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A B S T R A C T   

Industry 4.0 has proposed the Asset Administration Shell (AAS) model for digital twins. This model should help 
to solve interoperability issues, a topic that is also addressed by the Semantic Web and its Resource Description 
Framework (RDF). AAS and RDF-based models have their own strengths. AAS models are easier to integrate with 
operational technologies in a production environment, whereas RDF-based models offer more semantic 
expressiveness and advanced querying. In the Horizon MAS4AI project we found that both modelling paradigms 
can complement each other to develop agentbased digital twins for modular production environments. In this 
work we propose two different approaches to bridge both modelling paradigms. First we define a set of mapping 
rules to generate an AAS model from a given RDF-based model, supporting model development. Secondly, we 
propose to use RDF-based models to generate a digital shadow of AASs to improve semantic discoverability. 
Preliminary results demonstrate that heterogeneity of metamodels does not exclude achieving semantic inter-
operability, as well as that greater functionality can be obtained compared to using both models in isolation. The 
solutions will be further developed in collaboration with pilot lines in the MAS4AI project.   

1. Introduction 

The physical and digital world are getting increasingly intertwined. 
This may go for society as a whole, and surely applies to the 
manufacturing industry with the advent of digital twinning, Cyber- 
physical systems, and connected and digital factories all contributing 
to the Industry 4.0 movement being presented in various projects and 
initiatives. However, besides the increasing prevalence of IT systems and 
digital solutions to control the manufacturing environment, we are also 
seeing an increasing number of standards, models, and metamodels 
being used to describe concepts in and related to the manufacturing 
environment. 

In our experience, defining a single semantic model to guarantee 
uniformity in definitions and modelling is an utopia and instead a world 
with data heterogeneity is unavoidable. As such, metamodels fulfil an 
important role as abstract language to express all these different domain 
and application specific data models. Designing, developing, deploying 
and testing multiple metamodels, which can support each other, in an 
interoperable solution will be vital to keep up momentum in the digi-
tization of industry and achieving the promises of Industry 4.0. Without 
connected and reusable information models different initiatives all have 

to redo already available work and risk development into isolated silos 
that cannot easily be connected to other initiatives, which would greatly 
reduce interoperability of industry as a whole. 

One approach to tackling the challenge of semantic interoperability 
is the meta language of RDF (the standard model for Linked Data). This 
has been gaining traction in recent years in a variety of domains. Ex-
amples are the adoption of the European commission data portal, which 
can be accessed through SPARQL (P. O. of European Union, 2017) and 
Building Information Management, through initiatives such as IFC 
(Technical Committee, 2018); the ISO 21597–1 standard (Technical 
Committee, 2020), using an RDF-based model (Nederveen et al., 2010). 
However, the adoption of RDF in the manufacturing industry has been 
slower (Schröder et al., 2021). This is not due to lack of models within 
industry (see Table 1 from (Beden et al., 2021) for examples), but due to 
the use cases in which those models are needed. We observed this in the 
MAS4AI (MAS4AI Consortium, 2020) project, part of the European 
HORIZON 2020 program as well. As recognized by Hildebrand et al 
(Hildebrand et al., 2019)., in industry there are either already estab-
lished standards in place, such as OPC companion specifications, or in 
other cases proprietary solutions are used, such as those provided by 
large manufacturing equipment providers. This makes it complicated to 
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migrate to RDF-based semantics. Currently, most use cases for RDF focus 
on descriptive data, which is updated with low frequency and exist fully 
in the digital domain. Industry, however, needs a model which can be 
connected directly with the physical world, where the conditions of a 
machine are tracked and sensors are responsible for constant large data 
streams using already implemented communication standards. To meet 
the requirements of industry applications, the Platform Industry 4.0 has 
put forward its own semantic metamodel - the Asset Administration 
Shell (AAS) (Bader et al., 2022, 2021). This model is quickly gaining 
traction in both small and large manufacturing companies. Although the 
AAS metamodel differs to some extend from RDF, it can still be 
expressed in RDF (Industrial Digital Twin Association, 2022). 

The problem we are now faced with is in having two metamodels 
available that could reinforce each other, but in practice they are used 
separately from each other. This leads to the unnecessary recreation of 
information models which are already available, and the adoption of 
both metamodels suffers by providing only a sub-set of the required 
functionality in industry. One of the functionalities often needed, but 
only offered by RDF, is querying. The AAS server and registries do not 
support semantic queries, in the sense that there is no straightforward 
way to look up assets and AAS elements based on their semantic iden-
tifier. Based on the challenges identified above, we formulated two 
questions that are explored in this work:  

1. How can RDF-based models be reused in the modelling of Asset 
Administration Shells, such that  
(a) the logical structure of the original model is maintained;(b) the 

AAS model includes semantic provenance.  
2. How can Semantic Web Technologies, such as RDF and SPARQL, be 

used to improve the discoverability of assets in a distributed Asset 
Administration Shell environment, to enable  

(a) integrated querying the AASs and some information model;  
(b) querying in terms of the data model referred to by the semantic 

identifiers. 

In this paper we discuss the merits of both the RDF and AAS meta-
models and explore ways how the models can complement each other. 
We contribute to the current state of the art research by presenting two 

novel approaches to enhance the interoperability between RDF- and 
AAS-based models and preliminary results of their implementations. The 
first approach describes how to incorporate RDF-based data models in 
AAS modelling, and the second describes how RDF can be combined 
with AAS to improve discoverability of assets in Industry 4.0. We pro-
vide a methodological description and proposed practical integration 
connected to the development process we are currently in. 

We present these ideas based on the experience obtained in the 
MAS4AI project, in which research is conducted on the application of 
multi-agent systems (MAS) in modular production environments. This 
includes the ability to query a general knowledge base describing the 
system, as well as contacting individual agents and assets via their AAS 
to coordinate and collaborate on the execution of specific tasks. Within 
the MAS4AI project the semantic models fulfil a crucial role in enabling 
a plug & play solution where agents may configure themselves and adapt 
to the conditions of the framework in which they are deployed. These 
models enable the adoption of digital twin technology in e.g. the auto-
motive sector, lowering lead times in the low volume and high 
complexity manufacturing industry, and support predictive mainte-
nance of machines in high volume production, leading to optimized 
production processes with less downtime. The approaches proposed in 
this work are tested in collaboration with pilots involved in the project. 

The paper is structured in the following way. Section 2 outlines the 
current state-of-the-art research related to using AAS as a modelling 
technology in manufacturing and how it can be combined with RDF. 
Section 3 provides background information and specifications of the two 
metamodels respectively, including existing methods to combine them. 
Section 4 describes the two approaches, providing theoretical founda-
tions and definitions. Section 5 describes an implementation of the 
proposed methods and preliminary results. Section 6 discusses the 
findings, their limitations, and recommendations for next steps. Finally, 
Section 7 concludes with a summary of the obtained insights. 

2. State of the art 

Currently within industry there is a variety of information models 
and data representation methods which implement little or no general 
semantics. However, to be able to achieve interoperability and create 

Table 1 
Overview of rules (SWRL human readable syntax (Horrocks et al., 2004)) implemented in the tool to convert an RDF-based model into a AAS template.  

# Rule antecedent AAS element 
[Class] 

1 rdf:type(?x, sh:NodeShape) 
∧ mas4ai:hasInterface(?x, ?i) 

Asset Administration Shell 
[aas:AssetAdministrationShell] 

2 rdf:type(?x, sh:PropertyShape) 
∧ (not sh:class(?x, ?c)) 
∧ (not sh:datatype(?x, rdf:langString)) 

Property 
[aas:Property] 

3 rdf:type(?x, sh:PropertyShape) 
∧ sh:datatype(?x, rdf:langString) 

Multi Language Property 
[aas:MultiLanguageProperty] 

4 rdf:type(?x, sh:PropertyShape) 
∧ sh:class(?x, ?c) 
∧ mas4ai:hasInterface(?c, ?i) 

Reference Element 
[aas:ReferenceElement] 

5 rdf:type(?x, sh:NodeShape) 
∧ (not mas4ai:hasInterface)(?x, ?ix) 
∧ sh:targetClass(?x, ?c) ∧ sh:class(?p, ?c) 
∧ sh:property(?n, ?p) 
∧ mas4ai:hasInterface(?n, ?in) 

Submodel 
[aas:Submodel] 

6 rdf:type(?x, sh:NodeShape) 
∧ (not mas4ai:hasInterface)(?x, ?ix) 
∧ sh:targetClass(?x, ?c) ∧ sh:class(?p, ?c) 
∧ sh:property(?n, ?p) 
∧ (not mas4ai:hasInterface(?n, ?in)) 

Submodel Element Collection 
[aas:SubmodelElementCollection] 

7 rdf:type(?x, sh:PropertyShape) 
∧ (not sh:maxCount(?x, 1)) 

Submodel Element Collection 
[aas:SubmodelElementCollection] 

8 rdf:type(?x, sh:NodeShape) 
∧ mas4ai:hasInterface(?x, ?i) 
∧ sh:property(?x, ?p) ∧ sh:datatype(?p, ?d) 

Submodel 
[aas:Submodel]  
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reusable and meaningful models, it is essential to add a semantic layer. 
There are different methodologies, such as the one proposed by Hilde-
brand et al (Hildebrand et al., 2019). that aim to convert existing data 
sources in factories into RDF (RDF Working Group, 2014). Or the 
structure provided by the Reference Architecture Model Industry 4.0 
(RAMI4.0), in which the information layer explicitly positions the need 
for information modelling. The German organization Platform Industry 
4.0 has defined its own semantic model, the Asset Administration Shell 
(AAS) (Bader et al., 2021; 2022). This model can be used to describe 
different types of assets in a production environment and should 
improve interoperability in industry. The work of Kamburjan et al 
(Kamburjan et al., 2022). tackles this issue by presenting a method for 
structural reconfiguration of digital twins using asset models in combi-
nation with semantic web technologies. Overall research has been 
conducted on how to not only add semantics to industry, but also how to 
bridge the gap between the two commonly used models - RDF and AAS. 

The first work that tried to connect the AAS and RDF modelling 
worlds by Grangel-González et al (Grangel-González et al., 2016a). 
focused on how to create an RDF-based model for an AAS. They present 
a RDFS-based vocabulary, which provides definitions for all AAS com-
ponents, and a practical example of the semantic mapping for the 
modelling of a servo motor controller. This work is the first to address 
the question of how the benefits of RDF can be transferred towards an 
AAS model. A method is discussed which introduces a semantic layer to 
an AAS, now commonly called the Semantic AAS. This concept is further 
extended by Bader and Maleshkova (Bader and Maleshkova, 2019), who 
propose a method to map an existing AAS into an RDF Schema, such that 
it is possible to query the created model. This way the benefits of having 
an RDF-based model, such as being able to query and reason about the 
data, are transferred to the data encapsulated in the original AAS. This 
work is the first to present a mapping from an XML- to RDF-based model 
for the purpose of generating a semantic AAS. 

RDF is used more commonly as a way to enrich the AAS model by 
providing a semantic definition for all the elements of the model. This 
approach, employed by Grangel-González et al (Grangel-González et al., 
2016b)., demonstrates one of the main ways in which RDF can be used in 
this context. In their work the authors present how to create semanti-
cally enriched AASs for the use case of modelling sensors in legacy 
systems. They argue that combining RDF and AAS can bring benefits 
such as smooth integration of existing standards like OPC UA, Auto-
mationML, and ECLASS; a unified way to represent and identify relevant 
entities; and simplified integration of data from different objects. 

Another solution to represent semantics in industry data has been 
proposed by Textor et al (Textor et al., 2021). In their work the authors 
introduce the BAMM Aspect Meta Model (BAMM), which represents a 
digital twin including semantics. An aspect model contains both runtime 
and non-runtime data about a given asset, and is in that way similar to 
the AAS. BAMM represents an aspect model defined through an RDF 
vocabulary and SHACL rules. It can represent information about a digital 
twin in the shape of a graph. Recently, there have been developments 
towards converting BAMM to AAS, so that the AAS models can benefit 
from the already expressed semantics .1 

Ocker et al (Ocker et al., 2021). provide a framework for checking 
compatibility between components by representing existing Digital 
Twins as semantic AAS models and converting them to RDF. They use 
the new representation to run set of checks using SHACL shapes and 
SPARQL queries. Here the AAS serves as a connection element between 
the physical asset, and the semantic model that can be reasoned over. 
This supports our position, that the AAS and RDF can be used to com-
plement each other. The concept of transforming AAS models to 
different formats and increasing its capabilities is further explored in the 
work of Braunisch et al (Braunisch et al., 2021)., where an approach is 

presented towards producing SDKs in different languages, however do 
not yet tackle the topic of RDF aside from mentions for future research. 

At the moment of writing, to the best of our knowledge, there is no 
other work which discusses how AAS models can be created from RDF- 
based schemas, as we propose in this paper. The current state-of-the-art 
looks at how to create an RDF representation of an AAS (Semantic AAS) 
or how an AAS model can be mapped onto an RDF-based schema, but 
not the other way around - the generation of a basic AAS model from an 
already existing RDF-based model. The development which can be 
considered similar is the generation of AAS descriptions from BAMM 
models.2 This, however, is limited to models based on BAMM and the 
approach cannot be replicated for more general RDF-based models. Our 
approach goes further and allows one to reuse the large amount of 
already existing semantic models in RDF and reference to their URIs 
directly. This would greatly increase the number of easily implement-
able AAS models, while preventing divergence in semantic models by 
remodelling the same concepts. 

Similarly, the notion of using RDF next to AAS as a storage for 
different types of information has not been investigated. What is 
significantly different in this approach compared to the current state-of- 
the-art is that, instead of taking one of the semantic models as starting 
point and mapping it into the other, the method focuses on how the RDF 
and AAS can be used in parallel. The main benefit of this approach is that 
it can combine the benefits of both metamodels, by reusing data and 
functionalities offered by the other metamodel. As the RDF and AAS 
models represent different sets of data, one describing the environment 
and providing high-level descriptions (RDF) and one with more opera-
tional machine data (AAS). In this case the RDF graph provides a kind of 
search index for AASs that goes beyond the standard AAS capabilities, 
and makes it more straight-forward and efficient to query and discover 
AASs. This enables the usage of AAS in larger scale applications. Both of 
those novel approaches are important in improving the integration of 
semantics within industry 4.0 models. 

3. The structure of the metamodels 

In this section we outline the formal structure of the two metamodels 
RDF and AAS by providing relevant definitions, important specifications 
and other details which are key to understanding the methodologies 

Fig. 1. Structure of an AAS (Bader et al., 2022, 2021).  

1 https://industrialdigitaltwin.org/en/news-dates/idta-and-omp-collaborate- 
3837 2 https://github.com/OpenManufacturingPlatform/sds-sdk/issues/113 
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presented in this work. Furthermore, we also discuss the current most 
common approach towards using RDF and AAS within Industry 4.0. 

3.1. The resource description framework 

The resource description framework (RDF) (RDF Working Group, 
2014) is a standard for describing resources and defining ontologies in 
the semantic web. It provides a high level meta language, commonly 
extended with the Web Ontology Language (OWL) (OWL Working 
Group, 2012) or Shapes Constraint Language (SHACL) (RDF Data 
Schapes Working Group, 2017). The metamodels can be used to describe 
concepts, their properties and the relations between them. They are 
structured as graphs, often referred to as knowledge graphs due to the 
extensive context they can provide for even a single instantiated data 
point. These semantic web ontologies, or RDF graphs, may adhere to 
FAIR (Wilkinson et al., 2016) data principles. The usage of (derefer-
enceable) unique resource identifiers (URIs), in combination with on-
tologies, make data findable, accessible, interoperable and reusable. 

The RDF graphs can be queried or manipulated using SPARQL 
(SPARQL Working Group, 2013). Given, that within the semantic web 
data models are considered first class citizens, the SPARQL query lan-
guage can be used to query the data model (ontology) used, just as easily 
as it may be used to query the instance data being described in a graph. 
This flexibility in combining instances, models and other meta data 
provides a powerful way of representing and using the knowledge 
modelled in the graph. 

RDF-based ontologies are already used in a variety of domains such 
as public governance (P. O. of European Union, 2017), life science 
(Belleau et al., 2008), or descriptions of ”common knowledge” (Wiki-
data gorup, 2019). Moreover, these different initiatives relate to each 
other and may reference each other’s definitions, as is presented well by 

the linked open data cloud (LOD cloud group, 2020). 

3.2. The Asset Administration Shell 

The Asset Administration Shell (AAS) is an information model which 
describes an asset, such as a manufacturing resource, a product, a piece 
of software, a process, etc. This description is a vital part of a digital twin 
in which both the data, as well as the models and applications using that 
data, require a semantic description to be reused for various applica-
tions. The structure of the created model, shown in Fig. 1 contains a 
collection of different generic and specific submodels, which together 
create the complete asset description. Each submodel contains a set of 
submodel elements of different types. For example, datatype properties 
with a literal value are modelled as a Property, while references to other 
AASs (elements) or external objects are modelled using a Reference 
Element. Multiple submodel elements can be bundled in a Submodel 
Element Collection. Each submodel template can be reused between 
different AASs, contributing to a library of common and standardized 
semantic data-models.3 For more details about the different AAS 
element types and their usage we refer to the specification (Bader et al., 
2022) and RDFbased ontology.4 

Concepts and relations in the AAS can have a semantic identifier, 
which is a global unique URI, that can be used to refer to external 
concept definitions, which can be a standardized submodel from some 
library or another type of data model, like an ontology. Besides these 
metadata, the AAS also allows adding supporting documents to the shell, 

Fig. 2. Overview of mapping from UML class diagram to components in the AAS.  

3 https://admin-shell-library.eu/ is a repository containing template models  
4 https://github.com/admin-shell-io/aas-specs/blob/master/schemas/rdf/ 

rdf-ontology.ttl 
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such as 3D models or user manuals. Finally, the AAS models can be 
uploaded to an AAS server which exposes standardized APIs for inter-
action. Clients can interact with the AAS model, as well as its instance 
data using REST.5 In the background the AAS server can integrate to a 
machine for example using the common OPC UA6 protocol to synchro-
nize data between the physical asset and its digital twin AAS and also 
control the asset. For more detailed specifications, please refer to Bader 
et al (Bader et al., 2022, 2021). 

Despite the structures and semantics supported by the AAS meta-
model, it lacks features one may expect when used to RDF-based on-
tologies. Specifically, the AAS is not strong typed, meaning it can be 
difficult to determine what type of individual one is looking at. RDF 
offers us a model to add typing to individuals and solve this issue. Next 
to this, Bouter et al (Bouter et al., 2022). concluded that the AAS model 
is currently not suitable for querying large sets of AASs. Mainly because 
interaction happens through the standardized, but less flexible pre-
defined API. Lastly, as the AAS is still relatively new, the tools for model 
creation are not mature and the set of standardized models is still 
limited. 

3.3. RDF as a semantic base for AAS 

The AAS metamodel has an element specifically for defining se-
mantic identifiers. In most cases those identifiers are used to refer to 
external definitions in standards like ECLASS (Belyaev et al., 2021). 
Ideally, a semantic identifier is provided for every element in the AAS, 
which refers to organization internal or external standardized data 
models. The semantic identifiers are conceptually similar to the URIs 
used in RDF modelling and serve to reference a larger semantic defini-
tion from a small local model definition. The most basic way to bridge 
from an AAS to RDF model is by using already existing URIs as semantic 
identifiers. This allows users of the AAS to find and use the concepts 
defined on the semantic web for further definitions or relations. This is 
part of the AAS modelling approach, originally presented by Bouter et al 
(Bouter et al., 2021). Within the MAS4AI project, this method is applied 
to add references from AAS concepts to the larger standards on which 
the models are based, such as the FIPA multi-agent modelling standard .7 

However, as the current AAS tooling is limited in how it makes use of 
these semantic identifiers, for example, current tooling does not support 
derefencing them to present the external data, the usage of this approach 
in practice is limited to purely semantic applications. Developers in 
practice often don’t need, or see the use of, using these semantic iden-
tifiers beyond them being just a unique identifier used within the AAS 
model. Moreover, even when adopting this approach fully, it is limited 
due to the lack of support for using the semantic identifier in the AAS 
API, making it difficult to use for anything other than referencing from 
an AAS model to a larger semantic knowledge base. 

4. Methodology 

We propose two methods for integrating RDF and AAS, which 
leverage the benefits of both metamodels. The two described methods 
aim to keep semantics easily usable through the standard model and 
interfaces provided by the AAS, while also building on the rich seman-
tics available in RDF based ontologies. In this section we outline the 
foundation of our ideas and in the next section we explain the pre-
liminary implementation which we are developing in the MAS4AI 
project. 

4.1. Generating an AAS template from RDF-based data models 

Creating AAS models can be difficult, due to a lack of tooling, it being 
a niche domain and the general complexity of information modelling. As 
such, tools that make it easier to make an AAS model, or reuse already 
existing information models would be highly beneficial in speeding up 
development, improving model quality and ensuring semantic interop-
erability between models. One of the ways to aid the creation of AAS 
models would be by supporting the easy reuse of existing models. Pakala 
et al (Pakala et al., 2021). propose a mapping from the Web of Things 
Thing Description, which is an RDF-based data model, to AAS sub-
models. Similarly one of the AAS developer tools contains a solution to 
import an AAS from a model defined according to the BAMM.8 We take 
this idea a step further and argue that a general RDF-based semantic 
model (ontology) can be used to generate a basic AAS (template). An 
automated conversion from a semantic model to an AAS helps to reuse 
existing knowledge and ensures the semantic references are aligned with 
existing data models. The generated AAS should contain the information 
from the semantic model it is generated from, but can be extended with 
additional (standardized) submodels for aspects that are not covered by 
the existing model. 

The starting data model can be in different shapes and formats, so we 
describe some fairly generic mapping rules below that are always 
applicable. The generic rules can be formalized and tailored to the 
specific modelling language that is implemented, for example OWL 2 
(OWL Working Group, 2012) or SHACL (RDF Data Schapes Working 
Group, 2017). Fig. 2 gives an overview of the mapping concept and rules 
described below, following Requirement 1a.  

1. The class for which we generate an AAS is mapped to a submodel. 
The other classes are only considered if they are in the domain or 
range of a relation.  

2. For relations two main cases can be distinguished:  
a. If the relation has as domain the class for which an AAS is 

generated, it is mapped to a submodel. 
b. Otherwise, the relation and its range class are mapped to a sub-

model element collection. This collection can in turn have nested 
submodel elements mapped from the relations with domain the 
class corresponding to this collection. 

3. Relations that have as range another class for which an AAS is con-
structed, are mapped to a reference element.  

4. Attributes have the most straightforward mapping, as they have as 
range a value with a certain type. In general, attributes therefore map 
one-on-one to a property submodel element.  

5. Relations and attributes with multiplicity bigger than one are 
embedded in a submodel element collection. 

Besides the mapping rules described above, it is important that the 
AAS elements contain a reference to the (unique) identifier for the class, 
relation, or attribute it was mapped from. This reference ensures that it 
is possible to find the semantic definition and context of the element 
(Requirement 1b. Besides that, the semantic identifiers can also be used 
for integrating data from different AASs using the approach we describe 
in Section 4.2. 

The main advantages of this approach are that throughout the con-
version process the identifiers from the ontology are preserved and the 
URIs from the ontology are used as semantic identifiers within the AAS 
model. This allows the continued usage of the RDF graph as a semantic 
base if desired. Furthermore, it aids modellers and speeds up the 
modelling process by generating (partial) AAS templates from already 
existing (formal) models. 

5 https://restfulapi.net/  
6 https://opcfoundation.org/about/opc-technologies/opc-ua/  
7 http://www.fipa.org/index.html 

8 https://openmanufacturingplatform.github.io/sds-documentation/ sds- 
developer-guide/tooling-guide/java-aspect-tooling.html#mapping-aas 
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4.2. RDF store as a search index for AASs 

Whereas the method described above aids in the design time of an 
AAS model, this approaches focusses on the interaction that can happen 
between the two metamodels at runtime. They can be used together in a 
single deployment where both modelling methods reinforce each other. 
Bouter et al (Bouter et al., 2022). explore the question of how to query 
AASs and conclude that currently the AAS is not suitable to be queried in 
large numbers. For a single AAS it is possible to convert it to an RDF 
graph (Bader and Maleshkova, 2019) and then query it. However, the 
proposed model is an almost one-on-one mapping of the AAS meta-
model, which contains much indirection and make it difficult to query as 
a graph. We argue that the AAS data can be mapped to an RDF graph 
according to a custom RDF-based model, when semantic identifiers are 
present that refer to this model. 

When there is a need to search through a large set of AASs, we argue 

that an RDF store can be of added value. Let us consider the use case of a 
MAS controlled manufacturing environment. Each agent in the envi-
ronment is represented by an AAS, combined with a real-time connec-
tion to the physical or digital factory component. Different agents will 
implement a different set of skills depending on their type. To find an 
agent that has the exact required capability, we can create a dedicated 
graph containing the relevant information needed for the MAS to query. 
Using the RDF store we can easily find the small set of AASs of interest 
and then connect to these directly for more detailed information about 
the agent. 

More general, we propose to use an RDF store to create an integrated 
view of the assets and their properties exposed via an AAS. The inte-
grated view can then be used to answer more complex questions 
(Requirement 2a), like the one described above. One of the main ad-
vantages of RDF is its natural graph structure, which gives the flexibility 
required for integrating data in a dynamic agent-based modular 

Fig. 3. Relating AAS elements to an RDF graph.  

Fig. 4. UML diagram of the example robotic arm model (gray classes are the assets for which an AAS is generated).  
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production environment. For example, to deal with a situation where 
new types of agents are integrated into the system. 

We envision a future system that populates the RDF store with data 
from the AAS according to a data model which references semantic 
identifiers used on elements in the AASs. Fig. 3 gives an impression of 
how AAS elements map to statements in the RDF store (Requirement 
2b). To keep the RDF store up to date, we need to synchronize data when 
updated in the AAS. For this purpose, an event driven approach can be 
used, where events are generated when certain AAS elements change 
(Bouter et al., 2022). With a synchronization mechanism in place the 
RDF graph can be used as a digital shadow that the agents can use for 
decision making. 

5. Implementation 

In the previous section, we described the theoretical foundation 
behind our proposed methodologies. In this section we will present our 
current implementation and corresponding results as achieved within 
the MAS4AI project. As this is an active area of development we present 
only the current work and in Section 6 we will evaluate what are the 
next steps. 

5.1. Generating an AAS template from RDF-based data models 

To support the development of AAS models, and support semantic 
interoperability between different models we developed a tool to auto-
matically convert from an RDF-based model to an AAS template model. 

The implementation can generate an AAS template from SHACL-based 
models. SHACL (RDF Data Schapes Working Group, 2017) is a more 
recent addition to the semantic web stack and we observe that it is used 
more regularly in the manufacturing domain. Furthermore, we argue 
that it fits better with the (current version of the) AAS metamodel, which 
has only limited expressiveness, for example it does not support complex 
value constraints that can be defined in OWL (OWL Working Group, 
2012) ontologies. The tool implements the mapping rules proposed in 
Section 4.1. Table 1 gives an overview of the most important rules 
implemented by the tool. The right column shows the AAS element to 
which resources in the SHACL Shapes graph are mapped that adhere to 
the rule defined in the left column. 

Rule 1 defines the objects to map to an AAS. The custom property 
mas4ai:hasInterface is used to mark the node shapes (representing an 
asset) for which the tool should generate an AAS. Rule 2 and 3 defines 
that datatype property shapes should be mapped to either a Property or 
MultiLanguageProperty, if the datatype is a language string. Property 
shapes that refer to a class that is mapped to an AAS, a ReferenceElement 
is created (rule 4). If the shape refers to a class that is not mapped to an 
AAS, then the tool maps it to a Submodel if the property has domain an 
object that is mapped to an AAS (rule 5) and to a Sub-
modelElementCollection (SMC) otherwise (rule 6). Property shapes with 
cardinality not equal to one are nested in a SMC, so rule 7 defines that for 
those shapes an SMC will be created. Rule 8 defines the creation of a 
Submodel for all datatype properties with domain an ’AAS class’. All 
rules to construct the components are defined in SPARQL CONSTRUCT 
queries. Subsequently, a set of SPARQL INSERT queries are used to add 

Fig. 5. AAS templates generated from the robotic arm ontology (the AssetInformation components are omitted for brevity).  
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the relations between the components. The tool is implemented using 
Python RDFLib.9 The source code and SPARQL queries are available on 
Github.10 

We demonstrate this tool using a simple robotic arm ontology (see 
Fig. 4), however, the underlying logic is generic and supports the model 
constructs described in Table 1. Besides the robotic arm, we can also tell 
the tool to create an AAS for the Tool class. Running the publicly 
available code we find the AAS models provided in Fig. 5. Both the 
shapes and the resulting AAS templates can be found in the Github 
repository. 

As expected, we find two AAS models, one simple model for the tool 
containing only one submodel and a slightly more elaborate AAS model 
for the robotic arm containing more submodels and properties. Although 
this may not provide a full description of the asset it provides a starting 
point to the modeller which is fully aligned with an earlier model, 
making it simple to reuse pre-existing standards and nudging the mod-
eller into AAS modelling best practices, such as breaking up concepts 
into separate submodels. 

Within real life manufacturing environments there may be a vast 
amount of assets, varying from software agents to manufacturing 
equipment to the products being made. As such, speeding up the 

modelling process may make the difference between proper semantic 
models being prohibitively expensive to make and them being the easy 
solution to representing some concept in the organisation. 

5.2. RDF store as a search index for AASs 

In the MAS4AI project we designed a solution that implements the 
method described in Section 4.2. The solution contains an RDF graph 
according to a semantic model, as well as an AAS server containing the 
AAS models for individual assets. These AAS descriptions may be fast to 
update, contain a large number of data elements and can be integrated 
with operational systems, such as manufacturing equipment or software 
agents. However, the AAS does not support directly querying for assets 
matching certain properties. For this, the RDF store is used, it describes 
the environment and the slower to update, or completely static, asset 
data. These data can be queried to find individual assets of interest, 
which identifiers point to the AAS model of these assets. This provides 
the flexibility, interoperability and reasoning power of RDF for the 
purpose of discovery. While also leveraging the ease of integration and 

compatibility of the AAS. 
The downside of this approach is that when updating metadata it is 

not as clear where this new information should be stored - is it to be 
updated in the AAS, the RDF, or both? This may differ dependent on the 
implementation and, although it could be determined by querying the 
model, we designed a generic solution which abstracts this synchroni-
sation away from the individual agents and instead constructs the RDF 
graph based on the AAS model. This approach works by duplicating 
relevant information from its AAS representation to the RDF knowledge 
base to enable further analysis. The primary advantage is that it sim-
plifies integration for agent developers, who only need to bother with 
the integration of the AAS and the asset it represents. In our imple-
mentation we assume that the AASs are the source of which a subset is 
synchronized to the RDF store. The current implementation only sup-
ports pull-based updates of the data in the RDF store, and the complete 
AAS representation has to be recreated when an AAS element is updated. 
Note that every AAS is stored in its own graph context, which makes it 
straight-forward to insert, update, or delete the representation, for 
example using the Graph Store Protocol.11 

Algorithm 1. Construct RDF graph for AAS elements for e∈AAS do.  

Algorithm 1 gives a simplified view of the logic to construct an RDF 
graph for AAS elements and their semantic identifiers. The algorithm 
loops over all elements in the AAS (e∈AAS), if the semantic identifier (s) 
related to the element exists in the given RDF-based model (Gmodel), then 
depending on the type of the semantic identifier a different statement 
(subject, predicate, object) is added to the graph GAASs. The following 
functions are used:  

• iri(e): get the identifier iri of the element e;  
• value(e): get the value of the property element e;  
• valueType(e): get the value type of the property element e;  
• parent(e): get the parent element of the element e in the AAS. 

5.2.1. Discoverability example 
We demonstrate the advantage of an RDF graph as a search index on 

AASs with a small example, based on the robotic arm AAS template 
presented in Section 5.1. Suppose we have a production environment 
with multiple robotic arms and instantiations of the robotic arm AAS 

9 https://github.com/RDFLib/rdflib/  
10 https://github.com/gitmpje/shacl2aas 

11 https://www.w3.org/TR/sparql11-http-rdf-update/ 
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template. Next to that we have a simple (SKOS12) taxonomy of different 
tools. Subsequently, we apply the mechanism proposed above and for 
example the ex:hasTool, ex:toolType, and ex:maximumWeight proper-
ties are indexed in the RDF store. Now, we can easily find all AASs for the 
robotic arms with some kind of ex:Gripper that can carry a weight above 
a certain value using one SPARQL query on the integrated data set that 
includes a property path on the SKOS taxonomy.   

In comparison if we would only rely on the standard capabilities of 
the AAS server and registry (Bader et al., 2021), we would have to make 
a request to all AASs to retrieve their type and weight, and subsequently 
make the comparison to our defined values.  

5.2.2. Business analytics example 
The RDF store contains an integrated overview of all the assets and 

can be used to obtain managerial insights, which often involve aggre-
gation. A typical example of this is to count the number of assets that can 
do a certain operation. The query below could be used to count the 
number of robotic arms for every type of tool. 

5.2.3. Operational insights 
When the RDF graph contains real-time information about the state 

of the assets, this information can be used to obtain insights for opera-
tions planning. For example, the query below lists all robotic arms with 
an ex:TwoFingerGripper, that are idle and can be used to plan certain 
operations on. 

5.2.4. Reasoning 
One of the benefits of using RDF in combination with (OWL) ontol-

ogies is the reasoning capability. This could be applied, for example, for 
the conversion of unites of measure. Suppose that grippers from 
different suppliers are used that define their specification using different 
units of measure. If those units are defined using a units of measure 12 https://www.w3.org/TR/skos-reference/ 
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ontology like qudt,13 then a reasoner can be used to automatically 
convert the metrics to the same unit and compare the specifications. 

Another use case for reasoning and the application of ontologies is 
the alignment of vocabularies. In a scenario where tools from multiple 
suppliers are used, the suppliers will often use a different vocabulary for 
describing the tool. The alignment of the vocabularies can be done based 
on an ontology, which can for example define that both ex:maxWeight 
and ex:maximumCarryWeight are sub properties of ex:maximumWeight. 

5.2.5. validation 
SHACL can be sued to define constraints on the data that is available 

through the graph. A typical is the constraint on the cardinality of certain 
properties. For example, we can say that every robotic arm should have 
exactly one status out of the set of possible statuses. 

Besides data validation SHACL can also be used to define and vali-
date operation constraints. In combination with logic problem solvers, it 
can also be used to generate configurations (Bischof et al., 2018). The 
example shape below defines that a robotic arm can only have at 
maximum one ex:TwoFingerGripper tool.  

As these examples demonstrate the an RDF graph which can be 
queried, or even used for data validation enables valuable use cases in 
Industry which cannot be implemented using the AAS alone. 

In the MAS4AI project we test the proposed design, and specifically 
the advantage of the using the RDF store for the purpose of AAS dis-
covery. Whether the AAS to RDF implementation as described in Section 
5.1 is used is left up to the agent developers as it is an optional imple-
mentation of the data synchronisation implementation of the frame-
work. The RDF graph for searching is deployed in the pilot lines which 
all contain multiple agents of multiple different types as well as poten-
tially a number of physical assets. This situation is representative for a 
production environment regarding the interaction between RDF and 
AAS and the difficulty in finding and integrating with specific assets. 

6. Discussion and limitations 

In this paper we explored how the meta languages of RDF and AAS 
may be combined to support industry use cases. We found that the AAS 
metamodel fulfils similar semantic interoperability requirements as 
RDF-based ones, however both approach the interoperability challenge 
from different angles. The AAS model is designed to provide a stan-
dardized interface to data describing assets, while RDF is a more general 
framework offering more flexibility compared to the AAS. As the AAS 
model is tailored to the manufacturing domain, it makes it easier for 
engineers and domain experts to develop a model that fits their needs. 
Furthermore, the AAS concept in general goes beyond the modelling of 
assets and supports easy integration with commonly used machine 
interfaces. 

As there is already experience and existing work on RDF-based se-
mantic models, we believe that the AAS model development can benefit 
from this. As a first step in this direction we propose a mapping from 
semantic models to elements in the AAS. Allowing generation of AAS 
models based on already existing RDF ontologies. This aids developers in 
defining AAS models with meaningful semantic identifiers that can be 
dereferenced to get the semantic definition and context of the AAS 
element. This provides a solution to question 1 as posed in the 
introduction. 

Next to the alignment of semantic RDF-based models with AAS 
models, we found that combining both concepts in a single solution 
design can be of added value in modular production environments. In 
the MAS4AI project an agent-based digital twin is developed, which is 
used to control a (simulated) modular production environment. For this 
system to work, complex questions have to be answered regarding the 
environment in which the agents operate. The current AAS framework 
does not efficiently support this. Introducing a semantically interoper-
able RDF store provides the needed capabilities and flexibility to answer 
these more complex queries. As demonstrated in a number of examples, 
this approach allows us the solve the problem posed in question 2 in the 
introduction. 

6.1. Limitations 

The current implementation which we provided in Section 5 pro-
vides a proof-of-concept of the combination of AAS and RDF meta-
models. In this work we focused on explaining the approaches and their 
applications, therefore the evaluation of the approaches and their 
implementations in terms of performance and scalability is limited. 
However, the first results show that the approaches are promising and a 
more extensive evaluation in an experimental and practical setup would 
be a next step. 

The RDF to AAS mapping in Section 5.1 only covers relatively simple 
data models, and for example not the more complex constraints that can 
be expressed using SHACL and even more using OWL2. This limitation is 
mainly due to the limited expressiveness of the AAS metamodel, which 
does not support complex value constraints. However, as the AAS 13 https://www.qudt.org/doc/DOC_VOCAB-UNITS.html 
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metamodel is still in development it might be possible to map more 
complex ontologies and constraints to similar constructs in the AAS 
model. An alternative is to only provide the semantic identifier that can 
be dereferenced to discover the definition and constraints for the class or 
property at hand. As we argued before, it would be of added value if AAS 
tooling would support dereferencing the semantic identifiers, and 
optionally also automatic validation of the constraints defined in the 
referenced semantic model. 

The main limitation of the second approach, using an RDF graph as a 
search index for AASs, is that it depends on properly designed models 
that align with each other. In most cases this requires sufficient 
knowledge of RDF and AAS modelling, which might not be present in 
every organization. However, note that the concept proposed in Section 
4.1 can help to align an AAS model with an RDF-based model. Addi-
tionally, the current framework and implementation do not support 
push-based and targeted updates of AAS elements and therefore there is 
no guarantee that changes in the AASs are directly synchronized to the 
RDF store. 

6.2. Future work 

Both described approaches will be tested in a number of real-life use 
cases in different manufacturing settings. More specifically, the method 
presented in Section 4.2, combining the RDF and AAS framework, will 
be applied in an agent-controlled simulated production environment as 
part of the MAS4AI project. This provides an opportunity to evaluate 
how the solutions behave in a scaled up test case with assets repre-
senting a manufacturing environment. In this work we present the ap-
proaches and demonstrate their functionality in a small proof-of- 
concept, a more extensive experimental evaluation of both approaches 
is required to validate and quantify the applicability. In the experiments 
the data size should be considered, as well as the complexity of the 
models and data set. Specifically for the conversion from RDF-based to 
AAS models the performance and scalability using different techniques 
can be evaluated. The current version implements all rules in SPARQL, 
but another approach could be to use SWRL rules in combination with a 
reasoner. 

Independent from testing the implementations presented in Section 
5, we would also like to extend the described methods and increase their 
usability in different settings. For example, an extension of the RDF to 
AAS mapping to support more complex graph patterns and mapping 
from OWL-based models. Another improvement that should be investi-
gated is a more efficient synchronization mechanism to keep the RDF 
store up to date with the data exposed by AAS servers. One solution to 
consider is a push-based and targeted update of data in the RDF store 
when an AAS element is updated. The current AAS specification does not 
support such a mechanism yet, but the BaSyx eventing extension14 can 
be used for prototyping. 

Beyond the scope of the currently suggested solutions, we propose 
two research directions for future work. Firstly, one may define the 
standard interfaces exposed by AAS servers on an RDF store, allowing 
interaction with an RDF graph as if it’s an AAS and providing the ease of 
integration of the AAS, without limiting the expressiveness and capa-
bilities of an RDF based knowledge graph. Secondly, we recommend the 
development of AAS modelling tools which dereference URIs, which 
should make it easier to reuse predefined concepts in the creation of AAS 
models and stimulate the use of proper semantic identifiers. 

Finally, we identified the need to take this research and explore 
further how it supports ongoing standardization processes. Specifically, 
we are seeing the AAS metamodel being extended and surrounding tools 
being developed to make it more powerful as a modelling language. For 
example, the work by Bayha et al (Bayha et al., 2020). provides an 
approach on how to model capabilities in the AAS, which fits well with 

the use case we envision for the RDF store solution described in Section 
4.2. More research should be conducted on how these metamodels can 
converge and what this means for implementations and usage. 

7. Conclusion 

In this paper we formulated two challenges and questions on the 
integration of semantic technologies and the Industry 4.0 Asset 
Administration Shell. Subsequently, we propose and explore two novel 
approaches that addresses those questions. The first challenge is how the 
Industry 4.0 AAS metamodel can be combined with semantic RDF-based 
metamodels. We demonstrate the conversion from RDF-based models to 
AAS models, such that the structure of the original model is maintained 
and the AAS model is annotated with references to the original model 
using the semantic identifiers that are part of the AAS metamodel. This 
reduces the modelling effort when developing a new AAS model for an 
asset and avoids duplicating information, as the AAS model can refer to 
information and knowledge represented in an RDF graph. The second 
challenge is the semantic discovery of assets. We present an approach, 
which demonstrates how RDF and AAS can be used next to each other. 
Specifically, we showed how a solution combining both modelling 
paradigms and their frameworks provides more (semantic) capabilities 
compared to using the frameworks in isolation. The RDF store can be 
used to execute more advanced queries that touch multiple AASs and 
possibly also an (RDF-based) information model. 

We propose both approaches connected to our work in the MAS4AI 
project and suggest implementations based on the pilots in this project. 
Initial results suggest that these methods meet the requirements and are 
usable by developers of agents in the MAS4AI framework, while 
providing the additional functionality required by the pilot lines. 
Therefore, we think the proposed solutions can also be of interest in 
other settings, so in this work we generalize them. However, we 
recognize that a broader evaluation of the approaches is necessary, so 
we hope this work inspires others to apply and validate the approaches 
in their (industrial) setting and experiment with the generation of AAS 
models based on existing RDF models. Next to that, we intend to 
continue the development and validation efforts with real-life 
manufacturing use cases in the MAS4AI and possible follow-up projects. 
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