
1.  Introduction
Over half a billion people live in coastal plains and deltas threatened by anthropogenically induced subsidence, 
and this number is expected to increase in the foreseeable future (Neumann et al., 2015; Schmidt, 2015). Many 
anthropogenic subsurface activities in coastal areas and delta plains result in subsidence, thereby amplifying rela-
tive sea-level rise and flood risks, inflicting damage to infrastructure, and overall, reducing the viability of these 
low-lying areas (Dinar et al., 2021; Guo & Jiao, 2007; Syvitski et al., 2009). Examples of subsurface activities are 
resources extraction, such as groundwater (Jones et al., 2016) and deep hydrocarbons (Chaussard et al., 2013), 
and surficial processes related to land use, primarily phreatic groundwater level management (Koster, Stafleu, & 
Stouthamer, 2018), and sediment deficit (Eslami et al., 2019).

Some heavily populated coastal plains and deltas require engineered extension of their surface area by land 
reclamation to accommodate population growth and increase the surface area of arable land, for example, China, 
Belgium, Japan, Dubai, the U.S., and Singapore (e.g., Declercq et al., 2021; D. Li et al., 2022; Martín-Antón 
et al., 2016; W. Wang et al., 2014). When land is gained along sea or lake shorelines by drainage of open water, 
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in a reclaimed and urbanized coastal plain. The study area is the city of Almere, in the South Flevoland 
polder, the Netherlands, which is among the countries' fastest subsiding areas. The procedure consists of 
integrating Interferometric Synthetic Aperture Radar (InSAR) data with high-resolution phreatic groundwater 
and lithoclass models, and a database containing construction details. The InSAR data were derived from 
Sentinel-1, one ascending and one descending track, over a period from March 2015 until June 2020. The 
two main parts of the workflow are isolation of the InSAR points of structures without a pile foundation and 
a data assimilation procedure. The shrinkage of surficial clay beds by phreatic groundwater level lowering 
is identified as the main cause of subsidence in the area, with an average contribution of 6 mm per year. The 
history-matched physics-based model predicts that 1 m drop in phreatic groundwater level now translates into 
10 mm of subsidence in the next 5 years. Additionally, a groundwater deficiency due to severe dry periods 
should be considered as an accelerator of subsidence. To ensure a robust network to estimate subsidence, we 
recommend a consistent monitoring strategy of the phreatic groundwater level.

Plain Language Summary  The city of Almere, in the Netherlands, is part of a polder that was 
reclaimed in 1968. Land reclamation is accompanied by the lowering of groundwater levels, which can cause 
land subsidence. Almere is situated on top of about 9 m of soft soil layers. These layers were deposited after 
the last ice age and consist predominantly of clay and peat. It is important to understand and quantify the 
subsidence processes in these Holocene layers, to be able to mitigate subsidence. By lowering the groundwater 
level, the soft soil layers are dried. Clay shrinks when it dries out and organic material (within peat) oxidizes. 
Lowering the groundwater level also causes the load of the layers below to increase, which can result in the 
compaction of the layers (reduction in size by pressing together). This study targets the behavior of these 
processes. Results of our study indicate that the shrinkage of clay is the dominant driver of subsidence in 
Almere. One meter lowering in groundwater level now results in approximately 1 cm subsidence in 5 years. 
To improve our understanding of the non-trivial link between groundwater fluctuations and subsidence, higher 
spatial-temporal resolution groundwater monitoring is required.
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this in essence means exposing waterlogged sediments to the atmosphere, thereby instigating various subsidence 
processes, primarily by shrinkage, compaction, and oxidation of fine grained and organic deposits.

The dense population of Hong Kong, for instance, prompted the government to reclaim land since the nineteenth 
century. There, rates of subsidence are around 20 mm per year, resulting in major damage to the built environment 
by differential settlements (Sun et al., 2018; M. Wang et al., 2016). In Bangladesh, reclamation primarily serves 
the purpose of gaining arable land, resulting in subsidence rates up to 10 mm per year in these reclaimed areas. 
This catalyzes a rise in social inequality as especially low-income farmers are not able to cover adaptation costs 
for the negative effects of these high subsidence rates (Barbour et al., 2022; Steckler et al., 2022).

The Netherlands is a prime example of a country that has extended its coastal plains by land reclamation. In 
total, the Netherlands has 443 reclaimed former lakes located in its coastal plains, with a cumulative surface 
area of 3,123.60 km 2 (Schultz, 1983). The centuries-long tradition of reclaiming land, referred to as “polder,” 
can be divided into three main periods of lake drainage. The first stage comprised the sixteenth to seventeenth 
century, when many small lakes within the back-barrier peatlands were drained with windmills. Second, in the 
nineteenth century, larger lakes in the coastal plain were drained with steam pumping stations. Finally, in the 
twentieth century, Lake IJssel, the country's largest lake that was created by the damming of a tidal inlet, was 
partly reclaimed, resulting in the largest polders of all: the Lake IJssel polders (Figure 1a).

The focus of this study is on understanding and predicting shallow causes of subsidence in the reclaimed urban-
ized South Flevoland Polder (430 km 2), which is part of the Lake IJssel polders (Figure 1). The polder was created 
in 1968 by constructing a ring-dike around the water body to be reclaimed. This enclosed water body was subse-
quently drained until the water level dropped below the former lake's floor. Subsidence immediately commenced 
when the waterlogged deposits experienced aeration for the first time and pore water progressively evaporated 
(Barciela Rial, 2019; De Glopper, 1969). Ultimately, the polder has experienced locally 1–2 m of subsidence 
since its reclamation (De Glopper, 1973, 1984; De Lange, 2015; De Lange et al., 2012; Fokker et al., 2019).

Paradoxically, severe water pumping has been ongoing to this day, as it is required to keep phreatic water levels 
low, thereby preventing the polder from flooding due to its low-lying position relative to the adjacent Lake IJssel's 
water level and increasing the load-bearing capacity of the former lake floor. The area thus continues to subside as 
waterlogged sediments are progressively exposed to the atmosphere. Besides flood risks, differential subsidence 
in the urbanized areas of the South Flevoland polder causes stress on structures, which results in damage to the 
built environment, leading to major costs. This especially accounts for the “Regenboogbuurt,” which is a neigh-
borhood that onlaps the thickest sequence of soft soil deposits in the area (Maas, 2021). Additionally, the severe 
drought events that have been striking Northwestern Europe during recent summers pose the threat of accelerated 
subsidence to the area by loosing pore water from fine grained and organic deposits. To the best of our knowledge, 
no study has been reported on the effects of severe drought in South Flevoland, although Hoogland et al. (2020) 
showed that subsidence may be slowed down by proactively saturating shallow peat beds within the area. Under-
standing, quantifying, and predicting subsidence, both spatially and temporally, in the South Flevoland polder is 
therefore of immense importance from both a socio-economic and a hazard-prevention point of view.

The lowering of phreatic water levels in the South Flevoland polder results in shrinkage of clay and oxida-
tion of peat in the unsaturated zone (i.e., above the annually averaged lowest phreatic groundwater level). Clay 
shrinks as water that is adsorbed to charged platy clay particles evaporates and admixed organic matter oxidizes 
(Barciela-Rial et al., 2020). This leads to volumetric loss and is largely irreversible. Peat oxidation involves the 
breakdown of organic components by microbial activity. It is completely irreversible and results in the emission 
of carbon dioxide (Koster et al., 2020). Further, there are subsidence processes in the saturated zone: the consoli-
dation of clay and peat layers due to an increase in effective stress by lowering of hydrostatic pressure when phre-
atic water levels are lowered (De Glopper & Ritzema, 1994). Consolidation and oxidation have been addressed 
regularly in other areas in the Netherlands that experience shallow subsidence (e.g., Kooi, 2000; Van Asselen 
et  al.,  2009, 2018). On the contrary, shrinkage of clay in the context of subsidence has been poorly covered 
(Fokker et al., 2019). However, in other countries, subsidence by clay shrinkage is considered as a major issue. 
In France and Great Britain for example, potential damage to the built environment inflicted by clay shrinkage as 
a result of drought and climate change has been studied in terms of cost per annum in the light of the insurance 
industry for decades (e.g., Burnol et al., 2021; Charpentier et al., 2021; Pritchard et al., 2015). In addition, in 
Sweden, locally increased subsidence rates in an urban area were linked to the presence of clay, with the aid of 
Interferometric Synthetic Aperture Radar (InSAR) (Fryksten & Nilfouroushan, 2019).
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Most recent studies focus on establishing physics-based subsidence forecasts using input parameters derived 
by field- and laboratory measurements (Koster, Stafleu, & Stouthamer, 2018; Mayoral et al., 2017; Nusantara 
et al., 2018; Schothorst, 1982; Van Asselen et al., 2018). This approach inherently renders the subsidence esti-
mates to be strongly dependent on used models and input soil parameters. A step forward regards the coupling 
of the different processes. Allison et al. (2016) for instance, stressed that developing an integrated model with 
coupled behavior of the different subsidence processes is critical for reliable subsidence estimates. Only by 
considering the behavior of all subsidence processes combined with real observations can the full impact of 
subsidence be understood.

Optimizing the relation between coupled subsidence processes and measured subsidence can improve subsid-
ence forecasts. A history matching procedure by correlation and/or trial-and-error is often employed (e.g., Caló 
et al., 2017; Castellazzi et al., 2016; Teatini et al., 2006). For larger areas, or areas where multiple subsidence 
processes are superimposed, a more formal approach is considered more efficient (e.g., Candela & Koster, 2022; 
Fokker et al., 2019). A mathematically driven approach such as data assimilation can cover the entire range of 
uncertainty of all the parameters to seek the optimal solution.

Data assimilation combines models and observations to obtain the best possible description of the system 
(Evensen, 2009; Evensen et al., 2022). This approach is customary practice in a wide range of disciplines, such 
as subsurface modeling (Candela et  al.,  2022; Chang et  al.,  2010; Evensen et  al.,  2022; Fokker et  al.,  2016; 
Gazzola et al., 2021), weather predictions (Navon, 2009; Thépaut, 2003), and oceanographic simulations (Carton 
& Giese, 2008; Ghil & Malanotte-Rizzoli, 1991), but for interpreting shallow causes of subsidence this method 
has not yet been applied widely. Peduto et al. (2017, 2020) presented examples of shallow subsidence studies that 
apply a form of data assimilation to a geotechnical problem. Their studies show the benefit of combining multiple 
data sets. L. Li et al. (2017) applied data assimilation with an Ensemble Kalman Filter and showed the strength of 
data assimilation procedures, although they did not emphasize the subsidence models in their study.

Data assimilation procedures have also been applied in studies on polders in the Netherlands (Fokker et al., 2019; 
Muntendam-Bos et al., 2009). Fokker et al., 2019 used Ensemble Smoothing with Multiple Data Assimilation 
(ES-MDA) for 10 distinct locations in the South Flevoland polder with a few dozens of time steps over a period 
from reclamation until recent, combined with coring for lithological data and phreatic groundwater level meas-
urements. They focused on the agricultural areas of the South Flevoland polder over a longer timescale with a 
small number of locations. Therefore, their results are not directly applicable to the subsidence in the urbanized 

Figure 1.  (a) Map of the Netherlands showing all the areas that accommodate polders (adjusted from Steenbergen et al. (2009)). (b) Map of the area of Almere and 
its surroundings projected on a map showing the thickness of the Holocene sequence (TNO, 2022). The thickness decreases toward the south-east. The incised course 
of the Eem River, in the northeast of the city Almere, is reflected by an increased Holocene thickness. The map is plotted on the Rijksdriehoek coordinate system. The 
green dots indicate the locations of the data points included in this study (see Figure 4). The locations of the graphs in Figures 6a–6d are denoted.
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areas of the South Flevoland polder, where the urbanization might have had inhibitory effect on shrinkage and 
layers might have undergone more severe compaction in the past. Additionally, corings of individual locations 
were used in Fokker et al. (2019), whilst in this study we introduce an automated procedure including a litholog-
ical and groundwater model, making it possible to apply this methodology to larger areas.

Here, we aimed to quantify the subsidence processes within the Almere urban area of the South Flevoland polder 
in relation to phreatic groundwater level changes. Furthermore, we showcase the added value of combining 
large observational data sets with numerical models to improve parameter estimations for shallow subsidence 
processes. We deployed data assimilation on a data set comprising thousands of locations with hundreds of time 
steps derived from satellite observations, high-resolution 3D models of subsurface lithology and groundwa-
ter to quantify the contribution of the different shallow subsidence processes. We studied multiple subsidence 
processes at the same time to understand the full impact of subsidence and quantify the relative contributions of 
the different processes. Such information is critical for policymakers and spatial planners to design strategies to 
mitigate subsidence in the South Flevoland polder.

1.1.  Study Area

The South Flevoland polder is situated in the central Netherlands in the partly reclaimed Lake IJssel (Figure 1). 
The Holocene sequence of the polder is underlain by several hundreds of meters thick Pleistocene sediments, 
consisting of a complex of alternating sandy to clayey marine, fluvial, and (peri-)glacial deposits (Menke 
et al., 1999; Peeters et al., 2015; TNO, 2022). The uppermost Pleistocene unit consists of a several meters thick 
aeolian sand bed, which grades from ca. −5 to −12 m below NAP (i.e., the Dutch ordinance datum, approximately 
corresponding to the mean sea level) in northwestern direction, locally incised by the Eem brook paleo-valley or 
elevated by dune formation (Figure 1).

During the Holocene, the South Flevoland Polder became part of the landward margin of a coastal plain. The 
base of the Holocene sequence consists of a basal peat bed formed between 6,000- and 7,000-year BP under the 
influence of inland groundwater level rise in tandem with post-glacial sea-level changes (Koster et al., 2017; 
Makaske et al., 2003). These peatlands drowned and transformed into an open tidal basin under the influence of 
continuous sea-level rise (Vos, 2015). The tidal basin deposits consist of alternating sand-clay beds, with local 
erosion of the underlying basal peat. When around 5,500-year BP eustatic sea-level rise decreased, the open tidal 
basin was closed off by the formation of a beach-barrier, transforming the area into a freshwater swamp with 
large-scale peat formation (Beets & Van der Spek, 2000; Makaske et al., 2003). In parallel, the area remained 
connected in the west to the North Sea by several smaller tidal inlets, making the Eem brook part of a branched 
network of freshwater tidal channels (Vos, 2015). The peatland itself was characterized by a series of open lakes 
(Menke et al., 1999). From the north, this lake system was connected to the Wadden Sea. When the peatlands 
deteriorated as a combination of natural and anthropogenic causes, the open sea connection in the north expanded 
southwards, thereby gradually drowning the peatlands and turning the area into a partly enclosed inland sea 
(Van den Biggelaar et al., 2014). The inland sea was dammed off and became Lake IJssel in 1932 to protect the 
surrounding areas against flooding. After the damming, several parts of the newly formed lake were reclaimed 
from 1939 onwards. The South Flevoland polder is the final area that was reclaimed.

Almere is a large urban conglomerate in the polder of South Flevoland (Figure  1), with a population of ca. 
200,000. Almere was founded in 1976, approximately eight years after reclamation. This delay between recla-
mation and construction was used to account for the first years of subsidence, for which it was predicted to be 
the highest around Almere (up to 70 cm in total) (Hoeksema, 2007). Almere has been partly built on top of the 
paleo-valley of the Eem brook system, which incised several meters into underlying deposits of Pleistocene age. 
Therefore, the thickness of the Holocene sequence underneath Almere strongly varies, with thicknesses between 
<1 and 10 m. The thickest sequence can be found over the course of the former Eem brook system. Generally, 
basal peat in the Netherlands, like underneath Almere, has undergone substantial compression by the overburden, 
and consequently has mechanical characteristics that deviate from the younger peat beds (Koster, De Lange, 
et al., 2018). Due to sea-ingressions that drowned the peatlands, the paleo-valley infill on top of the basal peat 
consists of marine clay with sandy infills overlain by organic clay, gyttja and peat, interfingered with some sand 
(Menke et al., 1999).
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Subsidence was expected after reclamation (De Glopper,  1969); therefore, regular monitoring campaigns 
were conducted, including regular leveling measurements, corings, and soil sampling (De Glopper,  1984; 
Van Dooremolen et al., 1996). Within 25 years, the a priori expected subsidence for the South Flevoland polder 
was exceeded, in some places, by 0.5 m (Van Dooremolen et al., 1996), resulting in complications for the drain-
age of the area. Most buildings have a concrete pile foundation in sandy, less compressible layers of Pleistocene 
age, and consequently do not subside in parallel with the overlying Holocene sequence. On the contrary, public 
structures, such as (local) roads, squares, sport fields, and playgrounds are often lacking a pile foundation and 
are constructed immediately on top of the Holocene sequence. The consequential differential subsidence between 
structures with and without a concrete pile foundation inflicts stress on pipeline structures, belowground electri-
cal and network cables, and the connection from buildings to the roads in general, potentially causing damage. 
Currently, the city of Almere, lying ∼4 m below NAP, must deal with damage to buildings and infrastructure 
because of the ongoing differential subsidence (Lambert et al., 2016).

2.  Materials and Methods
We used a data assimilation procedure combining InSAR data with 3D lithological and phreatic groundwater 
level models. Figure 2 depicts the complete workflow, with the different colors indicating the different steps. 
In green, three classes of input data are displayed: (a) data in the form of previously developed geological and 
groundwater level models (Sections 2.1.3 and 2.1.4), (b) estimates of input parameters necessary for the forward 
model, based on a literature search (Section 2.2), and (c) satellite data for actual surface movement estimates 
(Section 2.1.1).

We defined three steps of the subsidence estimation algorithm:

1.	 �The postprocessing of the InSAR data to filter the appropriate measurements points from the full data set 
(Section 2.1).

2.	 �The forward model in which we calculated subsidence for all locations and time steps in this study (Section 2.2).
3.	 �The data assimilation step, where the subsidence measurements derived from InSAR were combined with the 

forward model, to optimize the forward model by changing the input parameters (Section 2.3).

Finally, the output of our analysis is defined into two classes: (a) refined estimated parameters. As a result of the 
data assimilation approach, refined estimated parameters are the optimized values for the input parameters and 
(b) a subsidence prediction. The outcome of the forward model is a subsidence prediction for all the locations 
and time steps.

2.1.  Input Data

2.1.1.  InSAR Data

The InSAR data consists of Sentinel-1 images for one ascending and one descending track, ranging over the 
period March 2015 until June 2020 and November 2015 until June 2020, respectively. The sampling interval of 
the data points varies temporally by the availability of the 6-day repeat pass for the period until April 2016 and 
the 12-day repeat pass from April 2016 onwards (Wegmüller et al., 2015). The data used for our analysis are 
processed InSAR data retrieved from Rijkswaterstaat (2022). It consists of point-wise time series of both persis-
tent and distributed scatters. For details on the processing steps of the provided data, see Rijkswaterstaat (2018). 
We recognize that this data has been processed for nationwide purposes, which can potentially be an additional 
source of error when applying the data set on a local or regional scale. This has been taken into account with 
a relatively large noise to our InSAR data in the data assimilation process, compared to the accuracy levels 
described in Rijkswaterstaat (2018).

The ascending and descending tracks were processed and analyzed separately. This yielded two results of subsid-
ence estimations and associated fits, which were compared for an additional quality check of the workflow. The 
line-of-sight movement was projected to the vertical direction with the use of the incident angle as part of the 
processing; 𝐴𝐴 𝐴𝐴𝑣𝑣 =

𝑚𝑚LOS

cos 𝜄𝜄
 . This was done with the assumption that the horizontal movement is negligible. The map 

of the European Ground Motion Service (Costantini et al., 2021) gives some indication of horizontal movement 
in the area, but all the points with East-West movement appear to be in the vicinity of founded structures. Manu-
ally checked points on top of sportfields do not show significant East-West movement. After our InSAR point 
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selection, both the ascending and descending tracks show similar rates of subsidence in the vertical direction, 
indicating that there is no significant horizontal movement. Additionally, we do not expect them because of the 
shallow character of the cause of subsidence.

One of the key issues of InSAR data is the loss of signal coherence, both in space and time. Spatial decorrelation 
is caused by changes in the acquisition baseline, resulting in a different phase between two images and causing 
phase unwrapping errors that reduce the coherence. This implies that spatially decorrelated data are less suitable 
for subsidence research. Temporal decorrelation is caused by atmospheric variability and changes in the physical 
and geometric properties of the scatter points, for example, due to seasonal changes in vegetation which result 
in land cover changes (Ferretti et al., 2007; Hanssen, 2001). As a result, vegetation-rich areas are suboptimal for 
the analysis of subsidence by satellite imaging (Conroy et al., 2022). Therefore, the point-wise time series of the 
provided InSAR data are largely located on man-made structures because these scatter points face less decorrela-
tion issues. In this study, we aim to understand the subsidence behavior of the Holocene layers, and as a large part 
of the man-made structures have pile foundation, we applied an additional postprocessing workflow to the InSAR 
data to select points that are not on top of pile founded structures. This workflow is explained in Section 2.1.2.

Figure 2.  Workflow of the different steps of the methodology divided into input, working space, and output. The steps of the workflow are explained in corresponding 
sections. The parameters of the physical models that estimate subsidence are optimized toward measured relative subsidence from satellite data, with the use of a 
groundwater model and a lithological model. Interferometric Synthetic Aperture Radar points measured on top of unfounded objects are separated by a data selection 
process (Figure 3). A prior estimate of the parameters part of the forward model is initially made, whereafter the forward model and optimization with data assimilation 
are repeated multiple times. The image of the lithological grid model is adjusted from Van der Meulen et al. (2007).
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2.1.2.  InSAR Processing by TSNE-HDBSCAN

InSAR locations were selected based on two main criteria, forming the first step in the point-selection procedure 
of Figure 3. We selected PS-InSAR points in the built-up area of Almere without a pile foundation. Buildings in 
the area typically have a pile foundation reaching depths of ca. 7–20 m with respect to NAP, that is, piles driven in 
Pleistocene sand beds with load bearing capacity (Spikker, 2010). Consequently, buildings with a pile foundation 
are less suitable to reflect subsidence processes that happen within the Holocene sequence. We therefore focused 
on large reflective objects (more than 10 reflection points) without pile foundations. These objects range from 
large parking lots around shopping centers and business parks to playgrounds, concrete sport fields, and artificial 
grass turfs.

Figure 3.  Workflow for selecting Interferometric Synthetic Aperture Radar (InSAR) points. First, areas with a significant amount of data points, potentially on top 
of the structure without a pile foundation, are selected. With the Basisregistratie Adressen en Gebouwen register (Kadaster, 2022), the construction date of the area is 
verified. The image shows the construction years of the buildings in the example area (image adjusted from Spaan (2015)). The remaining areas follow dimensionality 
reduction by time Distributed Stochastic Neighbor Embedding (T-SNE), followed by a clustering method Hierarchical Density-Based Spatial Clustering of Applications 
with Noise. At the second processing step, the average yearly subsidence rate of the selected InSAR points of the sample area is shown on the left. On the right, the 
result of the T-SNE dimension reduction is plotted, where the colors refer to the clusters each point is assigned to. The number of dimensions of the initial data set 
is equal to the number of locations. Third, the clusters are visualized as scatter points for each time step and in a geographic information system to verify the clusters 
and select the cluster representing the scatter points on top of unfounded man-made structures. The clusters from the second time step, in their corresponding colors, 
are plotted spatially on the left image and over time on the right. Finally, for each grid cell corresponding to the lithological and groundwater model, an average of the 
selected InSAR points within the cell is taken. This is depicted in the graph belonging to the last processing step, where the thick black line represents the average of the 
InSAR time series falling into the grid cell. To not give a disproportionate high weight to the first measurement of the InSAR series, an average has been taken of the 
first 10 time steps, which forms the first time step in our post processing time series.
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The next selection criterium was that the structures without foundations had been built at least 10 years before 
the first InSAR acquisition dates. Therefore, only objects constructed before the year 2005 were considered. This 
choice was made to reduce the effect of consolidation due to construction of the objects without foundations on 
the subsidence signal. Because no register exists for the construction date of parking lots, playgrounds, and sport 
fields, the year of construction of the associated buildings was used. The construction year of all buildings in the 
Netherlands are registered in “Basisregistratie Adressen en Gebouwen” (BAG) (Kadaster, 2022), which was used 
to verify the construction year of objects in the selected areas.

Reflection points on top of structures without a pile foundation that meet above stated criteria were isolated from 
the ones on top of structures with a pile foundation using a statistical visualization method. First, data points were 
separated with time Distributed Stochastic Neighbor Embedding (Van der Maaten & Hinton, 2008), subsequently 
data points were appointed to a cluster using Hierarchical Density-Based Spatial Clustering of Applications with 
Noise (HDBSCAN) (Campello et al., 2013). This two-steps approach based on unsupervised machine learning 
enables isolating time series that measure the same processes. In the case of Almere, no significant subsidence 
below the level of the pile foundations was expected. Hence, objects with a pile foundation should show negligi-
ble subsidence, whereas other nearby objects without a foundation were expected to show subsidence. This would 
result in differently behaving timeseries for points measured on top of objects with and without a pile foundation. 
This step formed the second step in the point selection procedure of Figure 3.

The practice of dimensionality reduction followed by clustering is common for large input data and has been 
applied to SAR data sets (Van de Kerkhof et al., 2020), and for a wide range of other data types (Fernández Llamas 
et al., 2019; R. Harrison et al., 2019; Kahloot & Ekler, 2019). T-SNE is a dimensionality reduction method that can 
group similarly behaving time series of height measurements of the different reflection points (Van der Maaten 
& Hinton, 2008). For the present study, clustering was conducted with HDBSCAN. HDBSCAN provides signifi-
cant clusters, where the clusters can vary in density threshold. The method maximizes the stability of the selected 
clusters by calculating the optimal solution (Campello et al., 2013).

To ensure that the selected clusters represent the time series of measurements on top of objects without a pile foun-
dation, the clusters were verified by checking the time series of all the clusters and their location in a geographic 
information system. This is the third procedure of Figure 3. Figure 4 shows all the resulting InSAR points selected 
for both the ascending and descending tracks in map view. The processed InSAR data can be found in Data Sets 
S2 and S3 of this paper.

The last step in Figure 3 entails the optimization of the selected InSAR points for the subsidence optimization 
procedure. InSAR data points in a single lithological grid cell (see Section 2.2. about lithological modeling) were 
averaged. Reducing the number of points by averaging reduces the computational time, while still incorporat-
ing the uncertainty for the InSAR data for each grid cell. The variance of this average was added to the chosen 
standard deviation squared of 0.01 m 2 to ensure that the uncertainty of variance in the subsidence measurements 
was incorporated. A 0.01 m 2 standard deviation for each epoch aims to capture both the uncertainty in the model 
and measuring space, as the true standard deviation is unknown. To prevent a disproportionate weight of the 
first measurement in time, an average of the first 10 measurements in time was taken as the first time step in our 
post-processing time series data.

2.1.3.  Lithoclass Model

Previously released 3D lithoclasses (classes of different grainsize compositions) voxel model for the province of 
Flevoland that covers the entire study area was used as input for numerical modeling (Figure 5a) (Gunnink, 2021). 
The model was initially developed for high-resolution hydraulic resistance modeling for groundwater flows within 
the Holocene sequence, and was constructed based on 31.000 digitalized borehole logs and 4,250 Cone Pene-
tration Tests derived from the freely accessible online data portal of the Geological Survey of the Netherlands 
(TNO-GSN, 2022). The boreholes are sufficiently distributed throughout the province of Flevoland, whereas the 
Cone Penetration Test is primarily clustered in urbanized areas and along infrastructural elements.

The 3D model was created by interpolation via spatial kriging, following a similar procedure as explained in 
Van der Meulen et al. (2013). The voxel x, y, z dimensions are 100 × 100 × 0.5 m and the model ranges from the 
surface to the top of geological units of Pleistocene age, thereby encompassing the entire Holocene sequence. 
The different lithoclasses (sand, sandy clay, clay, peat, and basal peat—the latter being in a more compressed 
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state than peat) are described with their probability of occurrence for each voxel, based on 100 realizations of the 
interpolation. The highest probability was taken as the truth scenario for this study.

2.1.4.  Groundwater Model

Changes in groundwater heads form an important explanatory variable for shallow sources of subsidence. 
Therefore, time series of these data are needed all over the study area. Unfortunately, this was only sparsely 
available at locations with observation wells. Therefore, a model was developed to estimate the required time 
series (TNO-GSN, 2022; Zaadnoordijk et al., 2018): monthly phreatic water level values for grid cells of x, y 
100 × 100 m (Figure 5b) from the year 2000 to 2020. The applied method was an interpolation in two steps. The 
first step was an interpolation of the groundwater heads within the time series to obtain for all well locations 
an observation on the same day (28th) of each month. This yielded interpolated heads including variances. The 
second step comprised a spatial (kriging) interpolation, applying a sequential Gaussian simulation (Deutsch & 
Journel, 1998), which yielded for each month a map of the interpolated heads. Since the observation wells were 
sparse, their observed heads could not fully describe the spatial variation in the groundwater heads. Therefore, a 
trend surface was used with a spatial interpolation performed on the residuals (observation minus trend surface). 
To honor the seasonal fluctuation of the groundwater heads, each month had a separate trend surface. Herewith, 
one hundred equiprobable interpolations of phreatic groundwater levels for each month were created. We used the 
average of the 100 realizations as the truth scenario for the phreatic surface model in space and time. The exact 
well locations can be found in Data Set S1 of this paper.

Figure 4.  Map view of the selected Interferometric Synthetic Aperture Radar points after the time Distributed Stochastic Neighbor Embedding and Hierarchical 
Density-Based Spatial Clustering of Applications with Noise selection procedure for both the ascending and descending tracks on top of a satellite image 
(Google, 2023). To aid in the visualization of the area, the boundaries of all the neighborhoods in Almere (CBS, 2020) are plotted.
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2.2.  Forward Model

The different shallow subsidence processes initiated by human-induced phreatic groundwater level lowering in 
the South Flevoland polder are described in forward models. These forward models include physical relations 
that describe the subsidence processes and thereby, with an estimate of the parameters, provide an estimate of the 
subsidence. The groundwater and lithoclasses models are used to describe which lithology is present and to what 
depth the sediments are saturated. Previous studies identified oxidation of peat, shrinkage of clay, and compres-
sion of clay and peat as the main subsidence processes in the area (De Lange et al., 2012; Fokker et al., 2019; 
Lambert et al., 2016; Van Dooremolen et al., 1996).

Fokker et al. (2019) described a subsidence model with a relation between shrinkage and equivalent age using 
linear-strain fits and time series of land leveling subsidence observations in the South Flevoland polder from 
1967 to 2012. They used an exponential relation of clay shrinkage processes to fit the model to the data. Further-
more, they described that well-established compression functions of consolidation and creep (Den Haan, 1996; 
Viscchedijk & Trompille, 2009) did not fit with the observed subsidence trend. Given the results of the study of 
Fokker et al. (2019), subsidence by compression was expected to be negligible in comparison to the processes 
of shrinkage and oxidation for the timing after reclamation and due to the length of our study period. Therefore, 
we have not modeled compression as a separate process in this study. Note also here that compression by the 
overburden weight of building material was assumed to have a negligible effect on the selected InSAR time series 
because all the locations included in this study have undergone settlement due to loading by construction for 
minimal 10 years (cf. CUR, 1992).

2.2.1.  Oxidation Model

The applied equation for the oxidation model is widely used to describe peat oxidation in the Netherlands (Fokker 
et  al., 2019; Koster, Stafleu, & Stouthamer, 2018; Van den Akker et  al., 2008; Van der Meulen et  al., 2007; 
Van Hardeveld et al., 2017). It provides a relative annual oxidation rate for peat above the phreatic groundwater 
level. Since only organic matter oxidizes, admixed sediments remain, albeit on average only 3%–4% of the total 
volume (Koster, Stafleu, et al., 2018). Hence, a residual thickness is considered.

First, for a unit above the phreatic groundwater level, the part susceptible to oxidation needs to be determined.

Figure 5.  (a) Map of the South Flevoland polder lithoclasses according to the 3D model at 5 m below NAP. (b) Map of phreatic surface level in the South Flevoland 
polder in January 2015. The scale is in cm with respect to NAP. The polder itself lies ∼400 cm below NAP. The areas that lie at NAP are the Lake IJssel area and in the 
bottom left of the mainland.
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𝒉𝒉𝒐𝒐𝒐𝒐,𝟎𝟎 = 𝒉𝒉𝒐𝒐𝒐𝒐(𝒕𝒕 = 𝟎𝟎) = (𝟏𝟏 −𝑹𝑹𝒐𝒐𝒐𝒐)𝒉𝒉𝟎𝟎� (1)

If part of a unit has already been reduced, we have hox(t) = h(t) − Rr,oxh0. The original thickness of the unit is 
unknown, since the collection of the data used in this study started ∼50 years after reclamation. Hence, we simply 
assumed h equals h0 at t = 0. This results in a higher residual height than for completely virgin soil, as the original 
units are (partly) reduced in thickness already. The oxidation rate can be calculated as follows:

𝒅𝒅𝒅𝒅

𝒅𝒅𝒅𝒅
=

𝒅𝒅𝒅𝒅𝒐𝒐𝒐𝒐

𝒅𝒅𝒅𝒅
= −𝑽𝑽 𝒐𝒐𝒐𝒐 𝒉𝒉𝒐𝒐𝒐𝒐� (2)

Over time Δt the thickness reduction of a layer can be written as follows:

Δℎ = ℎ𝑜𝑜𝑜𝑜(𝑡𝑡) − ℎ𝑜𝑜𝑜𝑜(𝑡𝑡 + Δ𝑡𝑡) =
(

1 − 𝑒𝑒
−𝑉𝑉𝑜𝑜𝑜𝑜Δ𝑡𝑡

)

⋅ ℎ𝑜𝑜𝑜𝑜(𝑡𝑡)

=
(

1 − 𝑒𝑒
−𝑉𝑉𝑜𝑜𝑜𝑜Δ𝑡𝑡

)

⋅ (ℎ(𝑡𝑡) −𝑅𝑅𝑜𝑜𝑜𝑜ℎ0)
� (3)

Incorporating units that are partly aerated, the part susceptible of oxidation is corrected for the wet part of the 
voxel:

Δ𝒉𝒉𝒐𝒐𝒐𝒐 =
(

𝟏𝟏 − 𝒆𝒆
−𝑽𝑽 𝒐𝒐𝒐𝒐Δ𝒕𝒕

)

(𝒉𝒉(𝒕𝒕) − 𝒉𝒉𝐰𝐰𝐰𝐰𝐰𝐰 −𝑹𝑹𝒐𝒐𝒐𝒐 [𝒉𝒉𝟎𝟎 − 𝒉𝒉𝐰𝐰𝐰𝐰𝐰𝐰])� (4)

In which Vox is the shrinkage rate and Rox is the residual height.

2.2.2.  Shrinkage Model

Time-dependent shrinkage models have not been documented for the Netherlands yet. Typically, shrinkage is 
expressed as a function of clay mineral content, organic matter, and calcareous admixture (e.g., Barciela Rial, 2019; 
De Glopper, 1969). To overcome this, Fokker et al.  (2019) designed a simple shrinkage relation, inspired by 
Equation 4, which enabled good matches between the subsidence model and the observed subsidence. This rela-
tion assumes that the shrinkage rate is proportional to the volume sensitive to shrinkage. A lithology-dependent 
residual height was assumed to indicate an asymptotic value to which the shrinkage can lead.

The process of clay swelling has been ignored in this study. Furthermore, seasonal swelling effects of clay by a 
relative increase in precipitation during autumn and winter were not observed in the InSAR data. Most likely, if 
present, a swelling capacity is suppressed in the urbanized area by structure overburden. In general, the South 
Flevoland polder is subjected to net phreatic groundwater level lowering; this is reflected in net subsidence, 
visible as a decreasing trend without a large swelling effect in the InSAR data. Furthermore, previous studies 
reported that the clay beds in our study area have a relatively high irreversible character regarding shrinkage 
(Bronswijk & Evers-Vermeer, 1990; Kim et al., 1993).

The equation for shrinkage (Equation 5):

Δℎ𝑠𝑠𝑠 =
(

1 − 𝑒𝑒
−𝑉𝑉𝑠𝑠𝑠Δ𝑡𝑡

)

(ℎ(𝑡𝑡) − ℎwet −𝑅𝑅𝑠𝑠𝑠 [ℎ0 − ℎwet ])� (5)

In which Vsh is the shrinkage rate and Rsh is the residual height.

2.2.3.  The Prior Estimated Parameters

The parameters aimed to optimize are the shrinkage and oxidation rate and their respective residual heights (see 
first column of Table 2). The prior estimated values take into account the results of Fokker et al. (2019). The rates 
were lowered because a significant amount of time (∼50 years) has passed since reclamation (and the start of 
the study of Fokker et al. (2019)), decreasing the void ratio of deposits and increasing the stiffness. Additionally, 
there is a potential inhibitory effect of shrinkage and oxidation rate in the urbanized area, compared to the agri-
cultural area of Fokker et al. (2019).

The rates of shrinkage and oxidation are closely related to the associated residual heights. Due to the brief period 
of the surface elevation data (∼5 years), the exponential relation between relative residual height and reduction 
(shrinkage or oxidation) rate cannot be established absolutely: an increase in subsidence rates can have the same 
effect on total subsidence as a reduction in residual height. As a result, the contribution of relative residual height 
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and reduction cannot be distinguished. If one of the two parameters increases, the other should increase as well, 
to reach the same value for total subsidence. From Equations 1 and 2, we can derive the following equation:

𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= ℎ0𝑣𝑣 (1 −𝑅𝑅)ℯ−𝑣𝑣𝑣𝑣� (6)

Therefore, if a certain height reduction rate is acting, it can be the result of different combinations of v and R, 
as long as the right-hand side of Equation 10 gives the same number. The exponential in this equation can be 
neglected because the compaction (order of mm) is very small with respect to the layer thickness (order of m). 
Different combinations with the same value of C =  v(1 − R), or 𝐴𝐴 𝐴𝐴 = 1 −

𝐶𝐶

𝑣𝑣
 therefore, give equally good fits, with 

no time dependence in the expression. This equation was hence fitted to the posterior result of the residual height 
and rate of oxidation and shrinkage for the different lithologies, utilizing automated least squares polynomial fit.

2.3.  ES-MDA

Parameters have been estimated with Ensemble Smoother with Multiple Data Assimilation (ES-MDA) (Emerick 
& Reynolds, 2013; Evensen et al., 2022). Earlier accounts for the method to estimate parameters for shallow 
subsidence can be found in Fokker et al. (2019); the method has also been applied to estimate the parameters for 
deep subsidence processes (gas production) (e.g., Fokker et al., 2016; Gazzola et al., 2021).

An ensemble refers to a collection of members that are the result of a Monte Carlo analysis. Members are single 
realizations of the model with specific values for the different parameters. ES-MDA is thus based on a parameter 
description of the properties that describe the physical processes in the subsurface. A forward model takes the 
parameters and calculates the subsidence in space and time for each member of the ensemble. The ES-MDA algo-
rithm minimizes the mismatch between the measured data and the estimated subsidence values by changing the 
parameters of the ensemble members in an organized manner. The multiple data assimilation notion of ES-MDA 
indicates that the assimilation process is repeated several times. The newly estimated parameters are taken to 
create a new ensemble of members, with each step increasing the confidence in the parameters.

ES-MDA can be mathematically described as follows. The parameters collected form the vector m. The subsid-
ence data are put into a vector d, this vector has the length of the number of data points in the area multiplied 
by the time steps taken at each location. Operation of the forward model is indicated by G(m); it calculates the 
subsidence as a function of time for each individual location, based on the parameters in m. We want to estimate 
the vector m for which G(m) has the smallest misfit with the data d. To do so, for a single member, a set of prior 
parameters is created (m0), with covariance in a matrix Cm. Another covariance matrix is created for the data (Cd). 
Following Tarantola (2005), the least squares solution is acquired by maximizing J in the following function:

𝐽𝐽 = exp

(

−
1

2
[𝒎𝒎 −𝒎𝒎𝟎𝟎]

𝑇𝑇
𝑪𝑪

−1
𝑚𝑚 [𝒎𝒎 −𝒎𝒎𝟎𝟎] −

1

2
[𝒅𝒅 −𝑮𝑮(𝒎𝒎)]

𝑇𝑇
𝑪𝑪

−1

𝑑𝑑
[𝒅𝒅 −𝑮𝑮(𝒎𝒎)]

)

� (7)

In the ensemble procedure, the values of the members are derived from a prior estimate with a standard deviation 
of the parameters. An ensemble consists of Ne vectors of m; M = (m1, m2, …, 𝐴𝐴 𝒎𝒎𝑵𝑵𝒆𝒆

 ). Similarly, an ensemble of 
data vectors is created by adding random noise to the data following the uncertainty of the data points: D = (d1, 
d2, …, 𝐴𝐴 𝒅𝒅𝑵𝑵𝒆𝒆

 ).

To solve the least squares solution for the entire ensemble at once, GM replaces G(m) in Equation 5. GM is the 
result of the parameters of all ensemble members operating in the forward model and is the collection of real-
izations of surface elevations through time. 𝐴𝐴 𝐆𝐆𝐆𝐆′ is defined as the difference between 𝐴𝐴 𝑮𝑮𝑮𝑮 and the average of 
GM. 𝐴𝐴 𝑴𝑴

′ is the difference with the prior mean for each ensemble member: 𝐴𝐴 𝑴𝑴
′  = M − m0. The covariance matrix 

is defined as 𝐴𝐴 𝑪𝑪𝒎𝒎 = 𝑴𝑴
′
𝑴𝑴

′𝑻𝑻
∕(𝑁𝑁𝑒𝑒 − 1) . The new set of parameters for the ensemble is given by the following 

equation:

�̂ = � +� ′[��′
]�
(

��′
[

��′
]� + (�� − 1)��

)−1
(� −��)

= � +� ′
(

[

�� ′]��−1
� �� ′ + (�� − 1)�

)−1
[

�� ′]��−1
� (� −��)

� (8)

Depending on the number of parameters versus number of data points, one of the two equivalent expressions 
might be more appropriate to use. 𝐴𝐴 𝑴̂𝑴 is the estimated ensemble of parameters.
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The ensemble smoother technique with a new estimate of parameters can be 
applied repetitively to obtain a better estimate of parameters in the case of 
non-linear forward models (Emerick & Reynolds, 2013). The set of parame-
ters is updated with each subsequent step. The data remain the same over the 
entire procedure. To compensate for the effect of multiple applications with 
the same data, the covariance of the data is increased with each step of the 
optimization. This is done with a factor αi, where the following condition is 
met: 𝐴𝐴

∑𝑛𝑛𝑛𝑛

𝑖𝑖=1

1

𝛼𝛼𝑖𝑖

= 1 . nI is the number of assimilation steps (Fokker et al., 2019). 
We used a factor αi that decreases every step with a factor q to ensure increas-
ing influence of subsequent assimilations.

𝛼𝛼𝑖𝑖 = 𝛼𝛼0 ⋅ 𝑞𝑞
𝑖𝑖� (9)

With i being the assimilation step. The above summation condition is met with

𝛼𝛼0 =
1 − 𝑞𝑞

𝑛𝑛𝑛𝑛

𝑞𝑞𝑛𝑛𝑛𝑛−1 − 𝑞𝑞𝑛𝑛𝑛𝑛
� (10)

To verify the results and determine the actual improvement of the parameter estimation procedure, a test function 
is applied, considering the covariance of the data and the estimate parameters after the last assimilation step:

𝜒𝜒
2 =

(

̂𝑮𝑮𝑮𝑮 − 𝒅𝒅
)𝑇𝑇 (

𝑪𝑪𝑑𝑑 + 𝑪𝑪 ̂𝑮𝑮𝑮𝑮

)−1 (
̂𝑮𝑮𝑮𝑮 − 𝒅𝒅

)

� (11)

The outcome of this equation should be around the degree of freedom (Nd), so that 𝐴𝐴
𝜒𝜒
2

𝑁𝑁𝑁𝑁
≈ 1 .

The parameters for this study are summarized in Table 1. The number of grid cells equals the number of litholog-
ical and groundwater voxel cells covered by the InSAR data points. In the result section, we present key examples 
of individual voxel cell locations, the values of the optimized parameters and correlations between different 
parameters.

3.  Results
Our ES-MDA-based workflow yielded 357 individual scatter point locations. To provide a representative 
summary of the results on point location scale, we present four key examples below (Figure 6). These locations 
were chosen to represent the variance in lithoclass composition, which is dominated by clay and sandy clay, 
with occasionally sand and peat layers. Additionally, we present four key indicators for parameter covariance 
(Figure 8), values for the estimated parameters (Table 1), and the average contribution to subsidence for clay and 
peat (Table 2). The estimated parameters consist of the four model parameters for the shrinkage of clay (shrinkage 
rate and relative residual thickness for clay and sandy clay), and two model parameters for oxidation (oxidation 
velocity and relative residual thickness of peat).

The four key examples of the results of the simultaneous assimilation are presented in Figure 6. The time series 
of the prior ensemble is not indicated in Figure 6. Because they have a high variance, they would not fit into 
the scale of the figure. The red time series in Figure 6 are the 200 modeled surface movement developments 
for the ensemble of assimilated parameters. The black dots are the InSAR data points, and the gray area repre-
sents  the  uncertainty given to each data point, as described in Section 2.1. On the right y-axis in the same plot, 
the phreatic groundwater level variation is plotted. The lithological column and the location of the column with 
respect to the phreatic groundwater level are indicated on the right of the plot. The time series and the estimated 
subsidence correspond well, regardless of lithology, except for Figure 6a. The prior and estimated parameters are 
presented in Table 2.

Table 2 provides the estimates prior and posterior to the data assimilation with their standard deviation. Results 
are given for the descending and ascending satellite tracks separately. The two tracks provide comparable esti-
mated parameters as a result of the data assimilation. The similarity of the results for the two tracks strengthens 
our assumption of no horizontal displacement. The outcome of the estimated parameters is also visualized in 

Number of ensemble members (–) 200

Number of assimilations (–) 4

q (–) 0.667

Covariance data (m) 0.01

Number of InSAR data points (–) 3,747 (descending), 2,846 (ascending)

Number of voxel locations (–) 199 (descending), 158 (ascending)

Number of points in time (–) 208 (descending), 212 (ascending)

Number of model parameters 6

Table 1 
Parameters for the Data Assimilation Procedure of This Study

 21699011, 2023, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JF007031 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [03/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Earth Surface

VERBERNE ET AL.

10.1029/2022JF007031

14 of 23

Figure 7. Clay and sandy clay show similar behavior; the behavior of peat is distinctly different. However, the 
uncertainty for the estimated parameter values for peat is larger than for clay and sandy clay.

A few of the parameters are plotted against each other in Figure 8. For each assimilation step, the 200 estimates 
of the parameters are plotted against each other. The figure indicates the ensemble spread in the prior estimates 
and the operation of the smoother by molding the cloud of parameter values. A clear relationship between differ-
ent parameters evolves, along the lines of the argument in the previous paragraph: different combinations of the 
shrinkage and oxidation rate and the associated residual height give identical outcomes, as long as they follow 
the relationship 𝐴𝐴 𝐴𝐴 = 1 −

𝐶𝐶

𝑣𝑣
 . The final ensembles have been fitted to this relationship, as indicated with the dotted 

black line. The resulting constant C is given in the figure description.

Figure 6.  Comparison of surface movements, groundwater levels, and lithology for four example locations. Their locations are indicated in Figure 1b. All figures show 
the Interferometric Synthetic Aperture Radar-derived surface movements (black points) on the scale of the left y-axis. The uncertainty around them is depicted in gray. 
It was determined as described in Section 2.1. The red lines are the 200 ensemble members of the optimized fit after four assimilation steps, also on the scale of the left 
y-axis. The groundwater is the blue line and is with respect to the right y-axis. Next to the graph, a stratigraphic column for that specific location is given, according to 
the lithoclasses model. The legend of the column is the same as for Figure 4. The black lines note the maximum and minimum phreatic surface level for the simulation 
period with respect to the lithological column. All y-axes are in meters with respect to NAP. (a) Descending track. This location shows an increase in subsidence rate 
once the phreatic surface is below the sandy layers, which happens from spring 2018 onwards. (b) Ascending track. Shows the fit of subsidence, where the phreatic 
surface steadily drops under a seasonal trend. There was no significant increase in the subsidence rate. (c) Descending track. Combination of subsidence due to peat and 
clay. Enhanced subsidence rate from spring/summer 2018 onwards is clear. (d) Descending track. Seemingly linear subsidence, with a slight acceleration from spring/
summer 2018 onwards.

 21699011, 2023, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JF007031 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [03/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Earth Surface

VERBERNE ET AL.

10.1029/2022JF007031

15 of 23

In summary, Table  3 provides an overview of the average contribution to 
subsidence in mm for the different lithologies for both the ascending and 
descending satellite tracks.

4.  Discussion
4.1.  Future Estimates and Spatial Pattern of Subsidence

This study has demonstrated the possibility to make reliable estimates of 
subsidence related to phreatic groundwater level changes and lithoclass 
layering. The study area was the urbanized Almere area of the reclaimed 
South Flevoland polder. For relatively short timescales (years), this enables 
making estimates of future subsidence, providing indications to drivers and 
hence tools for designing mitigation strategies. To provide information on 
expected future subsidence rates, four scenarios for the next 10 years were 
simulated. The first and fourth scenarios function as a boundary of the influ-
ence on subsidence rates by artificially changing phreatic water levels. The 
first scenario, the most extreme scenario, was to continue the average rate of 
phreatic groundwater level change toward the future (red in Figure 9b). This 
is not a realistic assumption: anthropogenic interference on the groundwater 

levels would prevent such substantial decrease because of its impact on nature and farming. Scenarios 2 and 3 
provide an indication of the magnitude of shrinkage and oxidation, for more realistic conditions. The second 
scenario was to fix the level at the average height from April 2018 until the end of the research period (blue 
in Figure 9b)—no more lowering was allowed. This is called water level indexation and is applied in several 
other polders in the Netherlands as well to reduce subsidence processes. The third scenario fixed the phreatic 
groundwater level at the average height of the phreatic surface for the research period until April 2018 (green in 
Figure 9b): the phreatic level was brought back to higher values. The last scenario, finally, increased the water 
level even further by adding to the third scenario extra 20 cm. This scenario results in phreatic water levels close 
to the actual surface, where seasonal effects could influence the drainage during periods of increased rainfall, 
potentially gradually inundating the area. Such a scenario is only realistic for areas which are transformed into 
nature or used for wet agriculture, which is not the case here. No seasonal trends were added to the scenarios; it 
is a mere indication of phreatic groundwater level elevation effects on subsidence until 2030.

Figure 9a shows the spatial distribution of the total absolute increase in subsidence since the start of the study 
related to the different scenarios. The difference between a continuous decrease versus the average level before 
March 2018 +0.5 m can be up to five cm in 10 years. The spatial plotting also makes it apparent that most of the 
subsidence is expected in the southwest and northeast of the city of Almere. The area in the northeast part coin-
cides with the course of the Eem paleovalley (Figure 1), where the thickest Holocene sequence is present. Natu-
rally, as this study does not provide a continuous image of subsidence, local alternating Holocene sequences are 

Parameter Pre Post (ascending) Post (descending)

Vsh clay 0.02 ± 0.005 0.017 ± 0.0012 0.018 ± 0.001

Rh clay 0.60 ± 0.05 0.79 ± 0.017 0.78 ± 0.019

Vsh sandy clay 0.02 ± 0.005 0.017 ± 0.0015 0.018 ± 0.0016

Rh sandy clay 0.60 ± 0.05 0.77 ± 0.02 0.77 ± 0.025

Vox Peat 0.01 ± 0.005 0.009 ± 0.003 0.02 ± 0.007

Rh peat 0.90 ± 0.05 0.89 ± 0.04 0.88 ± 0.04

Note. The optimized fit of the ascending and descending track is the result 
of separate data assimilation procedures, but the results are similar. The 
pre parameters were chosen based on the study of Fokker et  al.  (2019). 
The chi-square error of the ascending track data set has been reduced from 
5.2 (prior) to 1.01 (posterior); for the descending track data set it has been 
reduced from 3.6 (prior) is 3.6 to 0.77 (posterior).

Table 2 
The Parameters That Are Optimized in This Study for All the Locations at 
the Same Time

Figure 7.  The estimated values of the optimized parameters for subsidence rate and residual height from Table 2 visualized. The outcome of the ascending and 
descending track is comparable. Clay and sandy clay show similar behavior and peat shows a distinct different behavior, for both the subsidence rates of oxidation and 
shrinkage and the residual height. The uncertainty of the estimated parameters for peat is larger than for clay and sandy clay.
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not accounted for. The spatial relation of subsidence with Holocene thickness 
or groundwater level is not a straightforward relation, where clay thickness 
or groundwater level alone determines the subsidence rate. Our results show 
that not one single factor influences the spatial pattern of subsidence. This 
amplifies our need for subsidence modeling on the urban scale.

Figure 9b provides subsidence predictions for the four scenarios for one loca-
tion. The phreatic groundwater level is a key factor in the subsidence rates. 
However, even when the phreatic water level is kept constant or is increased, 
shrinkage and oxidation in the unsaturated zone will continue. From our 
analysis, it follows that 1 m drop in the phreatic surface will lead to 1 cm 
of additional subsidence in 5 years. This relationship can help in decisions 

Figure 8.  Several of the optimized parameters are plotted against each other for the pre-scenario (assimilation step 0) until the optimized result for the parameters 
(assimilation step 4) for the ascending satellite track. (a) The residual height of clay versus the shrinkage rate of clay, (b) the residual height of peat versus the oxidation 
rate of peat, (c) the residual height of sandy-clay versus the shrinkage rate of sandy-clay, (d) the shrinkage rate of clay versus the oxidation rate of peat. There is a strong 
correlation between the residual height (Rh) and the rate of subsidence (V) within each lithoclass (a–c). There is no clear correlation between the different lithoclasses, 
as indicated in Figure 6d. For all the lithoclasses, the relation C = v (1 − R) is fitted to the results of assimilation step 4, using an automated least squares polynomial fit. 
The constants for the line in panel (a) are C = v (1 − R) = 0.0038 yr −1; for (b) it is C = v (1 − R) = 0.0021 yr −1; and for (c) it is C = v (1 − R) = 0.0040 yr −1. (d) Plots 
two subsidence rates against each other for interlithoclasses correlations, it therefore does not visualize the relationship between residual height and subsidence rate of a 
specific lithoclass and no curve fit was calculated.

Ascending Descending

Average contribution clay shrinkage (mm/yrr) 5.7 ± 2.0 5.8 ± 2.3

Average contribution peat oxidation (mm/yrr) 0.07 ± 0.17 0.20 ± 0.42

Note. Clay incorporates both clay and sandy clay lithoclasses from the 
lithological model.

Table 3 
The Average Contribution of Clay Shrinkage Versus Peat Oxidation for All 
the Locations Is Provided Below, in mm/yr
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Figure 9.  Future estimates of subsidence. (a) Plots the expected subsidence since the start of the study for different scenarios of groundwater development. The 
scenarios range from largest to smallest drop in the phreatic surface, and hence largest to smallest expected subsidence. Locations are the same as in Figure 1. (b) Shows 
the subsidence development of one individual location over time, from the start of the study period until 10 years after the end of the study period. The continuous lines 
show the phreatic surface on the right y-axis, the dashed line shows the modeled subsidence on the left y-axis. In red, the continuous decrease of subsidence is modeled, 
in blue the average groundwater level from March 2018 until the end of the study period, the green line the average groundwater level of the study period until March 
2018 and the black line is the green groundwater level plus 0.2 m.

 21699011, 2023, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JF007031 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [03/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Earth Surface

VERBERNE ET AL.

10.1029/2022JF007031

18 of 23

concerning groundwater management, the single key factor of human influence on the subsidence rate. The 
results of this study can be used to support science-based mitigation measures.

4.2.  Comparison to Other Subsidence Regions

The Flevoland Polder is unique in the Netherlands in the sense that subsidence is dominated by shrinkage of 
clay. However, clay - dominated subsidence is observed in many other regions in the world (Voosen, 2019). An 
example is the northern Nile Delta plain in Egypt, where Holocene clay related subsidence is enhanced by climate 
change that affects the Nile's flow regime (Stanley & Clemente, 2014). There, subsidence ranges from 3.7 to 
8.4 mm/yr, which are comparable to the subsidence by clay derived in this study for the South-Flevoland polder.

In and around Venice, Italy, there is ongoing subsidence caused by compression of the natural lagoon 
(0.0–0.5 mm/yr). More recently, this is aggravated by human-induced subsidence (>2.5 mm/yr) due to ground-
water withdrawals (Tosi et al., 2013). Parallels with the South Flevoland polder can be found in the reducing 
natural consolidation over time and significant subsidence induced by groundwater withdrawals. Both areas must 
deal with irreversible land lowering caused by groundwater withdrawals, which are required to prevent the area 
from flooding.

The same comparison can be made with south-east England, where drought is demonstrated to increase subsid-
ence by shrinkage of clay. There, a connection of temperature and precipitation with shrinkage and swelling was 
made (A. M. Harrison et al., 2012; Pritchard et al., 2015). No estimate of the quantity of subsidence was provided 
in these papers; however, a link between drought and increased subsidence by shrinkage of clay is also something 
we identify in the Flevoland Polder.

Despite the differences between these areas in rates of subsidence due to clay shrinkage, the common thread is 
that all areas are affected by groundwater lowering, either by climate change or anthropogenic causes. Under-
standing the importance of groundwater level changes to subsidence is therefore of major importance for all these 
coastal regions across the world. The method presented in this study, and the results in relation to clay behavior of 
the reclaimed land and the response to groundwater lowering can be of help to tackle this problem.

4.3.  Subsidence by Drought

In the results, a slight acceleration of subsidence around summer 2018 is visible. This acceleration is related to 
relative deep lowering of the phreatic groundwater level. At some locations, this acceleration is more profound 
than in others, as this is influenced by lithoclass and fluctuations of the phreatic levels as well. As shown in 
Figure 6, this relative low elevation of the phreatic groundwater level influences the processes responsible for 
subsidence. Namely, due to a lowered groundwater level, deep peat layers are temporarily aerated, resulting in 
oxidation and volumetric loss. Furthermore, a deeply lowered phreatic groundwater level can therefore instigate 
subsidence at locations that were previously not subsiding.

This temporary deeply lowered phreatic groundwater levels are the results of climate change-related drought 
events, such as the summers of 2018 and 2019 (Hari et al., 2020). Observed accelerated subsidence due to drought 
is new in the context of the Netherlands. Studies in other (Northwestern) European countries have recently 
linked drought to increased shrinkage in clay and associated damage to the built environment (e.g., Charpentier 
et al., 2021). With global warming resulting in more frequent droughts, establishing these relationships becomes 
increasingly more important.

The results for the effects of drought in this study, however, must be viewed with care. As the number of ground-
water datapoints decreases with time, the uncertainty increases. Our results are indicators of drought having 
an effect, but more extensive and consistent measuring of the phreatic groundwater level is essential to assess 
groundwater-related subsidence. Especially, the effect of drought on the phreatic groundwater level height is an 
important link for future scenarios of subsidence and mitigation strategies.

4.4.  Implications

Current governmental attention in the Netherlands for shallow subsidence is predominantly focusing on peat 
oxidation (Van Nieuwenhuizen Wijbenga,  2019). Therefore, the current study fills a gap in the Netherlands 
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knowledge base. Quantifying the process of clay-driven subsidence is important for optimal decision making 
regarding shallow subsidence in Almere. Additionally, showing that drought enhances subsidence rates is impor-
tant for focusing future measures to mitigate subsidence, and connects the problem to climate change. Further-
more, phreatic surface lowering exposing deeper peat beds also increases carbon dioxide emissions by peat 
oxidation (e.g., Koster et al., 2020).

This study would not have been possible without a structure of nationwide freely available data on the construc-
tion of buildings, relative elevation measurements, geology, and groundwater. Still, more data will support to 
corroborate our findings. Investments in a network to monitor phreatic groundwater level changes and shallow 
extensometers able to measure volumetric loss within the Holocene sequence are critical herein (cf. Van Asselen 
et al., 2020). For improved processing of geodetic data, a network of corner reflectors is required to measure 
surface movement of the ground level (e.g., Yu et al., 2013). Such investments should be conducted in close 
collaboration with policy makers and spatial planners.

4.5.  A Comparison of Parameters With Previous Studies

The South Flevoland polder is unique in the Netherlands with respect to the progressively increasing number of 
clay and peat beds that encounter contact with atmosphere for the first time since their formation. The estimated 
subsidence rates are therefore not directly comparable to other polder areas in the Netherlands that have been 
reclaimed centuries ago.

Earlier studies on subsidence in the South Flevoland polder determined the rates of subsidence due to shrinkage 
after reclamation estimated based on a few measurements of non-urbanized locations across the South Flevoland 
polder (De Lange, 2015; De Lange et al., 2012; Fokker et al., 2019). The estimated subsidence in those regions 
was larger than what we have observed here in the urbanized areas. A reasonable explanation would be that 
construction has an inhibitory effect on the shrinkage of clay (and when applicable oxidation of organic material) 
(De Lange, 2015). This study focuses on an urbanized area to estimate the contribution of the different back-
ground subsidence processes in urbanized settings.

The residual height estimated by Fokker et al. (2019) lies between 0.50 and 0.67 for clay. However, as mentioned 
before, the start of modeling subsidence is ∼50 years after reclamation in our study, whereas Fokker et al. (2019) 
start modeling from reclamation onwards; hence, the layers still have their original thicknesses. The values found 
in this study are higher; ∼0.78. Due to the length of the modeling period, only a relation between residual height 
and reduction rate could be established (Figure 8). A higher residual height can be explained when layers already 
have partly undergone shrinkage before the start of the observations. Indeed, in our study, the reference is not at 
the start of exposure to air but a long time later in the compaction history.

A good match between the estimated parameters and the InSAR time series was found for our spatiotemporal 
model of subsidence in the city of Almere, quantified with the calculated chi-square error, whilst incorporating 
groundwater levels, lithology, and the physical models. In line with literature, the shrinkage rates of clay are 
larger than the oxidation rates of peat (Fokker et al., 2019; Schothorst et al., 1982).

The same value for uncertainty is currently attributed to each InSAR-derived data point in space and time. There 
was no covariance matrix available for the data set. Accurate covariance matrices could increase our ability to 
fit parameters and models to the data by reducing the weight given to less reliable data points and incorporating 
interdependencies.

4.6.  Correlations Between Parameters

We found correlations between the residual height and reduction rate parameters for the same soil types. This 
correlation could have been expected from the form of their presence in the forward model. The relationship, 
as shown in Figure 8, helps in future subsidence estimates. By parameterizing the average behavior of the three 
lithological types, prediction on future behavior with respect to phreatic groundwater changes can be made even 
when the individual values of the parameters are rather uncertain.

There is no correlation between the shrinkage rate of clay and the oxidation rate of peat (Figure 8) because 
lithoclasses act independently. Clay and sandy clay show similar behavior (Figure 8 and Table 2). In the South 
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Flevoland polder, sandy clay is the product of tidal dynamics and consists of mm-thick alternating clay and sand 
beds. The comparable behavior between these thin-bedded sandy-clay and clay deposits indicates the dominance 
of clay shrinkage within the sandy-clay beds. Apparently, the presence of sand is only minimally preventing these 
deposits from volumetric loss by shrinkage.

Figure 6a shows a scenario in which the average phreatic groundwater level is located within the uppermost sand 
bed. Here, the model underestimated observed subsidence. We think the mismatch is related to short drought 
events not captured by our monthly updated groundwater model. Phreatic groundwater levels that are temporally 
lowered result in shrinkage of clay directly underneath the upper sand bed, resulting in enhanced subsidence. 
This explanation is corroborated by the increase in subsidence rate in Figure 6a that coincides with the phreatic 
surface drop into the clay layer.

5.  Conclusions
We have presented a novel data processing and data assimilation workflow with an unprecedented data set to 
identify processes resulting in anthropogenically induced subsidence around the city of Almere in the reclaimed 
South Flevoland polder in the Netherlands. The workflow integrates lithoclasses, phreatic groundwater level 
changes, and InSAR data, with information on construction dates of structures, and a suite of physical models. 
The assimilation exercise has enabled us to quantify the drivers of subsidence.

Our results have revealed that the shrinkage of shallow clay beds induced by artificial lowering of phreatic 
groundwater levels is the dominant subsidence process in the South Flevoland polder, with rates up to 6 mm/
yr. In line with previous research in the South Flevoland polder, the subsidence rates due to clay shrinkage are 
significantly higher than those due to peat oxidation, which are up to 0.2 mm/yr. The rates depend critically on 
the development of phreatic water levels—drought has therefore been identified in this study as an important 
catalyzer of subsidence. At longer timescales, we estimated that 1 m drop in groundwater level results in 10 milli-
meter of subsidence in the urbanized area of Almere.

Groundwater governance is the single human activity influencing land subsidence in Almere. Our study high-
lights the necessity of high-quality data in order to make trustworthy analyses of subsidence processes and 
support such governance. Data are obtained by measuring campaigns and continuous monitoring. This includes 
lithology, groundwater development, and phreatic groundwater level changes. Robust analyses of subsidence 
processes and quality predictions are possible through the application of an approach that integrates all available 
data with knowledge on physical processes in a dedicated data assimilation procedure.

Data Availability Statement
Data from the Geological Survey of the Netherlands (TNO-GSN, 2022) was used to construct the lithoclass 
and groundwater model. The ID codes of the wells used for the groundwater models are given in Data Set S1. 
Kadaster (2022) was used to verify the age of the buildings. From Rijkswaterstaat (2022) InSAR data products 
were retrieved. The data points used as input for the ES-MDA procedure for both satellite tracks are included 
in the Data Sets S2 and S3. Figures were made with Matplotlib v.3.4.3 available under the matplotlib license at 
https://matplotlib.org and QGIS v3.24 (QGIS Development team, 2022). The Python (Python Software Soun-
dation,  2023) code is available upon request. The data needed to reproduce the results are provided as Data 
Sets S1, S2, and S3.
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