
Computers in Industry 148 (2023) 103910

Available online 4 April 2023
0166-3615/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Modelling with AAS and RDF in Industry 4.0☆

Sjoerd Rongen a,*, Nikoletta Nikolova a, Mark van der Pas b

a TNO, Anna van Buerenplein 1, The Hague 2595DA, the Netherlands
b Semaku B.V., Torenallee 20, Eindhoven 5617BC, Noord-Brabant, the Netherlands

A R T I C L E I N F O

Keywords:
Industry 4.0
Modelling
Knowledge representation
RDF
AAS
Semantic interoperability

A B S T R A C T

Industry 4.0 has proposed the Asset Administration Shell (AAS) model for digital twins. This model should help
to solve interoperability issues, a topic that is also addressed by the Semantic Web and its Resource Description
Framework (RDF). AAS and RDF-based models have their own strengths. AAS models are easier to integrate with
operational technologies in a production environment, whereas RDF-based models offer more semantic
expressiveness and advanced querying. In the Horizon MAS4AI project we found that both modelling paradigms
can complement each other to develop agentbased digital twins for modular production environments. In this
work we propose two different approaches to bridge both modelling paradigms. First we define a set of mapping
rules to generate an AAS model from a given RDF-based model, supporting model development. Secondly, we
propose to use RDF-based models to generate a digital shadow of AASs to improve semantic discoverability.
Preliminary results demonstrate that heterogeneity of metamodels does not exclude achieving semantic inter-
operability, as well as that greater functionality can be obtained compared to using both models in isolation. The
solutions will be further developed in collaboration with pilot lines in the MAS4AI project.

1. Introduction

The physical and digital world are getting increasingly intertwined.
This may go for society as a whole, and surely applies to the
manufacturing industry with the advent of digital twinning, Cyber-
physical systems, and connected and digital factories all contributing
to the Industry 4.0 movement being presented in various projects and
initiatives. However, besides the increasing prevalence of IT systems and
digital solutions to control the manufacturing environment, we are also
seeing an increasing number of standards, models, and metamodels
being used to describe concepts in and related to the manufacturing
environment.

In our experience, defining a single semantic model to guarantee
uniformity in definitions and modelling is an utopia and instead a world
with data heterogeneity is unavoidable. As such, metamodels fulfil an
important role as abstract language to express all these different domain
and application specific data models. Designing, developing, deploying
and testing multiple metamodels, which can support each other, in an
interoperable solution will be vital to keep up momentum in the digi-
tization of industry and achieving the promises of Industry 4.0. Without
connected and reusable information models different initiatives all have

to redo already available work and risk development into isolated silos
that cannot easily be connected to other initiatives, which would greatly
reduce interoperability of industry as a whole.

One approach to tackling the challenge of semantic interoperability
is the meta language of RDF (the standard model for Linked Data). This
has been gaining traction in recent years in a variety of domains. Ex-
amples are the adoption of the European commission data portal, which
can be accessed through SPARQL (P. O. of European Union, 2017) and
Building Information Management, through initiatives such as IFC
(Technical Committee, 2018); the ISO 21597–1 standard (Technical
Committee, 2020), using an RDF-based model (Nederveen et al., 2010).
However, the adoption of RDF in the manufacturing industry has been
slower (Schröder et al., 2021). This is not due to lack of models within
industry (see Table 1 from (Beden et al., 2021) for examples), but due to
the use cases in which those models are needed. We observed this in the
MAS4AI (MAS4AI Consortium, 2020) project, part of the European
HORIZON 2020 program as well. As recognized by Hildebrand et al
(Hildebrand et al., 2019)., in industry there are either already estab-
lished standards in place, such as OPC companion specifications, or in
other cases proprietary solutions are used, such as those provided by
large manufacturing equipment providers. This makes it complicated to

☆ Funded by MAS4AI Horizon 2020 research and innovation program under grant agreement No. 957204.
* Corresponding author.

E-mail addresses: sjoerd.rongen@tno.nl (S. Rongen), nikoletta.nikolova@tno.nl (N. Nikolova), mark.van.der.pas@semaku.com (M. van der Pas).

Contents lists available at ScienceDirect

Computers in Industry

journal homepage: www.sciencedirect.com/journal/computers-in-industry

https://doi.org/10.1016/j.compind.2023.103910
Received 7 October 2022; Received in revised form 24 February 2023; Accepted 27 March 2023

mailto:sjoerd.rongen@tno.nl
mailto:nikoletta.nikolova@tno.nl
mailto:mark.van.der.pas@semaku.com
www.sciencedirect.com/science/journal/01663615
https://www.sciencedirect.com/journal/computers-in-industry
https://doi.org/10.1016/j.compind.2023.103910
https://doi.org/10.1016/j.compind.2023.103910
https://doi.org/10.1016/j.compind.2023.103910
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2023.103910&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers in Industry 148 (2023) 103910

2

migrate to RDF-based semantics. Currently, most use cases for RDF focus
on descriptive data, which is updated with low frequency and exist fully
in the digital domain. Industry, however, needs a model which can be
connected directly with the physical world, where the conditions of a
machine are tracked and sensors are responsible for constant large data
streams using already implemented communication standards. To meet
the requirements of industry applications, the Platform Industry 4.0 has
put forward its own semantic metamodel - the Asset Administration
Shell (AAS) (Bader et al., 2022, 2021). This model is quickly gaining
traction in both small and large manufacturing companies. Although the
AAS metamodel differs to some extend from RDF, it can still be
expressed in RDF (Industrial Digital Twin Association, 2022).

The problem we are now faced with is in having two metamodels
available that could reinforce each other, but in practice they are used
separately from each other. This leads to the unnecessary recreation of
information models which are already available, and the adoption of
both metamodels suffers by providing only a sub-set of the required
functionality in industry. One of the functionalities often needed, but
only offered by RDF, is querying. The AAS server and registries do not
support semantic queries, in the sense that there is no straightforward
way to look up assets and AAS elements based on their semantic iden-
tifier. Based on the challenges identified above, we formulated two
questions that are explored in this work:

1. How can RDF-based models be reused in the modelling of Asset
Administration Shells, such that
(a) the logical structure of the original model is maintained;(b) the

AAS model includes semantic provenance.
2. How can Semantic Web Technologies, such as RDF and SPARQL, be

used to improve the discoverability of assets in a distributed Asset
Administration Shell environment, to enable

(a) integrated querying the AASs and some information model;
(b) querying in terms of the data model referred to by the semantic

identifiers.

In this paper we discuss the merits of both the RDF and AAS meta-
models and explore ways how the models can complement each other.
We contribute to the current state of the art research by presenting two

novel approaches to enhance the interoperability between RDF- and
AAS-based models and preliminary results of their implementations. The
first approach describes how to incorporate RDF-based data models in
AAS modelling, and the second describes how RDF can be combined
with AAS to improve discoverability of assets in Industry 4.0. We pro-
vide a methodological description and proposed practical integration
connected to the development process we are currently in.

We present these ideas based on the experience obtained in the
MAS4AI project, in which research is conducted on the application of
multi-agent systems (MAS) in modular production environments. This
includes the ability to query a general knowledge base describing the
system, as well as contacting individual agents and assets via their AAS
to coordinate and collaborate on the execution of specific tasks. Within
the MAS4AI project the semantic models fulfil a crucial role in enabling
a plug & play solution where agents may configure themselves and adapt
to the conditions of the framework in which they are deployed. These
models enable the adoption of digital twin technology in e.g. the auto-
motive sector, lowering lead times in the low volume and high
complexity manufacturing industry, and support predictive mainte-
nance of machines in high volume production, leading to optimized
production processes with less downtime. The approaches proposed in
this work are tested in collaboration with pilots involved in the project.

The paper is structured in the following way. Section 2 outlines the
current state-of-the-art research related to using AAS as a modelling
technology in manufacturing and how it can be combined with RDF.
Section 3 provides background information and specifications of the two
metamodels respectively, including existing methods to combine them.
Section 4 describes the two approaches, providing theoretical founda-
tions and definitions. Section 5 describes an implementation of the
proposed methods and preliminary results. Section 6 discusses the
findings, their limitations, and recommendations for next steps. Finally,
Section 7 concludes with a summary of the obtained insights.

2. State of the art

Currently within industry there is a variety of information models
and data representation methods which implement little or no general
semantics. However, to be able to achieve interoperability and create

Table 1
Overview of rules (SWRL human readable syntax (Horrocks et al., 2004)) implemented in the tool to convert an RDF-based model into a AAS template.

Rule antecedent AAS element
[Class]

1 rdf:type(?x, sh:NodeShape)
∧ mas4ai:hasInterface(?x, ?i)

Asset Administration Shell
[aas:AssetAdministrationShell]

2 rdf:type(?x, sh:PropertyShape)
∧ (not sh:class(?x, ?c))
∧ (not sh:datatype(?x, rdf:langString))

Property
[aas:Property]

3 rdf:type(?x, sh:PropertyShape)
∧ sh:datatype(?x, rdf:langString)

Multi Language Property
[aas:MultiLanguageProperty]

4 rdf:type(?x, sh:PropertyShape)
∧ sh:class(?x, ?c)
∧ mas4ai:hasInterface(?c, ?i)

Reference Element
[aas:ReferenceElement]

5 rdf:type(?x, sh:NodeShape)
∧ (not mas4ai:hasInterface)(?x, ?ix)
∧ sh:targetClass(?x, ?c) ∧ sh:class(?p, ?c)
∧ sh:property(?n, ?p)
∧ mas4ai:hasInterface(?n, ?in)

Submodel
[aas:Submodel]

6 rdf:type(?x, sh:NodeShape)
∧ (not mas4ai:hasInterface)(?x, ?ix)
∧ sh:targetClass(?x, ?c) ∧ sh:class(?p, ?c)
∧ sh:property(?n, ?p)
∧ (not mas4ai:hasInterface(?n, ?in))

Submodel Element Collection
[aas:SubmodelElementCollection]

7 rdf:type(?x, sh:PropertyShape)
∧ (not sh:maxCount(?x, 1))

Submodel Element Collection
[aas:SubmodelElementCollection]

8 rdf:type(?x, sh:NodeShape)
∧ mas4ai:hasInterface(?x, ?i)
∧ sh:property(?x, ?p) ∧ sh:datatype(?p, ?d)

Submodel
[aas:Submodel]

S. Rongen et al.

Computers in Industry 148 (2023) 103910

3

reusable and meaningful models, it is essential to add a semantic layer.
There are different methodologies, such as the one proposed by Hilde-
brand et al (Hildebrand et al., 2019). that aim to convert existing data
sources in factories into RDF (RDF Working Group, 2014). Or the
structure provided by the Reference Architecture Model Industry 4.0
(RAMI4.0), in which the information layer explicitly positions the need
for information modelling. The German organization Platform Industry
4.0 has defined its own semantic model, the Asset Administration Shell
(AAS) (Bader et al., 2021; 2022). This model can be used to describe
different types of assets in a production environment and should
improve interoperability in industry. The work of Kamburjan et al
(Kamburjan et al., 2022). tackles this issue by presenting a method for
structural reconfiguration of digital twins using asset models in combi-
nation with semantic web technologies. Overall research has been
conducted on how to not only add semantics to industry, but also how to
bridge the gap between the two commonly used models - RDF and AAS.

The first work that tried to connect the AAS and RDF modelling
worlds by Grangel-González et al (Grangel-González et al., 2016a).
focused on how to create an RDF-based model for an AAS. They present
a RDFS-based vocabulary, which provides definitions for all AAS com-
ponents, and a practical example of the semantic mapping for the
modelling of a servo motor controller. This work is the first to address
the question of how the benefits of RDF can be transferred towards an
AAS model. A method is discussed which introduces a semantic layer to
an AAS, now commonly called the Semantic AAS. This concept is further
extended by Bader and Maleshkova (Bader and Maleshkova, 2019), who
propose a method to map an existing AAS into an RDF Schema, such that
it is possible to query the created model. This way the benefits of having
an RDF-based model, such as being able to query and reason about the
data, are transferred to the data encapsulated in the original AAS. This
work is the first to present a mapping from an XML- to RDF-based model
for the purpose of generating a semantic AAS.

RDF is used more commonly as a way to enrich the AAS model by
providing a semantic definition for all the elements of the model. This
approach, employed by Grangel-González et al (Grangel-González et al.,
2016b)., demonstrates one of the main ways in which RDF can be used in
this context. In their work the authors present how to create semanti-
cally enriched AASs for the use case of modelling sensors in legacy
systems. They argue that combining RDF and AAS can bring benefits
such as smooth integration of existing standards like OPC UA, Auto-
mationML, and ECLASS; a unified way to represent and identify relevant
entities; and simplified integration of data from different objects.

Another solution to represent semantics in industry data has been
proposed by Textor et al (Textor et al., 2021). In their work the authors
introduce the BAMM Aspect Meta Model (BAMM), which represents a
digital twin including semantics. An aspect model contains both runtime
and non-runtime data about a given asset, and is in that way similar to
the AAS. BAMM represents an aspect model defined through an RDF
vocabulary and SHACL rules. It can represent information about a digital
twin in the shape of a graph. Recently, there have been developments
towards converting BAMM to AAS, so that the AAS models can benefit
from the already expressed semantics .1

Ocker et al (Ocker et al., 2021). provide a framework for checking
compatibility between components by representing existing Digital
Twins as semantic AAS models and converting them to RDF. They use
the new representation to run set of checks using SHACL shapes and
SPARQL queries. Here the AAS serves as a connection element between
the physical asset, and the semantic model that can be reasoned over.
This supports our position, that the AAS and RDF can be used to com-
plement each other. The concept of transforming AAS models to
different formats and increasing its capabilities is further explored in the
work of Braunisch et al (Braunisch et al., 2021)., where an approach is

presented towards producing SDKs in different languages, however do
not yet tackle the topic of RDF aside from mentions for future research.

At the moment of writing, to the best of our knowledge, there is no
other work which discusses how AAS models can be created from RDF-
based schemas, as we propose in this paper. The current state-of-the-art
looks at how to create an RDF representation of an AAS (Semantic AAS)
or how an AAS model can be mapped onto an RDF-based schema, but
not the other way around - the generation of a basic AAS model from an
already existing RDF-based model. The development which can be
considered similar is the generation of AAS descriptions from BAMM
models.2 This, however, is limited to models based on BAMM and the
approach cannot be replicated for more general RDF-based models. Our
approach goes further and allows one to reuse the large amount of
already existing semantic models in RDF and reference to their URIs
directly. This would greatly increase the number of easily implement-
able AAS models, while preventing divergence in semantic models by
remodelling the same concepts.

Similarly, the notion of using RDF next to AAS as a storage for
different types of information has not been investigated. What is
significantly different in this approach compared to the current state-of-
the-art is that, instead of taking one of the semantic models as starting
point and mapping it into the other, the method focuses on how the RDF
and AAS can be used in parallel. The main benefit of this approach is that
it can combine the benefits of both metamodels, by reusing data and
functionalities offered by the other metamodel. As the RDF and AAS
models represent different sets of data, one describing the environment
and providing high-level descriptions (RDF) and one with more opera-
tional machine data (AAS). In this case the RDF graph provides a kind of
search index for AASs that goes beyond the standard AAS capabilities,
and makes it more straight-forward and efficient to query and discover
AASs. This enables the usage of AAS in larger scale applications. Both of
those novel approaches are important in improving the integration of
semantics within industry 4.0 models.

3. The structure of the metamodels

In this section we outline the formal structure of the two metamodels
RDF and AAS by providing relevant definitions, important specifications
and other details which are key to understanding the methodologies

Fig. 1. Structure of an AAS (Bader et al., 2022, 2021).

1 https://industrialdigitaltwin.org/en/news-dates/idta-and-omp-collaborate-
3837 2 https://github.com/OpenManufacturingPlatform/sds-sdk/issues/113

S. Rongen et al.

Computers in Industry 148 (2023) 103910

4

presented in this work. Furthermore, we also discuss the current most
common approach towards using RDF and AAS within Industry 4.0.

3.1. The resource description framework

The resource description framework (RDF) (RDF Working Group,
2014) is a standard for describing resources and defining ontologies in
the semantic web. It provides a high level meta language, commonly
extended with the Web Ontology Language (OWL) (OWL Working
Group, 2012) or Shapes Constraint Language (SHACL) (RDF Data
Schapes Working Group, 2017). The metamodels can be used to describe
concepts, their properties and the relations between them. They are
structured as graphs, often referred to as knowledge graphs due to the
extensive context they can provide for even a single instantiated data
point. These semantic web ontologies, or RDF graphs, may adhere to
FAIR (Wilkinson et al., 2016) data principles. The usage of (derefer-
enceable) unique resource identifiers (URIs), in combination with on-
tologies, make data findable, accessible, interoperable and reusable.

The RDF graphs can be queried or manipulated using SPARQL
(SPARQL Working Group, 2013). Given, that within the semantic web
data models are considered first class citizens, the SPARQL query lan-
guage can be used to query the data model (ontology) used, just as easily
as it may be used to query the instance data being described in a graph.
This flexibility in combining instances, models and other meta data
provides a powerful way of representing and using the knowledge
modelled in the graph.

RDF-based ontologies are already used in a variety of domains such
as public governance (P. O. of European Union, 2017), life science
(Belleau et al., 2008), or descriptions of ”common knowledge” (Wiki-
data gorup, 2019). Moreover, these different initiatives relate to each
other and may reference each other’s definitions, as is presented well by

the linked open data cloud (LOD cloud group, 2020).

3.2. The Asset Administration Shell

The Asset Administration Shell (AAS) is an information model which
describes an asset, such as a manufacturing resource, a product, a piece
of software, a process, etc. This description is a vital part of a digital twin
in which both the data, as well as the models and applications using that
data, require a semantic description to be reused for various applica-
tions. The structure of the created model, shown in Fig. 1 contains a
collection of different generic and specific submodels, which together
create the complete asset description. Each submodel contains a set of
submodel elements of different types. For example, datatype properties
with a literal value are modelled as a Property, while references to other
AASs (elements) or external objects are modelled using a Reference
Element. Multiple submodel elements can be bundled in a Submodel
Element Collection. Each submodel template can be reused between
different AASs, contributing to a library of common and standardized
semantic data-models.3 For more details about the different AAS
element types and their usage we refer to the specification (Bader et al.,
2022) and RDFbased ontology.4

Concepts and relations in the AAS can have a semantic identifier,
which is a global unique URI, that can be used to refer to external
concept definitions, which can be a standardized submodel from some
library or another type of data model, like an ontology. Besides these
metadata, the AAS also allows adding supporting documents to the shell,

Fig. 2. Overview of mapping from UML class diagram to components in the AAS.

3 https://admin-shell-library.eu/ is a repository containing template models
4 https://github.com/admin-shell-io/aas-specs/blob/master/schemas/rdf/

rdf-ontology.ttl

S. Rongen et al.

Computers in Industry 148 (2023) 103910

5

such as 3D models or user manuals. Finally, the AAS models can be
uploaded to an AAS server which exposes standardized APIs for inter-
action. Clients can interact with the AAS model, as well as its instance
data using REST.5 In the background the AAS server can integrate to a
machine for example using the common OPC UA6 protocol to synchro-
nize data between the physical asset and its digital twin AAS and also
control the asset. For more detailed specifications, please refer to Bader
et al (Bader et al., 2022, 2021).

Despite the structures and semantics supported by the AAS meta-
model, it lacks features one may expect when used to RDF-based on-
tologies. Specifically, the AAS is not strong typed, meaning it can be
difficult to determine what type of individual one is looking at. RDF
offers us a model to add typing to individuals and solve this issue. Next
to this, Bouter et al (Bouter et al., 2022). concluded that the AAS model
is currently not suitable for querying large sets of AASs. Mainly because
interaction happens through the standardized, but less flexible pre-
defined API. Lastly, as the AAS is still relatively new, the tools for model
creation are not mature and the set of standardized models is still
limited.

3.3. RDF as a semantic base for AAS

The AAS metamodel has an element specifically for defining se-
mantic identifiers. In most cases those identifiers are used to refer to
external definitions in standards like ECLASS (Belyaev et al., 2021).
Ideally, a semantic identifier is provided for every element in the AAS,
which refers to organization internal or external standardized data
models. The semantic identifiers are conceptually similar to the URIs
used in RDF modelling and serve to reference a larger semantic defini-
tion from a small local model definition. The most basic way to bridge
from an AAS to RDF model is by using already existing URIs as semantic
identifiers. This allows users of the AAS to find and use the concepts
defined on the semantic web for further definitions or relations. This is
part of the AAS modelling approach, originally presented by Bouter et al
(Bouter et al., 2021). Within the MAS4AI project, this method is applied
to add references from AAS concepts to the larger standards on which
the models are based, such as the FIPA multi-agent modelling standard .7

However, as the current AAS tooling is limited in how it makes use of
these semantic identifiers, for example, current tooling does not support
derefencing them to present the external data, the usage of this approach
in practice is limited to purely semantic applications. Developers in
practice often don’t need, or see the use of, using these semantic iden-
tifiers beyond them being just a unique identifier used within the AAS
model. Moreover, even when adopting this approach fully, it is limited
due to the lack of support for using the semantic identifier in the AAS
API, making it difficult to use for anything other than referencing from
an AAS model to a larger semantic knowledge base.

4. Methodology

We propose two methods for integrating RDF and AAS, which
leverage the benefits of both metamodels. The two described methods
aim to keep semantics easily usable through the standard model and
interfaces provided by the AAS, while also building on the rich seman-
tics available in RDF based ontologies. In this section we outline the
foundation of our ideas and in the next section we explain the pre-
liminary implementation which we are developing in the MAS4AI
project.

4.1. Generating an AAS template from RDF-based data models

Creating AAS models can be difficult, due to a lack of tooling, it being
a niche domain and the general complexity of information modelling. As
such, tools that make it easier to make an AAS model, or reuse already
existing information models would be highly beneficial in speeding up
development, improving model quality and ensuring semantic interop-
erability between models. One of the ways to aid the creation of AAS
models would be by supporting the easy reuse of existing models. Pakala
et al (Pakala et al., 2021). propose a mapping from the Web of Things
Thing Description, which is an RDF-based data model, to AAS sub-
models. Similarly one of the AAS developer tools contains a solution to
import an AAS from a model defined according to the BAMM.8 We take
this idea a step further and argue that a general RDF-based semantic
model (ontology) can be used to generate a basic AAS (template). An
automated conversion from a semantic model to an AAS helps to reuse
existing knowledge and ensures the semantic references are aligned with
existing data models. The generated AAS should contain the information
from the semantic model it is generated from, but can be extended with
additional (standardized) submodels for aspects that are not covered by
the existing model.

The starting data model can be in different shapes and formats, so we
describe some fairly generic mapping rules below that are always
applicable. The generic rules can be formalized and tailored to the
specific modelling language that is implemented, for example OWL 2
(OWL Working Group, 2012) or SHACL (RDF Data Schapes Working
Group, 2017). Fig. 2 gives an overview of the mapping concept and rules
described below, following Requirement 1a.

1. The class for which we generate an AAS is mapped to a submodel.
The other classes are only considered if they are in the domain or
range of a relation.

2. For relations two main cases can be distinguished:
a. If the relation has as domain the class for which an AAS is

generated, it is mapped to a submodel.
b. Otherwise, the relation and its range class are mapped to a sub-

model element collection. This collection can in turn have nested
submodel elements mapped from the relations with domain the
class corresponding to this collection.

3. Relations that have as range another class for which an AAS is con-
structed, are mapped to a reference element.

4. Attributes have the most straightforward mapping, as they have as
range a value with a certain type. In general, attributes therefore map
one-on-one to a property submodel element.

5. Relations and attributes with multiplicity bigger than one are
embedded in a submodel element collection.

Besides the mapping rules described above, it is important that the
AAS elements contain a reference to the (unique) identifier for the class,
relation, or attribute it was mapped from. This reference ensures that it
is possible to find the semantic definition and context of the element
(Requirement 1b. Besides that, the semantic identifiers can also be used
for integrating data from different AASs using the approach we describe
in Section 4.2.

The main advantages of this approach are that throughout the con-
version process the identifiers from the ontology are preserved and the
URIs from the ontology are used as semantic identifiers within the AAS
model. This allows the continued usage of the RDF graph as a semantic
base if desired. Furthermore, it aids modellers and speeds up the
modelling process by generating (partial) AAS templates from already
existing (formal) models.

5 https://restfulapi.net/
6 https://opcfoundation.org/about/opc-technologies/opc-ua/
7 http://www.fipa.org/index.html

8 https://openmanufacturingplatform.github.io/sds-documentation/ sds-
developer-guide/tooling-guide/java-aspect-tooling.html#mapping-aas

S. Rongen et al.

Computers in Industry 148 (2023) 103910

6

4.2. RDF store as a search index for AASs

Whereas the method described above aids in the design time of an
AAS model, this approaches focusses on the interaction that can happen
between the two metamodels at runtime. They can be used together in a
single deployment where both modelling methods reinforce each other.
Bouter et al (Bouter et al., 2022). explore the question of how to query
AASs and conclude that currently the AAS is not suitable to be queried in
large numbers. For a single AAS it is possible to convert it to an RDF
graph (Bader and Maleshkova, 2019) and then query it. However, the
proposed model is an almost one-on-one mapping of the AAS meta-
model, which contains much indirection and make it difficult to query as
a graph. We argue that the AAS data can be mapped to an RDF graph
according to a custom RDF-based model, when semantic identifiers are
present that refer to this model.

When there is a need to search through a large set of AASs, we argue

that an RDF store can be of added value. Let us consider the use case of a
MAS controlled manufacturing environment. Each agent in the envi-
ronment is represented by an AAS, combined with a real-time connec-
tion to the physical or digital factory component. Different agents will
implement a different set of skills depending on their type. To find an
agent that has the exact required capability, we can create a dedicated
graph containing the relevant information needed for the MAS to query.
Using the RDF store we can easily find the small set of AASs of interest
and then connect to these directly for more detailed information about
the agent.

More general, we propose to use an RDF store to create an integrated
view of the assets and their properties exposed via an AAS. The inte-
grated view can then be used to answer more complex questions
(Requirement 2a), like the one described above. One of the main ad-
vantages of RDF is its natural graph structure, which gives the flexibility
required for integrating data in a dynamic agent-based modular

Fig. 3. Relating AAS elements to an RDF graph.

Fig. 4. UML diagram of the example robotic arm model (gray classes are the assets for which an AAS is generated).

S. Rongen et al.

Computers in Industry 148 (2023) 103910

7

production environment. For example, to deal with a situation where
new types of agents are integrated into the system.

We envision a future system that populates the RDF store with data
from the AAS according to a data model which references semantic
identifiers used on elements in the AASs. Fig. 3 gives an impression of
how AAS elements map to statements in the RDF store (Requirement
2b). To keep the RDF store up to date, we need to synchronize data when
updated in the AAS. For this purpose, an event driven approach can be
used, where events are generated when certain AAS elements change
(Bouter et al., 2022). With a synchronization mechanism in place the
RDF graph can be used as a digital shadow that the agents can use for
decision making.

5. Implementation

In the previous section, we described the theoretical foundation
behind our proposed methodologies. In this section we will present our
current implementation and corresponding results as achieved within
the MAS4AI project. As this is an active area of development we present
only the current work and in Section 6 we will evaluate what are the
next steps.

5.1. Generating an AAS template from RDF-based data models

To support the development of AAS models, and support semantic
interoperability between different models we developed a tool to auto-
matically convert from an RDF-based model to an AAS template model.

The implementation can generate an AAS template from SHACL-based
models. SHACL (RDF Data Schapes Working Group, 2017) is a more
recent addition to the semantic web stack and we observe that it is used
more regularly in the manufacturing domain. Furthermore, we argue
that it fits better with the (current version of the) AAS metamodel, which
has only limited expressiveness, for example it does not support complex
value constraints that can be defined in OWL (OWL Working Group,
2012) ontologies. The tool implements the mapping rules proposed in
Section 4.1. Table 1 gives an overview of the most important rules
implemented by the tool. The right column shows the AAS element to
which resources in the SHACL Shapes graph are mapped that adhere to
the rule defined in the left column.

Rule 1 defines the objects to map to an AAS. The custom property
mas4ai:hasInterface is used to mark the node shapes (representing an
asset) for which the tool should generate an AAS. Rule 2 and 3 defines
that datatype property shapes should be mapped to either a Property or
MultiLanguageProperty, if the datatype is a language string. Property
shapes that refer to a class that is mapped to an AAS, a ReferenceElement
is created (rule 4). If the shape refers to a class that is not mapped to an
AAS, then the tool maps it to a Submodel if the property has domain an
object that is mapped to an AAS (rule 5) and to a Sub-
modelElementCollection (SMC) otherwise (rule 6). Property shapes with
cardinality not equal to one are nested in a SMC, so rule 7 defines that for
those shapes an SMC will be created. Rule 8 defines the creation of a
Submodel for all datatype properties with domain an ’AAS class’. All
rules to construct the components are defined in SPARQL CONSTRUCT
queries. Subsequently, a set of SPARQL INSERT queries are used to add

Fig. 5. AAS templates generated from the robotic arm ontology (the AssetInformation components are omitted for brevity).

S. Rongen et al.

Computers in Industry 148 (2023) 103910

8

the relations between the components. The tool is implemented using
Python RDFLib.9 The source code and SPARQL queries are available on
Github.10

We demonstrate this tool using a simple robotic arm ontology (see
Fig. 4), however, the underlying logic is generic and supports the model
constructs described in Table 1. Besides the robotic arm, we can also tell
the tool to create an AAS for the Tool class. Running the publicly
available code we find the AAS models provided in Fig. 5. Both the
shapes and the resulting AAS templates can be found in the Github
repository.

As expected, we find two AAS models, one simple model for the tool
containing only one submodel and a slightly more elaborate AAS model
for the robotic arm containing more submodels and properties. Although
this may not provide a full description of the asset it provides a starting
point to the modeller which is fully aligned with an earlier model,
making it simple to reuse pre-existing standards and nudging the mod-
eller into AAS modelling best practices, such as breaking up concepts
into separate submodels.

Within real life manufacturing environments there may be a vast
amount of assets, varying from software agents to manufacturing
equipment to the products being made. As such, speeding up the

modelling process may make the difference between proper semantic
models being prohibitively expensive to make and them being the easy
solution to representing some concept in the organisation.

5.2. RDF store as a search index for AASs

In the MAS4AI project we designed a solution that implements the
method described in Section 4.2. The solution contains an RDF graph
according to a semantic model, as well as an AAS server containing the
AAS models for individual assets. These AAS descriptions may be fast to
update, contain a large number of data elements and can be integrated
with operational systems, such as manufacturing equipment or software
agents. However, the AAS does not support directly querying for assets
matching certain properties. For this, the RDF store is used, it describes
the environment and the slower to update, or completely static, asset
data. These data can be queried to find individual assets of interest,
which identifiers point to the AAS model of these assets. This provides
the flexibility, interoperability and reasoning power of RDF for the
purpose of discovery. While also leveraging the ease of integration and

compatibility of the AAS.
The downside of this approach is that when updating metadata it is

not as clear where this new information should be stored - is it to be
updated in the AAS, the RDF, or both? This may differ dependent on the
implementation and, although it could be determined by querying the
model, we designed a generic solution which abstracts this synchroni-
sation away from the individual agents and instead constructs the RDF
graph based on the AAS model. This approach works by duplicating
relevant information from its AAS representation to the RDF knowledge
base to enable further analysis. The primary advantage is that it sim-
plifies integration for agent developers, who only need to bother with
the integration of the AAS and the asset it represents. In our imple-
mentation we assume that the AASs are the source of which a subset is
synchronized to the RDF store. The current implementation only sup-
ports pull-based updates of the data in the RDF store, and the complete
AAS representation has to be recreated when an AAS element is updated.
Note that every AAS is stored in its own graph context, which makes it
straight-forward to insert, update, or delete the representation, for
example using the Graph Store Protocol.11

Algorithm 1. Construct RDF graph for AAS elements for e∈AAS do.

Algorithm 1 gives a simplified view of the logic to construct an RDF
graph for AAS elements and their semantic identifiers. The algorithm
loops over all elements in the AAS (e∈AAS), if the semantic identifier (s)
related to the element exists in the given RDF-based model (Gmodel), then
depending on the type of the semantic identifier a different statement
(subject, predicate, object) is added to the graph GAASs. The following
functions are used:

• iri(e): get the identifier iri of the element e;
• value(e): get the value of the property element e;
• valueType(e): get the value type of the property element e;
• parent(e): get the parent element of the element e in the AAS.

5.2.1. Discoverability example
We demonstrate the advantage of an RDF graph as a search index on

AASs with a small example, based on the robotic arm AAS template
presented in Section 5.1. Suppose we have a production environment
with multiple robotic arms and instantiations of the robotic arm AAS

9 https://github.com/RDFLib/rdflib/
10 https://github.com/gitmpje/shacl2aas

11 https://www.w3.org/TR/sparql11-http-rdf-update/

S. Rongen et al.

Computers in Industry 148 (2023) 103910

9

template. Next to that we have a simple (SKOS12) taxonomy of different
tools. Subsequently, we apply the mechanism proposed above and for
example the ex:hasTool, ex:toolType, and ex:maximumWeight proper-
ties are indexed in the RDF store. Now, we can easily find all AASs for the
robotic arms with some kind of ex:Gripper that can carry a weight above
a certain value using one SPARQL query on the integrated data set that
includes a property path on the SKOS taxonomy.

In comparison if we would only rely on the standard capabilities of
the AAS server and registry (Bader et al., 2021), we would have to make
a request to all AASs to retrieve their type and weight, and subsequently
make the comparison to our defined values.

5.2.2. Business analytics example
The RDF store contains an integrated overview of all the assets and

can be used to obtain managerial insights, which often involve aggre-
gation. A typical example of this is to count the number of assets that can
do a certain operation. The query below could be used to count the
number of robotic arms for every type of tool.

5.2.3. Operational insights
When the RDF graph contains real-time information about the state

of the assets, this information can be used to obtain insights for opera-
tions planning. For example, the query below lists all robotic arms with
an ex:TwoFingerGripper, that are idle and can be used to plan certain
operations on.

5.2.4. Reasoning
One of the benefits of using RDF in combination with (OWL) ontol-

ogies is the reasoning capability. This could be applied, for example, for
the conversion of unites of measure. Suppose that grippers from
different suppliers are used that define their specification using different
units of measure. If those units are defined using a units of measure 12 https://www.w3.org/TR/skos-reference/

S. Rongen et al.

Computers in Industry 148 (2023) 103910

10

ontology like qudt,13 then a reasoner can be used to automatically
convert the metrics to the same unit and compare the specifications.

Another use case for reasoning and the application of ontologies is
the alignment of vocabularies. In a scenario where tools from multiple
suppliers are used, the suppliers will often use a different vocabulary for
describing the tool. The alignment of the vocabularies can be done based
on an ontology, which can for example define that both ex:maxWeight
and ex:maximumCarryWeight are sub properties of ex:maximumWeight.

5.2.5. validation
SHACL can be sued to define constraints on the data that is available

through the graph. A typical is the constraint on the cardinality of certain
properties. For example, we can say that every robotic arm should have
exactly one status out of the set of possible statuses.

Besides data validation SHACL can also be used to define and vali-
date operation constraints. In combination with logic problem solvers, it
can also be used to generate configurations (Bischof et al., 2018). The
example shape below defines that a robotic arm can only have at
maximum one ex:TwoFingerGripper tool.

As these examples demonstrate the an RDF graph which can be
queried, or even used for data validation enables valuable use cases in
Industry which cannot be implemented using the AAS alone.

In the MAS4AI project we test the proposed design, and specifically
the advantage of the using the RDF store for the purpose of AAS dis-
covery. Whether the AAS to RDF implementation as described in Section
5.1 is used is left up to the agent developers as it is an optional imple-
mentation of the data synchronisation implementation of the frame-
work. The RDF graph for searching is deployed in the pilot lines which
all contain multiple agents of multiple different types as well as poten-
tially a number of physical assets. This situation is representative for a
production environment regarding the interaction between RDF and
AAS and the difficulty in finding and integrating with specific assets.

6. Discussion and limitations

In this paper we explored how the meta languages of RDF and AAS
may be combined to support industry use cases. We found that the AAS
metamodel fulfils similar semantic interoperability requirements as
RDF-based ones, however both approach the interoperability challenge
from different angles. The AAS model is designed to provide a stan-
dardized interface to data describing assets, while RDF is a more general
framework offering more flexibility compared to the AAS. As the AAS
model is tailored to the manufacturing domain, it makes it easier for
engineers and domain experts to develop a model that fits their needs.
Furthermore, the AAS concept in general goes beyond the modelling of
assets and supports easy integration with commonly used machine
interfaces.

As there is already experience and existing work on RDF-based se-
mantic models, we believe that the AAS model development can benefit
from this. As a first step in this direction we propose a mapping from
semantic models to elements in the AAS. Allowing generation of AAS
models based on already existing RDF ontologies. This aids developers in
defining AAS models with meaningful semantic identifiers that can be
dereferenced to get the semantic definition and context of the AAS
element. This provides a solution to question 1 as posed in the
introduction.

Next to the alignment of semantic RDF-based models with AAS
models, we found that combining both concepts in a single solution
design can be of added value in modular production environments. In
the MAS4AI project an agent-based digital twin is developed, which is
used to control a (simulated) modular production environment. For this
system to work, complex questions have to be answered regarding the
environment in which the agents operate. The current AAS framework
does not efficiently support this. Introducing a semantically interoper-
able RDF store provides the needed capabilities and flexibility to answer
these more complex queries. As demonstrated in a number of examples,
this approach allows us the solve the problem posed in question 2 in the
introduction.

6.1. Limitations

The current implementation which we provided in Section 5 pro-
vides a proof-of-concept of the combination of AAS and RDF meta-
models. In this work we focused on explaining the approaches and their
applications, therefore the evaluation of the approaches and their
implementations in terms of performance and scalability is limited.
However, the first results show that the approaches are promising and a
more extensive evaluation in an experimental and practical setup would
be a next step.

The RDF to AAS mapping in Section 5.1 only covers relatively simple
data models, and for example not the more complex constraints that can
be expressed using SHACL and even more using OWL2. This limitation is
mainly due to the limited expressiveness of the AAS metamodel, which
does not support complex value constraints. However, as the AAS 13 https://www.qudt.org/doc/DOC_VOCAB-UNITS.html

S. Rongen et al.

Computers in Industry 148 (2023) 103910

11

metamodel is still in development it might be possible to map more
complex ontologies and constraints to similar constructs in the AAS
model. An alternative is to only provide the semantic identifier that can
be dereferenced to discover the definition and constraints for the class or
property at hand. As we argued before, it would be of added value if AAS
tooling would support dereferencing the semantic identifiers, and
optionally also automatic validation of the constraints defined in the
referenced semantic model.

The main limitation of the second approach, using an RDF graph as a
search index for AASs, is that it depends on properly designed models
that align with each other. In most cases this requires sufficient
knowledge of RDF and AAS modelling, which might not be present in
every organization. However, note that the concept proposed in Section
4.1 can help to align an AAS model with an RDF-based model. Addi-
tionally, the current framework and implementation do not support
push-based and targeted updates of AAS elements and therefore there is
no guarantee that changes in the AASs are directly synchronized to the
RDF store.

6.2. Future work

Both described approaches will be tested in a number of real-life use
cases in different manufacturing settings. More specifically, the method
presented in Section 4.2, combining the RDF and AAS framework, will
be applied in an agent-controlled simulated production environment as
part of the MAS4AI project. This provides an opportunity to evaluate
how the solutions behave in a scaled up test case with assets repre-
senting a manufacturing environment. In this work we present the ap-
proaches and demonstrate their functionality in a small proof-of-
concept, a more extensive experimental evaluation of both approaches
is required to validate and quantify the applicability. In the experiments
the data size should be considered, as well as the complexity of the
models and data set. Specifically for the conversion from RDF-based to
AAS models the performance and scalability using different techniques
can be evaluated. The current version implements all rules in SPARQL,
but another approach could be to use SWRL rules in combination with a
reasoner.

Independent from testing the implementations presented in Section
5, we would also like to extend the described methods and increase their
usability in different settings. For example, an extension of the RDF to
AAS mapping to support more complex graph patterns and mapping
from OWL-based models. Another improvement that should be investi-
gated is a more efficient synchronization mechanism to keep the RDF
store up to date with the data exposed by AAS servers. One solution to
consider is a push-based and targeted update of data in the RDF store
when an AAS element is updated. The current AAS specification does not
support such a mechanism yet, but the BaSyx eventing extension14 can
be used for prototyping.

Beyond the scope of the currently suggested solutions, we propose
two research directions for future work. Firstly, one may define the
standard interfaces exposed by AAS servers on an RDF store, allowing
interaction with an RDF graph as if it’s an AAS and providing the ease of
integration of the AAS, without limiting the expressiveness and capa-
bilities of an RDF based knowledge graph. Secondly, we recommend the
development of AAS modelling tools which dereference URIs, which
should make it easier to reuse predefined concepts in the creation of AAS
models and stimulate the use of proper semantic identifiers.

Finally, we identified the need to take this research and explore
further how it supports ongoing standardization processes. Specifically,
we are seeing the AAS metamodel being extended and surrounding tools
being developed to make it more powerful as a modelling language. For
example, the work by Bayha et al (Bayha et al., 2020). provides an
approach on how to model capabilities in the AAS, which fits well with

the use case we envision for the RDF store solution described in Section
4.2. More research should be conducted on how these metamodels can
converge and what this means for implementations and usage.

7. Conclusion

In this paper we formulated two challenges and questions on the
integration of semantic technologies and the Industry 4.0 Asset
Administration Shell. Subsequently, we propose and explore two novel
approaches that addresses those questions. The first challenge is how the
Industry 4.0 AAS metamodel can be combined with semantic RDF-based
metamodels. We demonstrate the conversion from RDF-based models to
AAS models, such that the structure of the original model is maintained
and the AAS model is annotated with references to the original model
using the semantic identifiers that are part of the AAS metamodel. This
reduces the modelling effort when developing a new AAS model for an
asset and avoids duplicating information, as the AAS model can refer to
information and knowledge represented in an RDF graph. The second
challenge is the semantic discovery of assets. We present an approach,
which demonstrates how RDF and AAS can be used next to each other.
Specifically, we showed how a solution combining both modelling
paradigms and their frameworks provides more (semantic) capabilities
compared to using the frameworks in isolation. The RDF store can be
used to execute more advanced queries that touch multiple AASs and
possibly also an (RDF-based) information model.

We propose both approaches connected to our work in the MAS4AI
project and suggest implementations based on the pilots in this project.
Initial results suggest that these methods meet the requirements and are
usable by developers of agents in the MAS4AI framework, while
providing the additional functionality required by the pilot lines.
Therefore, we think the proposed solutions can also be of interest in
other settings, so in this work we generalize them. However, we
recognize that a broader evaluation of the approaches is necessary, so
we hope this work inspires others to apply and validate the approaches
in their (industrial) setting and experiment with the generation of AAS
models based on existing RDF models. Next to that, we intend to
continue the development and validation efforts with real-life
manufacturing use cases in the MAS4AI and possible follow-up projects.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data Availability

Data will be made available on request.

Acknowledgements

This project is supported by the European Union‘s Horizon 2020
research and innovation program under grant agreement No. 957204,
the project MAS4AI (Multi-Agent Systems for Pervasive Artificial Intel-
ligence for assisting Humans in Modular Production). We specifically
would like to thank our colleagues working in the MAS4AI project for
their support by providing insights in their use cases and application of
the AAS.

References

Bader, S., Maleshkova, M., 2019. The semantic asset administration shell. In:
International Conference on Semantic Systems. Springer, Cham, pp. 159–174.
https://doi.org/10.1007/978-3-030-33220-4_12.

S. Bader, B. Berres, B. Boss, A. Gatterburg, M. Hoffmeister, Y. Kogan, A. K̈opke, M. Lieske,
T. Miny, J. Neidig, A. Orzelski, S. Pollmeier, M. Sauer, D. Schel, T. Schr̈oder, M.
Thron, T. Usländer, J. Vialkowitsch, F. Vollmar, S. Madanska, Details of the Asset 14 https://wiki.eclipse.org/BaSyx_/_Developer_/_Extensions_/_Eventing

S. Rongen et al.

https://doi.org/10.1007/978-3-030-33220-4_12

Computers in Industry 148 (2023) 103910

12

Administration Shell. Part 2 - Interoperability at Runtime - Exchanging Information
via Application Programming Interfaces (Version 1.0RC02), 2021. URL: https:
//www.plattform-i40.de/IP/Redaktion/EN/ Downloads/Publikation/Details_of_the_
Asset_Administration_ Shell_Part2_V1.html.

S. Bader, E. Barnstedt, H. Bedenbender, B. Berres, M. Billmann,B. Boss, N. Braunisch, A.
Braunmandl, E. Clauer, C. Diedrich,B. Flubacher, W. Fritsche, K. Garrels, A.
Gatterburg, M. Hankel, S. Heppner, M. Hoffmeister, L. J̈anicke, M. Jochem, C.
Ziesche, Details of the Asset Administration Shell. Part 1 -The exchange of
information between partners in the value chain of Industrie 4.0 (Version 3.0RC02),
2022. URL: https://www.plattform-i40.de/IP/Redaktion/EN/ Downloads/
Publikation/Details_of_the_Asset_Administration_ Shell_Part1_V3.html.

A. Bayha, J. Bock, B. Boss, C. Diedrich, S. Malakuti, Describing Capabilities of Industrie
4.0 Components, Technical Report, Platform Industrie 4.0, 2020. URL: https://www.
plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Capabilities
Industrie40_Components.pdf?__blob=publicationFile&v=2.

Beden, S., Cao, Q., Beckmann, A., 2021. Semantic asset administration shells in industry
4.0: A survey. 2021 4th IEEE International Conference on Industrial Cyber-Physical
Systems (ICPS). IEEE,, pp. 31–38. https://doi.org/10.1109/
ICPS49255.2021.9468266.

F. Belleau, M.-A. Nolin, N. Tourigny, P. Rigault, J. Morissette, Bio2RDF: Towards a
mashup to build bioinformatics knowledge systems, Journal of Biomedical
Informatics 41 (2008) 706–716. URL: https://www.sciencedirect.com/science/artic
le/pii/S1532046408000415. doi:https://doi.org/10.1016/j.jbi.2008.03. 004,
Semantic Mashup of Biomedical Data.

A. Belyaev, C. Block, B. Boss, C. Diedrich, P. Juhel, W. Hartmann, O. Hillermeier, N.
Ondracek, S. Pfeifer, F. Scherenschlich, J. Schmelter, Modelling the Semantics of
Data of an Asset Administration Shell with Elements of ECLASS, Technical Report,
ECLASS, 2021.URL: https://eclass.eu/fileadmin/Redaktion/pdf-Dateien/
Broschueren/2021–06-29_Whitepaper_PlattformI40-ECLASS.pdf.

Bischof, S., Schenner, G., Steyskal, S., Taupe, R., 2018. Integrating Semantic Web
Technologies and ASP for Product Configuration (September). ConfWS 53–60.

Bouter, C., Pourjafarian, M., Simar, L., Wilterdink, R., 2021. Towards a comprehensive
methodology for modelling submodels in the industry 4.0 asset administration shell.
2021 IEEE 23rd Conference on Business Informatics (CBI). IEEE, pp. 10–19,
10.1109/CBI52690.2021. 10050.

C. Bouter, R. Wilterdink, R. Hindriks, C. Leeuwen, Representing the virtual: Using aas to
expose digital assets, in: Third International Workshop On Semantic Digital Twins
(SeDiT 2022), 2022. URL: https://ceur-ws.org/Vol-3291/.

N. Braunisch, M. Ristin-Kaufmann, R. Lehmann, H.W. van de Venn, Generative and
model-driven sdk development for the industrie 4.0 digital twin, in: 2021 26th IEEE
International Conference on Emerging Technologies and Factory Automation
(ETFA), IEEE Press, 2021, p. 1–4. URL: https://doi.org/10.1109/ETFA45728.2021
.9613164. doi:10.1109/ETFA45728.2021.9613164.

I. Grangel-González, L. Halilaj, G. Coskun, S. Auer, D. Collarana, M. Hofmeister, Towards
a semantic administrative shell for industry 4.0 components, in: 2016 IEEE Tenth
International Conference on Semantic Computing (ICSC), IEEE, 2016a, pp. 230–237.
doi:10.1109/ICSC.2016.58.

Grangel-González, I., Halilaj, L., Auer, S., Lohmann, S., Lange, C., Collarana, D., 2016b.
An rdf-based approach for implementing industry 4.0 components with
administration shells. 2016 IEEE 21st International Conference on Emerging
Technologies and Factory Automation (ETFA). IEEE,, pp. 1–8. https://doi.org/
10.1109/ETFA.2016.7733503.

Hildebrand, M., Tourkogiorgis, I., Psarommatis, F., Arena, D., Kiritsis, D., 2019.
A Method for Converting Current Data to RDF in the Era of Industry 4.0. Springer,,
Cham, pp. 307–314 doi:10.1007/ 978-3-030-30000-5_39.

Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M., 2004. SWRL:
a semantic web rule language combining OWL and RuleML, technical report. W3C.
URL: https://www.w3. org/Submission/SWRL/.

Industrial Digital Twin Association, Aas specs, https://github.com/admin-shell-io/aass
pecs/tree/master/schemas/rdf, 2022.

Kamburjan, E., Klungre, V.N., Schlatte, R., Tarifa, S.L.T., Cameron, D., Johnsen, E.B.,
2022. Digital twin reconfiguration using asset models. In: Leveraging Applications of
Formal Methods, Verification and Validation. Practice: 11th International
Symposium, ISoLA 2022, Rhodes, Greece, October 22–30, 2022, Proceedings, Part
IV. Springer-Verlag, Berlin, Heidelberg, pp. 71–88. URL: https://doi.org/10.1007/
978-3-031-19762-8_6. doi:10.1007/978-3-031-19762-8_6.

LOD cloud group, The linked open data cloud, 2020. URL: https://lod-cloud.net/.
MAS4AI Consortium, Multi-agent systems for pervasive artificial intelligence for assisting

humans in modular production, 2020. URL: https://www.mas4ai.eu/.
G. v Nederveen, R. Beheshti, P. Willems, Building information modelling in the

netherlands: a status report, in: W078-Special Track 18th CIB World Building
Congress, volume 361, Salford, United Kingdom, 2010, pp. 28–40. URL:
https://www.irbnet.de/daten/iconda/ CIB18802.pdf.

F. Ocker, B. Vogel-Heuser, H. Schön, R. Mieth, Leveraging digital twins for compatibility
checks in production systems engineering, in: 2021 IEEE International Conference on
Industrial Engineering and Engineering Management (IEEM), 2021, pp. 103–107.
doi:10.1109/IEEM50564.2021.9672892.

OWL Working Group, OWL 2 Web Ontology Language Document Overview, Technical
Report, W3C, 2012. URL: https://www.w3.org/ TR/owl2-overview/.

P. O. of European Union, Eu open data portal sparql endpoint, 2017. URL: https://data.
europa.eu/data/datasets/ eu-open-data-portal-sparql-endpoint?locale=en.

H.K. Pakala, C. Diedrich, K. Oladipupo, S. Käbisch, Integration of asset administration
shell and web of things, 2021. doi:10.25673/39570, online.

RDF Data Schapes Working Group, Shapes Constraint Language (SHACL), Technical
Report, W3C, 2017. URL: https://www.w3.org/ TR/shacl/.

RDF Working Group, RDF 1.1 Primer, Technical Report, W3C, 2014. URL: https://www.
w3.org/TR/rdf11-primer/.

Schröder, M., Schulze, M., Jilek, C., Dengel, A., 2021. Bridging the technology gap
between industry and semantic web: Generating databases and server code from rdf.
In: Proceedings of the 13th International Conference on Agents and Artificial
Intelligence (ICAART). SCITEPRESS, pp. 507–514. https://doi.org/10.5220/
0010186005070514.

SPARQL Working Group, SPARQL 1.1 Overview, Technical Report, W3C, 2013. URL:
https://www.w3.org/TR/2013/ REC-sparql11-overview-20130321/.

Technical Committee: ISO/TC 59/SC 13 Organization and digitization of information
about buildings and civil engineering works, including building information
modelling (BIM), Industry Foundation Classes (IFC) for data sharing in the
construction and facility management industries — Part 1: Data schema.
International Organization for Standardization, Standard, International Organization
for Standardization, Geneva, CH, 2018. URL: https://www.iso.org/standard/ 70303.
html.

Technical Committee: ISO/TC 59/SC 13 Organization and digitization of information
about buildings and civil engineering works, including building information
modelling (BIM), Information container for linked document delivery — Exchange
specification — Part 1: Container, Standard, International Organization for
Standardization, Geneva, CH, 2020. URL: https://www.iso.org/standard/74389.
html.

A. Textor, S. Stadtmüller, B. Boss, J. Kristan, BAMM Aspect Meta Model, in: International
Semantic Web Conference (ISWC) 2021: Posters, Demos, and Industry Tracks, 2021.
URL: https://ceur-ws. org/Vol-2980/paper415.pdf.

Wikidata gorup, Wikidata, 2019. URL: https://www.wikidata.org/.
Wilkinson, M., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M., Baak, A.,

Blomberg, N., Boiten, J.-W., Bonino da Silva Santos, L.O., Bourne, P., Bouwman, J.,
Brookes, A., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C.,
Finkers, R., Mons, B., 2016. The FAIR guiding principles for scientific data
management and stewardship. Sci. Data 3. https://doi.org/10.1038/sdata.2016.18.

S. Rongen et al.

https://www.plattform-i40.de/IP/Redaktion/EN/
https://www.plattform-i40.de/IP/Redaktion/EN/
https://www.plattform-i40.de/IP/Redaktion/EN/
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Capabilities_
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Capabilities_
https://doi.org/10.1109/ICPS49255.2021.9468266
https://doi.org/10.1109/ICPS49255.2021.9468266
https://www.sciencedirect.com/science/article/pii/S1532046408000415
https://www.sciencedirect.com/science/article/pii/S1532046408000415
https://doi.org/10.1016/j.jbi.2008.03
https://eclass.eu/fileadmin/Redaktion/pdf-Dateien/
http://refhub.elsevier.com/S0166-3615(23)00060-X/sbref3
http://refhub.elsevier.com/S0166-3615(23)00060-X/sbref3
http://refhub.elsevier.com/S0166-3615(23)00060-X/sbref4
http://refhub.elsevier.com/S0166-3615(23)00060-X/sbref4
http://refhub.elsevier.com/S0166-3615(23)00060-X/sbref4
http://refhub.elsevier.com/S0166-3615(23)00060-X/sbref4
https://ceur-ws.org/Vol-3291/
https://doi.org/10.1109/ETFA45728.2021.9613164
https://doi.org/10.1109/ETFA45728.2021.9613164
https://doi.org/10.1109/ETFA45728.2021.9613164
https://doi.org/10.1109/ETFA.2016.7733503
https://doi.org/10.1109/ETFA.2016.7733503
http://refhub.elsevier.com/S0166-3615(23)00060-X/sbref6
http://refhub.elsevier.com/S0166-3615(23)00060-X/sbref6
http://refhub.elsevier.com/S0166-3615(23)00060-X/sbref6
https://www.w3
https://github.com/admin-shell-io/aasspecs/tree/master/schemas/rdf
https://github.com/admin-shell-io/aasspecs/tree/master/schemas/rdf
http://refhub.elsevier.com/S0166-3615(23)00060-X/sbref8
http://refhub.elsevier.com/S0166-3615(23)00060-X/sbref8
http://refhub.elsevier.com/S0166-3615(23)00060-X/sbref8
http://refhub.elsevier.com/S0166-3615(23)00060-X/sbref8
http://refhub.elsevier.com/S0166-3615(23)00060-X/sbref8
http://refhub.elsevier.com/S0166-3615(23)00060-X/sbref8
https://lod-cloud.net/
https://www.mas4ai.eu/
https://www.irbnet.de/daten/iconda/
https://www.w3.org/
https://data.europa.eu/data/datasets/
https://data.europa.eu/data/datasets/
https://www.w3.org/
https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/TR/rdf11-primer/
https://doi.org/10.5220/0010186005070514
https://doi.org/10.5220/0010186005070514
https://www.w3.org/TR/2013/
https://www.iso.org/standard/
https://www.iso.org/standard/74389.html
https://www.iso.org/standard/74389.html
https://ceur-ws
https://www.wikidata.org/
https://doi.org/10.1038/sdata.2016.18

	Modelling with AAS and RDF in Industry 4.0
	1 Introduction
	2 State of the art
	3 The structure of the metamodels
	3.1 The resource description framework
	3.2 The Asset Administration Shell
	3.3 RDF as a semantic base for AAS

	4 Methodology
	4.1 Generating an AAS template from RDF-based data models
	4.2 RDF store as a search index for AASs

	5 Implementation
	5.1 Generating an AAS template from RDF-based data models
	5.2 RDF store as a search index for AASs
	5.2.1 Discoverability example
	5.2.2 Business analytics example
	5.2.3 Operational insights
	5.2.4 Reasoning
	5.2.5 validation

	6 Discussion and limitations
	6.1 Limitations
	6.2 Future work

	7 Conclusion
	Declaration of Competing Interest
	Data Availability
	Acknowledgements
	References

