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This paper suggests a method to supplant missing categorical data by
‘reasonable’ replacements. These replacements will maximize the consis-
tency of the completed data. Consistency is measured by a between-total
variance ratio. The idea is that similar profiles obtain comparable imputa-
tions. The text outlines a solution for the optimization problem, describes
relationships to the relevant psychometric theory and studies some prop-
erties of the method. Some examples are presented. The main application
fields are in the analysis of survey data, rating scales and questionnaires.
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Introduction

Missing data are common and costly. Data with up to 30% missing are
no exception, and attempts to do something about missing data are as old as
missing data themselves. Popular ways to accommodate for missing data—
pairwise and listwise deletion—may amount to wasting labour-intensively col-
lected material. An alternative is to fill in missing entries with ‘appropriate’
replacements. The advantage of this is that standard multivariate techniques
can be applied to the completed data.

Sometimes, external information is available that may help. For example,
suppose that a subject is unwilling to tell his age, thereby producing a missing
value. If we have the actual person in front of us we may nevertheless infer
his age by using other clues, and subsequently fill in our prediction as if it had
been observed. Another source of external information could be a previous
score on same question or test. Unfortunately, such situations are more an
exception than a rule.

In general, if we want to complete the data we should look for other
sources of information. An obvious alternative is to consider the data that
are available for the subject, in combination with the data that are collected
on other sample units. Under the assumption that observations with a similar
response pattern are likely to score identically on any remaining, unobserved
variables, we may try to interpolate missing values. This type of imputation
strategy 1s known as hot deck imputation. The basic ‘reasonable imputation
assumption’is: objects with almost similar profiles have the same distribution
on any missing responses. The idea is to borrow the observed score from a
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closely related profile. Some arguments that are often mentioned in favour of
hot deck methods are: the reduction of the response bias, the preservation of
the distribution of the population, and—most important of all—the produc-
tion of a complete data set. We may add that, particularly in large surveys,
computational ease and speed are highly evaluated.

In this paper we consider a hot deck imputation technique based on the
within-homogeneity of all variables simultaneously, so missing items do not
have to be missing at random (=MAR). The imputation method is composed
of two ingredients: the definition of a donor variable and the derivation of
an imputation rule. The donor variable measures how much individual data
profiles differ from each other. So a donor is not a sample unit or a data
profile, but a latent variable. The imputation rule states how blank entries
should be filled, given the values on the donor variable. As we will see, these
two components are closely intertwined in the method. Changing the donor
variable may cause a modification of the imputations. The converse is also
true; changing an imputation has an effect on the donor variable.

Simultaneous homogeneity over all variables is expressed by the donor.
The donor variable is equal to a weighted average of all variables. We use
the familiar between-total sum of squares ratio to indicate how well the donor
represents the total variation in the data. It follows that the ‘best’ donor
variable is equal to the first principal component of the completed data.

The position of each observation on the donor reflects how much sample
units have in common. The function of the donor is thus much like the
partitioning of observations into homogeneous classes employed by traditional
hot deck procedures. The difference with existing hot deck procedures is that
all (categorical) variables act simultaneously as donor. Imputation is based on
comparing donor scores. If an incomplete profile resides closely to a completely
observed profile (in the sense that their donor scores differ little), then its
missing entries can replaced by the known values of the observed unit. We
measure ‘closeness’ by the squared Euclidean distance between donor scores.
Mathematically, we look for imputations that minimize a sum-of-squared-
distances function.

In practice, just one donor may not be representative. Primary reasons
for using just one is that it is simple, and that it has some attractive analyt-
ical properties. If necessary, the extension to multiple, orthogonal donors is
possible. We will indicate where this is appropriate.

The donor is the most homogeneous replacement for all variables simul-
taneously, and hence it is most homogeneous with regard to the complete and
incomplete data. This satisfies the, according to Ford (1983), most impor-
tant principle in the construction of any hot deck procedure: the ‘imputation
model’ and the ‘data model’ must be the same. Both imputations and quan-
tifications maximize the homogeneity of the completed data set. As such they
are relevant to the observed as well as to the missing observations.
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The present imputation method is similar to missing data estimation by
the EM algorithm (cf. Little and Rubin, 1987) in that both methods optimize
an objective function over the imputations. Moreover, both methods consist
of the two main steps: an Expectation (E) step that completes an incom-
plete data matrix, and a Maximization (M) step that estimates the model
parameters. However, there are also substantial differences. We use Least
Squares instead of Maximum Likelihood, we do not make any distributional
assumptions, and we provide discrete instead of fractional imputations.

We like to emphasize at this point that maximizing consistency is by no
means the only valid or useful criterion to find missing information. Suppose
that we are interested in demonstrating that two variables are independent
of each other. In that case, it will be clear that maximizing consistency
is a bad idea since it moves us further away from the independence model.
A more natural alternative here would be to do the opposite, that is, to
minimize homogeneity. There exists yet no unbiased technique nor a general
purpose strategy for dealing with missing data. Multivariate optimality for
imputation of missing data is about impossible to define without violating
some statistical model or another. Nonetheless, if we believe that the observed
data tell us something about the missing data—and this is a fundamental
assumption of all hot deck methods—then maximally consistent replacements
will be attractive in general.

Good reviews imputation techniques for categorical data are Kalton and
Kasprzyk (1982) and the three volumes edited by Madow, Olkin and Rubin
(1983). The annual proceedings of the section of the survey research methods
of the American Statistical Association offer a continuing story on the han-
dling of missing data in survey research. The primary source for Maximum
Likelihood models for missing categorical data is Little and Rubin (1987).
Handling missing data in experimental designs is discussed in Dodge (1985).
For multiple imputation, in which not just one but many replacements are
searched, see Rubin (1987). Hedges and Olkin (1983) give a selected and an-
notated bibliography on incomplete data. Ford (1983) summarizes many hot
deck strategies. Little and Rubin (1990) provide a recent overview of missing
data strategies in the social sciences.

The structure of this paper is as follows: first, we discuss a small imputa-
tion example. After this, we define the consistency measure and we introduce
two loss functions, one for numerical, and one for categorical data. Through-
out the paper we will almost exclusively deal with the categorical problem.
Subsequently, we relate the consistency criterion to other psychometric theory
and we indicate a number of similar approaches to missing data. Computa-
tional details of our method are given next. Practical use of the method is
illustrated by some examples, one of them concerning multiple imputation.
Finally, we summarize the main results and we discuss some practical impli-
cations and future work.
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TABLE 1
Example data.
person income age car
1 a young jap
2 middle middle am
3 old am
4 low young jap
5 middle young am
6 high old am
7 low young jap
8 high middle am
9 high c am
10 low young am
Example

In order to be able to grasp the nature of consistent imputations, we
discuss the small, artificial data listed in Table 1. This table contains 10
observations on three categorical variables. There are three missing values,
indicated by a, b, and c.

The problem is to find replacement values that are reasonable in some
way. For a this is easy; the most consistent estimate is low, because this
makes the profiles 1, 4, and 7 identical. A young owner of a Japanese car will
have a low income simply because this is a recurring pattern. Moreover, the
profile contains all Japanese cars in the data. Analogously, we find high for b
and old for ¢. Both imputations make the remaining two incomplete profiles
identical to row 6. So, the missing scores are interpolated from other profiles.
We simply look for similar rows. This is the same as saying that variables
must be as homogeneous as possible, i.e., measure the same thing. So here
we end up with two homogeneous groups with three members each.

Since there are 3 missing values, each with 3 categories to choose from,
the total number of different solutions is 3 x 3 x 3 = 27. Table 2 lists the
amount of consistency for each of these solutions. The exact definition of
consistency, expressed as fit, can be found in the next section.

Because the example is deliberately easy and somewhat trivial, the most
consistent solution ‘1 ho’ can be derived by eye-balling alone. In more realistic
situations, eye-balling is usually not enough. First, the best solution may
contain new, previously unobserved, profiles. It will be difficult to find such
combinations. Second, because imputations depend on each other, optimal
consistency becomes hard to detect for more than three or four missing values.

For categorical data, Wilks procedure—filling in the average—boils down
to selecting the modal category. The corresponding solutions in the example
are 11y’ and ‘hhy’. These imputations have consistencies of 0.70104 and
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TABLE 2
Consistency of all possible imputations for Table 1.

a b ¢ fit a b ¢ fit a b c fit

1 1 y .70104 m 1 y .63594 h 1 y .61671

1 1 m .77590 m 1 m .72943 h 1 m .66458

1 1 o .76956 m 1 o .72636 h 1 o .65907

1 m y .78043 m m y .70106 h m y .70106

1 m m .84394 m m m .77839 h m m .74342

1 m o .84394 m m o .77839 h m o .74342

1 h y .78321 m h y .73319 h h y .68827

1 h m .84907 m h m .80643 h h m .74193

1 h o .84964% m h o .80949 h h o .74198

TABLE 3
Donor scores and scale values for the optimal imputation.
donor scores variable scale values
initial final initial final

1 Iy 3 -1.43 -1.33 inc low =1.13 =1.18

2 m m a 0.79 0.66 middle 0.41 0.33

3 h o a 1.02 1.00 high 1.06 0.98

4 1 3 j -1.41 -1.33

5 m y a 0.04 -0.01 age young -0.96 =-0.92

6 h o a 1.11 1.00 middle 0.92 0.79

7 1y j -1.41 -1.33 old 1.07 1.00

8 h m a 1.05 0.92

9 h o a 1.02 1.00 car jap -1.41 -1.33
10 1 y a -0.58 =-0.59 am 0.63 0.57

0.68827 respectively, which illustrates the well known fact that Wilks method
tends to discard between-groups variance.

The obvious difficulty with categorical data is that distances between
profiles cannot be easily derived; it makes for example little sense to sub-
stract Japanese from American cars. We deal with categorical variables by
first transforming them into numerical data by quantifying each category sepa-
rately. Subsequently, the resulting numerical variables combine into the donor.
Larger differences between profiles result in larger ‘distances’ on the donor.
Table 3 lists those donor scores for each observation and the scale values of
the categories, both before and after imputation.

The initial solution ignores missing data, an option known as ‘missing
passive’ (cf. Gifi, 1990: p. 136). In this case, the donor values for subjects
1, 3, and 9 are based on two, instead of three, observed categories. As will
be shown below, a scale value for a category is equal to the average of all
donor scores that fall into that category. For example, the initial value of low
is equal to (—1.41 — 1.41 — 0.58)/3 = —1.33, i.e., the average donor score of
observations 4, 7, and 10.

Let us now try to impute the incomplete entry in profile 1. The initial
donor score of the profile is —1.43. To complete the data, we may pick any of
the three income categories. The scale values of these categories are —1.13,
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FIGURE 1

Joint plot of 10 object points (X ) and the categories of income (o).

0.41, and 1.06. The joint scale of the initial donor scores and the category
points is plotted in Figure 1.

The most consistent imputation is that category whose scale value is
closest to the donor. Here, —1.13 is closest to —1.43, so we choose low.
Apparently, subject 1 has most in common with profiles 4, 7, and 10. So,
when compared to the other two income classes, the low income group is
most similar to profile 1. Consequently, we borrow the replacement value
from this group. Since middle and high income groups are more distinct,
imputingmiddle and high will increase the within-groups variance more than
necessary, and so, these values should not be used as stand-ins.

We execute the same steps for the missing data in rows 3 and 9. After
all missing entries have received an initial imputation, new donor scores are
computed, but now using the completed data. The entire process is repeated
until the consistency of the solution does not rise anymore. The values of the
final solution are also given in Table 3.

Construction of the donor

Let z; (j = 1, ..., m) denote m completely observed variables and let
the random variable z contain their average, i.e. z = 1/m ) z;. The total
variation of the data can be decomposed as

m m
Z x;‘-’ = mz? +Z (z = zj)z.
ji=1

j=1

This is a between-within partitioning of the form T'= B+ W. The correlation
ratio, denoted by 1 and defined by 7 = B/T measures how well the average
can be considered as a representative of each z;. The ratio ranges from 0 to
1. It is equal to zero if variables add up to zero. The coefficient equals 1 if all
variables are identical.

The donor variable z tells us something about the similarity among pro-
files that belong to distinct replications. Let z; for ¢ = 1, ..., n denote the
score of the i-th profile on the donor z. The difference between z; and z;
1s equal to some distance norm between profile 7 and profile /. The donor
variable z defines a metric in which observational units can be represented.
We use this metric to compare different data profiles.
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The correlation ratio 7 can also be interpreted as a measure of how well
the entity z; — z; reflects the multivariate differences between rows i and ¢
over all zj. Obviously, the larger 77 becomes the better the difference z; — 2/
portrays the similarity between ¢ and 7. We might say that z is a satisfactory
donor variable in this case. However, if variables are negatively correlated, or
if only a subset of variables is highly correlated, then 7 may take on seriously
inflated values. Consequently, z gives misleading information and we are
interested in other definitions of z that give higher 7’s.

A better alternative then is to weigh each variable by a weight a; before
computing the average. Suppose that z; has zero mean and that the average
of the weighted variables is given by z = 1/m )" zja;j. The decomposition

now reads
m

m
Y- (=m0’ =m2? 4+ (2 - zja5)?,
j=1

g=1

which is again of the form "= B + W. Note that 7 does not only depend
on z;, but also on a;, so we maximize 7 over ay, ..., . In order to avoid
the trivial outcome where z =0 and a; = 0 for j =1, ..., m, it is convenient
to require that both z and z; are unit normalized. Other choices that result
in basically the same solution are also possible. This amounts to classical
principal component analysis. The first principal component then acts as the
donor variable. It has the pleasant property that it corresponds to the highest
possible 7.

Defining a donor variable for categorical data is slightly more compli-
cated. Essentially, we represent z; by a binary indicator vector g; of length
k;, a; by a quantification vector y;, also of length k;, while the quantified
variable g;’y; has zero mean. Integer k; denotes the number of categories of
the j-th variable. We represent each score as a vector g; such that

~_ J 1, if the observation falls into category k of variable j;
9% =10, otherwise.

Suppose that we assign a category weight, or scale value, y;x to every cate-
gory. We collect these weights into a column vector y;. The scalar expression
g;'y; then yields a quantified score. The average of the m scaled categorical
variables is z = 1/m }_ g;'y;. The between-within partitioning can now be

written as
m

m
> (gi'yi)? = Z (z—gi'y;)?
g=1 3

Like above, we assume that z is unit normalized, so the between variation
is standardized to m. The vectors y, ..., ym contain the free parameters.
Procedures for finding optimal y;, . .., yn are known as homogeneity analysis,
multiple correspondence analysis, dual scaling and others (see Gifi, 1990).
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These techniques usually consider several—mostly two—orthogonal sets of
2’s, with corresponding 7n’s. We define the donor variable z as the set of
numbers that maximizes 7).

Imputation

Until here all results apply to complete data. We now discuss missing
data. Let © denote the set of all observed variables and let the symbol z7
stand for an imputed value. Obviously,

(=, ifje
Ti= ek, ifjgQ

It is possible to partition the variation into three independent quadratic com-
ponents:

m

(zja;)’ =m2?+ ) (2 —2j0;)° + ) (2 - ”?’%‘)2,

j=1 jEQ iga
so that the consistency of the data is again equal to

, B mz?

T YR (zia5)°

Since T'= B+ W the maximum of n? coincides with the minimum of W/T =
1 — »%. Maximal homogeneity among the imputed variables can be found
by minimizing this W/T-ratio over 2, ay, ..., a,, and over the imputations
z¥, ..., 2},. The corresponding loss function can be written as

n

2
o’(z;al,...,am;:c’f,...,zfn):Z(z—xjaj)2+2(z—z;aj) )

JjEN i¢Q

In the same way we derive the loss function for discrete data as

2 2
o291, Ymi O G) = D (2= 05'9) + D (2= a}'y)"
JjEN jgQ

Let o(-) stand for o(z;y1,...,Ym; 9%, -, 95 ). Maximal 7 is obtained by
minimizing o(-) over z, yi, ..., Yym and g%, ..., g5,. The imputation problem
is where to impute the ‘1’ in the missing vector g7. This is a combinatorial
optimization problem.

Since larger 7 lead to more consistent imputations, it seems logical to look
for imputations that will maximize 7. We thus strike two flies at one blow:
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imputations will not only amplify the structure of multivariate row differences
as summarized by z, but, at the same time they cause z to be a more adequate
composite of those differences. This principle induces imputations such that
similar looking units become even more alike while plainly different units
grow even more distinct under imputation. Dependencies in the data are
thus extrapolated to the missing entries.

One might consider minimizing opassive = Zjen (= —gj’yj)2 only, thus
by ignoring all missing data. This approach is known as ‘missing deleted’ or
‘missing passive’ (Gifi, 1990). Since quadratic terms are always positive, it
follows that opassive < 0(-). Another possibility, also to be found in Gifi and
known as ‘missing multiple’, is a crude imputation method which defines a
new category for each missing value. The main problem with this approach
is that it introduces categories with a single observation. Because we need
more parameters to fit the same problem, it follows that omultiple < o(+). Note
that Gifi’s use of the term ‘missing multiple’ bears no relation with Rubin’s
multiple imputation.

Maximizing consistency by imputation

The search for scores that maximize consistency is deeply rooted in psy-
chometrics and the following results are mainly due to this development. We
defined a measure for consistency as

2 2
o _m? | TG na)

Y (zja;)° ¥ (zja5)°

It is known that n? is proportional to the largest eigenvalue /\_2+_ of the corre-
lation matrix R of (quantified) variables, i.e.,

We also know that n? is equal to the averaged squared correlations between
the quantified variables and donor variable, i.e.,

m
JRE
L Jaa 2,95'y;5°
J=1
The average correlation among variables,

_ 1
"= 2m(m — 1) Z L

i<y’
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is a well known measure for internal consistency. This measure is also used
for categorical data, if computed from the optimal scores instead of the raw
data. The average correlation is proportional with Cronbach’s «, defined by

m_ Dz il
- :
m—1 Zj,j’:l Ti

This is a very popular statistic in item analysis and questionnaire research.
The relationship between these two indices is (Cronbach, 1951)

e a

T m—(m-1a’

Lord (1958) demonstrates that

- 1 1
1+4(m-1)1-«a)’

Y

so maximizing n over the missing data also maximizes Cronbach’s a, 7, A%
and related measures.
In a well-readable paper, Gleason and Staelin (1975) propose the redun-

dancy index
2
= 2i<it T
m(m —1)’

that measures the average level of correlation among the variables. The index
is bounded by 0 < ¢ < 1 and it is much related to the consistency measures
given above. We observed the obvious relationship between n? and ¢ for 10
different consistency levels and 5% missing data. A total of 25 replications,
each with random missing data, occur within each level.

The data used in Figure 2 are artificial data with systematically varying
degrees of consistency. An amount of 5% randomly distributed missing data
were created for each replication. Both 7% and ¢ increase with the consistency
of the data, and both do so in roughly the same way.

Maximizing 1 also influences the value of the x2-statistic. For categorical
variables, there exist ¢ = Z;n=1(kj — 1) independent solutions for o(-). Let
these solutions be ordered by their correlation ratios such that 7, > 7,41 for
s=1,...,¢—1. It is known that

g
Feny n
s=1

where n is the number of observations. Since the imputation technique max-
imizes n? the value of the total x? will increase compared to random imputa-
tion. Imputation introduces a departure from the independence model. Note
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FIGURE 2
Fit (172) vs. correlation level (@) for 10 consistency levels.

that maximizing the total x? per se is also possible by taking all ¢ solutions
into account simultaneously.

Finally, it is known that maximizing n? will maximize the linearity of
bivariate regressions. An obvious advantage is that missing data are replaced
such that it becomes more reasonable to describe the data by any linear model.
We refer to de Leeuw (1988) for more details.

We finish this section with the following. The idea to maximize consis-
tency by imputation is not entirely new. Gleason and Staelin (1975) replace
correlations between numerical variables by estimates that maximize the con-
sistency of the completed data. This method is a modification of the impu-
tation techniques proposed earlier by Dear (1959) and Buck (1960). Gleason
and Staelin treat categorical data by an ad hoc rounding procedure (p. 244).
Unlike the numerical case, they do not present any simulation results for their
discrete imputation method. In an analysis of variance context, Hartley and
Hocking (1971) identify the so-called (X, m, d) model in which one tries to
find estimates for missing classifications on the experimental variables. This is
a combined estimation and classification problem. They note some difficulties
with the model, but they do not pursue the matter any further. Nishisato
(1980) wants to impute and quantify categorical data, just like in this pa-
per, but does not present a solution to the problem of selecting the optimal
category to be imputed.
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A difficulty with imputing categorical data in general is that one has
a limited set of donor categories to choose from and no distance measure
between them. One can quantify categories and use the Euclidean distances—
as we do—or try to find margins that optimize consistency. Greenacre (1984:
p. 237) does the latter by imputing ‘consistency optimizing’ rounded estimates
of marginal frequencies.

Computation

Finding optimal imputations for the numerical case corresponds to min-
imizing o(z;ai,...,am;z%,...,z5) over z, ay, ..., am and z¥, ..., z¥, for
given zq, ..., ,,. We alternate over different subsets of parameters by Al-
ternating Least Squares. It will be clear that the loss is minimized over z if
we compute the unit-normalized version of z := 1/m E;"zl zja;.

The problem of finding optimal imputations for the j-th variable is equal
to minimizing (z — z¥a;)? over z¥. This seems simple—divide z by a; and
normalize the result—but there is a complication. The problem is that unre-
stricted minimization of (z — 1:;(1;;)2 generates imputations with ridiculously
large magnitudes. This happens if there are two imputed values within the
same observation. These values both increase boundlessly in order to blow up
the correlation. The result is that after standardization the observed values
are practically reduced to zero, while the imputations account for all varia-
tion. We prevent this type of degeneracy by requiring that the variances of
the observed and the imputed values are to be equal.

Finding the minimum over a,, ..., a,, is equivalent to solving m separate
bivariate regression problems. Since each of the three substeps lowers the loss
over a different set of parameters, alternating these steps leads to an overall
minimum.

For discrete data, the problem is to find the minimum of o(-) over z,
Y1, ---, Ym and g7, ..., g¥. The minimum over z is easily found by setting
z:=1/m E;-"zl ¢;'y; and normalizing the result.

The binary nature of g7 turns the imputation step into a combinatorial
optimization problem. For given j, we must minimize o(-) over y; and 95
simultaneously. This type of problem frequently occurs in cluster analysis; it
is known as the sum-of-squares partitioning problem. See for example Spath
(1985) for a detailed treatment. We use a modified version of the so-called
k-means algorithm. The k-means algorithm iteratively relocates classifications
one by one. The obvious modification is that all nonmissing entries remain
tied to their categories and are never relocated.

The modified k-means algorithm works as follows. Suppose we start with
some initial imputation of the missing data. We examine each imputation one
after another and perform a check whether or not a change from the current
category s to a new category ¢t would decrease the loss. If so, the imputation
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will be relocated from s to ¢ and the solution will be updated accordingly.
The process is repeated until no relocations occur anymore.

The imputation rule follows directly from the loss function. Let d, and
d; denote the number of observations in category s and t of variable j, and let
ys and y; be the corresponding category weights. Suppose that observation
i has a score z; and that we move imputation gF from s to t. Fisher (1958)
shows that the new loss will be equal to

ds(zi = ys)2 dt(zi = yt)2
* . —
O-—g-1 t a1

where 0*(-) denotes the current loss. The imputation rule therefore is: if the
inequality
di(zi —y)® _ ds(zi — )’
dy+1 d, — 1
1s true then relocate imputation s to t. Every relocation that adheres to this
rule decreases the loss. The inequality usually holds if z; is closer to y; than
to ys.

It will be clear that, just because we have moved an imputation from
one category to another, the corresponding weights y, and y; are no longer
optimal. It is easy to see by applying the familiar least squares formula
that—Ilike in normal homogeneity analysis—the weights that minimize o(-)
will always be equal to the centroid of all z belonging to that category. It is
of course possible to recompute the two centroids simply by averaging over
all objects in those categories, but there exists a much more efficient way to
update. In general, it suffices to know the former weights y, and y;, the score
z; and the marginal frequencies d; and d;. Using these quantities, the new
centroid for the donating category s becomes

o Ysds—z Zi — Ys
Ys ‘= _—d_,—i- —ya"l'—_ds_l-

Likewise, for the receiving category ¢ we obtain

o wdi+ oz Zi — Yt
WE=ESErT et

We assume that d, > 1, i.e., each category has at least one observation, so
that division by zero does not occur. Both formula’s are independent of the
number of observations. This makes them very efficient updates, especially
if the number of observations if large. Alternating the relocation step and
the update step defines the k-means algorithm. Each step lowers the loss, so
alternating the steps also lowers the overall loss.
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Since multi-dimensional versions of the k-means algorithm are readily
available, generalizing to more than one donor is straightforward. If we re-
quire that the donors are orthogonal to each other, then differences among
profile points can be measured in squared Euclidean distances. We use the
Gram-Schmidt method to obtain orthogonalized donors.

The method is implemented in a computer program called MISTRESS,
written in the C programming language. Since the computationally most
demanding operation is the normalization of z, the program is quite fast.
Timings for problem sizes of 100, 500, 1000, and 2500 rows by 6 columns and
8% missing data on a standard Macintosh II are 12, 50, 110, and 270 seconds
respectively. The program spends about 70% of the time to find the initial
solution.

Local minima

It is well-known that the regular k-means algorithm is very sensitive to
local minima. In our case, this problem is likely to be less severe since the miss-
ing entries are the only candidates for the relocating operation. Consequently,
the number of alternative, suboptimal solutions is usually considerably less
than in cluster analysis.

A small recovery study on artificial data investigates the existence of local
minima. It refers to 10 datasets, each consisting of 100 subjects, 7 variables
with 5 categories each, and 5% random missing data. The average intercor-
relation is systematically varied from 7 = 0.00 to 7 = 0.90 with a step size of
0.10.

Two methods to find a starting allocation of missing entries are used: ran-
dom and passive. The random procedure imputes a category that is randomly
drawn with a probability proportional to the observed marginal frequencies.
The passive method uses the ‘missing passive’ solution and allocates each ob-
servation to a category that is closest is the sense defined above. After the
initial imputations are found, the method iterates over z, y;, ..., ym and
g1, -- -, gy, until the difference between two consecutive values for o(-) is less
than 1.0E—7. We compute 25 replications per condition, so we have a total
of 10 x 2 x 25 = 500 analyses.

Convergence usually occurs after about 10-20 iterations, somewhat de-
pending on the amount of intercorrelation—we found that medium levels need
fewer iterations—and the starting method. If local minima do not occur, all
points within one correlation level coincide. Especially the lower levels levels
have multiple solutions in our case, thus demonstrating the existence of local
minima.

A second question of interest is how diverse those local minima are, i.e. are
the locally optimal solutions alike, or are they entirely different? A simple
statistic in this respect is the difference between the maximum and minimum
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FIGURE 3
Log of fit differences vs. number of minima for two starting methods and 10 correlation levels.

fit values of the 25 replications within the same level. If this bandwidth is
equal to zero, no local minima occur.

Figure 3 graphs log(omax — Omin) Versus the number of different minima
per level, for both random and passive starts. Each point is based on 25
replications. Points beyond a correlation level of 0.40 are not plotted for the
passive method since all 25 replications appeared to be identical. The lower
correlation levels yield many different solutions for both random and passive
starts. The number of distinct solutions found for the passive start rapidly
decreases as the internal correlation goes up. In constrast, the random starting
method keeps producing about 15 local minima. As the data become more
consistent, the range of fits decreases for both methods, though the pattern
for the passive method is much more outspoken. The use of passive starts
beyond 7 = 0.40 generates exactly the same solution for all 25 replications.
Passive is clearly superior to random, both in terms of the number of minima
and in terms of fit.

A third question is whether the obtained solution is close to the global
optimum. Since we do not know the actual globally optimal solution, this
question cannot be answered right away. If we take the best fitting solution of
the random method as a provisional global optimum, we find that the solution
obtained by the passive method for ¥ = 0.40 and higher is close to, or equal
to the provional global minimum in terms of fit. So the solution provided by
the passive method is near the global optimum.
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The simulation study indicates that above an average intercorrelation of,
say 0.30-0.40, distinct local minima hardly occur anymore, assuming we start
from a good initial imputation. We must keep in mind that these results
apply to a situation of 5% missing data. If the actual percentage is higher the
‘safe’ correlation level is also likely to rise.

Multiple imputation

A drawback of any imputation method that imputes a single value is that
the precision of the imputations is unknown, i.e. the variance is not estimated.
In MISTRESS one could say that the imputation variance is equal to zero since
there is only one imputation that maximizes consistency. This shows much
confidence in the appropriateness of consistency as a criterion and in the
reliability of the data. According to Rubin: “It is of no use looking for the
‘best’ or ‘most appropriate’ imputation. Such a thing simply doesn’t exist.”
(cf. Rubin, 1987). What is best for one model doesn’t work for another. So
one has to make a distinction between the optimal value in terms of the one
closest to the real, but unobserved, value and an imputation that is best in
some model sense. Such values coincide if we succeed in finding that only
model that generated the data; a desirable but rarely attained state of affairs,
as every data analyst knows. Only in simulation studies, where indeed reality
is artificially simulated and thus grossly simplified, one can hope for and
achieve the coincidence of such imputations.

A different approach is to estimate the variance of imputation by gener-
ating not one, but several, say 3 to 5, completed matrices. Imputations are
to be drawn from a posterior predictive distribution, or from decent approx-
imations thereof. The spread of the imputations then conveys roughly how
imputations vary. Rubin (1987) shows for a large class of statistical models
that, after a model is separately fitted on each completed data matrix, simple
pooling procedures can be used to obtain unbiased estimates of model param-
eters and the associated variances. The individual imputations do not have
to be very precise, as long as together they estimate the variance. Because
multiple imputation involves a lot of work, it is worth the effort if it concerns
a large body of data that is to be used by several researchers applying dif-
ferent models and different subsets of the data on various occasions. See also
Schnell (1986: p. 227).

There exist various sampling methods to compute prediction densities,
like the Gibbs sampler (Gelfand et. al., 1990). In psychometrics, the combina-
tion of multiple imputation and sampling in various combinations is discussed
by Rubin (1990). For categorical data multiple imputations are to be drawn
from a predictive distribution of categories. One can define such a distribution
in several ways. The dominant distinction lies between implicit and explicit
models. If we use a specified distribution to this purpose like the normal we
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use an explicit model. Often there exists no proper argument to select an
explicit model, and thus an implicit model, or implicit distribution is used.
The most implicit model is the traditional hot deck method where the value of
the preceding observation is imputed. Multivariate simultaneous consistency
is a less implicit model.

Because there is only one optimal imputation per missing value it is
impossible to generate multiple imputations by just maximizing consistency.
MISTRESS yields a crisp ‘all-or-none’ predictive distribution for each incom-
plete response pattern, which is not very useful in the context of multiple
imputation. The technique simply imputes the most likely category, i.e. the
one with the highest probability (in terms of consistency). For multiple impu-
tation, we must have some way to even out the predictive category distribution
so that all categories are candidates for impution, though with varying proba-
bilities. It would require another paper to discuss MISTRESS as a way to create
posterior predictive distributions of missing data. Here we only mention some
possibilities of doing so as a way to apply the method.

Suppose we obtain a single set of imputations by maximizing consistency,
1.e. the solution that imputes the nearest category. By approximating poste-
rior predictive distributions, Pr(Xmis | Xobs) We introduce a Bayesian aspect.
Let p;jr denote the probability that category k of variable j is the impution
for object ¢, then we can specify the following:

a) a density distribution based on Inverse distances
We assume that p;;i is inversely related to the squared distance between the
scale value y;i and the donor score z;. More precisely, we define

S if (zi — yir)? < t;
Pijk = ZT;-;,F’ otherwise,
. J
so that,
T
Ll ki
2kt Biji

are properly scaled probabilities. A leveling parameter ¢ prevents unrealis-
tic, large probalities caused by division by a small denominator. Selecting a
proper leveling parameter requires some experimentation with the data, and
depends on the shape of the predictive distribution. Choosing ¢ such that the
probability of drawing the closest category is on the average not larger than
0.50 or 0.60 seems a sensible rule of the thumb.

b) a density distribution based on multiple donors

We mentioned that multiple orthogonal z’s with corresponding y’s can be
considered as well. We can use each column of Z to generate a successive,
separate imputation instead of using the first column of Z with the largest
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consistency only. The columns of Z are ordered by their respective contri-
bution to the overall consistency, denoted by 52. The inverse of the relative

contribution 2

s
p’Jk' 3:1 1732
defines the probability that an imputation is sampled from the imputations
corresponding to the s-th column of Z. These probabilities are independent
of i and j. The range of potential categories to be chosen is then restricted
by their occurrence in one of the ¢ imputation values. If the same category
value occurs more than once as an imputation the probabilities for different s
add up. One could sample as many times as one likes but just as many draws
as the number of columns of Z seems reasonable.

¢) a density distribution based on conditional frequencies

One of the oldest methods assumes that p;;i is proportional to the observed
frequency of category k of variable j. This is a very simple way to define a
predictive distribution, but it uses only univariate information. If we crosstab-
ulate the data, each cell corresponds to a possible response pattern, and one
may use the conditional frequencies instead. Note that this way of deriv-
ing the distribution will only be effective if the cells in the multidimensional
crosstabulation contain a sufficient number of observations. In practice, this
implies that the number of variables is limited. If an observation is missing
on two or more variables, we can alternate over the imputations.

These alternatives yield different predictive distributions. We do not
know how this effect the results. We expect that differences will be relatively
small, but more research is needed to confirm this idea. In the next section, we
apply the option of inverse donor distances, with in this case quite satisfactory
results.

Dutch Life Style survey

This example is taken from the Dutch Life Style Survey (Leef Situatie
Onderzoek), conducted by the Netherlands Bureau of Census. The data were
collected at different time points during the years 1977-1986. The data are
compiled and made available to us by Anneke Bloemhoff of NIPG-TNO. As
is often the case in large surveys, not all questions were posed at each occa-
sion. Consequently, when taken together, the data contains many systematic
missing entries. This example illustrates how MISTRESS can be used to find
imputations for those unknown values.

The analysis sample consists of 7332 individuals. For each person, we
have scores on five labour conditions. These are labeled dirty (D), heavy (H),
risky (R), stench (S) and noise (N). Each subject responded whether the at-
tribute was applicable to his, or her, job. For a subgroup of 5750 people we
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TABLE 4
Single imputation LSO table (FAT = imputation).

labour professional category donor
conditions score
DHRSHN MAR ADM COM SCI SER AGR IND

11111 1 1 1 6 2 5 64 19 3.18
11110 0 0 0 6 3 7 11 10 2.68
10111 1 1 0 3 3 1 21 6 2.58
01111 0 0 0 1 1 1 3 2.48
11101 0 1 1 1 1 3 61 23 2.47
11011 0 1 1 4 6 4 50 15 2.41
10110 0 1 2 1 0 2 8 5 2.08
01110 0 1 0 0 0 1 2 1 1.97
11100 1 1 0 9 2 9 51 22 1.96
11010 0 1 1 9 2 20 13 20 1.90
00111 0 3 2 3 0 0 12 4 1.88
10101 0 0 2 1 1 1 20 12 1.87
10011 4 3 2 6 3 2 46 32 1.81
01101 0 0 1 2 1 0 8 7 1.76
11001 2 6 4 6 9 12 88 32 1.70
01011 0 0 0 1 0 1] 5 2 1.70
00110 0 0 0 1 1 0 2 3 1.38
10100 0 1 0 1 4 3 14 10 1.37
10010 0 2 : | 2 2 13 17 10 1.31
01100 0 0 3 6 0 1 10 9 1.26
01010 0 1 0 3 4 0 4 3 1.20
11000 2 6 16 21 38 81 95 81 1.19
00101 1 16 3 10 6 2 15 14 1.17
00011 3 19 6 16 6 0 29 28 1.00
10001 8 11 6 20 14 10 48 103 0.99
01001 2 4 12 19 21 4 16 40 0.89
00100 3 5 7 27 12 19 2 29 0.16
10000 4 15 28 32 25 96 60 104 0.09
00010 6 22 3 27 8 25 1 17 0.09
01000 2 12 58 115 87 71 16 80 -0.02
00001 21 133 40 132 54122 3 125 -0.11
00000 157816 843 373 916 349 54 324 -0.91

218816 1100 573 1406 665333 318 93.0 1470340

also know the type of job, classified into 7 categories: management (MAN),
administrative (ADM), commercial (COM), scientific (SCI), service (SER) agrar-
lan (AGR) and industrial (IND). The classification by profession is missing for
7332 — 5750 = 1582 observations. The results for single imputation, ordered
by donor scores, are presented in Table 4.

The majority of employees does not work in any of the disturbing circum-
stances. Most discomfort is experienced by blue collar workers like labourers,
farmers and service personnel. All workers experiencing at least three or more
adverse conditions are assigned to the group of industrial workers. So, under
maximal consistency, we expect that people with many job-related harass-
ments are labourers. Three out of 10 incomplete profiles with 2 annoyance
scores are assigned to farmers. The 816 persons working in a clean environ-
ment are all assigned to the management group. This is done because this
group is by far the most outspoken group.
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FIGURE 4
Observed frequencies (Z) vs. job classes (X) vs. labour conditions (Y).

The analysis shows that it is possible to find categorical imputations such
that major trend in the data are extrapolated. Clearly, labour conditions are
consistent with the type of work people do. This relationship is automatically
taken into account when searching for maximally homogeneous imputation.

The frequencies of the observed data are also pictured in Figure 4 by
a slightly smoothed graphical analogue of the cross-tabulation in Table 4.
The plot shows job classes on the X-axis, labour conditions on the Y-axis,
and vertically on the Z-axis the frequencies are shown. The job classes and
nuisance patterns are scaled by the consistency maximizing scores obtained
by MISTRESS, with blue collar jobs relatively close together on one side and
well separated from white collar jobs on the other side of the X-axis. The
interpretation is that, based on nuisance patterns, we have two homogeneous
subgroups of jobs: blue collar and white collar jobs. A similar reasoning is
to be applied to labour conditions, although they do not fall apart into two
groups. The conditions with few or none nuisance parameters are somewhat
separated from the rest on the Y-axis. A consistent subset of white collar
jobs experiencing hardly any nuisance in labour conditions is thus located in
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FIGURE 5
Single imputation frequencies (Z) vs. job classes (X) vs. labour conditions (Y).

the lower corner pointing towards us. An intuitive interpretation of the most
consistent imputation is that it should disfigure the landscape in Figure 4
as little as possible. Like in Figure 4, we can picture the frequencies of the
imputed data. See Figure 5.

The imputations follow a curved and peaked range of frequencies from
the origin {white collar, no nuisance} up to the far upper corner {blue col-
lar, maximal nuisance}. The albeit ‘reasonable’ imputations are nevertheless
very ‘single’. All missing data with the non-nuisance pattern are singularly
attributed to managers. This is a bit peculiar since other white collar workers
are also ‘reasonable’ candidates.

The latter observation leads automatically to the possibility of multiple
imputation, where the mass of frequencies is more equally spread over other
‘reasonable’ candidates. The data are completed five times by drawing impu-
tations randomly from the predictive distributions based on inverse distances,
defined in the preceding section. The leveling parameter is set on ¢t = 0.06,
which corresponds to equalizing all p;;; within a range of Vi~ 0.25 from z;.
This means that in this case 12% of all probabilities are truncated in order to
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TABLE 5
Multiple imputation LSO table (FAT = imputation)

labour professional category donor
conditions score
DHRSK MAN ADM COM SCI SER AGR IND

11111 r 3 r 1 1 2 6 1 2 2 5 § 64 5 3.18
11110 0 o 1 o 1 6 3 7 2 11 5 2.68
10111 11 1 0 3 3 1 1 21 3 2.58
01111 0 0 0 1 1 i 3 2.48
11101 0o 2 1 2 1 3 11 102 3 6 61 7 2.47
11011 o 2 1 T 2 4 1 6 1 4 3 50 6 2.41
10110 0 1 2 11 0 2 2 8 2 2.08
01110 0 1 0 0 0 1 2 1.97
11100 1 a4 T I o 2 9 1 2 2 9 § 51 11 1.96
11010 0 1 i 1 9 1 2 1 20 5 13 12 1.90
00111 0 3 2 2 0 o 1 12 2 1.88
10101 0 0 2 1 1 1 1 1 4 20 7 1.87
10011 4 1 3 2 2 1 6 1 3 1 2 T 46 18 1.81
01101 0 0 1 2 1 il o 2 8 4 1.76
11001 2 3 6 1 4 1 6 1 9 2 i2 9 88 17 1.70
01011 0 0 0 1 0 0 5 1 1.70
00110 0 0 0 1 1 0 2 2 1.38
10100 0 1 0 1 4 3 3 14 7 1.37
10010 0 2 1 2 2 13 2 17 7 1.31
01100 0 0 3 6 0 1 3 10 6 1.26
01010 0 1 0 3 4 o 1 4 2 1.20
11000 2 1 6 1 16 21 1 38 2 81 39 95 37 1.19
00101 1 16 3 10 6 2 7 15 6 1.17
00011 3 19 6 16 6 1 o 14 28 14 1.00
10001 8 1 11 6 1 20 1 14 1 10 22 103 22 0.99
01001 2 4 12 19 21 1 4 10 40 5 0.89
00100 3 5 1 7 3 27 2 12 12 2 1 29 0.16
10000 4 4 15 7 28 14 32 13 25 51 60 4 104 2 0.09
00010 6 1 2 a8 3 3 27 4 8 13 i 1 17 0.09
01000 g 3 12 6 58 11 115 15 87 32 16 2 8o 1 -0.02
00001 21 6 133 11 40 28 132 31 54 42 3 3 125 1 -0.11
00000 157314 843276 373 98 916 86 349 32 54 5 324 5 -0.91

218341 1100314 573172 1406164 665200 318171 1470220

force drawing from more than one category. Although we still use the rather
heuristic definition of a predictive distribution, in this example multiple im-
putation seems to work quite well. The multiple imputations are shown in
Table 5 and in Figure 6.

The listed imputation frequencies are the average over five multiple im-
putation. Because of rounding errors, not all imputations exactly add up to
the marginal frequencies. Comparing Figures 5 and 6, it is obvious that the
multiple imputations are more spread over jobs and nuisance patterns. Both
imputations, single and multiple, follow the same gradient from {white collar,
no nuisance} on the bottom to {blue collar, maximal nuisance} on top.
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FIGURE 6
Average frequencies based on multiple imputation (Z) vs. job classes (X) vs labour conditions (Y).

Contingency tables

This example compares some aspects of the treatment of missing data
in loglinear analysis to the present method. We use the 2 x 2 x 2 table
given in Little and Rubin (1987: p. 187). The data pertain to a partly real
life, partly artificial example made up by Little and Rubin. There exist three
dichotomized variables: survival (S), type of clinic (C) and amount of prenatal
care (P). Type of clinic is unknown for 255 observations (= 26%), which means
that 8.8% of the observations in the three-way table is missing.

Table 6 indicates that the preferred loglinear model for the table based
on the 715 complete observations is [SC, PC], which means that type of clinic
is related to survival and to the amount of prenatal care. Moreover, within
the same clinic, survival and prenatal care are not related. Because deletion
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TABLE 6
Chi-square and p-values under EM and MISTRESS imputation.

model completely P imputation P imputation P

classified by EM by MISTRESS
[sP, 8¢, PC] 0.044 0.834 0.057 0.810 4.77 0.029
[sc, pc] 0.083 0.959 0.031 0.984 9.76 0.008
[sp, sc] 169.469 0.000 0.002 0.999 355.16 0.000

n = 715 n = 970 n = 970

of the association [SP] does not alter the fit, the more parsimonious model
[sc, PC] is preferred. Model [SP, SC] does not fit at all.

The second pair of columns in Table 6 contains the y2-values that measure
the difference between the expected values under the three loglinear models
and the imputed contingency tables (cf. Little and Rubin, 1987: p. 190-191).
These values are not statistically significant, so all models fit the data. This
is caused by, amongst others, the fact that the EM algorithm finds the most
favorable imputations given the specific loglinear model. In general, loglinear
models will fit better as more missing observations are added. In most cases,
this will preserve—and even emphasize—the structure among variables as
described by the loglinear model.

However, things can also go less well. Observe that model [SP, SC] now
fits the imputed table (p = 0.999). For the completely classified table this
model does not fit at all (p = 0.000), so filling in missing data brought about
some real change. But this is a hazardous aspect of EM: suppose that we
really had the 255 missing observations as in Little and Rubin, and that we
applied EM. Then, we would have been pleased to find a x2?-value as low
as 0.002, and we would have had little reason to question the validity our
model. If we compute correlations we see what has happened: the original
correlation—actually a ¢-coefficient here—of the omitted [PC] effect is equal to
—0.4924, which is substantial. After EM, it is —0.0130! Imputation vitiated
the correlation. Rubin (personal communication) shows that in this case
multiple or single imputation makes no substantial difference in estimation of
the model parameters for the loglinear models.

The same catch, though in the opposite direction, holds for MISTRESS.
Because MISTRESS optimizes a different, almost reverse criterion, the imputed
tables do not fit the loglinear model as well as the ones produces by EM. None
of models fit to the imputed data. On the other hand, the x2-statistic clearly
signals the important [PC] interaction.

Both the EM algorithm and our method have the same basic weakness:
if the model is wrong, imputations will be wrong. If the model prescribes
that a certain interaction does not exist, then EM will do everything to make
this true. In the above case, it makes a correlation of 0.49 disappear. Anal-
ogously, MISTRESS overemphasizes tiny correlations. Generally speaking, log-
linear analysis stresses absence of particular interaction, while maximizing
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consistency emphasizes presence of overall interaction. If we suspect that
the analysis results are heavily biased by imputation, we should use these
properties to our advantage.

Conclusion

The technique proposed in this paper is fairly simple. For categorical
data, it is a way of selecting the proper category to be imputed. In the context
of maximizing consistency, this seems to be new. The method optimizes a
well-defined and widespread criterion. Additionally, it is fast, flexible and of
high practical value. Few assumptions are needed. The method stays close to
the data.

It is possible to simulate various hot deck strategies. For example, by
(over)weighting one of the variables we simulate a single donor variable. The
method then evolves into a traditional hot deck method. In the same way, it
is possible to rule out specific variables from the donor. Careful selection of
variables may drastically improve the quality of the solution. Non-ignorable
models, in which the pattern of nonresponse depends on the values of the
data, can be evaluated by adding an indicator variable for the nonresponse
distribution for each variable. Mixes of continuous and discrete data can also
be analyzed. Since imputations are determined for each variable separately,
mixing does not present any new problems.

There are also situations in which the method will perform less satisfac-
torily. The main concern is the amount of intercorrelation. If the magnitude
of all correlations is below 0.20 then the method may generate imputations
that overemphasize small correlations. In this case, random imputation or
unconditional mean imputation often work better. It seems preferable to
use MISTRESS here only in combination with a resampling method, like the
bootstrap, in order to estimate the variability of consistency. If the average
intercorrelation is exceeds 0.30 then recovery will be fine in general. Not only
will the imputations be based on sufficient information, but also local minima
become less of a problem.

A second cautionary note concerns imputation itself. However attractive
the idea may seem, we must never forget that once after we have completed the
data, they are partly artificial. The main pitfal is to analyze the filled-in data
as if they were real, and thus overstate precision. The sagacious researcher
will set up a subconscious alert that signals any pecularities that might result
from imputation. According to Dempster and Rubin (1983), the entire idea
of imputation carries one great seductive danger: “it can lull the user into the
pleasurable state of believing that the data are complete after all.”

We conclude with some words on applications and perspectives. The
number of variables or observations hardly influences the computational effi-
ciency of the method. Therefore, the technique can be used with large data
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matrices. The main application field of MISTRESS is the analysis of surveys,
rating scales and questionnaires. Furthermore, the relationship with Cron-
bach’s a@ makes it attractive for dealing with missing data in psychological
testing. It is easy and cheap to reiterate MISTRESS in any fashion, combined
with bootstrapping, multiple imputation and the like.

The most spectacular application of the method is multiple imputation.
It is ambiguous to call it an application. As a matter of fact one might devote
another study to MISTRESS and multiple imputation. Analytical problem
number one is to decide how implicit predictive densities are to be derived
within the present framework. To this purpose, we mentioned in this paper
only some intuitive possibilities. This of course needs further study. It is
particularly interesting to examine the shape of the predictive density function
under varying levels of consistency. If the consistency equals zero, a trivial
possibility, the predictive distribution should be uniform. Conversely, if the
consistency approaches unity, it should have zero variance. And then, we are
back at MISTRESS.
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