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A B S T R A C T   

The Internet of Things (IoT) brings new opportunities for creating intelligent and streamlined supply chains that 
have better environmental and cost performance as compared to conventional ones. In this paper, we quantify 
such improvements for a specific logistics chain case. To support the inventory of cost and emission data, we 
utilize system dynamics (SD) and agent-based modeling (AB) to define the structure of the two logistical systems, 
simulating and estimating differences in e.g., required storage levels, efficiency of transport, etc. In particular, we 
assess the difference in carbon emissions, cost, and market performance of a battery delivery chain in the de
livery process between a two-tier IoT-supported supply chain (users are served by an IoT retailer directly con
nected to the producer) and a conventional three-tier supply chain (include an additional wholesaler to connect 
retailer and producer). The results demonstrate that IoT supply chains have significant advantages in minimizing 
average product storage and shipment fluctuations. IoT suppliers can estimate market demand to adjust pro
duction and transportation strategies for new orders. Consequently, the overall profitability of the IoT supply 
chain increases by more than 30%. Heating and lighting emissions in the storage process and direct emissions in 
transportation per functional unit (one unit of a Li-ion cell module) are reduced by 60%–70% under middle- and 
low-demand scenarios, and by at least 50% under high-demand scenario. However, the increasing use and higher 
loading rates of heavy trucks will weaken the advantages of IoT. Moreover, IoT products occupies a 10% lower 
market share compared to conventional ones under the same pricing strategy but achieves similar market share 
under the same value-added strategy.   

1. Introduction 

As current supply chain systems are becoming more and more 
complex, there is an increasing demand for integrating industry 4.0 
technologies like IoT into supply chain and production management. 
Combined with operation approaches such as just-in-time (JIT) pro
duction, lean logistics, and vendor managed inventory, IoT has become 
one of the important contributors to sustainable supply system (Coe 
et al., 2008; Mastos et al., 2020; Ding et al., 2023a). Sustainable Supply 
Chain Management (SSCM) supported by IoT is regarded not only as an 
environmentally useful procedure but also as leverage that can improve 
the economic performance of supply chains, as well as manufacturers’ 
competitiveness (Porter and Linde, 1995; Green et al., 2012). Scholars 

highlighted the necessity of focusing on sustainability by utilizing IoT to 
meet customers’ requirements and organizations’ goals as well as the 
aggressive changes in market dynamics (Manavalan and Jayakrishna, 
2019). For instance, Ding et al. (2023b) reviewed and identified positive 
impacts of IoT capabilities on six different circular practices and esti
mated 20–30% carbon reduction potential on average. Ali and Shahram 
(2020) elaborated on improving IoT in hardware, software, communi
cation and architecture and its positive effects on carbon emission 
reduction. Pan et al. (2020) showed that the implementation of smart 
logistics and inventory can significantly curb carbon emissions and have 
a sustained impact in the following years. 

However, most of these studies discuss conceptual frameworks and 
theoretical evaluations rather than quantitative case studies. Such work 
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is less persuasive to small and medium enterprises (SMEs) having them 
implementing IoT-enabled SSC. At the same time SMEs are encountering 
significant pressure to improve environmental and cost performance, 
but the adoption cost of innovative Industry 4.0 technology could be 
high (Awan et al., 2022). There is hence a need for quantitative case 
studies. While LCA and LCC are powerful tools for environmental impact 
and cost assessment, they do tend to use static systems as point of de
parture. In practice products and processes form inherently dynamic 
networks in which behavior changes over time (McAvoy et al., 2021). 
The use of systems thinking, and the group model building process can 
identify critical variables that traditional LCA/LCC may not consider, 
thereby strengthening the LCA/LCC approach (Mccabe and Halog, 2018; 
Laurenti et al., 2014). Therefore, an ex-ante assessment for dynamic 
industrial process through simulation can be supportive to reduce in
vestment risks (Ding et al., 2023a). 

A system dynamics (SD) model is an ex-ante simulation technique for 
evaluating the outcomes of decision-options (Guan et al., 2011; Tan 
et al., 2018). Compared with another dynamic modeling method - 
discrete event simulation (DES), SD is based on the continuity of time, 
and has advantages in demand forecasting, production and inventory 
planning, and describes bullwhip effects which can be considered more 
at a strategic level (Tako and Robinson, 2012). SD can explore the 
information-feedbacks in industrial systems and improve their organi
zational form (Kim et al., 2014). For example, Zhao et al. (2018) adopted 
an SD model to improve products efficiency by energy recovery and 
emulated simple resource pollution control in green supply chain. Tan 
et al. (2018) developed an SD model for simulating the sustainability 
performance of urban systems by considering four sub-factors – the 
economic, social, environmental and resource sector. The simulation 
results proved to help policy makers to formulate relevant strategies for 
a better sustainable development of cities. 

Scholars also have been enhancing the capabilities of SD by linking 
Life Cycle Assessment (LCA) into SD modelling. The use of SD allows for 
the tracking of multiple elements while multiple variables are interact
ing or changing simultaneously. In this way, SD allows for better esti
mates of (future) structures of production-consumption systems on 
which Life cycle inventories (LCIs) for LCAs can be based. In the same 
way, Life cycle costing (LCC) can be supported by SD models. For 
instance, Pinto and Diemer (2020) used emission and resource extrac
tion inventory data and impact assessment models from LCA and linked 
them to nodes in a stock and flow system from a top-down SD model. 
Cao et al. (2019) established a top-down SD model including production, 
transportation, storage and consumption to simulate the carbon emis
sion reduction plan in the entire life cycle of a coal supply chain, and 
discussed the main sources and key influencing factors for associated 
carbon emissions. Their reality tests showed the validity of their model. 

SD can further be combined with agent-based (AB) modelling to 
describe the complex and inter-dependent relationships between vari
ables and agents. Such a hybrid SD/AB model can simulate the dynamic 
of supply chains effectively by defining the important interacting en
tities as agents. For instance, Wang et al. (2023) used a top-down SD 
model to explore the interaction of multiple factors (urban 
socio-economic development, low-carbon transportation, and environ
mental economic policies) for selecting an optimal policy scheme taking 
into account multiple agents – government, enterprises, and residents. 
The model was validated by comparing the simulation results with 
historical data from 2005 to 2018 though factors like urban space 
planning, market mechanisms are not considered. 

Therefore, the combined SD and AB approaches can help to create 
the chain structure and life cycle inventory data (LCI) in line with LCA 
and LCC. This combined model can not only describe the overall dy
namic process of the system, but also reflects the interaction between 
agents and the external environment. It can better simulate the perfor
mance of IoT-enabled smart supply chains (real-time order forecasting, 
cargo tracking, and production arrangement) in a dynamic market (Ding 
et al., 2023a). 

There are several conceptual papers suggesting IoT can improve 
environmental performance and economic value creation and hence 
contribute to sustainable business (Ranta et al., 2018; Whalen, 2019; 
Ding et al., 2023a). However, in earlier work we showed that there are 
still limited case studies that systematically analyze the impact of IoT on 
cost and emissions reductions (Ding et al., 2023b). Studies that analyze 
the impact of IoT with AB and SD approaches are virtually absent 
(Rajeev et al., 2017; Rebs et al., 2019). Therefore, this article introduces 
two typical supply chain structures (IoT enabled and non-IoT enabled) 
and applies a combined SD and AB approach to compare supply chain 
structures and measure their performance in terms of profitability 
(through LCC), carbon emissions (through LCA) for a Li-ion battery case, 
next to estimating their market penetration. 

This study aims to answer the following research questions:  

RQ 1 How can the capabilities of IoT enabled SSC be simulated?  
RQ 2 What are the economic and environmental gains of the IoT- 

enabled SSC in comparison with its conventional competitors 
under a Li-ion battery case (assessed with LCA and LCC)?  

RQ 3 Which factors are decisive for shaping the performance of IoT- 
enabled SSC? 

The paper proceeds as follows: Section 2 introduces the research 
goals and scopes in the model. Section 3 defines the key elements and 
describes the approach mathematically how IoT-enabled and conven
tional supply system operates and how to calculate their total net in
come and emissions, respectively. Section 4 gives the parameter settings. 
Section 5 presents and discusses the results with sensitive analysis and 
model validation. Section 6 highlights the contribution and novelty of 
the research to academic and industrial fields. Finally, section 7 reflects 
on the key findings, lists the limitations and proposes the future steps. 

2. Goal and scope 

2.1. Goal and model framework 

In order to show the simulation results and obtain general conclu
sions. We select Li-ion battery cells (Audi A6 PHEV) as the research case, 
and each cell module is regarded as 1 functional unit to compare 2 
supply chains performance (Lehnert, 2017). A combined SD-AB model is 
established to understand how these different supply chains operate in 
terms of product flow and storage per step in the chain, and also allow to 
assess market shares. 

The model generally operates as follows. The Li-ion cell modules 
from the producing factories are being sold to users (e.g., electric ve
hicles users) who are sensitive to price changes as well as to the word of 
mouth (initially there are no users of the product) (Koberg and Longoni, 
2019). They both shape the impression of potential (future) users of the 
products. Therefore, the demands of potential users drive the production 
arrangement of Li-ion modules of the alternative two supply chains. The 
conventional supply chain includes manufacturers, wholesalers and re
tailers while the IoT-enabled supply chain includes only manufacturers 
and retailers, as shown in Fig. 1. In addition, users of either IoT supply 
chain products and conventional products may switch to the alternative 
supply chain products when their in-used products are scrapped, which 
is mainly based on the purchased product quality. The constructed 
market is part of a standard SD approach, namely based on Bass diffu
sion model (Silva et al., 2020). 

The linkage between market and supply chains is realized in the 
following way. The SD model exposes the demand of potential users to 
the retailer, and the retailer supply the demand and at the meantime ask 
upstream supply nodes (wholesalers and manufacturers) to add up its 
inventory in preparation for next demands. By simulating the behavior 
of different nodes of the two supply chains, the model can depict the 
logical ways of demand forecasting, order shipment and inventory 
management of the two supply chains. 
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2.2. Selection on impact indicators 

The total net profits represent the cost performance of two supply 
chains. It is numerically expressed as the sum of the net profits of all 
nodes in each supply chain. That is, the difference between the selling 
price of each node and the purchase price as well as other costs 
(including transportation costs, inventory costs). 

We focus on the CO2 emissions caused by supply chain activities, 
where heating, electricity and transportation contribute to the majority 
of differences between the two different supply chains. The inventory 
data from an LCI database are attached to supply chain processes 
(determined by the storage and flow of products) in our SD-AB model. 
We use the Ecoinvent 3.8 (most extensive LCI databases available) to 
estimate emissions per step in the logistics chain of Li-ion battery cells. 
The use of medium voltage electricity, lorry transport for freight and 
heat using natural gas are the processes taken from Ecoinvent 3.8 to 
calculate emissions of greenhouse gases. We use the 100-year Global 
warming potential (GWP 100) to characterise greenhouse gas emissions 
and obtain their related contribution to climate change impacts. GWP is 
an indicator of the overall effect of the process related to the heat ra
diation absorption of the atmosphere due to emissions of greenhouse 
gases (CO2-eq) of the system under assessment over a 100-year time 
horizon. 

The market performance can be directly expressed as the number of 
current users of product from a certain supply chain. The expansion of 
these groups come from the existing product demands of potential users 
and the demands of End-of-Life (EoL) product users for substitutes. 

The GWP 100 and net profits of two supply chains are compared both 
on a functional unit level and full market level, providing our LCA and 
LCC results respectively. 

Tarancón and Río (2007) created a sensitivity analysis method 
considering both technology-production factor and final demand factor 
to be structural factors that affecting sectoral carbon emissions. The 
technology-production factor can be regarded as a supply-side factor, 
which depends on the inputs in the production and logistics process 
required to deliver a unit of product. While the final demand factor 
depends on the sales of the final demand sector. In the structure model of 
this paper, potential users and End-of-life product users can be regarded 
as two final demand sectors. While transportation, as a process con
necting different nodes, can directly affect the supplying dynamics. 

Therefore, we choose contact rate, product lifetime and truck load ca
pacity as representative factors to explore how they may influence IoT’s 
contribution in reduction of carbon emissions and costs. They affect 
supply chain dynamics from two different sources of market demand 
(potential users and End-of-life product users) and one major supply 
factor (shipment rates), respectively. 

3. Mathematical description and inventory data 

3.1. Definition of key elements 

Kibira et al. (2009) built a comprehensive conceptual framework for 
the SD model of SSCM for integrating economic and environmental 
domains in manufacturing system. They identified key elements under 
this system – storage, manufacturers, retailers, consumers and market, 
and proposed possible stocks (user and product) and flows (product, 
user and information) for model building. This supply chain produces 
final products which get stored as serviceable inventory so as to remain 
financially viable. 

3.1.1. Storage 
The flow of stored product along the supply chain to the end con

sumer represents the manufacturing activity. The storages are modeled 
as multiple stocks based on location along the supply chain including 
manufacturers’ storages, retailer storages, products in use. 

3.1.2. Manufacturers 
The manufacturers are the beginning nodes of final products flowing 

to the end users in the manufacturing system. Their production rates are 
influenced mainly by the market demands under a certain availability of 
energy, labor, and materials (Amini et al., 2012). 

3.1.3. Retailers 
This category represents the organizations and people involved in 

ensuring that the products reach the end users. They are the connection 
nodes between market and manufacturing system. Where manufacturers 
and retailers are difficult to connect directly due to geographical dis
tance or delivery uncertainties, wholesalers play a role as a transit center 
for large quantities of goods (Rawwas and Iyer, 2013). 

Fig. 1. The market competition mechanism of two types of supply chains.  
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3.1.4. Consumers and market 
The market studied resembles a complex adaptive system driven by 

social network consumer interactions (Miller and Page, 2009; North and 
Macal, 2007). Consumers have three fundamental properties: Auton
omy, Interactivity, and Bounded rationality (Amini et al., 2012). Au
tonomy suggests the influence of customers attitude towards product 
price and quality; Interactivity suggests the influence of product positive 
and negative word-of-mouth among consumers; Bounded rationality 
suggests the effectiveness of advertisement. 

Although this framework is not subjected to confirmatory factor 
analysis and defines no agents, it provides a feasible enterprise-level 
substructure for modeling supply chain and management activities 
(Rebs et al., 2019; Zhang et al., 2013). We use these key elements and 
integrate IoT capabilities – tracking, monitoring and optimization to 
construct a SD framework where an IoT-enabled and a conventional 
supply chain compete in a market (Ding et al., 2023b). A conceptual 
diagram in Fig. 2 shows agents, stocks and flows in this framework. 
Stocks refer to user stocks in the market and product stocks (storage) of 
each supply nodes, and flows refer to product flows (from manufacturer 
via retailer to users), user flows (from potential users to users) and in
formation flows (Shipment requested to upstream nodes to add up local 
products storage). 

We then define the important stakeholders that directly affect the 
operation of supply chains as agents: Manufacturers (including con
ventional manufacturers and IoT manufacturers, they have their own 
shipment fleets), Wholesalers (only in conventional supply chains), 
Retailers (including conventional retailers and IoT retailers). The other 
stakeholders (such as energy supplying companies, logistics companies, 
etc.) are excluded as they are not considered to be substantial enough or 
sufficiently explicit when comparing the performance of supply, see e.g., 
Rahman et al. (2022) for more details. 

3.2. Market demand 

The market part of the model defines the users’ demand for the 
product, which becomes the driving force of this market competition 
model. The demand Dt for products is driven by three forces, the 
adoption rate of potential users, the discard rate of end of their life 
products, and the rate of consumer switching the manufacturer because 
of dissatisfaction resulting in (1). 

Dt =Adopt + Disct + Traniot (1) 

Dt represents the user’s demand for conventional factory products. 
Adopt represents the adoption rate from potential users. Disct represents 
the discard rate of conventional sold products. Traniot represents the shift 
flow from IoT products users. Similarly, for product from IoT factories, 
its demand can be represented by the following (2). 

Diot =Adopiot + Disciot + Trant (2) 

The adoption rate of potential users can be further expressed in the 
following (3) and (4). It is divided into two parts. The first part reflect 
that potential consumers generate new demand through advertisement 
(Goldenberg et al., 2007). The second channel reflects that demand is 
generated through product recommendations from current users (Amini 
et al., 2012). PU represents the current amount of all potential users who 
might be interested in this kind of product but do not have one. Adt and 
Adiot represents the advertisement effect of products from conventional 
factory and IoT factory respectively. Ut and Uiot represent current users 
of product from conventional and IoT production, respectively. C rep
resents contact rate, which means the number of potential user one user 
will contact per unit time (every day). St and Siot represents the satis
factory rate of conventional product users and IoT product users. f is 
used to define the market fluctuation. 

Adopt =

(

Adt +C ∗ St
Ut

PU + Ut + Uiot

)

∗ f ∗ PU (3)  

Adopiot =

(

Adiot +C ∗ Siot
Uiot

PU + Ut + Uiot

)

∗ f ∗ PU (4) 

In the consumer value theory that affects purchase behavior, func
tional value (which includes product reliability, convenience, and price) 
is considered to be the most important aspect (Moon et al., 2021). 
Tversky and Shafir (1992) demonstrated that consumer purchase delays 
have a significant impact on purchasing decisions, which is in line with 
standard economic theory of time preference (Nordhaus, 2013). 
Therefore, user’s satisfaction with the product mainly includes three 
aspects, quality, price and delay. Therefore, St and Siot can be further 
expressed by (5) and (6). 

St =wqQt + wp
Piot

Pt + Piot
+ wd

Supplyt

Dt
(5)  

Siot =wqQiot + wp
Pt

Pt + Piot
+ wd

Supplyiot

Diot
(6) 

Fig. 2. Stocks and flows of SD-AB model.  
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Qt and Qiot respectively represent the qualified rate of products 
produced by conventional factories and IoT factories, and represent the 
quality and reliability of products. P represents the final retail price of 
the products. Supplyt = min (Dt , Ir

t ) and Supplyiot = min (Diot, Ir
iot) repre

sent actual supply amount products from the conventional- and IoT 
factory, where Ir

t and Ir
iot represent the inventory level of retailer from 

conventional factories and IoT factories. That is, when the user’s de
mand is less than the retailer’s inventory level, it can be shipped 
immediately. When the demand is greater than the inventory level (that 
is, the demand exceeds supply), users need to wait for the manufacturer 
to replenish new goods, then delay decreases purchase preference. wq, 
wp and wd represent the weights of quality, price and delay dimensions. 

In addition, the discard rate can also be represented by two variables, 
the product qualification rate and the product life cycle. The transfer 
rate represents dissatisfaction with the current product, which is directly 
related to product quality. LT represents life time of all products that 
belong to the same type. These relations are depicted in following 
equations (7)–(10). 

Disct =
Qt ∗ Ut

LT
(7)  

Disciot =
Qiot ∗ Uiot

LT
(8)  

Trant =
(1 − Qt) ∗ Ut

LT
(9)  

Traniot =
(1 − Qiot) ∗ Uiot

LT
(10) 

Therefore, the real-time number of product users Ut and Uiot can be 
expressed as the following (11)–(12), that is, the accumulated value of 
actual supplied demand minus the discard rate and its own transfer rate. 
Nt and Niot represent the number of shipments from two kinds of 
retailers. 

Ut =
∑Nt

n=1
min

(
Dt, Ir

t

)
− Disct − Trant (11)  

Uiot =
∑Niot

n=1
min

(
Diot, Ir

iot

)
− Disciot − Traniot (12)  

3.3. Structure of logistics chains 

3.3.1. Conventional logistics chain from producer via wholesaler and 
retailer to user 

The conventional supply chain is modeled by active agents (retailers, 
wholesalers, and manufacturers), and consists of three steps. First 
products go from manufacturer to wholesaler, then they flow to the 
retailer, and are finally delivered to the consumers. That is, user de
mands are fed back to the retailer. When the retailer’s supply capacity is 
insufficient, wholesalers will supply retailers in bulk and apply for 
shipments from manufacturers to maintain a stable inventory level. 
Therefore, it is a supply chain driven by demands. Each agent has a 
specific (manufacturing, inventory and delivery) strategy (Belle et al., 
2021). Being part of such a supply chain requires a certain degree of 
demand forecasting. As demand suddenly changes and information 
transfers upstream tier by tier in the supply chain, this information will 
be distorted, which is called ‘Bullwhip Effect’ (Rabe et al., 2006). 

For retailers, the operating mechanism is as follows: First check the 
quantity of demand and select the smaller value of demand and current 
inventory to supply, then estimate the order Or

t to the wholesaler to 
replenish the inventory, it is improved on a (Q, R) strategy – a fixed 
order quantity and fixed order point strategy under continuity check 
(Braglia et al., 2019; Pérez and Geunes, 2014; Xu et al., 2020), but the 
order quantity Or

t does not remain unchanged, but obeys the rules shown 

in the following (13). 

Or
t =

{
min

(
Sr − Ir

t , Sr −
(
Ir

t + EPr
t − Dt

)) (
Ir

t + EPr
t − Dt < sr

)

0
(
Ir

t + EPr
t − Dt ≥ sr

) (13)  

Where sr and Sr represent the lower limit and upper limit of retailers’ 
inventory respectively. When the current inventory Ir

t plus the expected 
amount of goods EPr

t transferred from the wholesaler minus the actual 
demand is still less than the lower limit of inventory control line, the 
amount of the expected goods EPr

t needs to be increased, but the value 
after the increase cannot be higher than the upper limit of inventory 
control line. The full conceptual diagram to describe the conventional 
retailer’s behavior and interaction with other agents and market envi
ronment is shown in Appendix A1. 

EPr
t =

{
Or

t

(
Or

t > 0
)

0
(
Or

t = 0
) (14) 

For wholesalers, they act as middlemen, as some producers are un
willing to sell in small batches in consideration of transportation man
agement costs, while retailers are limited by financial conditions, unable 
to buy in large quantities, and are limited by manpower. Wholesalers 
can not only make bulk purchases from producers, but also divide the 
supply into small units and resell them to retailers. Therefore, they often 
have much higher upper and lower inventory limits Sw and sw than re
tailers. In addition, it is basically the same as the retailer’s ordering 
mechanism, but the demand Dt should be replaced with a backlog of 
retailers’ orders BKr

t , which is represented by (15). 

BKr
t =

∑N′
t

n=1
Or − SHw (15) 

The backlog of retailers’ order BKr
t is expressed as all orders from 

retailers minus the supplied amount SHw from wholesalers. N′
t represents 

the number of orders from conventional retailers. The full conceptual 
diagram to describe the wholesaler’s behavior and interaction with 
upstream and downstream agents is shown in Appendix A2. 

The conventional factory is normally facing complexity challenges in 
planning, which come from data integrity concerns, product mix exac
erbated by increasing product customization needs, estimation of pro
duction volumes, control principles that minimizes work-in-process 
inventory, etc. (Vollmann et al., 2005) Because of limited real-time 
feedback of its own inventory, there remains less space to adjust the 
manufacturing speed. Therefore, its actual manufacturing rate Mant 
depends on the rough inventory level and the number of backlogs. As 
shown in (16). 

Mant =

{
0

(
Im

t − BKw
t > Sd

)

MR
(
Im

t − BKw
t ≤ Sd

) (16) 

Among them, when the manufacturer’s inventory Im
t can still meet 

the wholesaler’s backlog of orders BKw
t , production will not be started. If 

the supply quantity of the backlog of orders cannot be met, production 
will be started with full capacity MR. Sd represents the criterion for 
judging whether to start or not, usually it equals 0. The full conceptual 
diagram to describe the conventional manufacturer’s production plan 
and interaction with wholesaler is shown in Appendix A3. 

3.3.2. IoT supported logistics from producer via IoT retailer to user 
The supply chain system supported by the IoT technology has some 

other characteristics. Due to the visibility of product information and 
management of big data, inventory can adopt more radical inventory 
and producing strategies by increasing responsiveness, coordination, 
accuracy of demand forecasts, accelerating changes and decreases in 
inventory levels, lead times and uncertainty (Calatayud et al., 2019; 
Anitha et al., 2021), such as zero inventory (Lyu et al., 2020; 
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Mashayekhy et al., 2022). As a result, wholesaler diminish. Exemplarily, 
researchers from the ING Economics Department concluded that Dutch 
wholesalers are no longer ‘indispensable’ and that various developments 
are affecting the wholesaler’s existence, especially the growing digiti
zation (Tjin, 2019). Therefore, the second structure considers a direct 
link between manufacturers and retailers. That is, user needs are fed 
back to retailers. When the retailer’s supply capacity is insufficient, it 
will directly request the manufacturer for shipment to meet stable 
supply capacity. Consistent with the conventional supply chain, this is 
also a demand-driven supply chain. 

For IoT retailers, the operating mechanism is as follows: First check 
the quantity of demand and select the smaller value of demand and 
current inventory to supply, then calculate the order Or

iot to the IoT 
manufactures to replenish the inventory, it indicates the potential 
shortage quantity, that is the possible shortage quantity when the next 
demand comes after the current inventory meets this demand. The 
initial value of EPr

iot is 0, Oiotr obeys the rule shown in the following (17). 

Or
iot =

{
min

(
Sr,Diot −

(
Ir

iot + EPr
iot − Diot

)) (
Ir

iot + EPr
iot − Diot < Diot

)

0
(
Ir

iot + EPr
iot − Diot ≥ Diot

)

(17)  

Where Sr represent the upper limit of IoT retailer inventory. When the 
current inventory Ir

iot plus the expected amount of goods EPr
iot transferred 

from the manufacturers minus the actual demand Diot cannot meet the 
next order size, which is expected to be the same, the amount of the 
expected goods is increased. This value after the increase cannot be 
higher than the upper limit of inventory control line Sr. Compared with 
the conventional supply chain, the condition parameter Diot is dynamic 
rather than stable. It depicts the IoT capabilities in monitoring used 
products, tracking on-way products to optimize demand estimation 
(Mashayekhy et al., 2022). EPr

iot obeys the following (18). 

EPr
iot =

{
Or

iot

(
Or

iot > 0
)

0
(
Or

iot = 0
) (18) 

However, the one-sided pursuit of zero inventory in the supply chain 
will transfer inventory pressure to the transportation sector, resulting in 
an increase in the number of shipments and costs (Chakrabortya and 
Chatterjee, 2016). Given that the current main transportation methods 
consume petrol and diesel etc., this will in turn lead to a surge in carbon 
emissions. Therefore, whether to forward the order to the manufacturer 
also needs to consider the size of potential shortage quantity Or

iot . When 
it is greater than the minimum order quantity mo, the order can be sent 
to the IoT manufacturer. The full conceptual diagram to describe the IoT 
retailer’s behavior and interaction with IoT manufacturer and market 
environment is shown in Appendix A4. 

For the IoT manufacturer, its supply mechanism is similar to that of 
conventional manufacturers the actual manufacturing rate Maniot de
pends on the inventory level and the number of backlogs. As shown in 
(19). 

Maniot =

⎧
⎪⎪⎨

⎪⎪⎩

0
(
Im

iot − BKr
iot > Sd

)

MR
(
−
(
Im

iot − BKr
iot

)
> MR

)

−
(
Im

iot − BKr
iot

) (
−
(
Im

iot − BKr
iot

)
≤ MR

)
(19) 

Among them, when the IoT manufacturer’s inventory Im
iot can still 

meet the IoT retailer’s backlog orders BKr
iot, production will not be 

started. If backlog of orders is even larger than full manufacturing ca
pacity MR, production will be continued with full speed. But if the 
number of backlog orders is smaller than MR, then only produce goods 
according to the out-of-stock quantity. The full conceptual diagram to 
describe the IoT manufacturer’s scheduling in production, storage and 
shipment is shown in Appendix A5. 

3.4. Inventory data per process in the two alternative logistics chains 

3.4.1. Carbon emissions 
Oluyisola et al. (2020) recommended that environmental KPIs 

should be developed to better measure how waste generation, resource 
use and emissions of manufacturing and transport can be reduced in IoT 
supported smart and sustainable supply chains. One of the most 
commonly used indicators is the amount of CO2 emissions. 

In modern logistics supply activities, carbon emissions are mostly 
generated from three processes, i.e., production, storage and trans
portation. Energy consumption and carbon emissions in the production 
process are determined by production volume and production processes. 
The carbon emissions in storage are positively correlated with the 
warehouse storage level and stored time, and the carbon emissions 
during transportation are related to the number of trucks delivered and 
their distances. Both inventory and transportation emissions are 
strongly influenced by order strategy. For example, Chen et al. (2013) 
found that for specific situations though the order quantity increases the 
cost of the company, carbon emissions drop due to the decrease in the 
number of shipments. In the supply chain system, the IoT technology 
mainly affects carbon emissions by influencing the inventory and ship
ment strategies (Kluczek et al., 2021). Carbon emission from the pro
duction process depend deeply on the specific product type and 
manufacturing route, but it is basically positively related to the manu
factured number. 

Therefore, the final carbon emissions embedded in transportation 
and inventory of IoT - EMiot and conventional supply chains EMt should 
be represented by the following equations (20) and (21). 

EMt =
(
Ir

t + Iw
t + Im

t

)
γε+

(
SNr

t d
r
t + SNw

t dw
t + SNm

t dm
t

)
ρ+Hr

t +Hw
t + Hm

t

(20)  

EMiot =
(
Ir

iot + Im
iot

)
γε+

(
SNr

iotd
r
iot + SNm

iotd
m
iot

)
ρ+Hr

iot + Hm
iot (21)  

Where γ represents the energy consumption per unit of inventory, ε 
represents energy consumption carbon emission coefficient, SN repre
sents the number of delivery vehicles, d represents the distance of de
livery (or delivery time instead), ρ represents the vehicle carbon 
emission coefficient and H represents the emissions caused by heating. 

3.4.2. Income and cost 
For most companies, one of the critical indicators is the level of 

profit, which is expressed in the form of sales revenue minus all costs. In 
this model, revenue comes from the amounts of products sold. Costs are 
composed of multiple parts, including product costs (considering labour 
costs, raw materials, energy consumption, etc.), inventory costs 
(including one-time inputs and energy consumption, etc.), trans
portation costs. For example, for a retailer in a conventional supply 
chain, its profit is represented by (22) 

Mr
t =min

(
Dt, Ir

t

)
Pr

t − ICrIr
t − SNr

t SCr − Or
t P

w
t (22) 

Among them, Mr
t represents the profit level of the retailer, Pr

t repre
sents the retailer’s selling price, ICr represents the unit inventory cost, 
SCr represents the cost of delivery per vehicle, and Pw

t represents the 
purchase price from wholesaler. Wholesalers and manufacturers share 
similar profit mechanism. 

4. Parameter settings in SD-AB model 

Lighting is one of the significant factors for electricity consuming of 
inventory. T5 energy-saving lamps are currently widely used in ware
houses (Jacobson et al., 2021), which have a light effect of about 100 
lm/W, according to the minimum illumination requirement of 300 lux 
(Chen et al., 2017), each kilowatt T5 lamp can illuminate 346.79 m2 
space. Therefore, one unit of Li-ion module demands 0.00865 kWh 
medium voltage electricity and 0.978 MJ heating as energy inputs. They 
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contribute to 0.0086 kg and 0.036 kg CO2-eq emissions in China based 
on Ecoinvent 3.8 database, respectively. The functional unit for ware
house storage is 1 m2. The warehouse shelf for product storage has four 
floors, each shelf (contains 4 cell modules) occupies a storage area of 0.5 
m2, and the shelf cover 50% of the total floor area considering the 
hallway space. Therefore 1 m2 of warehouse can store 4 cell modules. 

As for transportation, Ecoinvent 3.8 provides detailed transportation 
embedded emissions dataset, carbon emissions for trucks (Unspecified, 
global) per ton kilometre is 0.13 kg. Considering the weight and sake of 
the battery shipment (Aujla and Kumar, 2018), each lorry can transport 
up to 200 units of modules at one time. Datasets from EKOL Logistics and 
UPS for parcel shipments in Turkey showed that the average truck load 
is 65% and 45%, respectively (Satır et al., 2018). Therefore, we set 
default minimum order quantity mo as half of trucks load capacity. For 
shipment the functional unit is 1 ton kilometre. 

Other parameter settings are listed in the following Table 1. In some 
cases, we use the same values for IoT and conventional supply chain to 
control extraneous variables and get consistency analysis results. The 
model is realized in Anylogic 8.7.11, see Appendix B. 

5. Results and interpretation 

5.1. Differences in cost performance 

The difference between conventional- and IoT supply chain in 

market competition is reflected in many aspects such as net profit. As 
shown in Fig. 3, the overall profit of the IoT supply chain is higher than 
that of the conventional ones, exceeding the latter by 31%. Since the IoT 
supply chain has only two nodes (manufacturers and the retailers), each 
node can acquire a higher relative profit level compared with the con
ventional structure. As for the profits per unit, IoT has 34% higher value 
than conventional competitors, see Fig. 4. 

When setting up same value-added of product in each node of 2 
supply chains, the IoT supply chain will own price advantage of its 
product (8$ compared with 10$) due to less value-added processes. In 
this case IoT supply chain still maintains 14% higher total profit and 4% 
higher profit per unit compared with conventional ones, see Appendix 
C1 and C2. In essence, IoT allows for a drastic reduction in product 
stocks at production and retail and cuts out the wholesale step, leading 
to large reductions in costs. 

5.2. Differences in carbon emissions 

In addition to the aspects mentioned above, these two supply chains 
reveal different carbon emissions impacts. Since both supply chains 
produce similar products, and there is no significant difference in 
manufacturing technology, it can be assumed that the emission differ
ence in the production phase negligible. The proportion and main dif
ference of emissions in each phase – storage (InvH and InvE) and 
transportation (Ship) are shown in Fig. 5. 

The IoT supply chain only produces 36% of the total CO2 emissions 
of its competitors during the model time. The IoT supply chain causes 
3.52 kg carbon emissions per unit of product while the conventional one 
produces 7.75 kg carbon emissions per unit of product. Optimized IoT- 
enabled supply strategies can significantly reduce the retention time 
of products in warehouse, therefore reduce carbon emissions by elec
tricity and heating, and even minimize unnecessary transportation fre
quency. Therefore, the IoT supply chain has pretty lower carbon 
emissions per unit of product. 

In both cases shipment contributes to the lion’s share of emissions, 
accounting in each case for over 75% of the total emissions. The IoT 
supply chain shows a better performance in minimizing shipment 
emissions. Compared with the conventional case there is a decrease of 
55% of CO2-eq per product. 

The largest contributor of storage emissions in both supply chains is 
heating. Due to optimized inventory strategies based on the IoT tech
nology, it causes less emissions than conventional ones, only 46% on 
average (45% in heating and 51% in electricity). The inventory level in 
IoT supply chain remains relative steady over time, though has a slight 
growth with demand expansion. However, the conventional supply 
chain depicts a typical order point graph dynamic, the overall storage 
level is over 2 times higher than IoT supply chain, and reveals a step-by- 
step decline characteristic followed by an increase. 

5.3. Differences in market share 

The simulation also depicts the dynamics of market shares in both 
supply chains during the simulated period, see Fig. 6. The conventional 
supply chain occupies 11% more market share than the IoT supply chain 
in the end. Although this gap is not so obvious within model time slot. 

Table 1 
Parameters setting for simulation experiment.  

Parameters (Units) Value Resources 

Potential users 100000 Example model ( 
Anylogic company, 
2008) 

Fraction/IoT Fraction 0.4 Amini et al. (2012) 
Contact rate/IoT Contact rate 25 Goldenberg et al. 

(2007) 
Ad Effectiveness/IoT Ad 

Effectiveness 
0.011 Example model ( 

Anylogic company, 
2008) 

Product lifetime/IoT Product 
lifetime (Model time) 

60 Above 

Price of Norm factory/IoT factory 
(US dollars) 

5 Kumar and 
Swaminathan (2003) 

Price of wholesaler (US dollars) 8 Above 
Price of retailer/IoT retailer (US 

dollars) 
10 Above 

Cost of inventory per unit (US 
dollars) 

0.2 Above 

Cost of shipment per truck from 
manufacturer to wholesaler/IoT 
retailer (US dollars) 

0.75 Example model ( 
Anylogic company, 
2008) 

Cost of shipment per truck from 
Wholesaler to Retailer (US 
dollars) 

0.3 Above 

Cost of shipment per truck from 
retailer/IoT retailer to consumer 
(US dollars) 

0.1 Above 

Distance retailers/IoT retailers → 
users (km) 

20 Above 

Distance wholesalers → retailers 
(km) 

100 Above 

Distance manufacturers → 
wholesalers (km) 

600 Above 

Distance IoT manufacturers → 
retailers (km) 

600 Above 

Weight of durable product quality, 
price and delivery convenience 

0.31,0.37,0.32 Pushpavathani and 
Kumaradeepan (2013) 

Market fluctuation triangular 
(0.3,0.65,1) 

Fairchild et al. (2016) 

Note: Example model – “Supply Chain and Market Diffusion” in Anylogic 8.7.11 
(The market part of the model is done using SD. The product is delivered by a 
single supply chain that is modeled by several active components (Retailer, 
Wholesaler and Factory). Fig. 3. Dynamics of total net profits in two supply chains (Same Price).  
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This is because the conventional supply chain maintains a large amount 
of stock through the wholesaler, who can supply the stored products to 
consumers faster than the IoT supply chain. While the latter usually 
needs to supply through the manufacturer when the retailer’s stock is 
not sufficient. It reduces the satisfaction of potential users who prefer 
orders to be delivered as quickly as possible. 

However, when setting up same value-added of product in each node 
of 2 supply chains, (8$ for IoT product compared with 10$ for con
ventional product). IoT products could acquire a higher market share 
and finally reach the level of conventional competitors, see Fig. 7. Here 
the strength of price makes up the weakness of IoT supply chain in 
instant delivery of products. 

5.4. Sensitivity scenario analysis in carbon emission 

To further verify the robustness of the model to evaluate the response 

of the coupled system to parameter changes and answer the third 
question: which factors are critical to influence the relative advantages 
of IoT supply chain. A sensitivity analysis is performed in this paper. 

Since market demand mainly drives the operation of the supply chain 
in this model, we hence select two parameters – contact rate and product 
lifetime – as examples for conducting a sensitivity experimental analysis. 

Fig. 4. Dynamics of net profits per functional unit in two supply chains 
(Same Price). 

Fig. 5. Carbon emissions per product of the two supply chains.  

Fig. 6. Dynamics of market scale in two supply chains (Same Price).  

Fig. 7. Dynamics of market scale in two supply chains (Same Value-Added).  
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They represent the disturbances of the demand of potential users to 
products and the demand of users to alternative products, respectively. 
Besides, as an important factor affecting the flow of products in the 
supply chain, the loading of trucks may not only affect the overall 
supply-demand relationship in the market, but also affect the perfor
mance of each supply chain nodes. Therefore, in order to avoid the 
impact of experimental randomness. We conduct 5 simulation experi
ments for each scenario and took the average values. As shown in 
Table 2. 

The benchmark experiment shows a general market scenario, that is, 
a market with relatively balanced supply and demand, which represents 
most actual market performance. Based on the parameter setting of 
Contact rate = 25 in benchmark experiment, Run 1 increases this 
parameter value and therefore indirectly raise the demands from the 
potential users. It gradually forms a seller’s market in which factories are 
operating at almost full capacity. While Run 0 performs in contrast way 
and represents a relative buyers’ market. In these scenarios, IoT can still 
achieve robust estimations of market reactions resulting in comparably 
stable strategies for transportation and inventory optimization. There
fore, as demand increases, the carbon footprint ratio of the IoT supply 
chain drops slightly, but converges to a steady 40–45% of the conven
tional supply chain emissions. 

A similar situation occurs in Run 3 and Run 4 scenarios. With the 
extension of product lifetime, the demand for replacing used products 
drops significantly. It gradually formed a buyer’s market in which fac
tories are operating far from full capacity. In this case, a low-frequency 
shipment situation results in the conventional supply chain with low 
inventory dynamics, thus contributing to larger proportion of unnec
essary emissions and expanding the gap with the high-frequency and 
low-amount shipment model in IoT supply chain. We find that with an 
increase in product lifetime, the IoT supply chain carbon footprint 
would finally drop to only 30% of the carbon footprint of conventional 
supply chain. 

However, the Run 4 and 5 results show that changing the load ca
pacity of trucking impact larger on IoT’s potential in reducing shipment 
emissions, since it accounts for more than 75% of total emissions. With 
the increase of truck load capacity (from 50 units to 1500 units), the 
total emission reduction of IoT weakens from 64% to 30% in heavy truck 
scenario, see Fig. 8. 

In all, changes in total demand could influence the total carbon 
emissions of the two supply chains but impact limited on IoT’s relative 
strength in decreasing carbon emissions. Compared with the conven
tional supply chain, the IoT supply chain has carbon emission reduction 
advantages under all proposed scenarios. 

5.5. Model validation 

This study conducts a unit check, reality test and extreme conditions 
test to examine whether the constructed AB-SD model is in consistent 
with reality. These three types of tests verify the validity of the devel
oped model.  

1. Unit check test 

Battery supply chains contain various types of variables, including 

social, economic and environmental variables. The Unit check test is 
conducted by the Anylogic software automatically. The unit check re
sults demonstrate that dimensions of variables are consistent and the 
structure of SD model is reasonable.  

2. Reality test 

A Reality test examines the consistency of model with reality. It 
implies adjusting important variables, and observing whether the 
changing trend of other variables associated with it conforms with 
realistic situation. The SD model in this study is a pull supply chain for li- 
ion batteries. Demand is the essential variable to connect the three 
subsystems – potential users, users and supply chains. Variables related 
to the demand should change with the dynamic of demand. For instance, 
if demand increases (when the production rate has not reached full ca
pacity), the number of produced products as well as total CO2 emissions 
by each supply chain should also increase. 

The results of the reality tests are shown in Table 3. The table shows 
that the change of demand affects the battery supply chains and the 
dynamics are consistent. Hence, the SD model established in this study 
passes the reality test.  

3 .Extreme conditions test 

Supposing that the number of initial potential users is 0, most related 
variables should be set as 0. These variables include total user, CO2 
emissions in storage and transportation processes by IoT supply chain. 
Only conventional supply chain has steady storage emission because of 

Table 2 
Sensitivity analysis in 6 scenarios (CO2-eq emission per product).  

Scenario Baseline Run 0 (Contact 
rate = 5 

Run 1 (Contact rate 
= 50 

Run 2 (Product 
lifetime = 30 

Run 3 (Product lifetime 
= 200) 

Run 4 (Truck capacity 
= 100) 

Run 5 (Truck capacity 
= 500) 

Emission 
Conv 

7.75 7.74 7.74 7.74 4.64 2.06 2.02 

Emission IoT 3.52 3.57 3.40 3.58 2.12 0.93 0.92 
Ratio IoT/ 

Conv 
45.49% 46.09% 43.88% 46.27% 45.28% 39.63% 57.84%  

Fig. 8. Carbon ratio with two supply chains in different truck capacity.  

Table 3 
Reality test results.  

Variable Produced 
number 
(IoT) 

Produced 
number 
(Conventional) 

IoT 
Emission 
(kg) 

Conventional 
Emission (kg) 

Demand 100241 163200 63482 196207 
Demand 

increased 
by 100% 

191900 324800 109036 281051  
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its minimum storage strategy. Results of extreme conditions test are 
shown in Fig. 9. SD model developed in this study passes extreme con
ditions test. 

6. Discussion 

We consider the recent progress of supply chain structures and IoT 
studies in the literature to simulate the IoT capabilities in typical supply 
chain operations (Ding et al., 2023b). Assessing publications, most of 
them are qualitative theory studies focusing on the IoT-enabled effi
ciency improvements of manufacturing systems under certain enter
prises or technical improvement potentials of IoT-enabled algorithms 
(Fisher et al., 2020; Prajapati et al., 2022). Few studies have conducted 
specific quantitative case study simulations on specific factories or 
workshops (Ekren et al., 2021). In comparison, this research leaves the 
workshop level and focuses on a muti-business level. It is the first to use 
a simulation approach to quantitatively investigate IoT-enabled supply 
chain level (muti-business level) problems. Our hybrid SD-AB model is 
hence specifically designed as a pre-LCA tool to explore the differences 
between a two-tier IoT-enabled supply chain and a three-tier conven
tional supply chain. We focus on profits, carbon emissions, and market 
penetration, which are key concerns of most enterprises. 

The simulation reveals the strengths of IoT in minimizing emissions 
and costs (e.g., storage, shipment, and electricity) in supply chains, as 
well as drawbacks in market penetration. Sensitivity experiments 
further identify potential factors that affect IoT performance (e.g., de
mand amount, load capacity) and indicate the selection dilemma that 
IoT faces in some scenarios (when conventional competitors adopt 
higher load capacity). Most prominently these are the challenge to keep 
a balance between transportation frequency, average storage levels, and 
delivery times (influencing user satisfaction) to achieve higher profits, 
market penetration, and lower emissions, which requires higher infor
mation processing ability and better algorithms of IoT systems. 

This simulation does not only bring new overall perspectives from 
whole supply chains for scholars but also helps to reduce the physical 
verification costs of IoT technology for most supply chain participants. 
Therefore, this research highlights opportunities, also to small and 
medium-sized enterprises being interested in IoT technology but have 
insufficient funds or poor trial-and-error capabilities. It helps them to 
better evaluate the necessity of investing or adopting IoT based on their 
own situations. Besides, the research also promotes IoT developers’ 

(designers) awareness of potential challenges of IoT technology in sup
ply chain applications so that they can iterate their own IoT products as 
the market wish. 

7. Conclusions 

This study set up a SD-AB model to explore the impact of IoT tech
nology for a battery supply chain (from production to users) and 
assessing environmental and cost implications using the approaches of 
LCA and LCC. Compared with the conventional three-tier supply chain, 
the use of IoT (enabling real time monitoring, tracking and information 
feedback) allows for a two-tier supply chain resulting in less required 
warehouse space and less waste. The main conclusions of this study are 
as follows. 

As for the economic and environmental gains, IoT supply chains have 
significant advantages in reducing average inventory and shipments 
fluctuation through real-time and accurate information sharing with 
different nodes, thus increasing the total net profits by at least 30% 
under the same selling price with conventional ones, and reducing 
carbon emissions by around 50% under balanced demand-supply sce
narios. It contributes significantly to reducing shipment emissions, fol
lowed by emissions related to heat storage rooms. 

However, IoT supply chain will be less able to fulfil demands in time 
due to the low storage strategy of its retailers when there is a huge 
market fluctuation. In contrast, conventional supply chain can satisfy 
users with no delivery delay with its higher safety storage level. 
Therefore, under the same product pricing, potential users are more 
inclined to purchase products from conventional supply chains, the IoT 
supply chain can obtain an equivalent market share only in lower 
pricing strategy. 

The demand-supply relationship is an important factor shaping the 
performance of IoT-enabled SSC. Especially in low demand scenarios, 
the accurate scheduling of orders and storage becomes quite important. 
In conventional supply chains low demand scenarios easily lead to a 
relative high level of storage. At the meantime, the more accurate 
scheduling for a "zero inventory" enabled by IoT will lead to a reduction 
of carbon emissions of even 70%. Moreover, the frequency of shipment 
also plays an important role. By increasing the loading capacity or 
loading rate, the number of shipment turnovers (or the total trans
portation mileage) between various supply chain nodes can be 
decreased. The IoT supply chain is not significantly impacted by a higher 

Fig. 9. Results of extreme conditions test.  

S. Ding et al.                                                                                                                                                                                                                                     



Journal of Cleaner Production 421 (2023) 138558

11

loading rate, as trucks only restock storage and deliver products in 
proportion to demand. While the conventional supply chain can achieve 
safety storage target with less delivery frequency, thereby narrowing the 
total emissions gap between the two supply chains, particularly 
considering that shipment generally accounts for more than 75% of the 
total emissions. 

This research also has some limitations. Firstly, this paper focuses on 
product flows which are part of supply chains between production and 
use. It does not consider the IoT’s role in recycling or remanufacturing 
processes, which is an important part of circular economy. Secondly, 
labour market issues may have been insufficiently covered. A highly 
automated IoT supply chain requires a structured data management 
process between supply nodes using uniform data standards, and 
applying agreements on data ownership issues. Such IoT systems may 
hence reduce the demand for low-qualified labor and enhance the de
mand for highly qualified labor. Thirdly, we did not quantify the envi
ronmental and cost implications of creating the IoT infrastructure. While 
the cost and emission reductions due to more efficient transport and 
storage as covered in our paper are highly dominant, a more compre
hensive LCA and LCC is desirable. 
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Appendix A

Fig. A1. Conceptual diagram of Retailer as an agent   
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Fig. A2. Conceptual diagram of Wholesaler as an agent  

Fig. A3. Conceptual diagram of Manufacturer as an agent   
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Fig. A4. Conceptual diagram of IoT Retailer as an agent  

Fig. A5. Conceptual diagram of IoT Manufacturer as an agent  
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Appendix B

Fig. B. Main SD-AB structure of two supply chains in Anylogic 8.7.11  

Appendix C

Fig. C1. Dynamics of total net profits in two supply chains (Same value-added)  

Fig. C2. Dynamics of net profits per functional unit in two supply chains (Same value-added)  
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