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ARTICLE INFO ABSTRACT

Handling Editor: Jing Meng The Internet of Things (IoT) brings new opportunities for creating intelligent and streamlined supply chains that
have better environmental and cost performance as compared to conventional ones. In this paper, we quantify
such improvements for a specific logistics chain case. To support the inventory of cost and emission data, we
utilize system dynamics (SD) and agent-based modeling (AB) to define the structure of the two logistical systems,
simulating and estimating differences in e.g., required storage levels, efficiency of transport, etc. In particular, we
assess the difference in carbon emissions, cost, and market performance of a battery delivery chain in the de-
livery process between a two-tier IoT-supported supply chain (users are served by an IoT retailer directly con-
nected to the producer) and a conventional three-tier supply chain (include an additional wholesaler to connect
retailer and producer). The results demonstrate that IoT supply chains have significant advantages in minimizing
average product storage and shipment fluctuations. IoT suppliers can estimate market demand to adjust pro-
duction and transportation strategies for new orders. Consequently, the overall profitability of the IoT supply
chain increases by more than 30%. Heating and lighting emissions in the storage process and direct emissions in
transportation per functional unit (one unit of a Li-ion cell module) are reduced by 60%-70% under middle- and
low-demand scenarios, and by at least 50% under high-demand scenario. However, the increasing use and higher
loading rates of heavy trucks will weaken the advantages of IoT. Moreover, IoT products occupies a 10% lower
market share compared to conventional ones under the same pricing strategy but achieves similar market share
under the same value-added strategy.
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highlighted the necessity of focusing on sustainability by utilizing IoT to
meet customers’ requirements and organizations’ goals as well as the

1. Introduction

As current supply chain systems are becoming more and more
complex, there is an increasing demand for integrating industry 4.0
technologies like IoT into supply chain and production management.
Combined with operation approaches such as just-in-time (JIT) pro-
duction, lean logistics, and vendor managed inventory, IoT has become
one of the important contributors to sustainable supply system (Coe
et al., 2008; Mastos et al., 2020; Ding et al., 2023a). Sustainable Supply
Chain Management (SSCM) supported by IoT is regarded not only as an
environmentally useful procedure but also as leverage that can improve
the economic performance of supply chains, as well as manufacturers’
competitiveness (Porter and Linde, 1995; Green et al., 2012). Scholars
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aggressive changes in market dynamics (Manavalan and Jayakrishna,
2019). For instance, Ding et al. (2023b) reviewed and identified positive
impacts of 10T capabilities on six different circular practices and esti-
mated 20-30% carbon reduction potential on average. Ali and Shahram
(2020) elaborated on improving IoT in hardware, software, communi-
cation and architecture and its positive effects on carbon emission
reduction. Pan et al. (2020) showed that the implementation of smart
logistics and inventory can significantly curb carbon emissions and have
a sustained impact in the following years.

However, most of these studies discuss conceptual frameworks and
theoretical evaluations rather than quantitative case studies. Such work
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is less persuasive to small and medium enterprises (SMEs) having them
implementing IoT-enabled SSC. At the same time SMEs are encountering
significant pressure to improve environmental and cost performance,
but the adoption cost of innovative Industry 4.0 technology could be
high (Awan et al., 2022). There is hence a need for quantitative case
studies. While LCA and LCC are powerful tools for environmental impact
and cost assessment, they do tend to use static systems as point of de-
parture. In practice products and processes form inherently dynamic
networks in which behavior changes over time (McAvoy et al., 2021).
The use of systems thinking, and the group model building process can
identify critical variables that traditional LCA/LCC may not consider,
thereby strengthening the LCA/LCC approach (Mccabe and Halog, 2018;
Laurenti et al., 2014). Therefore, an ex-ante assessment for dynamic
industrial process through simulation can be supportive to reduce in-
vestment risks (Ding et al., 2023a).

A system dynamics (SD) model is an ex-ante simulation technique for
evaluating the outcomes of decision-options (Guan et al., 2011; Tan
et al., 2018). Compared with another dynamic modeling method -
discrete event simulation (DES), SD is based on the continuity of time,
and has advantages in demand forecasting, production and inventory
planning, and describes bullwhip effects which can be considered more
at a strategic level (Tako and Robinson, 2012). SD can explore the
information-feedbacks in industrial systems and improve their organi-
zational form (Kim et al., 2014). For example, Zhao et al. (2018) adopted
an SD model to improve products efficiency by energy recovery and
emulated simple resource pollution control in green supply chain. Tan
et al. (2018) developed an SD model for simulating the sustainability
performance of urban systems by considering four sub-factors — the
economic, social, environmental and resource sector. The simulation
results proved to help policy makers to formulate relevant strategies for
a better sustainable development of cities.

Scholars also have been enhancing the capabilities of SD by linking
Life Cycle Assessment (LCA) into SD modelling. The use of SD allows for
the tracking of multiple elements while multiple variables are interact-
ing or changing simultaneously. In this way, SD allows for better esti-
mates of (future) structures of production-consumption systems on
which Life cycle inventories (LCIs) for LCAs can be based. In the same
way, Life cycle costing (LCC) can be supported by SD models. For
instance, Pinto and Diemer (2020) used emission and resource extrac-
tion inventory data and impact assessment models from LCA and linked
them to nodes in a stock and flow system from a top-down SD model.
Cao et al. (2019) established a top-down SD model including production,
transportation, storage and consumption to simulate the carbon emis-
sion reduction plan in the entire life cycle of a coal supply chain, and
discussed the main sources and key influencing factors for associated
carbon emissions. Their reality tests showed the validity of their model.

SD can further be combined with agent-based (AB) modelling to
describe the complex and inter-dependent relationships between vari-
ables and agents. Such a hybrid SD/AB model can simulate the dynamic
of supply chains effectively by defining the important interacting en-
tities as agents. For instance, Wang et al. (2023) used a top-down SD
model to explore the interaction of multiple factors (urban
socio-economic development, low-carbon transportation, and environ-
mental economic policies) for selecting an optimal policy scheme taking
into account multiple agents — government, enterprises, and residents.
The model was validated by comparing the simulation results with
historical data from 2005 to 2018 though factors like urban space
planning, market mechanisms are not considered.

Therefore, the combined SD and AB approaches can help to create
the chain structure and life cycle inventory data (LCI) in line with LCA
and LCC. This combined model can not only describe the overall dy-
namic process of the system, but also reflects the interaction between
agents and the external environment. It can better simulate the perfor-
mance of IoT-enabled smart supply chains (real-time order forecasting,
cargo tracking, and production arrangement) in a dynamic market (Ding
et al., 2023a).
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There are several conceptual papers suggesting IoT can improve
environmental performance and economic value creation and hence
contribute to sustainable business (Ranta et al., 2018; Whalen, 2019;
Ding et al., 2023a). However, in earlier work we showed that there are
still limited case studies that systematically analyze the impact of IoT on
cost and emissions reductions (Ding et al., 2023b). Studies that analyze
the impact of IoT with AB and SD approaches are virtually absent
(Rajeev et al., 2017; Rebs et al., 2019). Therefore, this article introduces
two typical supply chain structures (IoT enabled and non-IoT enabled)
and applies a combined SD and AB approach to compare supply chain
structures and measure their performance in terms of profitability
(through LCC), carbon emissions (through LCA) for a Li-ion battery case,
next to estimating their market penetration.

This study aims to answer the following research questions:

RQ 1 How can the capabilities of IoT enabled SSC be simulated?

RQ 2 What are the economic and environmental gains of the IoT-
enabled SSC in comparison with its conventional competitors
under a Li-ion battery case (assessed with LCA and LCC)?

RQ 3 Which factors are decisive for shaping the performance of IoT-
enabled SSC?

The paper proceeds as follows: Section 2 introduces the research
goals and scopes in the model. Section 3 defines the key elements and
describes the approach mathematically how IoT-enabled and conven-
tional supply system operates and how to calculate their total net in-
come and emissions, respectively. Section 4 gives the parameter settings.
Section 5 presents and discusses the results with sensitive analysis and
model validation. Section 6 highlights the contribution and novelty of
the research to academic and industrial fields. Finally, section 7 reflects
on the key findings, lists the limitations and proposes the future steps.

2. Goal and scope
2.1. Goal and model framework

In order to show the simulation results and obtain general conclu-
sions. We select Li-ion battery cells (Audi A6 PHEV) as the research case,
and each cell module is regarded as 1 functional unit to compare 2
supply chains performance (Lehnert, 2017). A combined SD-AB model is
established to understand how these different supply chains operate in
terms of product flow and storage per step in the chain, and also allow to
assess market shares.

The model generally operates as follows. The Li-ion cell modules
from the producing factories are being sold to users (e.g., electric ve-
hicles users) who are sensitive to price changes as well as to the word of
mouth (initially there are no users of the product) (Koberg and Longoni,
2019). They both shape the impression of potential (future) users of the
products. Therefore, the demands of potential users drive the production
arrangement of Li-ion modules of the alternative two supply chains. The
conventional supply chain includes manufacturers, wholesalers and re-
tailers while the IoT-enabled supply chain includes only manufacturers
and retailers, as shown in Fig. 1. In addition, users of either IoT supply
chain products and conventional products may switch to the alternative
supply chain products when their in-used products are scrapped, which
is mainly based on the purchased product quality. The constructed
market is part of a standard SD approach, namely based on Bass diffu-
sion model (Silva et al., 2020).

The linkage between market and supply chains is realized in the
following way. The SD model exposes the demand of potential users to
the retailer, and the retailer supply the demand and at the meantime ask
upstream supply nodes (wholesalers and manufacturers) to add up its
inventory in preparation for next demands. By simulating the behavior
of different nodes of the two supply chains, the model can depict the
logical ways of demand forecasting, order shipment and inventory
management of the two supply chains.
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Fig. 1. The market competition mechanism of two types of supply chains.

2.2. Selection on impact indicators

The total net profits represent the cost performance of two supply
chains. It is numerically expressed as the sum of the net profits of all
nodes in each supply chain. That is, the difference between the selling
price of each node and the purchase price as well as other costs
(including transportation costs, inventory costs).

We focus on the CO2 emissions caused by supply chain activities,
where heating, electricity and transportation contribute to the majority
of differences between the two different supply chains. The inventory
data from an LCI database are attached to supply chain processes
(determined by the storage and flow of products) in our SD-AB model.
We use the Ecoinvent 3.8 (most extensive LCI databases available) to
estimate emissions per step in the logistics chain of Li-ion battery cells.
The use of medium voltage electricity, lorry transport for freight and
heat using natural gas are the processes taken from Ecoinvent 3.8 to
calculate emissions of greenhouse gases. We use the 100-year Global
warming potential (GWP 100) to characterise greenhouse gas emissions
and obtain their related contribution to climate change impacts. GWP is
an indicator of the overall effect of the process related to the heat ra-
diation absorption of the atmosphere due to emissions of greenhouse
gases (CO2-eq) of the system under assessment over a 100-year time
horizon.

The market performance can be directly expressed as the number of
current users of product from a certain supply chain. The expansion of
these groups come from the existing product demands of potential users
and the demands of End-of-Life (EoL) product users for substitutes.

The GWP 100 and net profits of two supply chains are compared both
on a functional unit level and full market level, providing our LCA and
LCC results respectively.

Tarancon and Rio (2007) created a sensitivity analysis method
considering both technology-production factor and final demand factor
to be structural factors that affecting sectoral carbon emissions. The
technology-production factor can be regarded as a supply-side factor,
which depends on the inputs in the production and logistics process
required to deliver a unit of product. While the final demand factor
depends on the sales of the final demand sector. In the structure model of
this paper, potential users and End-of-life product users can be regarded
as two final demand sectors. While transportation, as a process con-
necting different nodes, can directly affect the supplying dynamics.

Therefore, we choose contact rate, product lifetime and truck load ca-
pacity as representative factors to explore how they may influence IoT’s
contribution in reduction of carbon emissions and costs. They affect
supply chain dynamics from two different sources of market demand
(potential users and End-of-life product users) and one major supply
factor (shipment rates), respectively.

3. Mathematical description and inventory data
3.1. Definition of key elements

Kibira et al. (2009) built a comprehensive conceptual framework for
the SD model of SSCM for integrating economic and environmental
domains in manufacturing system. They identified key elements under
this system — storage, manufacturers, retailers, consumers and market,
and proposed possible stocks (user and product) and flows (product,
user and information) for model building. This supply chain produces
final products which get stored as serviceable inventory so as to remain
financially viable.

3.1.1. Storage

The flow of stored product along the supply chain to the end con-
sumer represents the manufacturing activity. The storages are modeled
as multiple stocks based on location along the supply chain including
manufacturers’ storages, retailer storages, products in use.

3.1.2. Manufacturers

The manufacturers are the beginning nodes of final products flowing
to the end users in the manufacturing system. Their production rates are
influenced mainly by the market demands under a certain availability of
energy, labor, and materials (Amini et al., 2012).

3.1.3. Retailers

This category represents the organizations and people involved in
ensuring that the products reach the end users. They are the connection
nodes between market and manufacturing system. Where manufacturers
and retailers are difficult to connect directly due to geographical dis-
tance or delivery uncertainties, wholesalers play a role as a transit center
for large quantities of goods (Rawwas and Iyer, 2013).
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3.1.4. Consumers and market

The market studied resembles a complex adaptive system driven by
social network consumer interactions (Miller and Page, 2009; North and
Macal, 2007). Consumers have three fundamental properties: Auton-
omy, Interactivity, and Bounded rationality (Amini et al., 2012). Au-
tonomy suggests the influence of customers attitude towards product
price and quality; Interactivity suggests the influence of product positive
and negative word-of-mouth among consumers; Bounded rationality
suggests the effectiveness of advertisement.

Although this framework is not subjected to confirmatory factor
analysis and defines no agents, it provides a feasible enterprise-level
substructure for modeling supply chain and management activities
(Rebs et al., 2019; Zhang et al., 2013). We use these key elements and
integrate IoT capabilities — tracking, monitoring and optimization to
construct a SD framework where an IoT-enabled and a conventional
supply chain compete in a market (Ding et al., 2023b). A conceptual
diagram in Fig. 2 shows agents, stocks and flows in this framework.
Stocks refer to user stocks in the market and product stocks (storage) of
each supply nodes, and flows refer to product flows (from manufacturer
via retailer to users), user flows (from potential users to users) and in-
formation flows (Shipment requested to upstream nodes to add up local
products storage).

We then define the important stakeholders that directly affect the
operation of supply chains as agents: Manufacturers (including con-
ventional manufacturers and IoT manufacturers, they have their own
shipment fleets), Wholesalers (only in conventional supply chains),
Retailers (including conventional retailers and IoT retailers). The other
stakeholders (such as energy supplying companies, logistics companies,
etc.) are excluded as they are not considered to be substantial enough or
sufficiently explicit when comparing the performance of supply, see e.g.,
Rahman et al. (2022) for more details.

3.2. Market demand

The market part of the model defines the users’ demand for the
product, which becomes the driving force of this market competition
model. The demand D; for products is driven by three forces, the
adoption rate of potential users, the discard rate of end of their life
products, and the rate of consumer switching the manufacturer because
of dissatisfaction resulting in (1).

D, =Adop, + Disc, + Tran;,, (@D)]

Journal of Cleaner Production 421 (2023) 138558

D, represents the user’s demand for conventional factory products.
Adop, represents the adoption rate from potential users. Disc, represents
the discard rate of conventional sold products. Tran;, represents the shift
flow from IoT products users. Similarly, for product from IoT factories,
its demand can be represented by the following (2).

D,y =Adop,, + Disci, + Tran, (@3]

The adoption rate of potential users can be further expressed in the
following (3) and (4). It is divided into two parts. The first part reflect
that potential consumers generate new demand through advertisement
(Goldenberg et al., 2007). The second channel reflects that demand is
generated through product recommendations from current users (Amini
etal., 2012). PU represents the current amount of all potential users who
might be interested in this kind of product but do not have one. Ad; and
Ad;,; represents the advertisement effect of products from conventional
factory and IoT factory respectively. U, and U, represent current users
of product from conventional and IoT production, respectively. C rep-
resents contact rate, which means the number of potential user one user
will contact per unit time (every day). S; and S;,; represents the satis-
factory rate of conventional product users and IoT product users. f is
used to define the market fluctuation.

U
Adop, = | Ad,+C * S———— PU 3
()pf ( t+ * ’PU+UI+UIHI) >k.f‘* ( )
Adopiy = | Adjpy + C % S _ U *f % PU 4
pl(]t - iot IOIPU + Ur + Um,

In the consumer value theory that affects purchase behavior, func-
tional value (which includes product reliability, convenience, and price)
is considered to be the most important aspect (Moon et al., 2021).
Tversky and Shafir (1992) demonstrated that consumer purchase delays
have a significant impact on purchasing decisions, which is in line with
standard economic theory of time preference (Nordhaus, 2013).
Therefore, user’s satisfaction with the product mainly includes three
aspects, quality, price and delay. Therefore, S, and S;,, can be further
expressed by (5) and (6).

P, Supply,
S, = L 5
=t Wth + P o D, )
P, Supplyior
Sio = io 6
r=WeQun g W ©

[

1

Request Norm Ad & Ct & StNorm

— Supply Norm
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Ship Norm
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h 4
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v

_ Ad&Ct&StloT Request loT
A 4
A
GiveU
N:';Ir; 4 Buy loT Discard loT Ship loT E)?rques'
A 4
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product stocks)
> People Flow

> Information Flow [:] User stocks

Fig. 2. Stocks and flows of SD-AB model.
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Q. and Q;, respectively represent the qualified rate of products
produced by conventional factories and IoT factories, and represent the
quality and reliability of products. P represents the final retail price of
the products. Supply, = min (D;,I}) and Supply;,s = min (D, I,,) repre-
sent actual supply amount products from the conventional- and IoT
factory, where I] and I7, represent the inventory level of retailer from
conventional factories and IoT factories. That is, when the user’s de-
mand is less than the retailer’s inventory level, it can be shipped
immediately. When the demand is greater than the inventory level (that
is, the demand exceeds supply), users need to wait for the manufacturer
to replenish new goods, then delay decreases purchase preference. wy,
w, and w, represent the weights of quality, price and delay dimensions.

In addition, the discard rate can also be represented by two variables,
the product qualification rate and the product life cycle. The transfer
rate represents dissatisfaction with the current product, which is directly
related to product quality. LT represents life time of all products that
belong to the same type. These relations are depicted in following
equations (7)-(10).

0, U,

Disc, = T @)
Discip = 7Q[OIL*TU"" (8
Tran, = % ©)
Trany, =1 = Qet) * U QL"”’T) *Un (10)

Therefore, the real-time number of product users U, and Uy, can be
expressed as the following (11)-(12), that is, the accumulated value of
actual supplied demand minus the discard rate and its own transfer rate.
N, and Nj, represent the number of shipments from two kinds of
retailers.

N
U;=>_min(D,,I}) - Disc, — Tran, 1D
n=1
Niot
Uiw="Y_ min(Di, I},,) = Discio, — Tran;y, (12)

n=1

3.3. Structure of logistics chains

3.3.1. Conventional logistics chain from producer via wholesaler and
retailer to user

The conventional supply chain is modeled by active agents (retailers,
wholesalers, and manufacturers), and consists of three steps. First
products go from manufacturer to wholesaler, then they flow to the
retailer, and are finally delivered to the consumers. That is, user de-
mands are fed back to the retailer. When the retailer’s supply capacity is
insufficient, wholesalers will supply retailers in bulk and apply for
shipments from manufacturers to maintain a stable inventory level.
Therefore, it is a supply chain driven by demands. Each agent has a
specific (manufacturing, inventory and delivery) strategy (Belle et al.,
2021). Being part of such a supply chain requires a certain degree of
demand forecasting. As demand suddenly changes and information
transfers upstream tier by tier in the supply chain, this information will
be distorted, which is called ‘Bullwhip Effect’ (Rabe et al., 2006).

For retailers, the operating mechanism is as follows: First check the
quantity of demand and select the smaller value of demand and current
inventory to supply, then estimate the order O] to the wholesaler to
replenish the inventory, it is improved on a (Q, R) strategy — a fixed
order quantity and fixed order point strategy under continuity check
(Braglia et al., 2019; Pérez and Geunes, 2014; Xu et al., 2020), but the
order quantity O] does not remain unchanged, but obeys the rules shown
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in the following (13).

1
0 (I +EP,—D,>s,) a3

o= { min (S, —I/,S, — (I + EP; = D)) (I + EP, —= D, < s,)
Where s, and S, represent the lower limit and upper limit of retailers’
inventory respectively. When the current inventory I} plus the expected
amount of goods EP; transferred from the wholesaler minus the actual
demand is still less than the lower limit of inventory control line, the
amount of the expected goods EP; needs to be increased, but the value
after the increase cannot be higher than the upper limit of inventory
control line. The full conceptual diagram to describe the conventional
retailer’s behavior and interaction with other agents and market envi-
ronment is shown in Appendix Al.

! 0 (0;=0)

For wholesalers, they act as middlemen, as some producers are un-
willing to sell in small batches in consideration of transportation man-
agement costs, while retailers are limited by financial conditions, unable
to buy in large quantities, and are limited by manpower. Wholesalers
can not only make bulk purchases from producers, but also divide the
supply into small units and resell them to retailers. Therefore, they often
have much higher upper and lower inventory limits S,, and s, than re-
tailers. In addition, it is basically the same as the retailer’s ordering
mechanism, but the demand D; should be replaced with a backlog of
retailers’ orders BKj, which is represented by (15).

N,
BK; =0, - SH, @as)
n=1

The backlog of retailers’ order BK] is expressed as all orders from
retailers minus the supplied amount SH,, from wholesalers. N, represents
the number of orders from conventional retailers. The full conceptual
diagram to describe the wholesaler’s behavior and interaction with
upstream and downstream agents is shown in Appendix A2.

The conventional factory is normally facing complexity challenges in
planning, which come from data integrity concerns, product mix exac-
erbated by increasing product customization needs, estimation of pro-
duction volumes, control principles that minimizes work-in-process
inventory, etc. (Vollmann et al., 2005) Because of limited real-time
feedback of its own inventory, there remains less space to adjust the
manufacturing speed. Therefore, its actual manufacturing rate Man,
depends on the rough inventory level and the number of backlogs. As
shown in (16).

Man, = 0 (I"—BK’ > Sd) 6)
MR (I' — BK} < Sd)

Among them, when the manufacturer’s inventory " can still meet
the wholesaler’s backlog of orders BK}’, production will not be started. If
the supply quantity of the backlog of orders cannot be met, production
will be started with full capacity MR. Sd represents the criterion for
judging whether to start or not, usually it equals 0. The full conceptual
diagram to describe the conventional manufacturer’s production plan
and interaction with wholesaler is shown in Appendix A3.

3.3.2. IoT supported logistics from producer via IoT retailer to user

The supply chain system supported by the IoT technology has some
other characteristics. Due to the visibility of product information and
management of big data, inventory can adopt more radical inventory
and producing strategies by increasing responsiveness, coordination,
accuracy of demand forecasts, accelerating changes and decreases in
inventory levels, lead times and uncertainty (Calatayud et al., 2019;
Anitha et al., 2021), such as zero inventory (Lyu et al., 2020;
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Mashayekhy et al., 2022). As a result, wholesaler diminish. Exemplarily,
researchers from the ING Economics Department concluded that Dutch
wholesalers are no longer ‘indispensable’ and that various developments
are affecting the wholesaler’s existence, especially the growing digiti-
zation (Tjin, 2019). Therefore, the second structure considers a direct
link between manufacturers and retailers. That is, user needs are fed
back to retailers. When the retailer’s supply capacity is insufficient, it
will directly request the manufacturer for shipment to meet stable
supply capacity. Consistent with the conventional supply chain, this is
also a demand-driven supply chain.

For IoT retailers, the operating mechanism is as follows: First check
the quantity of demand and select the smaller value of demand and
current inventory to supply, then calculate the order Oj, to the IoT
manufactures to replenish the inventory, it indicates the potential
shortage quantity, that is the possible shortage quantity when the next
demand comes after the current inventory meets this demand. The
initial value of EP; , is 0, O;or obeys the rule shown in the following (17).

iot

iot iot

0 (I, + EP;, — Diyy > Diyy)

iot iot =

o’

iot T

{ min (S, Dior — (I, + EP},, — Di))) (I, + EP.,, — Dy < D;yr)

17

Where S, represent the upper limit of IoT retailer inventory. When the
current inventory I, plus the expected amount of goods EP}, transferred
from the manufacturers minus the actual demand D;,; cannot meet the
next order size, which is expected to be the same, the amount of the
expected goods is increased. This value after the increase cannot be
higher than the upper limit of inventory control line S,. Compared with
the conventional supply chain, the condition parameter D, is dynamic
rather than stable. It depicts the IoT capabilities in monitoring used
products, tracking on-way products to optimize demand estimation
(Mashayekhy et al., 2022). EP} . obeys the following (18).

iot

- -
EP), = { 0(;“ (g,_)"“; >0())) (18)
ior —

However, the one-sided pursuit of zero inventory in the supply chain
will transfer inventory pressure to the transportation sector, resulting in
an increase in the number of shipments and costs (Chakrabortya and
Chatterjee, 2016). Given that the current main transportation methods
consume petrol and diesel etc., this will in turn lead to a surge in carbon
emissions. Therefore, whether to forward the order to the manufacturer
also needs to consider the size of potential shortage quantity O},. When
it is greater than the minimum order quantity mo, the order can be sent
to the IoT manufacturer. The full conceptual diagram to describe the IoT
retailer’s behavior and interaction with IoT manufacturer and market
environment is shown in Appendix A4.

For the IoT manufacturer, its supply mechanism is similar to that of
conventional manufacturers the actual manufacturing rate Man;, de-
pends on the inventory level and the number of backlogs. As shown in
(19).

0 (18K, > sa)
Man;, = MR ( - (I:'Zr - BK:w) > MR) 19

—(rn - BK,) (- (I - BK},) < MR)

iot iot ot iot

Among them, when the IoT manufacturer’s inventory I, can still
meet the IoT retailer’s backlog orders BKj,, production will not be
started. If backlog of orders is even larger than full manufacturing ca-
pacity MR, production will be continued with full speed. But if the
number of backlog orders is smaller than MR, then only produce goods
according to the out-of-stock quantity. The full conceptual diagram to
describe the IoT manufacturer’s scheduling in production, storage and

shipment is shown in Appendix A5.
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3.4. Inventory data per process in the two alternative logistics chains

3.4.1. Carbon emissions

Oluyisola et al. (2020) recommended that environmental KPIs
should be developed to better measure how waste generation, resource
use and emissions of manufacturing and transport can be reduced in IoT
supported smart and sustainable supply chains. One of the most
commonly used indicators is the amount of CO2 emissions.

In modern logistics supply activities, carbon emissions are mostly
generated from three processes, i.e., production, storage and trans-
portation. Energy consumption and carbon emissions in the production
process are determined by production volume and production processes.
The carbon emissions in storage are positively correlated with the
warehouse storage level and stored time, and the carbon emissions
during transportation are related to the number of trucks delivered and
their distances. Both inventory and transportation emissions are
strongly influenced by order strategy. For example, Chen et al. (2013)
found that for specific situations though the order quantity increases the
cost of the company, carbon emissions drop due to the decrease in the
number of shipments. In the supply chain system, the IoT technology
mainly affects carbon emissions by influencing the inventory and ship-
ment strategies (Kluczek et al., 2021). Carbon emission from the pro-
duction process depend deeply on the specific product type and
manufacturing route, but it is basically positively related to the manu-
factured number.

Therefore, the final carbon emissions embedded in transportation
and inventory of IoT - EM;, and conventional supply chains EM; should
be represented by the following equations (20) and (21).

EM,= (Il +I' +I"")ye + (SN;d; + SN;'d} + SN'd"\p + H, + H,' + H"
(20)
EMiy = (I, + I )ye + (SN}, .}, + SN dy ) p + H[, + H}.

iot™iot iot iot iot iot

2D

Where y represents the energy consumption per unit of inventory, ¢
represents energy consumption carbon emission coefficient, SN repre-
sents the number of delivery vehicles, d represents the distance of de-
livery (or delivery time instead), p represents the vehicle carbon
emission coefficient and H represents the emissions caused by heating.

3.4.2. Income and cost

For most companies, one of the critical indicators is the level of
profit, which is expressed in the form of sales revenue minus all costs. In
this model, revenue comes from the amounts of products sold. Costs are
composed of multiple parts, including product costs (considering labour
costs, raw materials, energy consumption, etc.), inventory costs
(including one-time inputs and energy consumption, etc.), trans-
portation costs. For example, for a retailer in a conventional supply
chain, its profit is represented by (22)

M] =min(D,,I})P; — IC,I — SNSC, — O/P; (22)

Among them, M] represents the profit level of the retailer, P repre-
sents the retailer’s selling price, IC, represents the unit inventory cost,
SC, represents the cost of delivery per vehicle, and P} represents the
purchase price from wholesaler. Wholesalers and manufacturers share
similar profit mechanism.

4. Parameter settings in SD-AB model

Lighting is one of the significant factors for electricity consuming of
inventory. T5 energy-saving lamps are currently widely used in ware-
houses (Jacobson et al., 2021), which have a light effect of about 100
Im/W, according to the minimum illumination requirement of 300 lux
(Chen et al., 2017), each kilowatt T5 lamp can illuminate 346.79 m2
space. Therefore, one unit of Li-ion module demands 0.00865 kWh
medium voltage electricity and 0.978 MJ heating as energy inputs. They
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contribute to 0.0086 kg and 0.036 kg CO2-eq emissions in China based
on Ecoinvent 3.8 database, respectively. The functional unit for ware-
house storage is 1 m2. The warehouse shelf for product storage has four
floors, each shelf (contains 4 cell modules) occupies a storage area of 0.5
m2, and the shelf cover 50% of the total floor area considering the
hallway space. Therefore 1 m2 of warehouse can store 4 cell modules.

As for transportation, Ecoinvent 3.8 provides detailed transportation
embedded emissions dataset, carbon emissions for trucks (Unspecified,
global) per ton kilometre is 0.13 kg. Considering the weight and sake of
the battery shipment (Aujla and Kumar, 2018), each lorry can transport
up to 200 units of modules at one time. Datasets from EKOL Logistics and
UPS for parcel shipments in Turkey showed that the average truck load
is 65% and 45%, respectively (Satir et al., 2018). Therefore, we set
default minimum order quantity mo as half of trucks load capacity. For
shipment the functional unit is 1 ton kilometre.

Other parameter settings are listed in the following Table 1. In some
cases, we use the same values for IoT and conventional supply chain to
control extraneous variables and get consistency analysis results. The
model is realized in Anylogic 8.7.11, see Appendix B.

5. Results and interpretation
5.1. Differences in cost performance

The difference between conventional- and IoT supply chain in

Table 1
Parameters setting for simulation experiment.
Parameters (Units) Value Resources
Potential users 100000 Example model (
Anylogic company,
2008)
Fraction/IoT Fraction 0.4 Amini et al. (2012)
Contact rate/IoT Contact rate 25 Goldenberg et al.
(2007)

Ad Effectiveness/IoT Ad 0.011 Example model (

Effectiveness Anylogic company,
2008)

Product lifetime/IoT Product 60 Above
lifetime (Model time)

Price of Norm factory/IoT factory 5 Kumar and
(US dollars) Swaminathan (2003)

Price of wholesaler (US dollars) 8 Above

Price of retailer/IoT retailer (US 10 Above
dollars)

Cost of inventory per unit (US 0.2 Above
dollars)

Cost of shipment per truck from 0.75 Example model (
manufacturer to wholesaler/IoT Anylogic company,
retailer (US dollars) 2008)

Cost of shipment per truck from 0.3 Above
Wholesaler to Retailer (US
dollars)

Cost of shipment per truck from 0.1 Above
retailer/IoT retailer to consumer
(US dollars)

Distance retailers/IoT retailers — 20 Above
users (km)

Distance wholesalers — retailers 100 Above
(km)

Distance manufacturers — 600 Above
wholesalers (km)

Distance IoT manufacturers — 600 Above
retailers (km)

Weight of durable product quality, 0.31,0.37,0.32 Pushpavathani and
price and delivery convenience Kumaradeepan (2013)

Market fluctuation triangular Fairchild et al. (2016)

(0.3,0.65,1)

Note: Example model — “Supply Chain and Market Diffusion” in Anylogic 8.7.11
(The market part of the model is done using SD. The product is delivered by a
single supply chain that is modeled by several active components (Retailer,
Wholesaler and Factory).
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market competition is reflected in many aspects such as net profit. As
shown in Fig. 3, the overall profit of the IoT supply chain is higher than
that of the conventional ones, exceeding the latter by 31%. Since the IoT
supply chain has only two nodes (manufacturers and the retailers), each
node can acquire a higher relative profit level compared with the con-
ventional structure. As for the profits per unit, IoT has 34% higher value
than conventional competitors, see Fig. 4.

When setting up same value-added of product in each node of 2
supply chains, the IoT supply chain will own price advantage of its
product (8% compared with 10$) due to less value-added processes. In
this case IoT supply chain still maintains 14% higher total profit and 4%
higher profit per unit compared with conventional ones, see Appendix
C1 and C2. In essence, IoT allows for a drastic reduction in product
stocks at production and retail and cuts out the wholesale step, leading
to large reductions in costs.

5.2. Differences in carbon emissions

In addition to the aspects mentioned above, these two supply chains
reveal different carbon emissions impacts. Since both supply chains
produce similar products, and there is no significant difference in
manufacturing technology, it can be assumed that the emission differ-
ence in the production phase negligible. The proportion and main dif-
ference of emissions in each phase - storage (InvH and InvE) and
transportation (Ship) are shown in Fig. 5.

The IoT supply chain only produces 36% of the total CO2 emissions
of its competitors during the model time. The IoT supply chain causes
3.52 kg carbon emissions per unit of product while the conventional one
produces 7.75 kg carbon emissions per unit of product. Optimized IoT-
enabled supply strategies can significantly reduce the retention time
of products in warehouse, therefore reduce carbon emissions by elec-
tricity and heating, and even minimize unnecessary transportation fre-
quency. Therefore, the IoT supply chain has pretty lower carbon
emissions per unit of product.

In both cases shipment contributes to the lion’s share of emissions,
accounting in each case for over 75% of the total emissions. The IoT
supply chain shows a better performance in minimizing shipment
emissions. Compared with the conventional case there is a decrease of
55% of CO2-eq per product.

The largest contributor of storage emissions in both supply chains is
heating. Due to optimized inventory strategies based on the IoT tech-
nology, it causes less emissions than conventional ones, only 46% on
average (45% in heating and 51% in electricity). The inventory level in
IoT supply chain remains relative steady over time, though has a slight
growth with demand expansion. However, the conventional supply
chain depicts a typical order point graph dynamic, the overall storage
level is over 2 times higher than IoT supply chain, and reveals a step-by-
step decline characteristic followed by an increase.

5.3. Differences in market share

The simulation also depicts the dynamics of market shares in both
supply chains during the simulated period, see Fig. 6. The conventional
supply chain occupies 11% more market share than the IoT supply chain
in the end. Although this gap is not so obvious within model time slot.

Profits/US dollars
6,000,000

4,000,000

2,000,000

100 200 300 400 500 600 700 Time

@ ConventionalSupplyChain - @ IoTSupplyChain

Fig. 3. Dynamics of total net profits in two supply chains (Same Price).
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Profits/US dollars
10

0

0 100 200 300 400 500 600 700 Time

@ ConventionalSupplyChain @ loTSupplyChain

Fig. 4. Dynamics of net profits per functional unit in two supply chains
(Same Price).

This is because the conventional supply chain maintains a large amount
of stock through the wholesaler, who can supply the stored products to
consumers faster than the IoT supply chain. While the latter usually
needs to supply through the manufacturer when the retailer’s stock is
not sufficient. It reduces the satisfaction of potential users who prefer
orders to be delivered as quickly as possible.

However, when setting up same value-added of product in each node
of 2 supply chains, (8% for IoT product compared with 10$ for con-
ventional product). IoT products could acquire a higher market share
and finally reach the level of conventional competitors, see Fig. 7. Here
the strength of price makes up the weakness of IoT supply chain in
instant delivery of products.

5.4. Sensitivity scenario analysis in carbon emission
To further verify the robustness of the model to evaluate the response

Ll loT
Emission/InvH

loT

. loT
Emission/Ship
78.02

8 —
[]Shipment
[ ]Inventory Electricity
i [ JInventory Heat
6 -

Carbon Emission (kg/product)
.
1

Emission/InvE
4.83%

® Conventional
Emission/Ship
78.24%

Journal of Cleaner Production 421 (2023) 138558

of the coupled system to parameter changes and answer the third
question: which factors are critical to influence the relative advantages
of IoT supply chain. A sensitivity analysis is performed in this paper.
Since market demand mainly drives the operation of the supply chain
in this model, we hence select two parameters — contact rate and product
lifetime — as examples for conducting a sensitivity experimental analysis.

Users in market
60,000

40,000

20,000

0

0 100 200 300 400 500 600 700 Time

@ Conventional supply chain @ 10T supply chain

Fig. 6. Dynamics of market scale in two supply chains (Same Price).

Users in market
60,000

40,000

20,000

0

0 100 200 300 400 500 600 700  Time

@ conventional supply chain @ 10T supply chain

Fig. 7. Dynamics of market scale in two supply chains (Same Value-Added).

® Conventional
Emission/InvH
17.45%

® Conventional
Emission/InvE
4.32Y

loT

1
Conventional

Fig. 5. Carbon emissions per product of the two supply chains.
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They represent the disturbances of the demand of potential users to
products and the demand of users to alternative products, respectively.
Besides, as an important factor affecting the flow of products in the
supply chain, the loading of trucks may not only affect the overall
supply-demand relationship in the market, but also affect the perfor-
mance of each supply chain nodes. Therefore, in order to avoid the
impact of experimental randomness. We conduct 5 simulation experi-
ments for each scenario and took the average values. As shown in
Table 2.

The benchmark experiment shows a general market scenario, that is,
a market with relatively balanced supply and demand, which represents
most actual market performance. Based on the parameter setting of
Contact rate = 25 in benchmark experiment, Run 1 increases this
parameter value and therefore indirectly raise the demands from the
potential users. It gradually forms a seller’s market in which factories are
operating at almost full capacity. While Run 0 performs in contrast way
and represents a relative buyers’ market. In these scenarios, IoT can still
achieve robust estimations of market reactions resulting in comparably
stable strategies for transportation and inventory optimization. There-
fore, as demand increases, the carbon footprint ratio of the IoT supply
chain drops slightly, but converges to a steady 40-45% of the conven-
tional supply chain emissions.

A similar situation occurs in Run 3 and Run 4 scenarios. With the
extension of product lifetime, the demand for replacing used products
drops significantly. It gradually formed a buyer’s market in which fac-
tories are operating far from full capacity. In this case, a low-frequency
shipment situation results in the conventional supply chain with low
inventory dynamics, thus contributing to larger proportion of unnec-
essary emissions and expanding the gap with the high-frequency and
low-amount shipment model in IoT supply chain. We find that with an
increase in product lifetime, the IoT supply chain carbon footprint
would finally drop to only 30% of the carbon footprint of conventional
supply chain.

However, the Run 4 and 5 results show that changing the load ca-
pacity of trucking impact larger on IoT’s potential in reducing shipment
emissions, since it accounts for more than 75% of total emissions. With
the increase of truck load capacity (from 50 units to 1500 units), the
total emission reduction of IoT weakens from 64% to 30% in heavy truck
scenario, see Fig. 8.

In all, changes in total demand could influence the total carbon
emissions of the two supply chains but impact limited on IoT’s relative
strength in decreasing carbon emissions. Compared with the conven-
tional supply chain, the IoT supply chain has carbon emission reduction
advantages under all proposed scenarios.

5.5. Model validation

This study conducts a unit check, reality test and extreme conditions
test to examine whether the constructed AB-SD model is in consistent
with reality. These three types of tests verify the validity of the devel-
oped model.
1. Unit check test

Battery supply chains contain various types of variables, including

Table 2
Sensitivity analysis in 6 scenarios (CO2-eq emission per product).

Journal of Cleaner Production 421 (2023) 138558

Carbon Ratio (loT/Conv)
0.8

0.7 N ®

06 e
05
04
-
03

0.2

0.1

0

50 250 450 650 850 1050 1250 1450
Truck Capacity (product numbers)

Fig. 8. Carbon ratio with two supply chains in different truck capacity.

social, economic and environmental variables. The Unit check test is
conducted by the Anylogic software automatically. The unit check re-
sults demonstrate that dimensions of variables are consistent and the
structure of SD model is reasonable.

2. Reality test

A Reality test examines the consistency of model with reality. It
implies adjusting important variables, and observing whether the
changing trend of other variables associated with it conforms with
realistic situation. The SD model in this study is a pull supply chain for li-
ion batteries. Demand is the essential variable to connect the three
subsystems — potential users, users and supply chains. Variables related
to the demand should change with the dynamic of demand. For instance,
if demand increases (when the production rate has not reached full ca-
pacity), the number of produced products as well as total CO2 emissions
by each supply chain should also increase.

The results of the reality tests are shown in Table 3. The table shows
that the change of demand affects the battery supply chains and the
dynamics are consistent. Hence, the SD model established in this study
passes the reality test.

3 .Extreme conditions test

Supposing that the number of initial potential users is 0, most related
variables should be set as 0. These variables include total user, CO2
emissions in storage and transportation processes by IoT supply chain.
Only conventional supply chain has steady storage emission because of

Table 3
Reality test results.
Variable Produced Produced IoT Conventional
number number Emission Emission (kg)
(IoT) (Conventional) (kg)
Demand 100241 163200 63482 196207
Demand 191900 324800 109036 281051
increased
by 100%

Scenario Baseline Run 0 (Contact Run 1 (Contact rate Run 2 (Product Run 3 (Product lifetime Run 4 (Truck capacity Run 5 (Truck capacity
rate =5 =50 lifetime = 30 = 200) =100) = 500)
Emission 7.75 7.74 7.74 7.74 4.64 2.06 2.02
Conv
Emission IoT 3.52 3.57 3.40 3.58 2.12 0.93 0.92
Ratio IoT/ 45.49% 46.09% 43.88% 46.27% 45.28% 39.63% 57.84%

Conv
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its minimum storage strategy. Results of extreme conditions test are
shown in Fig. 9. SD model developed in this study passes extreme con-
ditions test.

6. Discussion

We consider the recent progress of supply chain structures and IoT
studies in the literature to simulate the IoT capabilities in typical supply
chain operations (Ding et al., 2023b). Assessing publications, most of
them are qualitative theory studies focusing on the IoT-enabled effi-
ciency improvements of manufacturing systems under certain enter-
prises or technical improvement potentials of IoT-enabled algorithms
(Fisher et al., 2020; Prajapati et al., 2022). Few studies have conducted
specific quantitative case study simulations on specific factories or
workshops (Ekren et al., 2021). In comparison, this research leaves the
workshop level and focuses on a muti-business level. It is the first to use
a simulation approach to quantitatively investigate IoT-enabled supply
chain level (muti-business level) problems. Our hybrid SD-AB model is
hence specifically designed as a pre-LCA tool to explore the differences
between a two-tier IoT-enabled supply chain and a three-tier conven-
tional supply chain. We focus on profits, carbon emissions, and market
penetration, which are key concerns of most enterprises.

The simulation reveals the strengths of IoT in minimizing emissions
and costs (e.g., storage, shipment, and electricity) in supply chains, as
well as drawbacks in market penetration. Sensitivity experiments
further identify potential factors that affect IoT performance (e.g., de-
mand amount, load capacity) and indicate the selection dilemma that
IoT faces in some scenarios (when conventional competitors adopt
higher load capacity). Most prominently these are the challenge to keep
a balance between transportation frequency, average storage levels, and
delivery times (influencing user satisfaction) to achieve higher profits,
market penetration, and lower emissions, which requires higher infor-
mation processing ability and better algorithms of IoT systems.

This simulation does not only bring new overall perspectives from
whole supply chains for scholars but also helps to reduce the physical
verification costs of IoT technology for most supply chain participants.
Therefore, this research highlights opportunities, also to small and
medium-sized enterprises being interested in IoT technology but have
insufficient funds or poor trial-and-error capabilities. It helps them to
better evaluate the necessity of investing or adopting IoT based on their
own situations. Besides, the research also promotes IoT developers’

Users in market

1
05

0
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(designers) awareness of potential challenges of IoT technology in sup-
ply chain applications so that they can iterate their own IoT products as
the market wish.

7. Conclusions

This study set up a SD-AB model to explore the impact of IoT tech-
nology for a battery supply chain (from production to users) and
assessing environmental and cost implications using the approaches of
LCA and LCC. Compared with the conventional three-tier supply chain,
the use of IoT (enabling real time monitoring, tracking and information
feedback) allows for a two-tier supply chain resulting in less required
warehouse space and less waste. The main conclusions of this study are
as follows.

As for the economic and environmental gains, IoT supply chains have
significant advantages in reducing average inventory and shipments
fluctuation through real-time and accurate information sharing with
different nodes, thus increasing the total net profits by at least 30%
under the same selling price with conventional ones, and reducing
carbon emissions by around 50% under balanced demand-supply sce-
narios. It contributes significantly to reducing shipment emissions, fol-
lowed by emissions related to heat storage rooms.

However, IoT supply chain will be less able to fulfil demands in time
due to the low storage strategy of its retailers when there is a huge
market fluctuation. In contrast, conventional supply chain can satisfy
users with no delivery delay with its higher safety storage level.
Therefore, under the same product pricing, potential users are more
inclined to purchase products from conventional supply chains, the IoT
supply chain can obtain an equivalent market share only in lower
pricing strategy.

The demand-supply relationship is an important factor shaping the
performance of IoT-enabled SSC. Especially in low demand scenarios,
the accurate scheduling of orders and storage becomes quite important.
In conventional supply chains low demand scenarios easily lead to a
relative high level of storage. At the meantime, the more accurate
scheduling for a "zero inventory" enabled by IoT will lead to a reduction
of carbon emissions of even 70%. Moreover, the frequency of shipment
also plays an important role. By increasing the loading capacity or
loading rate, the number of shipment turnovers (or the total trans-
portation mileage) between various supply chain nodes can be
decreased. The IoT supply chain is not significantly impacted by a higher
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Fig. 9. Results of extreme conditions test.
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loading rate, as trucks only restock storage and deliver products in
proportion to demand. While the conventional supply chain can achieve
safety storage target with less delivery frequency, thereby narrowing the
total emissions gap between the two supply chains, particularly
considering that shipment generally accounts for more than 75% of the
total emissions.

This research also has some limitations. Firstly, this paper focuses on
product flows which are part of supply chains between production and
use. It does not consider the IoT’s role in recycling or remanufacturing
processes, which is an important part of circular economy. Secondly,
labour market issues may have been insufficiently covered. A highly
automated IoT supply chain requires a structured data management
process between supply nodes using uniform data standards, and
applying agreements on data ownership issues. Such IoT systems may
hence reduce the demand for low-qualified labor and enhance the de-
mand for highly qualified labor. Thirdly, we did not quantify the envi-
ronmental and cost implications of creating the IoT infrastructure. While
the cost and emission reductions due to more efficient transport and
storage as covered in our paper are highly dominant, a more compre-
hensive LCA and LCC is desirable.
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