p) = a(qo) + D(qo, a1, q1) + ... +
D(gj-1,aj,q;) + B(g;).

Since max-plus automata are non-deterministic, they generally have multiple paths cor-
responding to a given word, which may have different weights. The weight of a word is the
maximum weight of all paths corresponding to that word.
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Definition 8 The weight of a word w € £* is

weight(w) = @ weight(w, p)
pEQ\wHI

Definition9 A word w in a max-plus automaton is accepted if weight(w) # —oo. The
language of a max-plus automaton A is the set of all accepted words and is denoted by £(.A).

We use the product of two max-plus automata for timing analysis of SMPLS. The product
of two max-plus automata is defined for automata with equal alphabets.

Definition 10 The product A ® B of max-plus automata (defined in Gaubert (1995))
A = (04, Z,a4,B4,Da) and B = (0B, X, ap, B, Dp) is a max-plus automaton
(0, 2, a, B, D) with:

e the set Q = Q.4 x Qp of states;

e the alphabet X;

e the function @ : Q — T that assigns an initial weight o 4(q1) ® ap(q2) to every state
(g1, 92) € O3

e the function B : Q — T that assigns a final weight S4(q1) ® Br(q2) to every state
(q1,92) € Q3

e the function D : Q x ¥ x Q — T that maps a weight DA(ql,a,qi) ® Dg(q2,a, qé)
to every transition ((q1, q2), a, (¢, g5)).

Hence, the product of two max-plus automata is a max-plus automaton with the product
of the states, where a state has initial weight > —oo iff it is the product of two states with
initial weight > —oo. The same rule applies to final weights of states. The transition weights
are the max-plus product of the transition weights of the two automata. Therefore, we only
assign a weight > —oo to those transitions that have weight > —oo in both automata. The
product automaton only accepts words that are accepted by both automata. The weight of
any word in the product automaton is the sum of the weights of this word in the constituent
automata.

In line with Definition 5, and analogous to the worst-case analysis in Section IV of Gaubert
(1995), we define the makespan of a max-plus automaton as the largest weight of any word.
Only accepted words have a weight larger than —oo.

Definition 11 The makespan of a max-plus automaton .4 is defined as

u(A) = sup p(w)
weLl(A)

As an example, Fig. 6 shows a graphical representation of a max-plus automaton. By con-
vention, transitions with weight —oo are not drawn. In this max-plus automaton, Q = {1, 2}
and ¥ = {S, C}. States 1 and 2 have initial weight 0, indicated by the incoming labelled
arrows. States 1 and 2 have final weight 0, denoted by the outgoing labelled arrows. Tran-
sitions are D = {((1, S, 1), 2), ((1, S, 2),5), ((2,C,2),4), ...}. By definition, there exists a
transition between any pair of states for any symbol in a max-plus automaton. Some have
weight —oo, for instance D(2, S, 1) = —oo (and hence are not drawn). An example of a
path in this automaton is p; = 1, 1, 2, 1 having weight 13 for word CSC. There are other
paths for the word CSC, for example p; = 2,2, 2, 2 with weight 11.
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Fig.6 Max-plus automaton (representing the mode matrices of RS)

3.5 Feed-forward analysis

To analyze a system, we use the specified mode automaton of the system and the mode
matrices associated with each mode as input. We then generate a max-plus automaton that
represents the behavior of the system. This way, we reduce the makespan analysis problem of
our SMPLS to the makespan analysis of a max-plus automaton and use the existing analysis
methods for such systems (van der Sanden et al. 2016; Gaubert 1995; Singh and Judd 2014).

The transformation that we perform is analogous to the construction described in Section
VIof Gaubert (1995), and is depicted in Fig. 7. The transformation foran SMPLS (M, A, Y, n)
is defined as the product of two max-plus automata H(Y) and G(M, A). The max-plus
automaton H(Y) captures the possible sequences of modes and restricts the behavior of
the system to the specified behavior, without any timing information. On the other hand,
the max-plus automaton G(M, A) specifies all the timing information of the modes, but it
does not restrict the sequences of modes, allowing all possible mode sequences. The product
of these two max-plus automata restricts the language of the system to the specified mode
sequences and contains all timing information of sequences of that language. This max-plus
automaton therefore has all the necessary information to analyze the timing behavior of the
system.

Definition 12 H (Y) is max-plus automaton (Q, X, «, B, D) with:

the set Q = Q(Y);

the alphabet ¥ = M(Y);

the function « that assigns an initial weight O to every state g € S(Y') and —oo otherwise;
the function S that assigns a final weight O to every state ¢ € F(Y) and —oo otherwise;
the function D that maps a weight 0 to every transition in A(Y) and a weight —oo to
every transition not in A(Y).

Figure 8 depicts the max-plus automaton H (Y) for RS. For simplicity, Scan and Calibrate
are depicted by the symbols S and C, respectively. This max-plus automaton accepts all the
sequences of modes that the system may execute. All transitions have either weight 0 or —oco
so that it assigns weight O to all words accepted by ¥ and —oo to all other words.

max-plus automaton

Mode Matrices . o
representing the mode timing

@ max-plus automaton
representing the SMPLS

max-plus automaton
Mode Automaton representing the language of
mode sequences

!!

Fig.7 Transformation of system specification into a max-plus automaton
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S,0 S,0 S,0 S,0

N
.0

Fig.8 Max-plus automaton of the mode automaton of RS

G(M, A) is a max-plus automaton capturing the timing information of the mode matrices.
Definition 13 G(M, A) is max-plus automaton (Q, X, «, 8, D) with:

e the set O = {q1, 92, ..., gn} of states, where n is the size of the matrices of A (from
Definition 1);

e the alphabet ¥ = M;

e the function « that assigns an initial weight O to every state;

e the function B that assigns a final weight O to every state;

o the function D that assigns a weight A(m) j; to every transition (i, m, j).

Figure 6 depicts the max-plus automaton G(M, A) for RS. Through the weights, this
automaton represents the timing (makespan) of any mode sequence, not restricted to the
language of Y. Figure 9 shows the product of the automata in Figs. 6 and 8, where each state
labeled g; ; € Q is the product of g; € Q(G(M, A)) and q; € Q(H(Y)).

Using the product max-plus automaton of Fig. 9, we can compute the makespan of the
system. The makespan is the maximum of all the path weights from any initial state (state
with initial weight = —o0) to any final state (state with final weight #= —o0). We prove that
this makespan is equal to the makespan of the corresponding SMPLS. To this end, we first
prove Lemma 1. Lemma 1 is a known result about max-plus automata. Since we are not
aware of an explicit statement of it in literature, it is given here, including a proof, for the
sake of completeness.

Lemma 1 Let M be a set of modes and let A be a function that maps every mode m € M to
a matrix A(m). Let w = my, my, ..., mj € M* for some k > 0. Further, let x(w) be defined
as:

iw) = Q) (Alm—) ®0)

0<j<k

Then for all i, x(w); is equal to the longest w-path to state i in G(M, A).

Fig.9 Max-plus automaton representing the behavior of RS
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Proof The proof proceeds by induction on the length of w. For length 0, we have X(¢) = 0
(where € denotes the empty word). Every state i in G(M, A) has initial weight 0, so the
assertion holds. Now assume that x(w); is equal to the weight of the longest path to state i
in G(M, A) for word w = my, ma, ..., my of length k. For word w’ = my, ..., my, myy1, we
have x (w’); = EB]- A(myy1)ij ®x(w) ;. By Definition 13, element A(my.1);; is equal to the
weight of the edge from state j to state i, labelled my41. All w’ paths to state i are w paths
to some state j, followed by an edge labelled my1 | from j to i. So the longest w’ path to i is
equal to the maximum over all j of the longest w path to j plus the weight of the m1-edge
from j to i. Therefore, by induction X (w’); is equal to the weight of the longest path to state
i in G(M, A) over the word w’. So the assertion holds for words of length k + 1 as well. O

Theorem 1 Let SMPLS S = (M, A,Y,n). Then, u(M, A, Y,n) = u(G(M, A) © H(Y)).

Proof Let G = G(M, A) and H = H(Y). G © H only accepts words that are accepted by
both G and H and it assigns a weight to those words which is the sum of their weights in G
and H. Any state in H has initial weight O iff it is an initial state in Y. Otherwise, it has initial
weight —oo. Further any transition in H has weight 0, iff it is a transition in Y. Furthermore,
any state in H has final weight 0 iff it is a final state in Y. Otherwise it has final weight —oo.
Therefore, H accepts exactly all words accepted by Y, and thus £L(H) = L(Y). Because H
only has weights of 0 and —oo, it restricts the words that are accepted in G © H. On the other
hand, G accepts all words by assigning weights # —oo to every word. Consequently, the
words accepted by G © H are the words accepted by Y, i.e. L(G © H) = L(Y). Therefore,
the weight in G © H of an accepted word in Y is equal to its weight in G, and —oo for a
word not accepted by Y.

Lemma 1 proves that x(w); is the longest path to state i corresponding to the word w
in G. Then [x(w)] is equal to the weight of the longest path for the word w to any state
in G. Therefore, if w is accepted by H, then |x(w)| equals the weight of the longest path
corresponding to w in G © H. Words not accepted by H do not follow this rule but their
weight in G © H is —oo because their weight in H is —oo. And since they are not in £(Y),
they do not affect the makespan. Since w(M, A, Y, n) is equal to the largest makespan of
any word in £(Y), u(M, A, Y, n) is equal to the weight of the longest pathin G © H. 0O

For the max-plus automaton of Fig. 9, u(M, A, Y, n) = 20 for the path indicated in green.
This path also gives us the accepted word w; = SSCSS which determines the makespan of the
system. We have multiple paths that correspond to w; but because the makespan of a word is
the longest path for that word, w(w1) corresponds to path go1, g12, 422, 451, 432, qa2. We also
have another accepted word wy = SSSS. Similarly, we compute p(w2) = 14, corresponding
to path qo1, q12, 922, 432, q42. These results conform to the Gantt charts shown in Fig. 5.

4 Modeling and analysis of systems with discrete-event feedback

The baseline method explained in the previous section can model and analyze SMPLS that
do not require discrete-event feedback from the system to the SC. SMPLS in general may
require such mechanisms and the existing methods cannot succinctly specify discrete-event
feedback and its impact on system timing and mode sequences that the system executes.
This section introduces a method to model the behavior of such systems. For the purpose of
analysis, we then introduce a transformation to a classical SMPLS such that system properties
can be analyzed using existing analysis methods. We augment the running example by adding
a feedback mechanism and use it to demonstrate our extension.
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A key aspect of our approach is that we specify discrete-event feedback from system to
SC in a way that allows analysis using the existing max-plus techniques. We introduce a
model that includes events received back from the system and the possibility to react on
them. Similar to the previous section, we distinguish specification, semantics and analysis
aspects to model and analyze an FMS with feedback (in line with the breakdown in Fig. 1).
Figure 10 illustrates our approach in modeling and analyzing an FMS that includes discrete-
event feedback from the plant to the SC.

4.1 Augmented running example

We use the example of the previous section and add information about discrete-event feed-
back. We call this system the System With Events (SWE). Each Scan operation emits an event
ScanResult after it is executed. The event ScanResult models the feedback that is received,
which contains information about the Success or Failure of the Scan operation. The outcome
of ScanResult is Success if the system executes that Scan operation with sufficient accuracy,
without the need to Calibrate. In that case, the system continues scanning. The outcome of
ScanResult is Failure if the system accuracy is compromised after which the system will
execute a Calibrate operation. The calibration operation involves processing sensor data
and making mechanical setpoint adjustments. We assume that the calibration process itself
does not fail. Moreover, failed scans are not repeated, implying that a failed scan cannot be
repaired. The data obtained from a failed scan can be used to adjust the setpoints.

The system works with a pipeline depth of two scans. Since it does not have any results
from previous scans at the start, it performs two initial scans. The subsequent scans need to
wait for the feedback from the previous ones. The reason to wait is that the system needs
to use the result of the scans to determine either to continue scanning or to calibrate before
executing the next scans. The feedback dependencies between scans is such that every Scany
waits for the result of Scani_;, for all k > 2. After having executed four scans, two emitted
events remain. These events are processed after which the machine halts. These events will
not result in a calibration because there are no more scans to perform.

4.2 System specification with discrete events

We define SMPLS with events to specify a system with feedback dependencies. In this speci-
fication, the mode matrices are expanded to incorporate the timing of events and their impact
on the timing of future modes. We define sets of events and event outcomes. Furthermore, we
use I/0 automata instead of ordinary automata to specify how event outcomes determine the

I/O Automaton

Execution Discrete-Event Feedback

Fig. 10 Interaction between plant and SC modeled and analyzed in our approach
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possible mode sequences. By using event outcomes as input actions of the I/O automaton,
and modes as output actions, we define system behavior in response to event outcomes.

Definition 14 An SMPLS with events is a nine-tuple (M, E, U, o, y, A, A, Y, n) with

a finite set M of modes;

a finite set £ of events;

a finite set U of event outcomes;

arelation 0 € M x E relating events to the modes that emit them;

an injective relation y C E x U relating event to their possible event outcomes;

a function A, : M — T"*" that maps each mode to a max-plus matrix of size n x n;

a function A, : M — TP*" that maps each mode m € M to a max-plus matrix of size
p x nwith p = |o N ({m} x E)| the number of events emitted by m;

an I/0 automaton Y with aset I = U U {1} of input actions representing event outcomes
or the absence of such an outcome (action 1), and a set O = M U {¢} of output actions
representing modes or the absence of a mode (action €);

n the size of the core state vectors.

The number of events emitted by a mode m is determined by the number of pairs (m, ¢) € o

forsomee € E, ,i.e., |oc N ({m} x E)|. An I/O automaton is defined as follows.

Definition 15 An I/O automaton (Lynch and Tuttle 1988) is a seven-tuple (Q, S, X, I, O,

A,

F) with

e a finite set Q of states;
e asetS C Q of initial states;
e a finite set ¥ of actions and disjoint sets /, O of input and output actions, such that

1U0=1%;

e atransition relation A C O x I x O x Q;
e aset FF C Q of final states.

Figure 11 shows the I/0 automaton of SWE, where transitions are labeled as (input action,

output action), denoting that the automaton receives an input action on a transition and
produces the output action of that transition. The empty input action A, denotes that the
transition does not process any event outcome. The empty output action €, means that no
mode is executed in that transition. We specify SWE as an SMPLS with events in the following
way:

M = {Scan, Calibrate};

A (Scan) = [g _;’o] A.(Calibrate) = [i j]

Ac(Scan) = [5 3], Ao(Calibrate) = [ ] (denoting a matrix with O rows)
E = {ScanResult};

U = {Success, Failure};

o = {(Scan, ScanResult)};

y = {(ScanResult, Success), (ScanResult, Failure)};

the I/O automaton of Fig. 11;

n=2.

Figure 11 shows choices of the system based on the outcome of the ScanResult event,

emitted by the Scan modes. The outcome can either be Success or Failure. Compared to the
case without feedback, all modes have a matrix A, that captures the timing of event emission.
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—

. b A, Scan
(A, Sean) (Failure, Calibrate) ( )

A, Scan Success, Scan Success, Scan
@) )~ )

3 qa
N
(Failure, Calibrate (Failure, Scan

(A, Scan)

(Success,€)  (Success, €)

OCOC.

(Failure,¢)  (Failure, €)
uccess, Scan)

Fig. 11 1/O automaton of a batch of four scans with choices based on discrete-event feedback(SWE)

The mode Scan has A,(Scan) = [5 3]. Scan emits one event, therefore, this matrix has one
row representing the timing of this event relative to the availability times of system resources.
These times are given by the state vector at the beginning of the mode execution. The mode
Calibrate emits no events so A,(Calibrate) is the 0 x 2 matrix that has no rows.

Because the pipeline depth of Scans is two, the number of events in the system that have
not yet been processed is at most two. Multiple instances of the same event are processed
in FIFO order. For instance, the event that is processed in the transition from g3 to g4 in the
automaton of Fig. 11 is the one that is emitted on the transition from gg to ¢»>.

Note that the I/O automaton (Fig. 11) captures the SC’s decision based on the outcome
of events, leading to a calibration in case of failure. How the timing of the events affects
timing of future modes is captured in the event matrices specified by A,. Without capturing
this timing dependency, the model would show acausal behavior, with a Gantt chart similar
to Fig. 5a (for the case with four success outcomes). In that Gantt chart, we see that the
AdjustSetpoint operation of the third Scan mode is executed (at time 4) before the Step/Scan
operation of the second Scan mode has emitted its event (at time 5), because the Compute
resource is available. This violates the timing causality of the decision to execute another
Scan mode (instead of Calibrate). The information about the success or failure of the first
Scan mode is only available at time 5. By introducing the event matrix for events, we can
capture the timing dependencies for modes that depend on the outcome of the event, and
ensure that they do not execute before the outcome of that event is known.

Figure 12 shows the Gantt charts of different mode sequences, depending on the outcomes
of events emitted by Scan modes. The blue arrows indicate the ScanResult event being
emitted and its outcome being processed by one of the next modes. Figure 12(a) differs from
Fig. 5(a) in the sense that the last two scans cannot be executed before the system receives
the outcome of previous scans. Therefore, the AdjustSetpoint operation of the third Scan
cannot use the Compute resource before the outcome of the event emitted by the first Scan is
known. Figure 12(b) corresponds to mode sequence Scan, Scan, Calibrate, Scan, Scan, and
Fig. 12(c) corresponds to mode sequence Scan, Scan, Scan, Calibrate, Scan.

Our method requires the emission and processing of events in a system to be consistent.
This means that events are only processed after they are emitted, and that events that are
emitted must be processed before the system reaches a final state. To define the notion of a
consistent I/0 automaton, we first define the language of an I/O automaton.

Definition 16 A word in an I/O automaton Y=(Q, S, X, I, O, A, F) is a finite sequence
of pairs (i,0) € I x O. The word w = (i1, 01), (i2, 02), ..., (iy,0y) € (I x O)* is
accepted by Y if there exists a sequence qo, g1, ...qy € QF of states such that go € §
and (g;,ij+1,0j+1,9j+1) € A, forall0 < j < y, and gy € F. The language L(Y) is the
set of all words accepted by Y.
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4 7 10
Augmented 11
] H Fl F“q 1
Vect 14
e 5 8 11 14f 114
Compute Adjust Adjust Adjust Adjust
P! Setpoint | Setpoint Setpoint Setpoint
Stage Step/Scan Step/Scan Step/Scan ;l Step/Scan
0 2 4 5 7 8 10 11 14
(a) without calibration
Augmented 2 4 12 14 16 17
State 8 17 20 20 20
5 5 12 8 17 20
Vectors 5 8 8 17 20 20.
Compute Adjust Adjust Adjust Adjust
i Setpoint | Setpoint N Cali mt | Setpoint
Stage T Step/Scan tep/Scan T Step/Scan\| Step/Scan
0 2 4 5 8 12 14 16 17 20
(b) with calibration after the first Scan fails
4 7 17
Augmented 2 15 17
sute [0] p 8 1 15 2001 20 2
Vectors 10 5 8 11 1 20 20
5 8 11 20
Compute Adjust Adjust Adjust Adjust
Setpoint | Setpoint t Setpoint Calibrate Setpoint
Stage Step/Scan Step/Scan tep/Scan Step/Scan
0 2 4 5 7 8 11 15 17 20

(c) with calibration after the second Scan fails

Fig. 12 Gantt charts of a batch of four pipelined Scan actions

Definition 17 Given an accepted word w = (i1, 01), (i2, 02), ..., (in, 0p) andanevente € E,
the number of times event e is emitted in w is defined as #°(e, w) = [{1 < j <n | (0j,e) €
o'}|. Moreover, the number of times event e is processed in w is defined as #7 (e, w) = |{1 <
j=<nleipey)l

In Definition 17, #¢ (e, w) denotes the number of transitions in w where the output action
0; is a mode that emits event e as specified in o'. Similarly, to compute the number of times
event e is processed, #7 (¢, w) denotes the number of transitions in w where the input action
ij is an outcome of e, as defined by relation y .

Definition 18 An I/O automaton is called consistent ift for any accepted word w =
(i1, 01), (i2, 02), ..., (in, 0,) and any event e € E, #°(e, w) = #7 (e, w), and for all k < |w],
ifu = (i1, 01), (i2, 02), ..., (ix, ox) then #°(e, u) > #” (e, u).

4.3 System semantics with discrete events

Similar to the feed-forward semantics, we introduce an MPL representation, in which the
behavior is the set of possible sequences of state vectors. In our feed-forward example, a state
vector contains the availability times of resources in each state of the system. Our proposed
approach introduces new information to the state of the system, which is the time at which the
outcome of an event is produced, and hence available to future modes that depend on it. To
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this end, we introduce the notion of event vector e. Each element of this vector corresponds
to a point in time at which the outcome of an event is produced.

We concatenate the event vector to the state vector, and call it the augmented state vector,
to record all the necessary information of the system in each state. We refer to the original
part of the state vector, i.e., the part excluding the events, as the core state vector, and denote
it by X.. The size of the augmented state vector will vary because the event vector may have
different sizes in different states of the system, depending on the difference between the
number of events emitted and processed prior to that state. Event vector e(k) contains the
timestamps of the events that are emitted by modes in the system prior to reaching state k,
and are not yet processed.

Inthe SMPLS equation of the system with events, we distinguish three categories of events,
that together form the event vector. The part of the event vector that is being processed in
the current mode execution is referred to as e,. This is defined by an outcome of that event
being the input action of the transition of the I/O automaton that triggers the state update
corresponding to the equation. Note that this means that e, has size O or 1, because at most one
event outcome is processed in a transition. The part of the event vector that is untouched, i.e.,
conveyed without change to the next state vector, is referred to as e.. The part corresponding
to events being newly emitted in the transition is referred to as e,.

Figure 13 shows four augmented state vectors corresponding to three subsequent transi-
tions following the path g, q2, g3, g4 of Fig. 15 (the matrices in Figs. 13 and 15 are explained
later). The first state vector x(0) has no event timing, so ¢(0) is empty. The state vector only
consists of the core state vector, which has size two in all states. On the first transition k = 1,
we emit one event to the state vector with a time stamp of 5, so e,(1) = [5], which resides
at the bottom of the augmented state vector x(1). e.(1) and €, (1) in transition 1 are empty
because we are not conveying or processing any events in transition 1. Note that the indices of
event vectors e., ¢, and e, correspond to transitions and not states. On the second transition
k = 2, we convey the event to the next vector, so e.(2) = [5]. We also emit a new event to
the next state vector, so €,(2) = [8]. On the third transition k = 3, we process the first event
that was emitted, so e, (3) = [5].

In the model with feedback, we use mode matrices A.(m) and A, (m) (Definition 14) to
capture the update of the impacted part of the augmented state vector, i.e., the core and the
emitted events. We call A.(m) the core part and A, (m) the event part. The core part captures
the relation between the current core state vector X, and the next one, while the event part
represents how the emitted events in the next vector depend on the current core state vector.
In the example, Scan emits one event and A,(Scan) = [5 3].

Our specification of the mode I/0 automaton includes transitions with the empty output
action €, meaning that the transition does not execute any modes. For convenience, we extend
the domain of the functions A, and A, to include this empty output actione. Welet A.(¢) = [
(the max-plus identity matrix), and A.(¢) be equal to a matrix with zero rows because the
empty mode is assumed to emit no events.

—oo

x(l) [ o X(Z)

2 —o0 2 —oo

5 3 5 —0o0 x(3)

2 —oo
5 3 |_
[ Xe(1)

0 —o0
3 5
*0) _[OJ k=1 ee(l){ }eC(Z) =2 ec(2){ }ep(3) =3 ec(3){

e ee<z){ 126 e {11

Fig. 13 Events in the augmented state vector, corresponding to the fragment g, g2, g3, g4 of Fig. 15
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Consider an accepted word w = (i1, 01), (i2, 02), ..., (ij, 0;). We denote g as the source
state of the kth transition of the I/O automaton for word w. We let #°(gx, ix) denote the
number of events being conveyed in the kth transition, i.e., the number of events present in
state g that are not processed in i. This is equal to the size of the vector e, (k).

Similar to A, and A,, we introduce matrices B, and B,, collectively called B, to capture
the relation between the processed events in a transition and the core state vector and emitted
events of the next state. B, captures the relation between e, and x., while B, relates the
processed events e, to the emitted events .. A mode that processes events does not start
until the event outcome is available, i.e., the mode execution is according to starting core
state vector X, @ 0" @ & p» with n equal to the size of x. and v equal to the size of ¢),.
Recall that v is either O (for input action X) or 1 if the input action is an event outcome. The
execution of the mode itself from this starting vector is captured by matrices A, and A,, as
far as the core state vector and the emitted events are concerned, respectively. Therefore, the
matrices B, and B, that describe how the core state vector and the emitted events depend on
the processed events are given by B, = A, ® 0"?, and B, = A, ® 0"V,

An example of A., A,, B, and B, is found in Fig. 14 on the left. The matrix corresponds
to the transition from g3 to g4 in Fig. 15. For every state of the automaton, we know what
events are emitted and not yet processed when we arrive in that state and in what order they
have been emitted. The consistency requirement (Definition 18) ensures that the different
paths from any initial state to that state result in the same set of events emitted and not yet
processed in that state. In state g3, we have one event (ScanResult) being processed in that
transition, so the size of €, v, is equal to 1. The size of A, is equal to 2 x 2 and A, has 2
columns. B, and B, are 2-by-1 and 1-by-1 matrices, respectively, given by B, = [2 S]T and
B, = [5]. The matrix on the right side of Fig. 14 is explained later in this section.

With the introduced A., A., B, and B, matrices, we can now formulate the SMPLS
equations as follows:

%ek) = Ac(or) ® Te(k — 1) @ Beliv. 00) ® 2 (k) @
20(k) = Ae(00) ® etk — 1) @ Belit, 06) ® 2p (k) ®
ek —1) = <§f) (k) @)
é(k) = (j) ®) )

Equation 2 shows how processed events and the starting core state vector x. of a mode
affect the next core state vector. Equation 3 shows how they affect the timing of the events

Ac B Ac B,
Ae B, A, B, I
2 —00 —o0 2 —00 —o0
5 3 —oo| Reorder | |5 3 I —o0
5 3 —00 7]. —00 —oo —oo 0
lil=0 —c0 —c 0 —
NQ3,SuCCeSS,SCan N(;3,SuCCeSS,SCan

Fig. 14 Parts of an example matrix (N’

43, Success, Scan of Fig. 15) and matrix reordering
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emitted by the mode. Equations 4 and 5 show conveying of outcome timings to the next
augmented state vector to be processed in a later mode execution. The conveyed outcome
timings remain unchanged by this operation. We combine (Egs. 2-5) into a single matrix-

vector equation:
Xc Xe
(@) (k) = Ny, ® (e) (k=1 ©

where foranyg € Q,i € I,0€ O,

Ac(0) Be(i,0) —o0
Nyio=|Ae(0) Be(i,0) —o0 |,
—0Q0 —0o0 I#‘(q,i)

lye (4 i) 1s the identity matrix of size # (g, i), the number of events conveyed in the transition,
and the —oo symbols represent matrices of appropriate sizes filled with —oo.

Note that the matrix depends on the state g, because ¢ determines the events that are
emitted leading up to state g. It further depends on the label of the transition (7, o) that is
taken by the I/O automaton, which indicates what event is being processed (as determined by
event outcome i) and what event is being emitted (determined by mode o) in the transition.

The set of events present in a state of the I/O automaton is independent of the path that is
taken to reach that state. However, the order in which they are emitted may be different. To
make the event timings inside an augmented state vector consistent in each state, independent
of the path taken to reach that state, we impose a canonical ordering on them. We order them
alphabetically using event names, but any other canonical order could have been chosen as
well. When the same event is emitted multiple times along a path, we order their outcomes
and time stamps in accordance to the order of emission, having the timing of the event emitted
during an earlier transition at the top. To maintain this canonical order, we have to reorder
the rows and columns of matrices Ny ; , such that they are consistent with the canonical
order. We denote these reordered matrices by N q’ and present the equations of SMPLS
with events as:

0

i) =N/

k»lk>Ok

®Xx(k—1) )

We illustrate the matrix Ny, g, os scan @ an example in Fig. 14. This is the matrix for
the transition from g3 to g4 in Fig. 11. The transition has an input action Success, which
is an outcome of the event ScanResult. Therefore, B.(i, 0) and B, (i, o) are not empty. The
timestamp we are processing is from the ScanResult event emitted on the transition from
state go to ¢» and, being the first ScanResult emitted, is the third element on the augmented
state vector. So B.(i, 0) and B, (i, 0) are ordered in the third column of q’3gsuccm,swn.
Furthermore, we are conveying one event timestamp (the one emitted in (g2, (%, Scan), g3))
to the next vector. So Iyc(q ;) has size 1. The conveyed event timestamp is in the fourth
element of the augmented state vector. So y«(q,i) is the fourth column of Ny ; . Finally, we
emit an event to the next vector. We also want to order the events on the next augmented
state vector, so we have Iyc (g ;) on the third row, and A, on the fourth. This puts the earlier
emitted event timestamp higher in the next augmented state vector in accordance with the
selected canonical order. The emitted event must also be recorded orderly (alphabetically,
then order of emission) in the next state vector, so it goes at the bottom (because it is emitted
later). The target state is not needed to determine N ; o because on any transition of the I/O
automaton, knowing the set and canonical order of events in the starting state and the input
and output action of the transition, the set and canonical order of events in the target state
can be determined.
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Fig. 15 The automaton of SWE with the result of N/ ; ; o, on each transition

Figure 15 shows the correctly ordered matrices for SWE on each transition. With these
matrices, we can compute the state vector x (k) for a given word by matrix-vector multi-
plication along any path of the automaton for that word leading to state k. Because of the
reordering applied to the state matrices, and the consistency of Y, for any path leading to a
selected state, x (w) will contain the same events in the same order. Consider state gs as an
example. Any path to it yields an augmented state vector with availability timings of the two
resources at the top and two events emitted by the third and fourth Scan, ordered by order of
emission from top to bottom.

4.4 System analysis with discrete events

In this section, we show how an SMPLS with events can be transformed into a classical
SMPLS, while retaining all the timing information of the added interactions. This means
that all the interactions, including the additional discrete-event interactions, can be analyzed
using existing methods for classical SMPLS.

In a classical SMPLS, the state of the system is updated by mode execution, and the
mode matrices capture the relation between the current state and the next. A key difference
between the SMPLS semantics for systems with events and classical SMPLS is that the
former have state vectors with a dynamically changing size, whereas the latter have fixed-
size state vectors. In an SMPLS with events, the next state of the system depends on the
mode, the current state, the history of events emitted and not yet processed, the ones being
conveyed to the next state, and the ones being processed in the transition. This history can be
retrieved for every state of the mode automaton. In our transformation, we use system modes
that capture this dependency, so that the resulting SMPLS only depends on its modes for state
updates. Our mode I/O automaton has input actions and output actions (event outcomes and
mode, respectively) as transition labels. Therefore, the state in the automaton and the labels
together, constitute a mode of our classical SMPLS. We capture these in a set of modes, each
pertaining to a transition going out of a state in the I/O automaton.

The envisioned approach reduces the analysis of an SMPLS with events to the analysis
of its corresponding classical SMPLS (Fig. 1). We use the notation S'(M’, A’, Y', n’) to
denote the classical SMPLS that is the result of the transformation from the SMPLS § =
(M, A;, A, E, U, 0,y,Y,n) with events.

First, we describe M’. We capture how the next state vector depends on the current state
vector as a mode that is executed on the transition. We remove the dependency on the history
of a state in Y, by combining this history and the transition label into one mode. Then, we
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present that mode as the one being executed on that transition in the classical SMPLS. M’
contains a triple (g, i, o) for every transition (i, 0) out of every state g in Y. For example,
we have (qo, A, Scan) as one mode for S in our SWE example.

Second, mode automaton Y’ is the finite state automaton derived from Y, with modes M’
as follows.

Definition 19 The finite state automaton Y’ equals (Qy, Sy, A', M’, Fy) with A’ =
{(q1. (q1.1,0),92) | (q1.(i,0),q2) € Ay}, and M" = {(q1.i,0) | (q1. (i, 0), q2) € Ay).

Using the semantics described in Section 4.3, for each transition in ¥ we have a matrix
(N [;l ). These matrices typically are not of the same size. However, a classical SMPLS
requires all mode matrices to be of the same size. To address the issue, we find the largest
dimension in any matrix N ;, ;.0» denoted by /, and enlarge all the N, ;, ;.o matrices such that
they become square matrices of size [ by padding the extra rows and columns of the matrices

with —oo. We denote the enlarged matrix by N 15 io- We obtain lgwg = 4. Padding N (50, 2. Scan

. . R .
gives matrix N 0.0, Scan”

2 —00 —00 —00

R 5 3 —o0o-—-00

Nqo,x,Scan = 5 3 —00 —00

—00 —00 —00 —00

We define a function NR(q, i,0) = NqR,i’o

3.5. N® corresponds to A’ of our classical SMPLS S’. As a result, the state vectors of S’ all

have the core state vector and the event vector of the augmented state vector of the SMPLS

with events, and are padded with —oo to size . Now we have n’ = [. For example, the state

vector [2 5 S]T in Fig. 13 corresponds to the state vector [2 5 5 —oo]T in the transformed

SMPLS.

With this transformation, we have obtained a classical SMPLS §' = (M’, A", Y’, n’) that

is equivalent to the SMPLS with events S in terms of the sequences of state vectors that it
allows, and can be analyzed with the same analysis method as used in Section 3.5.

that is analogous to the function A of Section

Definition 20 Given SMPLS with events S = (M, A., A, E, U, 0, y, Y, n), its equivalent
classical SMPLS is defined as S"(M’, A’, Y’, n') where M’ and Y’ are as defined in Definition
19, where A’ = N® and n’ is the size of the N® matrices.

The equivalence between an SMPLS with events and its corresponding classical SMPLS
is characterized by the following proposition.

Proposition 1 LetSMPLSS = (M, A., A., E,U,0,y,Y,n). Let SMPLS S’ = (M', A", Y’,
n’) be the transformed classical equivalent of S. For every state vector sequence X (k) in S,
there is a state vector sequence x'(k) in S" such that for all k > 0, x'(k), = x(k),, for all
u < py, and x'(k), = —oo, for all p; < u < n’, where py, is the state vector size of x (k)
and n’ is the state vector size of S', and vice versa.

Proof Let x(k) be a state vector sequence in S corresponding to the word w =
(i1, 01), (i2, 02), ..., (ix, or) € L(Y), accepted with the path going through states qo, q1,..- gk-
Consider the word w’ = (qo, i1, 01), (q1, i2, 02), ..., (qk—1, ik, Ok ), being the corresponding
word in §’. By Definition 19, all initial states of ¥ and ¥’ are equal, and all final states of ¥
and Y’ are equal. Also every transition of Y is present in ¥’ between the same states, with
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the source state label inserted in the transition label. Therefore, w’ is going through the same
states and ends up in the final state g, thus, w’ € L(Y’).

Let X’ (k) be the state vector sequence corresponding to w’.

The proof proceeds by induction on k. Note that we start with k = 1 as the base case,
because Proposition 1 holds for k > 0 and the initial state vector is by definition the zero
vector. After the transition (qo, (i1, 01), g1) in S, we have:

D =P Ny iy or,, ®EO),
v

= Nr .
@ 40,1101 yy
v

(M =P A'(qo. i, 01w ® ¥ (0),
v

D, A (o5 i1, 00w, ifu < py
—0Q, u > pi

where p; is the size of x(1). Because A'(qo, i1, 01) is quo,il,m padded by —oo to size n’,
we have for all u < pj,v < n, A'(qo,i1,01)uy = N{;O’il,om and A’(qo, i1, 01)yy = —00
otherwise. Therefore, the proposition holds for k = 1. For the induction step, we assume that it
holds for k. For case k+ 1, we have x (k) = [ay, ..., a,,k]T,and)E/(k) =[ai, ....ap. ..., a/]T.

n
After the transition (gx, (ix+1, Ok+1), gk+1), We have:

ik+ 1), = @ N i oner, ® X0,
v

_ r
- @ N%lk+1 Ok 1y ® ay
v

k4 Dy = P A Gk, iks1, 0k 1) @ X (k)
v

_ DB Ak i1, 0k )y ® @y i u < pr
—00 U > Pitl

again, because A’ (g, ix+1, Ok+1) is N padded by —oo to size n’. The proof for the

Gk Tk+150k+1
other direction (from $’ to S) follows the same identities. O

Theorem 2 Let SMPLS S=(M, A., A., E,U,0,y,Y,n). Let SMPLS S'=(M', A’, Y', n")
be the transformed classical equivalent of S. Then, the makespan of S equals the makespan
of §.

Proof From Proposition 1 and Definition 5, we conclude that Theorem 2 holds for non-zero-
length accepted words. For accepted words of length zero, we have |x(0)| = |x'(0)| = 0.
Therefore, Theorem 2 holds for all accepted words. O

For SWE, (7) gives the state vectors for its SMPLS S with feedback. For this SMPLS,
1(S) = 20. The weight of the longest path in the corresponding max-plus automaton of S’
is also 20. Both results correspond to the word (A, Scan), (A, Scan), (Failure, Calibrate), (A,
Scan), (Failure, Scan), (Success, €), (Success, €) of S. There are other words with makespan
20 as well, and the weight of the longest path corresponding to those words in the max-plus
automaton of S’ is also 20.
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The equivalence between the state vectors of the SMPLS with events and those in the
derived classical representation as stated in Proposition 1 implies that other analyses using
SMPLS which are invariant under the equivalence between the semantics, like the throughput
analysis of van der Sanden et al. (2016), also carry over to our setting with discrete-event
feedback. Other analysis techniques besides worst-case makespan, such as latency analy-
sis (Basten et al. 2020), reachability analysis (Adzkiya et al. 2015), and stability analysis
(Goverde 2007) can be performed on the derived classical representation. Building upon the
work of van der Sanden et al. (2016) and Basten et al. (2020), the semantics of the SMPLS
with events can also be used to generate a state space that allows best-case makespan and
throughput analysis with events.

Although the analysis is performed on the equivalent classical SMPLS of the SWE, speci-
fying SWE using a classical SMPLS would be a very difficult task. A system designer would
have to manually write the N* matrices for SWE for every transition in the automaton,
ordering the events in every state while making sure the emission and processing of events
are consistent. Our succinct specification method enables automated synthesis of the N ; o
matrices of Fig. 15 (demonstrated in Section 5) as well as the padded matrices. The designer
would only need to specify the matrices A.(Scan), A.(Scan), and A.(Calibrate) (or, in turn,
derive them through some other modeling formalism). Our approach also provides an auto-
mated consistency check to make sure events are not ignored and also not processed when
they are not emitted yet in the system. A designer using our approach could then focus their
effort on defining the sets and their relations and specifying the behavior of the SC in a
concise way.

5 Evaluation

In this section, we evaluate our approach on an FMS that needs discrete-event feedback to be
taken into account in the performance analysis. The eXplore Cyber Physical Systems (xCPS
Adyanthaya et al. 2017, Fig. 16) platform, is a small-scale production line that captures the
features and behavior of FMS present in the industry. The machine assembles complementary
circular pieces. These are named top pieces and bottom pieces, and the machine assembles
tops on bottoms and outputs the assembled products.

The pieces go through several processing steps in the machine: first, they are collected by
a gantry arm and put onto the input belt (Belt 1). They are then moved to the turner station
where all tops are turned upside-down. The bottoms pass through this station since they are
assumed to not need orientation correction. The turner has a robotic grip that goes down,
picks up the piece, moves up, rotates, and finally goes down and releases the piece. If a piece
is too wide, the turner cannot grab it. It cannot be turned to its appropriate orientation in this
case. After the turner station, the pieces go two separate ways, depending on their type. The
bottoms are pushed to an indexing table, and the tops move to the assembler. The proper
routing of pieces is managed through a number of sensors, stoppers, and switches. When a
correctly oriented top arrives at the assembler, the assembler picks up the top and puts it on
the bottom. Afterward the assembled product is pushed to the output belt and is removed
from the assembly line. Incorrectly oriented tops are not used for assembly.

We model the system as an SMPLS with events with 27 system resources (n = 27). The
resources include the belts, stoppers, sensors, switches, the indexing table, the turner, and the
assembler. We assume an order of entry for the pieces. They arrive in the system in pairs of
tops and bottoms. The system has 17 modes that capture its full behavior. The modes of the
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Fig. 16 The xCPS

system correspond to movement of the pieces between different stations and the operations
being performed on them. These modes abstract a number of system operations into a single
piece of behavior.

We define an event that is emitted in the system as feedback. The event E/, emitted by
the mode TurnerGoDown, is the result of the turner robot going down to try to grab a top.
It may either succeed or fail, which are the two possible outcomes of the event. If the turner
fails to go down, we assume that the piece is too wide and unfit for assembly. We use this
information when the top piece is under the assembler robot to activate the right sequence
of modes to refrain from picking it and to reject it. Figure 17 shows mode TurnerGoDown
and its internal operations. It first claims the system resources that it needs (indicated by
the blue boxes on the left). Then, it stops Belt 1 (the belt before the turner) to prevent other
pieces from going to the turner station. After that, the turner begins going down, which is
represented by the operation TurnerDown. At the end of this operation, the mode emits the
event £/ with success or failure outcome, and releases the resources that it claimed. After
this mode, we have branches in the I/O automaton that capture system behavior based on the
outcome of this event. If the turner succeeds going down, we execute the mode that turns
the top piece. Otherwise, we lift the turner and move the out-of-spec top piece down the line
until it can be rejected.

There are 27 resources in the model, so we have A, matrices of 27 by 27 for modes and
core state vectors of size 27. The mode TurnerGoDown has A, matrix of 1 by 27, since it
emits one event (p = 1). Other modes do not emit any events. We model the system in two

BeltlStop *~ TurnerDown S

'S
%
|

RN

Fig. 17 The internal operations of mode TurnerGoDown
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variations. For one case, we consider a batch of two products being processed by the system,
and for the other case a batch of three products. The statistics of the mode automata (two
versions) of XCPS are given in Table 1. The makespan of this system is analyzed with the
method explained in Section 4. The analysis is implemented within SDF3 (Stuijk et al. 2006),
using and extending its max-plus analysis algorithms.

Our implementation traverses the automaton Y and computes and stores (reordered and
padded) matrices for each transition. The complexity of this operation is proportional to the
number of transitions in Y, O(|Ay| x 12), where [ is the size of the padded matrices. Then
it transforms Y and the computed matrices into a max-plus automaton using the method
depicted in Fig. 7. The complexity of this operation is O(| Ay | x %) (we compute an edge for
each element of the matrices, hence, /2). Hence, the complexity of computing the max-plus
automatonis O(|Ay| Xlz).Wenowhaveamax-plus automaton A = (Q 4, X4, a4, Ba, Da).
Then we use the Bellman-Ford algorithm (Bellman 1958) to compute the maximum weight
path from any starting state to a final state. The complexity of the Bellman-Ford algorithm is
O(Q4 x D4). From our max-plus automaton construction, we know that |Q 4| =1 x |Qy/|,
where Qy is the set of states of Y, and D4 = |Ay| x 12. Therefore, the complexity of our
analysis function is O(|Qy| x |Ay| x 3.

For a batch of two products, it takes about 0.38 seconds to construct the max-plus automa-
ton (G © H), and the analysis takes about 0.15 seconds, giving the worst-case makespan of
31.67 seconds. It corresponds to the scenario in which the first top is out of spec and rejected,
while the second one is successfully turned and assembled on the first bottom. This means
that if the first top fails, it is more efficient to assemble the second top on the second bottom
than to assemble it on the first bottom. The designers of xXCPS may use this information to
exclude this behavior from the SC, leading to a more efficient way of handling failure, which
is to reject the corresponding bottom of a failed top.

Another way the designers could use this information is to find out what component con-
tributes the most to this worst-case timing and try to improve it to achieve better performance.
One of the key components that determines the scenario with the worst-case makespan is
the indexing table. The reason is that, after we assemble the second top on the first bottom,
the second bottom has to go through the system; this has the largest impact when the bottom
is going through the indexing table while other resources are idle. Assume the designers of
xCPS has a limited budget to spend to improve system timing in the most effective way.
They could speed up the indexing table to achieve faster timing. After changing the align-
ment timing of the indexing table from 0.3 to 0.28, we observe that the successful assembly
of two products becomes the worst-case makespan (31.58 seconds). Since assembly takes
more time than failure, this is the desired situation. So we can improve system behavior by
speeding up the indexing table.

The experiment with three products is more challenging because it has more behaviors
and more concurrency that increases the size of the I/O automaton. Computing the max-plus

Table 1 Analysis results of the xCPS

Y GOH
Batch Size States Transitions States Transitions Makespan G © H Compute  Analysis Time
Time
2 2,545 6,995 68,847 265,743 31.67 0.38 seconds 0.15 seconds
3 17,504 56,216 474,074 2,188,433  55.13 20 seconds 1.45 seconds
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automaton for three products takes 20 seconds. The analysis takes 1.45 seconds and shows
that the worst-case makespan of the system is 55.13 seconds. It corresponds to the scenario
in which the turner succeeds once, then fails, and again succeeds in grabbing the top piece.
Although at first glance we would expect three successes to take the longest time, since
assembly takes longer than rejection, in reality, a failure in between successes disrupts the
flow of operations. In this particular scenario, the failed top moves to the assembler station
and waits to be rejected. After it is rejected, the second bottom waits for the third top. This
disrupts the flow, because this waiting means that the third bottom has to go through the
system while no other operation is being performed. If we reject the second bottom, we do
so in parallel to other necessary operations, so it does not take more time. But the second
bottom waiting for the third top implies taking more time at the end of assembly to let the
last bottom pass through.

With this information, the designers of the xCPS can again improve the SC excluding the
worst performing behavior from the options allowed by the automaton. In this case, one can
specify that the system rejects the corresponding bottom of a failed top to handle failures more
efficiently, in line with the earlier observation for two products. We do so and perform the
analysis again. This shows three successes to be the worst-case makespan (55.04 seconds).
This scenario cannot be removed but may be used to identify the component in the system
that is the best candidate to improve (or replace) to have the greatest impact on the overall
system performance.

6 Related work

In this section, we discuss the literature relevant to our work. We focus on specification and
analysis of interactions between the SC and plant in the form of discrete-event feedback and
modes in SMPLS. We first briefly introduce a state-of-the-art approach to model and analyze
a system using SMPLS. Then, we discuss feedback in loop control with a few examples
and the key difference to our approach. Next, we discuss how our work is related to SC
synthesis and the extensions of SC synthesis to max-plus linear systems. We further discuss
two methods that model discrete events as uncontrollable actions, one in supervisory control
theory and the other in timed automata, and present the key advantages of our work compared
to that work. We finalize the discussion with a method that encodes information in the state
vector of SMPLS resulting in dynamic state-vector sizes for the purpose of analysis.

A method similar to the one we use to create a max-plus automaton from timing matrices
of modes is introduced in van der Sanden et al. (2016). The authors specify modular automata
with modes as transition labels and compute the product automaton. By assigning matrices to
the modes on those transitions, a max-plus automaton is created. The work proposes timing
analysis on the state space of the monolithic product automaton to find the best-case mode
sequence to be executed for best performance. The method takes a feed-forward approach and
does not capture or take into account discrete-event feedback from plant to SC. Therefore, the
SCis free to choose any mode sequence. As a result, the model cannot capture future behavior
and timing that depends on events and their outcomes. We have shown in this article how this
approach can be extended to specify and analyze performance of systems with discrete-event
feedback and have illustrated it with worst-case makespan analysis.

Feedback from plant to controller is well investigated in the control domain. Control
approaches building on (S)MPLS plant models that take into account feedback from the
plant are, for instance, van den Boom De Schutter (2006); Brunsch et al. (2012); Fusco
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et al. (2018); van Amstel (2014); van den Boom et al. (2020). All these approaches obtain
feedback by observing the state and outputs (i.e., the states in the (S)MPLS model) during
system execution. For instance, van Amstel (2014) focuses on selecting the appropriate mode
of operation as a function of the measured disturbances in the environment of the MPL system.
This leads to an optimization problem to select what mode the system should execute next.
The solution to this optimization problem yields an optimal controller. Another example
is van den Boom De Schutter (2006) where a model-predictive control (MPC) problem is
defined to address this optimization challenge. A controller is designed to optimize system
timing based on a prediction horizon, the current state of the system, and the output. Our
approach enables the SC to react to discrete-event feedback from the plant in the form of
event outcomes with their timing captured in the augmented state vector.

The mode automaton of our approach could be the outcome of a SC synthesis procedure
(Ramadge and Wonham 1987). In such a setting, the modes would be considered controllable
actions and the event outcomes would be considered uncontrollable actions. The synthesis
approach could be used to prune a controller so that it is guaranteed to satisfy desirable logical
properties, such as non-blockingness, or any properties defined with additional automata.
Extensions of SCS theory have been defined for max-plus automata (Lahaye et al. 2015;
Komenda et al. 2009). These techniques can likely be applied in our setting to additionally
guarantee that the controlled system satisfies performance properties. The mode automaton
of our approach may be synthesized from modular automata making the approach more
scalable (van der Sanden et al. 2016). The partial order reduction method of van der Sanden
et al. (2018) may be applied to reduce the complexity of sthe controller before analysis while
preserving its timing properties.

An approach to model and analyze systems with discrete-event feedback was proposed
in van Putten et al. (2020). The authors position their work within the framework of SC
synthesis of Ramadge and Wonham (1987), and define modes, where disturbances that affect
system performance are considered feedback, modeled as uncontrollable modes. The chosen
model is an extended finite automaton with variables, guards and update functions to capture
the effect of untimed feedback on mode execution. Since the notion of feedback is not timed,
this automaton does not capture timing information of feedback. Feedback is not provided
through timed events, but instead is captured as variables referring to resource availability
times, which allows decisions based on those variables to enable or disable the corresponding
transitions. Because feedback is not timed, the approach cannot model timing dependencies
between modes that are due to the fact that decisions based on event outcomes can only
be made at the moment these outcomes become available. For instance, if we model the
augmented running example of this article (SWE) in the approach of van Putten et al. (2020),
the resulting Gantt chart would be Fig. 5a for the case with four successes. The approach
does not consider the timing dependency between Scans that requires a successful Scans to
be confirmed before starting another, and therefore, the cases covered in this article cannot be
modeled and analyzed. Further, van Putten et al. (2020) does not give semantics in the form
of an SMPLS, but uses a state-space approach for performance analysis, instead of the max-
plus automaton analysis that we use. Analysis through max-plus automata is generally faster
than state-space analysis (Geilen and Stuijk 2010), although it is also restricted to worst-case
analysis, whereas the state-space approach is suitable for best-case analysis as well (Geilen
et al. 2020). Our model can be used to generate a state space with event timing information
though, in line with the proposal of van Putten et al. (2020), which is an interesting topic for
future work.

Timed Automata extended with concepts of game theory, timed games (Behrmann et al.
2007), allow synthesis of a controller ensuring safe behavior and eventually reaching a final
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state avoiding deadlocks. A timed game automaton is introduced in which the set of actions
is partitioned into controllable and uncontrollable actions. Similar to van Putten et al. (2020),
feedback is modeled as uncontrollable actions that may occur and affect the system in terms of
timing and behavior. Compared to TA, SMPLS provide more efficient analysis (faster, better
scalable, using less resources) for systems with highly concurrent determinate behavior. TA
do not support max-plus mode matrices to capture timing of high-level functionalities. So
to model the systems of this article, all the detailed information of low-level actions and
their durations needs to be encoded explicitly. An example system was investigated in van
der Sanden et al. (2016) and found to be much harder to analyze in TA than with SMPLS.
A similar conclusion can be found in Skelin et al. (2015) where MPLS analysis methods
were found to be significantly faster than their TA counterparts and require noticeably fewer
resources for similar analysis types (maximum response delay and maximum inter-firing
latency).

SMPLS are used in literature as a semantic framework for datafilow models (Geilen 2010;
de Groote et al. 2012). One such study can be found in Geilen et al. (2017) which uses SMPLS
to analyze the performance of Scenario-Aware Dataflow Graphs. The use of SMPLS involves
state vectors of varying sizes and correspondingly, non-square matrices in the analysis in a
way that is similar to our approach. The work focuses on throughput analysis by means of a
direct construction of a max-plus automaton from the SMPLS with varying state sizes. Instead
of transforming SMPLS with events to classical SMPLS for analysis, we could have adapted
the method of throughput analysis of Geilen et al. (2017) to perform makespan analysis. The
methods are similar, in that they use dynamically-sized state vectors, and equally complex;
by choosing the transformation method, we show that our framework can encode events in a
classical SMPLS that can be analyzed without the need for a special analysis method.

7 Conclusion

In this article, we introduced SMPLS with events, as an extension of SMPLS, as a novel
way to succinctly specify feedback in the form of discrete events and to analyze the impact
of feedback on timing properties. In this extension, we modeled the plant behavior with
system modes and captured the timing of discrete-event feedback emission from plant to SC
in the mode matrices. We used I/O automata to capture how the SC responds to discrete-event
feedback with corresponding mode sequences of the SMPLS. We defined the semantics of an
SMPLS with events based on its modes, an I/O automaton, and adapted state-space equations.
We showed how our model specifies emission of an event by a mode, and how other modes can
use the outcome of an event that they rely on. We showed that the new state-space equations
define an SMPLS with a dynamic state-vector size. To analyze the system, we introduced
a transformation from SMPLS with events to classical SMPLS with equivalent semantics
and properties, so that performance properties can be analyzed using existing methods, and
proved its correctness. We demonstrated our approach for worst-case makespan analysis on a
prototype production system. Our framework can be used for analysis of other properties than
worst-case makespan, such as latency analysis, best-case makespan, reachability analysis,
and stability analysis. We focused on the domain of FMS to demonstrate and evaluate our
approach, but it is also applicable to other areas where systems are modelled and analyzed
using SMPLS.
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