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Abstract This research targets disentangling shallow causes of anthropogenically induced subsidence

in a reclaimed and urbanized coastal plain. The study area is the city of Almere, in the South Flevoland
polder, the Netherlands, which is among the countries' fastest subsiding areas. The procedure consists of
integrating Interferometric Synthetic Aperture Radar (InSAR) data with high-resolution phreatic groundwater
and lithoclass models, and a database containing construction details. The InSAR data were derived from
Sentinel-1, one ascending and one descending track, over a period from March 2015 until June 2020. The
two main parts of the workflow are isolation of the InSAR points of structures without a pile foundation and
a data assimilation procedure. The shrinkage of surficial clay beds by phreatic groundwater level lowering

is identified as the main cause of subsidence in the area, with an average contribution of 6 mm per year. The
history-matched physics-based model predicts that 1 m drop in phreatic groundwater level now translates into
10 mm of subsidence in the next 5 years. Additionally, a groundwater deficiency due to severe dry periods
should be considered as an accelerator of subsidence. To ensure a robust network to estimate subsidence, we
recommend a consistent monitoring strategy of the phreatic groundwater level.

Plain Language Summary The city of Almere, in the Netherlands, is part of a polder that was
reclaimed in 1968. Land reclamation is accompanied by the lowering of groundwater levels, which can cause
land subsidence. Almere is situated on top of about 9 m of soft soil layers. These layers were deposited after
the last ice age and consist predominantly of clay and peat. It is important to understand and quantify the
subsidence processes in these Holocene layers, to be able to mitigate subsidence. By lowering the groundwater
level, the soft soil layers are dried. Clay shrinks when it dries out and organic material (within peat) oxidizes.
Lowering the groundwater level also causes the load of the layers below to increase, which can result in the
compaction of the layers (reduction in size by pressing together). This study targets the behavior of these
processes. Results of our study indicate that the shrinkage of clay is the dominant driver of subsidence in
Almere. One meter lowering in groundwater level now results in approximately 1 cm subsidence in 5 years.
To improve our understanding of the non-trivial link between groundwater fluctuations and subsidence, higher
spatial-temporal resolution groundwater monitoring is required.

1. Introduction

Over half a billion people live in coastal plains and deltas threatened by anthropogenically induced subsidence,
and this number is expected to increase in the foreseeable future (Neumann et al., 2015; Schmidt, 2015). Many
anthropogenic subsurface activities in coastal areas and delta plains result in subsidence, thereby amplifying rela-
tive sea-level rise and flood risks, inflicting damage to infrastructure, and overall, reducing the viability of these
low-lying areas (Dinar et al., 2021; Guo & Jiao, 2007; Syvitski et al., 2009). Examples of subsurface activities are
resources extraction, such as groundwater (Jones et al., 2016) and deep hydrocarbons (Chaussard et al., 2013),
and surficial processes related to land use, primarily phreatic groundwater level management (Koster, Stafleu, &
Stouthamer, 2018), and sediment deficit (Eslami et al., 2019).

Some heavily populated coastal plains and deltas require engineered extension of their surface area by land
reclamation to accommodate population growth and increase the surface area of arable land, for example, China,
Belgium, Japan, Dubai, the U.S., and Singapore (e.g., Declercq et al., 2021; D. Li et al., 2022; Martin-Ant6n
etal., 2016; W. Wang et al., 2014). When land is gained along sea or lake shorelines by drainage of open water,
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this in essence means exposing waterlogged sediments to the atmosphere, thereby instigating various subsidence
processes, primarily by shrinkage, compaction, and oxidation of fine grained and organic deposits.

The dense population of Hong Kong, for instance, prompted the government to reclaim land since the nineteenth
century. There, rates of subsidence are around 20 mm per year, resulting in major damage to the built environment
by differential settlements (Sun et al., 2018; M. Wang et al., 2016). In Bangladesh, reclamation primarily serves
the purpose of gaining arable land, resulting in subsidence rates up to 10 mm per year in these reclaimed areas.
This catalyzes a rise in social inequality as especially low-income farmers are not able to cover adaptation costs
for the negative effects of these high subsidence rates (Barbour et al., 2022; Steckler et al., 2022).

The Netherlands is a prime example of a country that has extended its coastal plains by land reclamation. In
total, the Netherlands has 443 reclaimed former lakes located in its coastal plains, with a cumulative surface
area of 3,123.60 km? (Schultz, 1983). The centuries-long tradition of reclaiming land, referred to as “polder,”
can be divided into three main periods of lake drainage. The first stage comprised the sixteenth to seventeenth
century, when many small lakes within the back-barrier peatlands were drained with windmills. Second, in the
nineteenth century, larger lakes in the coastal plain were drained with steam pumping stations. Finally, in the
twentieth century, Lake IJssel, the country's largest lake that was created by the damming of a tidal inlet, was
partly reclaimed, resulting in the largest polders of all: the Lake IJssel polders (Figure 1a).

The focus of this study is on understanding and predicting shallow causes of subsidence in the reclaimed urban-
ized South Flevoland Polder (430 km?), which is part of the Lake Ussel polders (Figure 1). The polder was created
in 1968 by constructing a ring-dike around the water body to be reclaimed. This enclosed water body was subse-
quently drained until the water level dropped below the former lake's floor. Subsidence immediately commenced
when the waterlogged deposits experienced aeration for the first time and pore water progressively evaporated
(Barciela Rial, 2019; De Glopper, 1969). Ultimately, the polder has experienced locally 1-2 m of subsidence
since its reclamation (De Glopper, 1973, 1984; De Lange, 2015; De Lange et al., 2012; Fokker et al., 2019).

Paradoxically, severe water pumping has been ongoing to this day, as it is required to keep phreatic water levels
low, thereby preventing the polder from flooding due to its low-lying position relative to the adjacent Lake IJssel's
water level and increasing the load-bearing capacity of the former lake floor. The area thus continues to subside as
waterlogged sediments are progressively exposed to the atmosphere. Besides flood risks, differential subsidence
in the urbanized areas of the South Flevoland polder causes stress on structures, which results in damage to the
built environment, leading to major costs. This especially accounts for the “Regenboogbuurt,” which is a neigh-
borhood that onlaps the thickest sequence of soft soil deposits in the area (Maas, 2021). Additionally, the severe
drought events that have been striking Northwestern Europe during recent summers pose the threat of accelerated
subsidence to the area by loosing pore water from fine grained and organic deposits. To the best of our knowledge,
no study has been reported on the effects of severe drought in South Flevoland, although Hoogland et al. (2020)
showed that subsidence may be slowed down by proactively saturating shallow peat beds within the area. Under-
standing, quantifying, and predicting subsidence, both spatially and temporally, in the South Flevoland polder is
therefore of immense importance from both a socio-economic and a hazard-prevention point of view.

The lowering of phreatic water levels in the South Flevoland polder results in shrinkage of clay and oxida-
tion of peat in the unsaturated zone (i.e., above the annually averaged lowest phreatic groundwater level). Clay
shrinks as water that is adsorbed to charged platy clay particles evaporates and admixed organic matter oxidizes
(Barciela-Rial et al., 2020). This leads to volumetric loss and is largely irreversible. Peat oxidation involves the
breakdown of organic components by microbial activity. It is completely irreversible and results in the emission
of carbon dioxide (Koster et al., 2020). Further, there are subsidence processes in the saturated zone: the consoli-
dation of clay and peat layers due to an increase in effective stress by lowering of hydrostatic pressure when phre-
atic water levels are lowered (De Glopper & Ritzema, 1994). Consolidation and oxidation have been addressed
regularly in other areas in the Netherlands that experience shallow subsidence (e.g., Kooi, 2000; Van Asselen
et al., 2009, 2018). On the contrary, shrinkage of clay in the context of subsidence has been poorly covered
(Fokker et al., 2019). However, in other countries, subsidence by clay shrinkage is considered as a major issue.
In France and Great Britain for example, potential damage to the built environment inflicted by clay shrinkage as
a result of drought and climate change has been studied in terms of cost per annum in the light of the insurance
industry for decades (e.g., Burnol et al., 2021; Charpentier et al., 2021; Pritchard et al., 2015). In addition, in
Sweden, locally increased subsidence rates in an urban area were linked to the presence of clay, with the aid of
Interferometric Synthetic Aperture Radar (InSAR) (Fryksten & Nilfouroushan, 2019).
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Figure 1. (a) Map of the Netherlands showing all the areas that accommodate polders (adjusted from Steenbergen et al. (2009)). (b) Map of the area of Almere and
its surroundings projected on a map showing the thickness of the Holocene sequence (TNO, 2022). The thickness decreases toward the south-east. The incised course
of the Eem River, in the northeast of the city Almere, is reflected by an increased Holocene thickness. The map is plotted on the Rijksdriehoek coordinate system. The
green dots indicate the locations of the data points included in this study (see Figure 4). The locations of the graphs in Figures 6a—6d are denoted.

Most recent studies focus on establishing physics-based subsidence forecasts using input parameters derived
by field- and laboratory measurements (Koster, Stafleu, & Stouthamer, 2018; Mayoral et al., 2017; Nusantara
et al., 2018; Schothorst, 1982; Van Asselen et al., 2018). This approach inherently renders the subsidence esti-
mates to be strongly dependent on used models and input soil parameters. A step forward regards the coupling
of the different processes. Allison et al. (2016) for instance, stressed that developing an integrated model with
coupled behavior of the different subsidence processes is critical for reliable subsidence estimates. Only by
considering the behavior of all subsidence processes combined with real observations can the full impact of
subsidence be understood.

Optimizing the relation between coupled subsidence processes and measured subsidence can improve subsid-
ence forecasts. A history matching procedure by correlation and/or trial-and-error is often employed (e.g., Calé
et al., 2017; Castellazzi et al., 2016; Teatini et al., 2006). For larger areas, or areas where multiple subsidence
processes are superimposed, a more formal approach is considered more efficient (e.g., Candela & Koster, 2022;
Fokker et al., 2019). A mathematically driven approach such as data assimilation can cover the entire range of
uncertainty of all the parameters to seek the optimal solution.

Data assimilation combines models and observations to obtain the best possible description of the system
(Evensen, 2009; Evensen et al., 2022). This approach is customary practice in a wide range of disciplines, such
as subsurface modeling (Candela et al., 2022; Chang et al., 2010; Evensen et al., 2022; Fokker et al., 2016;
Gazzola et al., 2021), weather predictions (Navon, 2009; Thépaut, 2003), and oceanographic simulations (Carton
& Giese, 2008; Ghil & Malanotte-Rizzoli, 1991), but for interpreting shallow causes of subsidence this method
has not yet been applied widely. Peduto et al. (2017, 2020) presented examples of shallow subsidence studies that
apply a form of data assimilation to a geotechnical problem. Their studies show the benefit of combining multiple
data sets. L. Li et al. (2017) applied data assimilation with an Ensemble Kalman Filter and showed the strength of
data assimilation procedures, although they did not emphasize the subsidence models in their study.

Data assimilation procedures have also been applied in studies on polders in the Netherlands (Fokker et al., 2019;
Muntendam-Bos et al., 2009). Fokker et al., 2019 used Ensemble Smoothing with Multiple Data Assimilation
(ES-MDA) for 10 distinct locations in the South Flevoland polder with a few dozens of time steps over a period
from reclamation until recent, combined with coring for lithological data and phreatic groundwater level meas-
urements. They focused on the agricultural areas of the South Flevoland polder over a longer timescale with a
small number of locations. Therefore, their results are not directly applicable to the subsidence in the urbanized
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areas of the South Flevoland polder, where the urbanization might have had inhibitory effect on shrinkage and
layers might have undergone more severe compaction in the past. Additionally, corings of individual locations
were used in Fokker et al. (2019), whilst in this study we introduce an automated procedure including a litholog-
ical and groundwater model, making it possible to apply this methodology to larger areas.

Here, we aimed to quantify the subsidence processes within the Almere urban area of the South Flevoland polder
in relation to phreatic groundwater level changes. Furthermore, we showcase the added value of combining
large observational data sets with numerical models to improve parameter estimations for shallow subsidence
processes. We deployed data assimilation on a data set comprising thousands of locations with hundreds of time
steps derived from satellite observations, high-resolution 3D models of subsurface lithology and groundwa-
ter to quantify the contribution of the different shallow subsidence processes. We studied multiple subsidence
processes at the same time to understand the full impact of subsidence and quantify the relative contributions of
the different processes. Such information is critical for policymakers and spatial planners to design strategies to
mitigate subsidence in the South Flevoland polder.

1.1. Study Area

The South Flevoland polder is situated in the central Netherlands in the partly reclaimed Lake IJssel (Figure 1).
The Holocene sequence of the polder is underlain by several hundreds of meters thick Pleistocene sediments,
consisting of a complex of alternating sandy to clayey marine, fluvial, and (peri-)glacial deposits (Menke
et al., 1999; Peeters et al., 2015; TNO, 2022). The uppermost Pleistocene unit consists of a several meters thick
aeolian sand bed, which grades from ca. —5 to —12 m below NAP (i.e., the Dutch ordinance datum, approximately
corresponding to the mean sea level) in northwestern direction, locally incised by the Eem brook paleo-valley or
elevated by dune formation (Figure 1).

During the Holocene, the South Flevoland Polder became part of the landward margin of a coastal plain. The
base of the Holocene sequence consists of a basal peat bed formed between 6,000- and 7,000-year BP under the
influence of inland groundwater level rise in tandem with post-glacial sea-level changes (Koster et al., 2017,
Makaske et al., 2003). These peatlands drowned and transformed into an open tidal basin under the influence of
continuous sea-level rise (Vos, 2015). The tidal basin deposits consist of alternating sand-clay beds, with local
erosion of the underlying basal peat. When around 5,500-year BP eustatic sea-level rise decreased, the open tidal
basin was closed off by the formation of a beach-barrier, transforming the area into a freshwater swamp with
large-scale peat formation (Beets & Van der Spek, 2000; Makaske et al., 2003). In parallel, the area remained
connected in the west to the North Sea by several smaller tidal inlets, making the Eem brook part of a branched
network of freshwater tidal channels (Vos, 2015). The peatland itself was characterized by a series of open lakes
(Menke et al., 1999). From the north, this lake system was connected to the Wadden Sea. When the peatlands
deteriorated as a combination of natural and anthropogenic causes, the open sea connection in the north expanded
southwards, thereby gradually drowning the peatlands and turning the area into a partly enclosed inland sea
(Van den Biggelaar et al., 2014). The inland sea was dammed off and became Lake IJssel in 1932 to protect the
surrounding areas against flooding. After the damming, several parts of the newly formed lake were reclaimed
from 1939 onwards. The South Flevoland polder is the final area that was reclaimed.

Almere is a large urban conglomerate in the polder of South Flevoland (Figure 1), with a population of ca.
200,000. Almere was founded in 1976, approximately eight years after reclamation. This delay between recla-
mation and construction was used to account for the first years of subsidence, for which it was predicted to be
the highest around Almere (up to 70 cm in total) (Hoeksema, 2007). Almere has been partly built on top of the
paleo-valley of the Eem brook system, which incised several meters into underlying deposits of Pleistocene age.
Therefore, the thickness of the Holocene sequence underneath Almere strongly varies, with thicknesses between
<1 and 10 m. The thickest sequence can be found over the course of the former Eem brook system. Generally,
basal peat in the Netherlands, like underneath Almere, has undergone substantial compression by the overburden,
and consequently has mechanical characteristics that deviate from the younger peat beds (Koster, De Lange,
et al., 2018). Due to sea-ingressions that drowned the peatlands, the paleo-valley infill on top of the basal peat
consists of marine clay with sandy infills overlain by organic clay, gyttja and peat, interfingered with some sand
(Menke et al., 1999).
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Subsidence was expected after reclamation (De Glopper, 1969); therefore, regular monitoring campaigns
were conducted, including regular leveling measurements, corings, and soil sampling (De Glopper, 1984;
Van Dooremolen et al., 1996). Within 25 years, the a priori expected subsidence for the South Flevoland polder
was exceeded, in some places, by 0.5 m (Van Dooremolen et al., 1996), resulting in complications for the drain-
age of the area. Most buildings have a concrete pile foundation in sandy, less compressible layers of Pleistocene
age, and consequently do not subside in parallel with the overlying Holocene sequence. On the contrary, public
structures, such as (local) roads, squares, sport fields, and playgrounds are often lacking a pile foundation and
are constructed immediately on top of the Holocene sequence. The consequential differential subsidence between
structures with and without a concrete pile foundation inflicts stress on pipeline structures, belowground electri-
cal and network cables, and the connection from buildings to the roads in general, potentially causing damage.
Currently, the city of Almere, lying ~4 m below NAP, must deal with damage to buildings and infrastructure
because of the ongoing differential subsidence (Lambert et al., 2016).

2. Materials and Methods

We used a data assimilation procedure combining InSAR data with 3D lithological and phreatic groundwater
level models. Figure 2 depicts the complete workflow, with the different colors indicating the different steps.
In green, three classes of input data are displayed: (a) data in the form of previously developed geological and
groundwater level models (Sections 2.1.3 and 2.1.4), (b) estimates of input parameters necessary for the forward
model, based on a literature search (Section 2.2), and (c) satellite data for actual surface movement estimates
(Section 2.1.1).

We defined three steps of the subsidence estimation algorithm:

1. The postprocessing of the InSAR data to filter the appropriate measurements points from the full data set
(Section 2.1).

2. The forward model in which we calculated subsidence for all locations and time steps in this study (Section 2.2).

3. The data assimilation step, where the subsidence measurements derived from InSAR were combined with the
forward model, to optimize the forward model by changing the input parameters (Section 2.3).

Finally, the output of our analysis is defined into two classes: (a) refined estimated parameters. As a result of the
data assimilation approach, refined estimated parameters are the optimized values for the input parameters and
(b) a subsidence prediction. The outcome of the forward model is a subsidence prediction for all the locations
and time steps.

2.1. Input Data
2.1.1. InSAR Data

The InSAR data consists of Sentinel-1 images for one ascending and one descending track, ranging over the
period March 2015 until June 2020 and November 2015 until June 2020, respectively. The sampling interval of
the data points varies temporally by the availability of the 6-day repeat pass for the period until April 2016 and
the 12-day repeat pass from April 2016 onwards (Wegmiiller et al., 2015). The data used for our analysis are
processed InSAR data retrieved from Rijkswaterstaat (2022). It consists of point-wise time series of both persis-
tent and distributed scatters. For details on the processing steps of the provided data, see Rijkswaterstaat (2018).
We recognize that this data has been processed for nationwide purposes, which can potentially be an additional
source of error when applying the data set on a local or regional scale. This has been taken into account with
a relatively large noise to our InSAR data in the data assimilation process, compared to the accuracy levels
described in Rijkswaterstaat (2018).

The ascending and descending tracks were processed and analyzed separately. This yielded two results of subsid-
ence estimations and associated fits, which were compared for an additional quality check of the workflow. The
line-of-sight movement was projected to the vertical direction with the use of the incident angle as part of the
processing; m, = % This was done with the assumption that the horizontal movement is negligible. The map
of the European Ground Motion Service (Costantini et al., 2021) gives some indication of horizontal movement
in the area, but all the points with East-West movement appear to be in the vicinity of founded structures. Manu-
ally checked points on top of sportfields do not show significant East-West movement. After our InSAR point
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Figure 2. Workflow of the different steps of the methodology divided into input, working space, and output. The steps of the workflow are explained in corresponding
sections. The parameters of the physical models that estimate subsidence are optimized toward measured relative subsidence from satellite data, with the use of a
groundwater model and a lithological model. Interferometric Synthetic Aperture Radar points measured on top of unfounded objects are separated by a data selection
process (Figure 3). A prior estimate of the parameters part of the forward model is initially made, whereafter the forward model and optimization with data assimilation
are repeated multiple times. The image of the lithological grid model is adjusted from Van der Meulen et al. (2007).

selection, both the ascending and descending tracks show similar rates of subsidence in the vertical direction,
indicating that there is no significant horizontal movement. Additionally, we do not expect them because of the
shallow character of the cause of subsidence.

One of the key issues of InSAR data is the loss of signal coherence, both in space and time. Spatial decorrelation
is caused by changes in the acquisition baseline, resulting in a different phase between two images and causing
phase unwrapping errors that reduce the coherence. This implies that spatially decorrelated data are less suitable
for subsidence research. Temporal decorrelation is caused by atmospheric variability and changes in the physical
and geometric properties of the scatter points, for example, due to seasonal changes in vegetation which result
in land cover changes (Ferretti et al., 2007; Hanssen, 2001). As a result, vegetation-rich areas are suboptimal for
the analysis of subsidence by satellite imaging (Conroy et al., 2022). Therefore, the point-wise time series of the
provided InSAR data are largely located on man-made structures because these scatter points face less decorrela-
tion issues. In this study, we aim to understand the subsidence behavior of the Holocene layers, and as a large part
of the man-made structures have pile foundation, we applied an additional postprocessing workflow to the InSAR
data to select points that are not on top of pile founded structures. This workflow is explained in Section 2.1.2.
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Figure 3. Workflow for selecting Interferometric Synthetic Aperture Radar (InSAR) points. First, areas with a significant amount of data points, potentially on top

of the structure without a pile foundation, are selected. With the Basisregistratie Adressen en Gebouwen register (Kadaster, 2022), the construction date of the area is
verified. The image shows the construction years of the buildings in the example area (image adjusted from Spaan (2015)). The remaining areas follow dimensionality
reduction by time Distributed Stochastic Neighbor Embedding (T-SNE), followed by a clustering method Hierarchical Density-Based Spatial Clustering of Applications
with Noise. At the second processing step, the average yearly subsidence rate of the selected InSAR points of the sample area is shown on the left. On the right, the
result of the T-SNE dimension reduction is plotted, where the colors refer to the clusters each point is assigned to. The number of dimensions of the initial data set

is equal to the number of locations. Third, the clusters are visualized as scatter points for each time step and in a geographic information system to verify the clusters
and select the cluster representing the scatter points on top of unfounded man-made structures. The clusters from the second time step, in their corresponding colors,

are plotted spatially on the left image and over time on the right. Finally, for each grid cell corresponding to the lithological and groundwater model, an average of the
selected InSAR points within the cell is taken. This is depicted in the graph belonging to the last processing step, where the thick black line represents the average of the
InSAR time series falling into the grid cell. To not give a disproportionate high weight to the first measurement of the InSAR series, an average has been taken of the
first 10 time steps, which forms the first time step in our post processing time series.

2.1.2. InSAR Processing by TSNE-HDBSCAN

InSAR locations were selected based on two main criteria, forming the first step in the point-selection procedure
of Figure 3. We selected PS-InSAR points in the built-up area of Almere without a pile foundation. Buildings in
the area typically have a pile foundation reaching depths of ca. 7-20 m with respect to NAP, that is, piles driven in
Pleistocene sand beds with load bearing capacity (Spikker, 2010). Consequently, buildings with a pile foundation
are less suitable to reflect subsidence processes that happen within the Holocene sequence. We therefore focused
on large reflective objects (more than 10 reflection points) without pile foundations. These objects range from
large parking lots around shopping centers and business parks to playgrounds, concrete sport fields, and artificial
grass turfs.
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The next selection criterium was that the structures without foundations had been built at least 10 years before
the first INSAR acquisition dates. Therefore, only objects constructed before the year 2005 were considered. This
choice was made to reduce the effect of consolidation due to construction of the objects without foundations on
the subsidence signal. Because no register exists for the construction date of parking lots, playgrounds, and sport
fields, the year of construction of the associated buildings was used. The construction year of all buildings in the
Netherlands are registered in “Basisregistratie Adressen en Gebouwen” (BAG) (Kadaster, 2022), which was used
to verify the construction year of objects in the selected areas.

Reflection points on top of structures without a pile foundation that meet above stated criteria were isolated from
the ones on top of structures with a pile foundation using a statistical visualization method. First, data points were
separated with time Distributed Stochastic Neighbor Embedding (Van der Maaten & Hinton, 2008), subsequently
data points were appointed to a cluster using Hierarchical Density-Based Spatial Clustering of Applications with
Noise (HDBSCAN) (Campello et al., 2013). This two-steps approach based on unsupervised machine learning
enables isolating time series that measure the same processes. In the case of Almere, no significant subsidence
below the level of the pile foundations was expected. Hence, objects with a pile foundation should show negligi-
ble subsidence, whereas other nearby objects without a foundation were expected to show subsidence. This would
result in differently behaving timeseries for points measured on top of objects with and without a pile foundation.
This step formed the second step in the point selection procedure of Figure 3.

The practice of dimensionality reduction followed by clustering is common for large input data and has been
applied to SAR data sets (Van de Kerkhof et al., 2020), and for a wide range of other data types (Fernandez Llamas
etal.,2019; R. Harrison et al., 2019; Kahloot & Ekler, 2019). T-SNE is a dimensionality reduction method that can
group similarly behaving time series of height measurements of the different reflection points (Van der Maaten
& Hinton, 2008). For the present study, clustering was conducted with HDBSCAN. HDBSCAN provides signifi-
cant clusters, where the clusters can vary in density threshold. The method maximizes the stability of the selected
clusters by calculating the optimal solution (Campello et al., 2013).

To ensure that the selected clusters represent the time series of measurements on top of objects without a pile foun-
dation, the clusters were verified by checking the time series of all the clusters and their location in a geographic
information system. This is the third procedure of Figure 3. Figure 4 shows all the resulting InSAR points selected
for both the ascending and descending tracks in map view. The processed InSAR data can be found in Data Sets
S2 and S3 of this paper.

The last step in Figure 3 entails the optimization of the selected InSAR points for the subsidence optimization
procedure. InSAR data points in a single lithological grid cell (see Section 2.2. about lithological modeling) were
averaged. Reducing the number of points by averaging reduces the computational time, while still incorporat-
ing the uncertainty for the InSAR data for each grid cell. The variance of this average was added to the chosen
standard deviation squared of 0.01 m? to ensure that the uncertainty of variance in the subsidence measurements
was incorporated. A 0.01 m? standard deviation for each epoch aims to capture both the uncertainty in the model
and measuring space, as the true standard deviation is unknown. To prevent a disproportionate weight of the
first measurement in time, an average of the first 10 measurements in time was taken as the first time step in our
post-processing time series data.

2.1.3. Lithoclass Model

Previously released 3D lithoclasses (classes of different grainsize compositions) voxel model for the province of
Flevoland that covers the entire study area was used as input for numerical modeling (Figure 5a) (Gunnink, 2021).
The model was initially developed for high-resolution hydraulic resistance modeling for groundwater flows within
the Holocene sequence, and was constructed based on 31.000 digitalized borehole logs and 4,250 Cone Pene-
tration Tests derived from the freely accessible online data portal of the Geological Survey of the Netherlands
(TNO-GSN, 2022). The boreholes are sufficiently distributed throughout the province of Flevoland, whereas the
Cone Penetration Test is primarily clustered in urbanized areas and along infrastructural elements.

The 3D model was created by interpolation via spatial kriging, following a similar procedure as explained in
Van der Meulen et al. (2013). The voxel x, y, z dimensions are 100 X 100 X 0.5 m and the model ranges from the
surface to the top of geological units of Pleistocene age, thereby encompassing the entire Holocene sequence.
The different lithoclasses (sand, sandy clay, clay, peat, and basal peat—the latter being in a more compressed
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Figure 4. Map view of the selected Interferometric Synthetic Aperture Radar points after the time Distributed Stochastic Neighbor Embedding and Hierarchical
Density-Based Spatial Clustering of Applications with Noise selection procedure for both the ascending and descending tracks on top of a satellite image
(Google, 2023). To aid in the visualization of the area, the boundaries of all the neighborhoods in Almere (CBS, 2020) are plotted.

state than peat) are described with their probability of occurrence for each voxel, based on 100 realizations of the
interpolation. The highest probability was taken as the truth scenario for this study.

2.1.4. Groundwater Model

Changes in groundwater heads form an important explanatory variable for shallow sources of subsidence.
Therefore, time series of these data are needed all over the study area. Unfortunately, this was only sparsely
available at locations with observation wells. Therefore, a model was developed to estimate the required time
series (TNO-GSN, 2022; Zaadnoordijk et al., 2018): monthly phreatic water level values for grid cells of x, y
100 x 100 m (Figure 5b) from the year 2000 to 2020. The applied method was an interpolation in two steps. The
first step was an interpolation of the groundwater heads within the time series to obtain for all well locations
an observation on the same day (28th) of each month. This yielded interpolated heads including variances. The
second step comprised a spatial (kriging) interpolation, applying a sequential Gaussian simulation (Deutsch &
Journel, 1998), which yielded for each month a map of the interpolated heads. Since the observation wells were
sparse, their observed heads could not fully describe the spatial variation in the groundwater heads. Therefore, a
trend surface was used with a spatial interpolation performed on the residuals (observation minus trend surface).
To honor the seasonal fluctuation of the groundwater heads, each month had a separate trend surface. Herewith,
one hundred equiprobable interpolations of phreatic groundwater levels for each month were created. We used the
average of the 100 realizations as the truth scenario for the phreatic surface model in space and time. The exact
well locations can be found in Data Set S1 of this paper.
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Figure 5. (a) Map of the South Flevoland polder lithoclasses according to the 3D model at 5 m below NAP. (b) Map of phreatic surface level in the South Flevoland
polder in January 2015. The scale is in cm with respect to NAP. The polder itself lies ~400 cm below NAP. The areas that lie at NAP are the Lake IJssel area and in the

bottom left of the mainland.

2.2. Forward Model

The different shallow subsidence processes initiated by human-induced phreatic groundwater level lowering in
the South Flevoland polder are described in forward models. These forward models include physical relations
that describe the subsidence processes and thereby, with an estimate of the parameters, provide an estimate of the
subsidence. The groundwater and lithoclasses models are used to describe which lithology is present and to what
depth the sediments are saturated. Previous studies identified oxidation of peat, shrinkage of clay, and compres-
sion of clay and peat as the main subsidence processes in the area (De Lange et al., 2012; Fokker et al., 2019;
Lambert et al., 2016; Van Dooremolen et al., 1996).

Fokker et al. (2019) described a subsidence model with a relation between shrinkage and equivalent age using
linear-strain fits and time series of land leveling subsidence observations in the South Flevoland polder from
1967 to 2012. They used an exponential relation of clay shrinkage processes to fit the model to the data. Further-
more, they described that well-established compression functions of consolidation and creep (Den Haan, 1996;
Viscchedijk & Trompille, 2009) did not fit with the observed subsidence trend. Given the results of the study of
Fokker et al. (2019), subsidence by compression was expected to be negligible in comparison to the processes
of shrinkage and oxidation for the timing after reclamation and due to the length of our study period. Therefore,
we have not modeled compression as a separate process in this study. Note also here that compression by the
overburden weight of building material was assumed to have a negligible effect on the selected InSAR time series
because all the locations included in this study have undergone settlement due to loading by construction for
minimal 10 years (cf. CUR, 1992).

2.2.1. Oxidation Model

The applied equation for the oxidation model is widely used to describe peat oxidation in the Netherlands (Fokker
et al., 2019; Koster, Stafleu, & Stouthamer, 2018; Van den Akker et al., 2008; Van der Meulen et al., 2007,
Van Hardeveld et al., 2017). It provides a relative annual oxidation rate for peat above the phreatic groundwater
level. Since only organic matter oxidizes, admixed sediments remain, albeit on average only 3%—4% of the total
volume (Koster, Stafleu, et al., 2018). Hence, a residual thickness is considered.

First, for a unit above the phreatic groundwater level, the part susceptible to oxidation needs to be determined.
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hoxp = hox(t =0) = (1 — Rox)ho 1)

If part of a unit has already been reduced, we have h, (1) = h(t) — R,  h,. The original thickness of the unit is

unknown, since the collection of the data used in this study started ~50 years after reclamation. Hence, we simply

r,0x

assumed & equals h at ¢ = 0. This results in a higher residual height than for completely virgin soil, as the original
units are (partly) reduced in thickness already. The oxidation rate can be calculated as follows:

dh _ dh,x

E = 7 =~V ox hox (2)
Over time At the thickness reduction of a layer can be written as follows:

Ah = hox(t) = hox(t + A1) = (1= 7o) - ou(1)
3)
— (1 — e_VaxAt) . (h(l) - Roxho)

Incorporating units that are partly aerated, the part susceptible of oxidation is corrected for the wet part of the
voxel:

Ahax = (1 - e_V""At)(h(t) - hwet - Rox [hO - hwet]) (4)

In which V__is the shrinkage rate and R is the residual height.

ox

2.2.2. Shrinkage Model

Time-dependent shrinkage models have not been documented for the Netherlands yet. Typically, shrinkage is
expressed as a function of clay mineral content, organic matter, and calcareous admixture (e.g., Barciela Rial, 2019;
De Glopper, 1969). To overcome this, Fokker et al. (2019) designed a simple shrinkage relation, inspired by
Equation 4, which enabled good matches between the subsidence model and the observed subsidence. This rela-
tion assumes that the shrinkage rate is proportional to the volume sensitive to shrinkage. A lithology-dependent
residual height was assumed to indicate an asymptotic value to which the shrinkage can lead.

The process of clay swelling has been ignored in this study. Furthermore, seasonal swelling effects of clay by a
relative increase in precipitation during autumn and winter were not observed in the InSAR data. Most likely, if
present, a swelling capacity is suppressed in the urbanized area by structure overburden. In general, the South
Flevoland polder is subjected to net phreatic groundwater level lowering; this is reflected in net subsidence,
visible as a decreasing trend without a large swelling effect in the InNSAR data. Furthermore, previous studies
reported that the clay beds in our study area have a relatively high irreversible character regarding shrinkage
(Bronswijk & Evers-Vermeer, 1990; Kim et al., 1993).

The equation for shrinkage (Equation 5):
Ahg, = (1= e™Vn2) (h(t) = hyet = Ron [ho = hye]) (5)

In which V, is the shrinkage rate and R, is the residual height.

K

2.2.3. The Prior Estimated Parameters

The parameters aimed to optimize are the shrinkage and oxidation rate and their respective residual heights (see
first column of Table 2). The prior estimated values take into account the results of Fokker et al. (2019). The rates
were lowered because a significant amount of time (~50 years) has passed since reclamation (and the start of
the study of Fokker et al. (2019)), decreasing the void ratio of deposits and increasing the stiffness. Additionally,
there is a potential inhibitory effect of shrinkage and oxidation rate in the urbanized area, compared to the agri-
cultural area of Fokker et al. (2019).

The rates of shrinkage and oxidation are closely related to the associated residual heights. Due to the brief period
of the surface elevation data (~5 years), the exponential relation between relative residual height and reduction
(shrinkage or oxidation) rate cannot be established absolutely: an increase in subsidence rates can have the same
effect on total subsidence as a reduction in residual height. As a result, the contribution of relative residual height
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and reduction cannot be distinguished. If one of the two parameters increases, the other should increase as well,
to reach the same value for total subsidence. From Equations 1 and 2, we can derive the following equation:

dh

— =hov (1 - R)ye™ 6

2 = o ( ) (0)
Therefore, if a certain height reduction rate is acting, it can be the result of different combinations of v and R,
as long as the right-hand side of Equation 10 gives the same number. The exponential in this equation can be
neglected because the compaction (order of mm) is very small with respect to the layer thickness (order of m).
Different combinations with the same value of C= v(1 —R),orR=1— g therefore, give equally good fits, with
no time dependence in the expression. This equation was hence fitted to the posterior result of the residual height
and rate of oxidation and shrinkage for the different lithologies, utilizing automated least squares polynomial fit.

2.3. ES-MDA

Parameters have been estimated with Ensemble Smoother with Multiple Data Assimilation (ES-MDA) (Emerick
& Reynolds, 2013; Evensen et al., 2022). Earlier accounts for the method to estimate parameters for shallow
subsidence can be found in Fokker et al. (2019); the method has also been applied to estimate the parameters for
deep subsidence processes (gas production) (e.g., Fokker et al., 2016; Gazzola et al., 2021).

An ensemble refers to a collection of members that are the result of a Monte Carlo analysis. Members are single
realizations of the model with specific values for the different parameters. ES-MDA is thus based on a parameter
description of the properties that describe the physical processes in the subsurface. A forward model takes the
parameters and calculates the subsidence in space and time for each member of the ensemble. The ES-MDA algo-
rithm minimizes the mismatch between the measured data and the estimated subsidence values by changing the
parameters of the ensemble members in an organized manner. The multiple data assimilation notion of ES-MDA
indicates that the assimilation process is repeated several times. The newly estimated parameters are taken to
create a new ensemble of members, with each step increasing the confidence in the parameters.

ES-MDA can be mathematically described as follows. The parameters collected form the vector m. The subsid-
ence data are put into a vector d, this vector has the length of the number of data points in the area multiplied
by the time steps taken at each location. Operation of the forward model is indicated by G(m); it calculates the
subsidence as a function of time for each individual location, based on the parameters in m. We want to estimate
the vector m for which G(m) has the smallest misfit with the data d. To do so, for a single member, a set of prior
parameters is created (m,), with covariance in a matrix C,. Another covariance matrix is created for the data (C,).
Following Tarantola (2005), the least squares solution is acquired by maximizing J in the following function:

7 = exp(=51m = mol” C3' [m = ma] = 1 [d ~ Gm))" C;'d ~ Gim)) ) ™

In the ensemble procedure, the values of the members are derived from a prior estimate with a standard deviation
of the parameters. An ensemble consists of N, vectors of m; M = (m,, m,, ..., my,). Similarly, an ensemble of
data vectors is created by adding random noise to the data following the uncertainty of the data points: D = (d,,
d,, ....dn).

To solve the least squares solution for the entire ensemble at once, GM replaces G(m) in Equation 5. GM is the
result of the parameters of all ensemble members operating in the forward model and is the collection of real-
izations of surface elevations through time. GM' is defined as the difference between GM and the average of
GM. M' is the difference with the prior mean for each ensemble member: M’ = M — m,. The covariance matrix
is defined as C,, = M’'M'T /(N, — 1). The new set of parameters for the ensemble is given by the following
equation:

M =M+ M [6M] (6M[6M]" +(N. - l)Cd)_](D - GM)
- ®
=M+ M ([6M']'C;'GM’ +(N. - 1I) 6™ C;'(D - GM)

Depending on the number of parameters versus number of data points, one of the two equivalent expressions
might be more appropriate to use. M is the estimated ensemble of parameters.
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Table 1 The ensemble smoother technique with a new estimate of parameters can be
Parameters for the Data Assimilation Procedure of This Study applied repetitively to obtain a better estimate of parameters in the case of
Number of ensemble members () 200 non-Almear fOI‘WB.I.‘d models (Emerick & Reynolds, 2013): The set of parame-
o ters is updated with each subsequent step. The data remain the same over the
Number of assimilations (—) 4 . . .. .
entire procedure. To compensate for the effect of multiple applications with
q0) 0.667 the same data, the covariance of the data is increased with each step of the
Covariance data (m) 0.01 optimization. This is done with a factor «;,, where the following condition is

Number of InSAR data points (-) 3,747 (descending), 2,846 (ascending)
199 (descending), 158 (ascending)

208 (descending), 212 (ascending)

Number of voxel locations (-)
Number of points in time (—)

Number of model parameters 6

met: ZL’ , i = 1. nl is the number of assimilation steps (Fokker et al., 2019).

We used a factor a; that decreases every step with a factor ¢ to ensure increas-
ing influence of subsequent assimilations.

a=a- q ©
With i being the assimilation step. The above summation condition is met with

1-— qnl
o = qnl—l — qnl (10)

To verify the results and determine the actual improvement of the parameter estimation procedure, a test function

is applied, considering the covariance of the data and the estimate parameters after the last assimilation step:

7= (GM —d) (Ci+Cgy)™ (GM —d) (1

The outcome of this equation should be around the degree of freedom (Nd), so that ;—z ~ 1.

The parameters for this study are summarized in Table 1. The number of grid cells equals the number of litholog-

ical and groundwater voxel cells covered by the InSAR data points. In the result section, we present key examples

of individual voxel cell locations, the values of the optimized parameters and correlations between different

parameters.

3. Results

Our ES-MDA-based workflow yielded 357 individual scatter point locations. To provide a representative
summary of the results on point location scale, we present four key examples below (Figure 6). These locations

were chosen to represent the variance in lithoclass composition, which is dominated by clay and sandy clay,

with occasionally sand and peat layers. Additionally, we present four key indicators for parameter covariance

(Figure 8), values for the estimated parameters (Table 1), and the average contribution to subsidence for clay and

peat (Table 2). The estimated parameters consist of the four model parameters for the shrinkage of clay (shrinkage

rate and relative residual thickness for clay and sandy clay), and two model parameters for oxidation (oxidation

velocity and relative residual thickness of peat).

The four key examples of the results of the simultaneous assimilation are presented in Figure 6. The time series

of the prior ensemble is not indicated in Figure 6. Because they have a high variance, they would not fit into
the scale of the figure. The red time series in Figure 6 are the 200 modeled surface movement developments
for the ensemble of assimilated parameters. The black dots are the InSAR data points, and the gray area repre-
sents the uncertainty given to each data point, as described in Section 2.1. On the right y-axis in the same plot,

the phreatic groundwater level variation is plotted. The lithological column and the location of the column with

respect to the phreatic groundwater level are indicated on the right of the plot. The time series and the estimated

subsidence correspond well, regardless of lithology, except for Figure 6a. The prior and estimated parameters are

presented in Table 2.

Table 2 provides the estimates prior and posterior to the data assimilation with their standard deviation. Results

are given for the descending and ascending satellite tracks separately. The two tracks provide comparable esti-

mated parameters as a result of the data assimilation. The similarity of the results for the two tracks strengthens

our assumption of no horizontal displacement. The outcome of the estimated parameters is also visualized in
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Figure 6. Comparison of surface moveme

nts, groundwater levels, and lithology for four example locations. Their locations are indicated in Figure 1b. All figures show

the Interferometric Synthetic Aperture Radar-derived surface movements (black points) on the scale of the left y-axis. The uncertainty around them is depicted in gray.
It was determined as described in Section 2.1. The red lines are the 200 ensemble members of the optimized fit after four assimilation steps, also on the scale of the left

y-axis. The groundwater is the blue line an
the lithoclasses model. The legend of the c:

d is with respect to the right y-axis. Next to the graph, a stratigraphic column for that specific location is given, according to
olumn is the same as for Figure 4. The black lines note the maximum and minimum phreatic surface level for the simulation

period with respect to the lithological column. All y-axes are in meters with respect to NAP. (a) Descending track. This location shows an increase in subsidence rate
once the phreatic surface is below the sandy layers, which happens from spring 2018 onwards. (b) Ascending track. Shows the fit of subsidence, where the phreatic
surface steadily drops under a seasonal trend. There was no significant increase in the subsidence rate. (c) Descending track. Combination of subsidence due to peat and
clay. Enhanced subsidence rate from spring/summer 2018 onwards is clear. (d) Descending track. Seemingly linear subsidence, with a slight acceleration from spring/

summer 2018 onwards.

Figure 7. Clay and sandy clay show similar behavior; the behavior of peat is distinctly different. However, the
uncertainty for the estimated parameter values for peat is larger than for clay and sandy clay.

A few of the parameters are plotted against each other in Figure 8. For each assimilation step, the 200 estimates
of the parameters are plotted against each other. The figure indicates the ensemble spread in the prior estimates
and the operation of the smoother by molding the cloud of parameter values. A clear relationship between differ-
ent parameters evolves, along the lines of the argument in the previous paragraph: different combinations of the
shrinkage and oxidation rate and the associated residual height give identical outcomes, as long as they follow
the relationship R = 1 — % The final ensembles have been fitted to this relationship, as indicated with the dotted
black line. The resulting constant C is given in the figure description.
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Table 2 In summary, Table 3 provides an overview of the average contribution to

The Parameters That Are Optimized in This Study for All the Locations at

the Same Time

subsidence in mm for the different lithologies for both the ascending and
descending satellite tracks.

Parameter Pre Post (ascending)  Post (descending)
V., clay 0.02+0.005 0017 +0.0012  0.018 +0.001 4. Discussion
Ry, clay 0.60 + 0.05 0.79 £ 0.017 0.78 +0.019 4.1. Future Estimates and Spatial Pattern of Subsidence
V,, sandy clay 0.02 + 0.005 0.017 £ 0.0015 0.018 + 0.0016 . - . .

This study has demonstrated the possibility to make reliable estimates of
G BRI UEDESTD Gy ES L R =50es subsidence related to phreatic groundwater level changes and lithoclass
V,, Peat 0.01 + 0.005 0.009 + 0.003 0.02 + 0.007 layering. The study area was the urbanized Almere area of the reclaimed
R, peat 0.90 + 0.05 0.89 + 0.04 0.88 +0.04 South Flevoland polder. For relatively short timescales (years), this enables

Note. The optimized fit of the ascending and descending track is the result
of separate data assimilation procedures, but the results are similar. The
pre parameters were chosen based on the study of Fokker et al. (2019).
The chi-square error of the ascending track data set has been reduced from
5.2 (prior) to 1.01 (posterior); for the descending track data set it has been
reduced from 3.6 (prior) is 3.6 to 0.77 (posterior).

0.025

0.02

0.015

0.01

0.005

0

Subsidence rates

m Ascending m Descending

making estimates of future subsidence, providing indications to drivers and
hence tools for designing mitigation strategies. To provide information on
expected future subsidence rates, four scenarios for the next 10 years were
simulated. The first and fourth scenarios function as a boundary of the influ-
ence on subsidence rates by artificially changing phreatic water levels. The
first scenario, the most extreme scenario, was to continue the average rate of
phreatic groundwater level change toward the future (red in Figure 9b). This
is not a realistic assumption: anthropogenic interference on the groundwater
levels would prevent such substantial decrease because of its impact on nature and farming. Scenarios 2 and 3
provide an indication of the magnitude of shrinkage and oxidation, for more realistic conditions. The second
scenario was to fix the level at the average height from April 2018 until the end of the research period (blue
in Figure 9b)—no more lowering was allowed. This is called water level indexation and is applied in several
other polders in the Netherlands as well to reduce subsidence processes. The third scenario fixed the phreatic
groundwater level at the average height of the phreatic surface for the research period until April 2018 (green in
Figure 9b): the phreatic level was brought back to higher values. The last scenario, finally, increased the water
level even further by adding to the third scenario extra 20 cm. This scenario results in phreatic water levels close
to the actual surface, where seasonal effects could influence the drainage during periods of increased rainfall,
potentially gradually inundating the area. Such a scenario is only realistic for areas which are transformed into
nature or used for wet agriculture, which is not the case here. No seasonal trends were added to the scenarios; it
is a mere indication of phreatic groundwater level elevation effects on subsidence until 2030.

Figure 9a shows the spatial distribution of the total absolute increase in subsidence since the start of the study
related to the different scenarios. The difference between a continuous decrease versus the average level before
March 2018 4+0.5 m can be up to five cm in 10 years. The spatial plotting also makes it apparent that most of the
subsidence is expected in the southwest and northeast of the city of Almere. The area in the northeast part coin-
cides with the course of the Eem paleovalley (Figure 1), where the thickest Holocene sequence is present. Natu-
rally, as this study does not provide a continuous image of subsidence, local alternating Holocene sequences are

Residual height

l
0.8
0.75
0.7
0.65
0.6

Clay Sandy clay Peat

m Ascending m Descending

Figure 7. The estimated values of the optimized parameters for subsidence rate and residual height from Table 2 visualized. The outcome of the ascending and
descending track is comparable. Clay and sandy clay show similar behavior and peat shows a distinct different behavior, for both the subsidence rates of oxidation and
shrinkage and the residual height. The uncertainty of the estimated parameters for peat is larger than for clay and sandy clay.

VERBERNE ET AL.

15 of 23

85U8017 SUOWWOD ANealD 3(dedldde ayy Aq pausenob ale e YO ‘s J0 Sa|ni 4oy Areiq) 8ul|UQ /8|1 O (SUORIPUD-PUE-SWBI WD A8 1WA e1q | U1 |UO//Sd1Y) SUOIIPUOD PUe SWB | 8L 88S *[£202/20/€0] UO ArIqI]8UlUO A8]IM ‘SPUe|RURN 8UeI0D Aq TE0L000Z202/620T OT/I0pAU0D" A8 1M AReiq 1 pul|uosgndnBe//:sdny wouy papeojumoq ‘. ‘€202 ‘TT0669TZ



A~ .
N\ Journal of Geophysical Research: Earth Surface 10.1029/2022JF007031
Rh versus Vsh clay Rh versus Vox peat
05 | 1.0 - A Pr—
o ©
0.9 -
N
0.7 - oo
0.8
I
I
0.6 1 074 |
I
]
0.5 - ok i
0.010 0.015 0.020 0.025 0.030 0.035 (.00 0.02 0.04 0.06
Rh versus Vsh sandy-clay Vsh clay versus Vox peat
- 0.035
C 4"-
0.8 0.030 A
0.025 A
0.7
[ J
° o oo 0.020
0.6 - : o
o 0.015 1 0% 8 —-- Curvefit
o5 ° ® Assimilation step 0
' ° ° 0.010 Assimilation step 1

0.010 0.015 0.020 0.025 0.030 0.035

Assimilation step 2
Assimilation step 3
Assimilation step 4

Figure 8. Several of the optimized parameters are plotted against each other for the pre-scenario (assimilation step 0) until the optimized result for the parameters
(assimilation step 4) for the ascending satellite track. (a) The residual height of clay versus the shrinkage rate of clay, (b) the residual height of peat versus the oxidation
rate of peat, (c) the residual height of sandy-clay versus the shrinkage rate of sandy-clay, (d) the shrinkage rate of clay versus the oxidation rate of peat. There is a strong
correlation between the residual height (Rh) and the rate of subsidence (V) within each lithoclass (a—c). There is no clear correlation between the different lithoclasses,
as indicated in Figure 6d. For all the lithoclasses, the relation C = v (1 — R) is fitted to the results of assimilation step 4, using an automated least squares polynomial fit.
The constants for the line in panel (a) are C = v (1 — R) = 0.0038 yr~!; for (b) itis C=v (I — R) = 0.0021 yr~!; and for (¢) itis C=v (1 — R) = 0.0040 yr~'. (d) Plots
two subsidence rates against each other for interlithoclasses correlations, it therefore does not visualize the relationship between residual height and subsidence rate of a

specific lithoclass and no curve fit was calculated.

Table 3
The Average Contribution of Clay Shrinkage Versus Peat Oxidation for All
the Locations Is Provided Below, in mm/yr

not accounted for. The spatial relation of subsidence with Holocene thickness
or groundwater level is not a straightforward relation, where clay thickness
or groundwater level alone determines the subsidence rate. Our results show
that not one single factor influences the spatial pattern of subsidence. This
amplifies our need for subsidence modeling on the urban scale.

Ascending  Descending

Figure 9b provides subsidence predictions for the four scenarios for one loca-

Average contribution clay shrinkage (mm/yrr) 57+20 58+23
Average contribution peat oxidation (mm/yrr)  0.07 £ 0.17  0.20 + 0.42

tion. The phreatic groundwater level is a key factor in the subsidence rates.
However, even when the phreatic water level is kept constant or is increased,
shrinkage and oxidation in the unsaturated zone will continue. From our

Note. Clay incorporates both clay and sandy clay lithoclasses from the
lithological model.

analysis, it follows that 1 m drop in the phreatic surface will lead to 1 cm
of additional subsidence in 5 years. This relationship can help in decisions
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Figure 9. Future estimates of subsidence. (a) Plots the expected subsidence since the start of the study for different scenarios of groundwater development. The
scenarios range from largest to smallest drop in the phreatic surface, and hence largest to smallest expected subsidence. Locations are the same as in Figure 1. (b) Shows
the subsidence development of one individual location over time, from the start of the study period until 10 years after the end of the study period. The continuous lines
show the phreatic surface on the right y-axis, the dashed line shows the modeled subsidence on the left y-axis. In red, the continuous decrease of subsidence is modeled,
in blue the average groundwater level from March 2018 until the end of the study period, the green line the average groundwater level of the study period until March

2018 and the black line is the green groundwater level plus 0.2 m.
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concerning groundwater management, the single key factor of human influence on the subsidence rate. The
results of this study can be used to support science-based mitigation measures.

4.2. Comparison to Other Subsidence Regions

The Flevoland Polder is unique in the Netherlands in the sense that subsidence is dominated by shrinkage of
clay. However, clay - dominated subsidence is observed in many other regions in the world (Voosen, 2019). An
example is the northern Nile Delta plain in Egypt, where Holocene clay related subsidence is enhanced by climate
change that affects the Nile's flow regime (Stanley & Clemente, 2014). There, subsidence ranges from 3.7 to
8.4 mm/yr, which are comparable to the subsidence by clay derived in this study for the South-Flevoland polder.

In and around Venice, Italy, there is ongoing subsidence caused by compression of the natural lagoon
(0.0-0.5 mm/yr). More recently, this is aggravated by human-induced subsidence (>2.5 mm/yr) due to ground-
water withdrawals (Tosi et al., 2013). Parallels with the South Flevoland polder can be found in the reducing
natural consolidation over time and significant subsidence induced by groundwater withdrawals. Both areas must
deal with irreversible land lowering caused by groundwater withdrawals, which are required to prevent the area
from flooding.

The same comparison can be made with south-east England, where drought is demonstrated to increase subsid-
ence by shrinkage of clay. There, a connection of temperature and precipitation with shrinkage and swelling was
made (A. M. Harrison et al., 2012; Pritchard et al., 2015). No estimate of the quantity of subsidence was provided
in these papers; however, a link between drought and increased subsidence by shrinkage of clay is also something
we identify in the Flevoland Polder.

Despite the differences between these areas in rates of subsidence due to clay shrinkage, the common thread is
that all areas are affected by groundwater lowering, either by climate change or anthropogenic causes. Under-
standing the importance of groundwater level changes to subsidence is therefore of major importance for all these
coastal regions across the world. The method presented in this study, and the results in relation to clay behavior of
the reclaimed land and the response to groundwater lowering can be of help to tackle this problem.

4.3. Subsidence by Drought

In the results, a slight acceleration of subsidence around summer 2018 is visible. This acceleration is related to
relative deep lowering of the phreatic groundwater level. At some locations, this acceleration is more profound
than in others, as this is influenced by lithoclass and fluctuations of the phreatic levels as well. As shown in
Figure 6, this relative low elevation of the phreatic groundwater level influences the processes responsible for
subsidence. Namely, due to a lowered groundwater level, deep peat layers are temporarily aerated, resulting in
oxidation and volumetric loss. Furthermore, a deeply lowered phreatic groundwater level can therefore instigate
subsidence at locations that were previously not subsiding.

This temporary deeply lowered phreatic groundwater levels are the results of climate change-related drought
events, such as the summers of 2018 and 2019 (Hari et al., 2020). Observed accelerated subsidence due to drought
is new in the context of the Netherlands. Studies in other (Northwestern) European countries have recently
linked drought to increased shrinkage in clay and associated damage to the built environment (e.g., Charpentier
et al., 2021). With global warming resulting in more frequent droughts, establishing these relationships becomes
increasingly more important.

The results for the effects of drought in this study, however, must be viewed with care. As the number of ground-
water datapoints decreases with time, the uncertainty increases. Our results are indicators of drought having
an effect, but more extensive and consistent measuring of the phreatic groundwater level is essential to assess
groundwater-related subsidence. Especially, the effect of drought on the phreatic groundwater level height is an
important link for future scenarios of subsidence and mitigation strategies.

4.4. Implications

Current governmental attention in the Netherlands for shallow subsidence is predominantly focusing on peat
oxidation (Van Nieuwenhuizen Wijbenga, 2019). Therefore, the current study fills a gap in the Netherlands
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knowledge base. Quantifying the process of clay-driven subsidence is important for optimal decision making
regarding shallow subsidence in Almere. Additionally, showing that drought enhances subsidence rates is impor-
tant for focusing future measures to mitigate subsidence, and connects the problem to climate change. Further-
more, phreatic surface lowering exposing deeper peat beds also increases carbon dioxide emissions by peat
oxidation (e.g., Koster et al., 2020).

This study would not have been possible without a structure of nationwide freely available data on the construc-
tion of buildings, relative elevation measurements, geology, and groundwater. Still, more data will support to
corroborate our findings. Investments in a network to monitor phreatic groundwater level changes and shallow
extensometers able to measure volumetric loss within the Holocene sequence are critical herein (cf. Van Asselen
et al., 2020). For improved processing of geodetic data, a network of corner reflectors is required to measure
surface movement of the ground level (e.g., Yu et al., 2013). Such investments should be conducted in close
collaboration with policy makers and spatial planners.

4.5. A Comparison of Parameters With Previous Studies

The South Flevoland polder is unique in the Netherlands with respect to the progressively increasing number of
clay and peat beds that encounter contact with atmosphere for the first time since their formation. The estimated
subsidence rates are therefore not directly comparable to other polder areas in the Netherlands that have been
reclaimed centuries ago.

Earlier studies on subsidence in the South Flevoland polder determined the rates of subsidence due to shrinkage
after reclamation estimated based on a few measurements of non-urbanized locations across the South Flevoland
polder (De Lange, 2015; De Lange et al., 2012; Fokker et al., 2019). The estimated subsidence in those regions
was larger than what we have observed here in the urbanized areas. A reasonable explanation would be that
construction has an inhibitory effect on the shrinkage of clay (and when applicable oxidation of organic material)
(De Lange, 2015). This study focuses on an urbanized area to estimate the contribution of the different back-
ground subsidence processes in urbanized settings.

The residual height estimated by Fokker et al. (2019) lies between 0.50 and 0.67 for clay. However, as mentioned
before, the start of modeling subsidence is ~50 years after reclamation in our study, whereas Fokker et al. (2019)
start modeling from reclamation onwards; hence, the layers still have their original thicknesses. The values found
in this study are higher; ~0.78. Due to the length of the modeling period, only a relation between residual height
and reduction rate could be established (Figure 8). A higher residual height can be explained when layers already
have partly undergone shrinkage before the start of the observations. Indeed, in our study, the reference is not at
the start of exposure to air but a long time later in the compaction history.

A good match between the estimated parameters and the InSAR time series was found for our spatiotemporal
model of subsidence in the city of Almere, quantified with the calculated chi-square error, whilst incorporating
groundwater levels, lithology, and the physical models. In line with literature, the shrinkage rates of clay are
larger than the oxidation rates of peat (Fokker et al., 2019; Schothorst et al., 1982).

The same value for uncertainty is currently attributed to each InSAR-derived data point in space and time. There
was no covariance matrix available for the data set. Accurate covariance matrices could increase our ability to
fit parameters and models to the data by reducing the weight given to less reliable data points and incorporating
interdependencies.

4.6. Correlations Between Parameters

We found correlations between the residual height and reduction rate parameters for the same soil types. This
correlation could have been expected from the form of their presence in the forward model. The relationship,
as shown in Figure 8, helps in future subsidence estimates. By parameterizing the average behavior of the three
lithological types, prediction on future behavior with respect to phreatic groundwater changes can be made even
when the individual values of the parameters are rather uncertain.

There is no correlation between the shrinkage rate of clay and the oxidation rate of peat (Figure 8) because
lithoclasses act independently. Clay and sandy clay show similar behavior (Figure 8 and Table 2). In the South
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Flevoland polder, sandy clay is the product of tidal dynamics and consists of mm-thick alternating clay and sand
beds. The comparable behavior between these thin-bedded sandy-clay and clay deposits indicates the dominance
of clay shrinkage within the sandy-clay beds. Apparently, the presence of sand is only minimally preventing these
deposits from volumetric loss by shrinkage.

Figure 6a shows a scenario in which the average phreatic groundwater level is located within the uppermost sand
bed. Here, the model underestimated observed subsidence. We think the mismatch is related to short drought
events not captured by our monthly updated groundwater model. Phreatic groundwater levels that are temporally
lowered result in shrinkage of clay directly underneath the upper sand bed, resulting in enhanced subsidence.
This explanation is corroborated by the increase in subsidence rate in Figure 6a that coincides with the phreatic
surface drop into the clay layer.

5. Conclusions

We have presented a novel data processing and data assimilation workflow with an unprecedented data set to
identify processes resulting in anthropogenically induced subsidence around the city of Almere in the reclaimed
South Flevoland polder in the Netherlands. The workflow integrates lithoclasses, phreatic groundwater level
changes, and InSAR data, with information on construction dates of structures, and a suite of physical models.
The assimilation exercise has enabled us to quantify the drivers of subsidence.

Our results have revealed that the shrinkage of shallow clay beds induced by artificial lowering of phreatic
groundwater levels is the dominant subsidence process in the South Flevoland polder, with rates up to 6 mm/
yr. In line with previous research in the South Flevoland polder, the subsidence rates due to clay shrinkage are
significantly higher than those due to peat oxidation, which are up to 0.2 mm/yr. The rates depend critically on
the development of phreatic water levels—drought has therefore been identified in this study as an important
catalyzer of subsidence. At longer timescales, we estimated that 1 m drop in groundwater level results in 10 milli-
meter of subsidence in the urbanized area of Almere.

Groundwater governance is the single human activity influencing land subsidence in Almere. Our study high-
lights the necessity of high-quality data in order to make trustworthy analyses of subsidence processes and
support such governance. Data are obtained by measuring campaigns and continuous monitoring. This includes
lithology, groundwater development, and phreatic groundwater level changes. Robust analyses of subsidence
processes and quality predictions are possible through the application of an approach that integrates all available
data with knowledge on physical processes in a dedicated data assimilation procedure.

Data Availability Statement

Data from the Geological Survey of the Netherlands (TNO-GSN, 2022) was used to construct the lithoclass
and groundwater model. The ID codes of the wells used for the groundwater models are given in Data Set S1.
Kadaster (2022) was used to verify the age of the buildings. From Rijkswaterstaat (2022) InSAR data products
were retrieved. The data points used as input for the ES-MDA procedure for both satellite tracks are included
in the Data Sets S2 and S3. Figures were made with Matplotlib v.3.4.3 available under the matplotlib license at
https://matplotlib.org and QGIS v3.24 (QGIS Development team, 2022). The Python (Python Software Soun-
dation, 2023) code is available upon request. The data needed to reproduce the results are provided as Data
Sets S1, S2, and S3.
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