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Abstract

This commentary explores the use of high-resolution data from new, miniature sensors to enrich 
models that predict exposures to chemical substances in the workplace. To optimally apply these 
sensors, one can expect an increased need for new models that will facilitate the interpretation and 
extrapolation of the acquired time-resolved data. We identified three key modelling approaches in the 
context of sensor data, namely (i) enrichment of existing time-integrated exposure models, (ii) (new) 
high-resolution (in time and space) empirical models, and (iii) new ‘occupational dispersion’ models. 
Each approach was evaluated in terms of their application in research, practice, and for policy pur-
poses. It is expected that substance-specific sensor data will have the potential to transform work-
place modelling by re-calibrating, refining, and validating existing (time-integrated) models. An 
increased shift towards ‘sensor-driven’ models is expected. It will allow for high-resolution modelling 
in time and space to identify peak exposures and will be beneficial for more individualized exposure 
assessment and real-time risk management. New ‘occupational dispersion models’ such as interpol-
ation, computational fluid dynamic models, and assimilation techniques, together with sensor data, 
will be specifically useful. These techniques can be applied to develop site-specific concentration 
maps which calculate personal exposures and mitigate worker exposure through early warning sys-
tems, source finding and improved control design and control strategies. Critical development and 
investment needs for sensor data linked to (new) model development were identified such as (i) the 
generation of more sensor data with reliable sensor technologies (achieved by improved specificity, 
sensitivity, and accuracy of sensors), (ii) investing in statistical and new model developments, (iii) 
ensuring that we comply with privacy and security issues of concern, and (iv) acceptance by relevant 
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target groups (such as employers and employees) and stimulation of these new technologies by pol-
icymakers and technology developers.

Keywords:   chemical; exposure; models; occupational; real-time; sensor; sensor networks; substances; time-resolved; 
workplace

Introduction

The maturation of lightweight, miniaturized, and tech-
nically advanced (low-cost) sensors has the potential to 
transform exposure assessment technologies in the oc-
cupational setting (AIHA, 2016; National Academy of 
Sciences, 2017; Morawska et al., 2018). In particular, 
low-cost miniature sensors that can detect airborne 
particles and specific (chemical) substances are being 
developed (hereafter coined ‘sensors’). Although larger-
sized time-resolved sensor equipment has been used in 
the workplace for some time now—the scope and ap-
plication of miniature sensors for assessment of chronic 
exposures for worker health is expected to widen signifi-
cantly in the future (AIHA, 2016; National Academy of 
Sciences, 2017). These new technologies are promising 
to change the landscape of traditionally used time-
integrated sampling methods (e.g. filter measurements 
for gravimetric and chemical analyses in a laboratory). 
They also provide a higher sampling resolution in time 
and space (Negi et al., 2011; Brown et al., 2016) when 
applied for personal sampling and as a stationary net-
work in the workplace.

Assessment of exposures in the context of worker 
health can be divided in three broad categories: (i) 
compliance testing against exposure limits (policy), (ii) 
evaluation of personal exposures and exposure con-
trol systems (practice), and (iii) epidemiological studies 
(research). All three are aimed at workers’ health and 
disease prevention which receives increasingly more at-
tention in recently introduced concepts such as ‘Total 
Worker Health’ [National Institute of Occupational 
Safety and Health (NIOSH)] and ‘Occupational 
exposome’. Sensor technology could be helpful to fulfil 
the potential of these concepts and is closely aligned 
with research on the exposome that promotes a more 
individualistic and holistic approach to exposure as-
sessment (Wild, 2005). For these purposes, exposure 
modelling is often based on or combined with exposure 
measurements, providing exposure assessors with an 
efficient tool to predict substance exposures of worker 
populations. With the collection of time-integrated ex-
posure measurements being the norm, the majority of 
existing exposure models are typically ‘static’ models 
that are based on time-integrated measurement data and 
are able to predict task-based or shift-based exposures 

of exposure scenarios. This stands in stark contrast 
with the complexity of workplace exposures when con-
sidering the fluctuation of concentrations in time and 
space and the exposure variability between individuals. 
High-resolution sensor data provide the opportunity 
to explicitly take account of changes in concentrations 
in time and space, and hence new ‘dynamic’ models 
are required that can interpret and extrapolate these 
data. At the same time, it seems inevitable that existing 
‘static’ occupational exposure models will also require 
significant changes (e.g. re-calibration) to keep up with 
these new technological innovations and availability of 
high-resolution data.

This commentary explores the future prospects of ex-
posure modelling in the context of (time-resolved) sensor 
data. For this purpose, we provide an overview of the 
possibilities of applying sensor data for occupational ex-
posure modelling purposes, the expected types of newly 
developed models, their application, their added value, 
and the critical development needs and challenges in the 
future.

Opportunities of collecting sensor data for 
occupational exposure assessment

To evaluate the potential of sensor data for occupational 
exposure assessment, we drafted an inventory of the 
current status of time-integrated exposure assessment 
in relation to time-resolved measurements. From this 
we identified opportunities and challenges of applying 
sensors for the measurement of substances, the analysis 
and characterization of measurement data and new in-
sights for exposure control (Table 1).

When integrating exposure data during a work day 
of 8 h or an activity of 120 min and we compare that 
with integrating it every 60 s or even 10 s during that 
period, it becomes clear why time-resolved sensor data 
can be considered high-resolution data. The real advan-
tage of higher resolution time-resolved data will be to 
combine (or synchronize) sensor data with contextual 
information (from the same resolution) such as activity 
and location tracking systems (Huang et al., 2010; Negi 
et al., 2011; Brown et al., 2016) and video monitoring 
and human activity tracking and recognition (Rosén 
et al., 2005; Beurskens-Comuth et al., 2011; Lun, 2018; 
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NIOSH, 2018). More individualized exposure assess-
ment can be performed using multiple sensors, as op-
posed to smaller sample sizes and the similar exposure 
group approach conventionally used. Exposure levels 
can be better characterized to provide insights of within- 
and between-worker exposure variability. It may also 
be possible to identify emission sources, or pin-point 
locations and activities related to elevated or peak ex-
posures. This will allow for a more extensive analysis 
of exposure determinants on an individual level. As oc-
cupational exposure limits (OELs) tend to be lowered 
for substances with chronic effects (e.g. diesel emissions, 
asbestos), shorter timescale measurements and more in-
dividualistic exposure assessments and (real-time) risk 
management may be a way forward to further reduce 
workplace exposure levels.

Implications for exposure modelling

New exposure modelling developments are needed if 
we wish to pursue the use of sensor data. Currently 
used models vary widely from (i) population or 
industry-based Job–Exposure Matrices (JEMs) (e.g. 
Dopart and Friesen, 2017), (ii) empirical (or statis-
tical) models (e.g. Symanski et al., 2006), (iii) mech-
anistic and semi-empirical models (e.g. Fransman 
et al., 2011) to (iv) mathematical (or computational) 

models such as mass balance box models (e.g. Cherrie 
et al., 2011), transient indoor dispersion models (e.g. 
Koivisto et al., 2010), and computational fluid dy-
namic (CFD) models (e.g. Bennett et al., 2018). Most 
of these models (except transient and CFD models) are 
‘static’ models that predict time-integrated exposures 
for a job, shift, activity, or location.

We expect three key modelling approaches in the 
context of sensor data, namely (i) enrichment of ex-
isting time-integrated exposure models, (ii) (new) 
high-resolution empirical models, and (iii) (new) ‘occu-
pational dispersion’ models.

Enrichment of existing time-integrated models
In the foreseeable future, the existing time-integrated 
‘static’ models (e.g. JEMs, empirical/statistical, mech-
anistic, computational) are expected to remain prac-
ticable for application in practice, research, and policy. 
One of the reasons for their continued application 
lies in their relative simplicity and generalizability for 
a broad spectrum of workplace exposure scenarios. 
For policy purposes, these models are expected to 
remain very useful as long as OELs are based on 
mostly time weighted average (8-h time weighted 
average exposures. However, a cause of concern is that 
existing models (in particular for policy) have shown 

Table 1.   Inventory of traditional sampling versus sampling with new miniature sensors and their (potential) 
applications.

Traditional sampling Sampling with new sensors

Measurement (strategy)

• � Limited exposure measurements due to (operational) 

cost  

• � Task- and shift-based time-integrated exposures  

• � Insufficient to assess peak exposures  

• � Samples can be analysed for multiple analytes  

• � Recording of mostly observational information  

(e.g. observation, logbooks)

• � Wider sampling possible due to lower (operational) cost (though 

initial costs for infrastructure and implementation required)  

• � High-resolution measurements (in time and/or space)  

• � Insights in peak and short-term exposures  

• � Measurements mostly specific for analyte or substance group  

• � Possibility to synchronize the data with real-time ‘contextual’  

information (e.g. location tracking, video)

Data analysis and characterization

• � Limited possibilities to accurately link exposure  

concentrations with emission sources in time and space  

• � Variability in exposure often unknown  

• � Identify and semi-quantify similarly exposed groups 

(SEGs)  

• � Exposure limits are developed and aligned with  

time-integrated data

• � Possibility to link exposure concentrations with emission sources in 

time and space  

• � Exposure variability can be analysed in detail  

• � More individualized exposure assessment  

• � New exposure limits that utilize the variability in time-resolved 

data will be required

Exposure control

• � Often limited (retrospective) evidence available to  

design control strategies  

• � Retrospective feedback only

• � Time-resolved insights for design and evaluation of control 

measures  

• � Personalized (real-time) digital feedback systems possible
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to be inaccurate for certain exposure scenarios which 
can lead to an underestimation or insufficient control 
of workers’ exposure (Lamb et al., 2015; Riedmann 
et al., 2015). Using time-resolved sensor data to enrich 
and refine existing time-integrated models could be an 
opportunity to increase model accuracy, reduce uncer-
tainty, and enhance reliability.

Mechanistic-type exposure models applied for policy 
purposes (e.g. the Advanced REACH Tool—ART; 
Fransman et al., 2011) could benefit from the spatial 
and temporal information provided by sensor data. 
One option will be to develop ‘exposure profiles’ for 
different activities that provide important information 
on peak exposures (such as their frequency and dur-
ation) and the origin of these peak exposures. For ex-
ample, an ART activity sub-class ‘falling powders’ can 
be refined by making a distinction between specific tech-
nologies and work practices (e.g. emptying bags versus 
emptying a hopper) and sub-tasks (e.g. bag disposal and 
cleaning). This information could be very informative 
to build ‘exposure profiles’ to provide better insights in 
peak exposures and control options for (amongst other) 
risk assessment professionals. Another option will be to 
improve and refine model estimates by using advanced 
statistical analysis that take account of peak exposures 
and by re-calibrating these models. At the same time, a 
critical question that should be considered is whether the 
enrichment of these existing time-integrated models will 
significantly improve model performance.

New high-resolution empirical models
Using high-resolution sensor data in data-driven empir-
ical models will enable the linking of relevant sources, 
activities, exposure circumstances, and locations to ex-
posure levels at a higher resolution in time and space. 
For instance, these potential exposure determinants can 
be linked to an exposure level at a certain point in time 
and even place, whereas when using time-integrated 
measurement data, they can only be linked to the 
average concentration during a shift or task. In add-
ition, given the amount of data that can be collected, 
exposure determinants can be linked to exposure on an 
individual level.

To evaluate the effects of determinants on time-
integrated exposure, which has previously been done 
for the (further) development of several exposure as-
sessment models (Schinkel et al., 2011; Bekker et al., 
2017), regression models are often used. Time-resolved 
sensor data have unique features that challenge conven-
tional data-analysis techniques. For autocorrelation as-
sociated with sequential measurements of time-resolved 
data, statistical models such as Autoregressive Integrated 

Moving Average (ARIMA) have been developed (Klein 
Entink et al., 2011, 2015). However, ARIMA is only 
suitable for data without long-term trends, thus data in 
a stationary state, as the model reduces data to a sta-
tionary form using differentiation before analysis. If the 
approximate stationarity of time-resolved data cannot 
be obtained or the underlying trend is of importance, 
other inferences or statistical methods are required. 
Nevertheless, it is possible to combine ARIMA models 
with regression models to include covariates to investi-
gate exposure determinants of time-resolved data. Also, 
long-term trends such as decreases in concentration 
over time, or the study of random effects of between-
company and between-worker variance components can 
be investigated. A limitation is that model parameters 
cannot vary over time and the models may become com-
plex and convoluted.

More advanced and flexible models will be required 
that can also accommodate non-stationary series data 
and non-normally distributed data. Examples include 
dynamic linear models (Petris et al., 2009; Krone et al., 
2018) and state-space models (Durbin and Koopman, 
2012). These models can include model parameters 
that vary over time and allow for the quantification of 
the relationship between these variables within and be-
tween timepoints, as well as the trend and effects within 
a variable itself. These models can be self-learning to 
some extent by applying Bayesian analysis where prior 
knowledge or models can be integrated with new meas-
urements for this purpose. Prior knowledge can be used 
to add each new data point in time to a model to let 
the model adjust itself over time (Gelman et al., 2013). 
When the model is updated one data point at a time, it 
is in effect self-learning without the need to estimate the 
whole model again, allowing for fast calculations.

Taking a woodworking shop as an example, a rela-
tively simple sensor-driven model (model 1, Fig. 1a) 
can be developed using longitudinal regression models 
(that take account of time) combined with ARIMA. 
It will be suitable for a specific individual or ‘job cat-
egory’ who performs mostly stationary activities with a 
fixed work protocol, for example a woodworker who 
is making windowsills every day. This type of model 
will only require the timeframe of each activity (e.g. 
sawing, cleaning, sanding) during a working shift to-
gether with historic (personal) sensor data. Such a 
model will be able to forecast personal exposures well 
in advance (e.g. 3 h) depending on the variability in 
source emissions. Model forecasts will become more 
uncertain over time as circumstances at the worksta-
tion may change that will influence the exposure, hence 
not all variability inducing information will be taken 
into account.
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More advanced sensor-driven models can be devel-
oped using dynamic linear models (model 2, Fig. 1b). 
This model option will be more complex and will re-
quire real-time contextual information that is syn-
chronized with (historic) time-resolved (personal) 
sensor measurements. The contextual information can 
for example be obtained from location tracking sys-
tems (to track the location of the individual) and smart 
sensors (e.g. to indicate if local exhaust ventilation is 
operational or not). Such a model will be suitable for 
a wood worker with a more random exposure pat-
tern and who works at different locations, involving 
different tools and equipment and types of wood each 
day. The uncertainty of model forecasts will be de-
pendent on the accuracy of information acquired re-
garding the determinants of exposure. There is also an 
opportunity to further improve such models through 
self-learning techniques with every new measurement 
obtained.

As these models may not be ready off-the-shelf 
models, a learning period should be considered for 
sensor algorithms and calibration to be refined and 
to mature.

Such individualized (fit-for-purpose) models could be-
come indispensable in the future for real-time risk man-
agement purposes. They could indicate whether a specific 
activity may be responsible for raising the cumulative 
exposure above the allowed exposure limit. A spin-off 
may include the opportunity to link such models with 
real-time feedback (e.g. ‘smart’ safety glasses). Feedback 
systems can give personalized advice to a worker about 
increased momentary and cumulative exposure levels and 
preferred control measures for a given activity and emis-
sion sources encountered in the workplace.

New ‘occupational dispersion’ models
Given the possibility to apply personal sensors and sta-
tionary sensor networks that are distributed in the work 

Figure 1.  Simulation of two possible sensor-driven models: (a) model 1 using longitudinal regression models combined with 
ARIMA and (b) model 2 using dynamic linear models. Each model prediction is shown with an uncertainty around the central esti-
mate. A momentary and cumulative exposure estimate can be derived from these model predictions.
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environment, we may expect more cross-pollination of 
atmospheric dispersion models from the environmental 
sciences that describe the dispersion of a chemical sub-
stance in space. We coin them here in a broader context 
as ‘occupational dispersion models’.

Many single box or multicompartment mass balance 
models (e.g. Cherrie et al., 2011) have been developed 
for occupational settings and typically calculate near-
field and far-field steady-state average concentration 
ratios (or general ventilation multipliers) for standard 
work environments. A more advanced type are transient 
models that predict dispersion of indoor aerosol concen-
trations over time (including peak concentrations) at a 
designated location such as the near-field or far-field of 
an emission source (Koivisto et al., 2010; Ganser and 
Hewett, 2017). And lastly, the most advanced computa-
tional model variant is CFD models that have been ap-
plied in the workplace (Kassomenos et al., 2008; Feigley 
et al., 2011; MacCalman et al., 2016; Dong et al., 
2017; Bennett et al., 2018) and can predict both the 
continuous spatial and temporal dispersion of indoor 
aerosol concentrations in 2D or 3D. A ‘disadvantage’ 
of all these models is that the emission rate of sources 
must be known and the ventilation conditions should be 
relatively stable, and therefore the practicality and feasi-
bility of applying these models in complex and dynamic 
workplaces (with variable conditions) are expected to be 
problematic.

Interpolation and concentration mapping
An interesting opportunity to pursue with time-resolved 
(miniature) sensor networks is the development of 2D 
and 3D concentration maps in the workplace. Spatial 
and temporal dispersion of airborne substances can 
be projected on 2D (or 3D) maps using interpolation 
techniques such as Kriging (Fig. 2; Peters et al., 2006). 
Kriging is a geostatistical gridding method that inter-
polate concentrations measured at different sampling 
locations to create uniformly gridded spatial concen-
tration maps. While mapping techniques do not require 
personal sensor data, a downside is that they may re-
quire rather extensive (high density) stationary sensor 
networks for accurate estimates (Peters et al., 2006). 
Using Kriging, our research team has been able to com-
bine both personal and stationary sensor data to de-
velop concentration maps over longer time intervals 
(for example an hour). An alternative and more ad-
vanced option include Echo State Maps (Schaffernicht 
et al., 2017), a methodology based on echo state net-
works that are well-suited for time-series analysis, 
non-linear signal processing, and spatial interpolation. 
This method combines a wireless sensor network with 
localized (mobile) robot measurements in order to 
create a dense interpolation model. It is also possible 
to expand these techniques with spatial–temporal inter-
polation models using Bayesian methods (e.g. Koehler 
and Volckens, 2011).

Figure 2.  Example of respirable mass concentration 2D maps produced (using mapping software and Kriging) for an engine 
machining and assembly facility in the winter for different grids of sensor networks: (a) coarse-grid 1, (b) coarse-grid 2, (c) coarse-
grid 3, and (d) fine (with permission from Peters et al., 2006).
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Interpolation techniques applied for concentration 
maps could be useful for the purpose of demarcation 
and zoning (segregation) of hazardous work areas, or 
to indicate the maximum period of time that a worker 
can spend in a given work area before the OEL is ex-
ceeded. Walking routes of employees at different loca-
tions can be determined to avoid hotspot areas, which 
are important for both compliance testing purposes and 
exposure control strategies.

Assimilation techniques
For more advanced source finding techniques and to 
detect and predict the variability of peak concentra-
tions emitted from them (e.g. early warning systems), 
CFD can be used to fuse (or assimilate) model predic-
tions and time-resolved sensor data. For this purpose, 
existing filtering systems (e.g. Kalman filters, Bayesian 
methods) used in environmental dispersion models 
can be used to improve the comparison between the 
concentrations predicted by the model and the meas-
ured concentrations (Curier et al., 2012) by adapting 
the model parameters. These assimilation techniques 
can be applied to (re-)construct new data points 
within the range of known sensor data points and 
model estimates. Depending on the complexity of such 
models, their accuracy will be influenced by (for ex-
ample) the number of point sources, the surrounding 
physical structures, and movement of workers at a 
work location. Similar to environmental dispersion 
models, the accuracy of these models can further be 
fine-tuned by optimizing the distribution of sensor 
networks and by improved parameterization of the 
model and model inputs (to cope with more dynamic 
environments). For example, research has shown that 
probability-based inverse CFD modelling could be ap-
plied in the design of more optimal sensor networks 
(Liu and Zhai, 2008).

Critical development and investment needs

It is clear that occupational exposure assessment profes-
sionals can greatly benefit from sensor technologies and 
their application in existing and new exposure models. 
It is widely accepted that by increasing the quantity of 
data the quality of the data can be improved (Hoover 
and Debord, 2015). Sensor data in itself is data-rich and 
can ultimately provide much more data, although it may 
only provide meaningful insights in exposure variability 
when it is synchronized with contextual information. 
However, limited field studies with sensors are available 
due to the fact that they do not yet have the specificity, 
selectivity, accuracy, and acceptable detection limits for 

reliable detection of specific substances in complex ex-
posure scenarios in the workplace (AIHA, 2016; Sousan 
et al., 2016). Miniature sensors are currently only sen-
sitive (enough) to measure substance groups such as 
total volatile organic compounds and particulate matter 
(AIHA, 2016). Also, they require regular calibration and 
we can only benefit from their time-resolved functional-
ities if we also invest in (often costly) sensor information 
technologies that allow for wireless time-resolved data 
transport, data analysis, and storage. Despite these in-
vestments, sensors could become ‘low cost’ if one con-
siders the wealth of information that can be obtained in 
terms of both data quantity and quality. With rapid in-
novations of the day, we expect that the use of miniature 
sensors will gradually become common practice in the 
workplace over the coming years.

To address long-term drift of sensors, the uncer-
tainties of inherent use should be evaluated to es-
tablish the need for more ‘in-the-field’ validation for 
low-cost sensors. Research efforts should be invested 
to quantify and resolve these issues. In addition, cali-
bration and validation protocols are needed to be 
able to interpret the validity and accuracy of sensor 
data obtained in field studies. It is evident that much 
more effort should be invested in model developments 
such as sensor-driven empirical models, interpolation, 
CFD, and assimilation techniques like Kriging. For 
example, further research is required to improve in-
terpolation techniques and the development of con-
centration maps, as the complexity of workplaces and 
the resulting spatial–temporal variability and uncer-
tainty could be a limiting factor in their development 
(Koehler and Volckens, 2011; Koehler and Peters, 
2013). At the same time, measurement strategies and 
protocols must be adapted to align them with sensor 
data collection. Beside wearable sensors, the most op-
timal (stationary) sensor network distributions (incl. 
sample size) that are representative of a given work-
place, should be investigated.

We are facing major challenges to facilitate the 
use of miniature sensors in the workplace. For new 
models to be developed, considerable effort is required 
in synchronizing time-resolved data with contextual 
information (e.g. location tracking; human activity 
tracking and recognition) in order to identify rele-
vant exposure determinants of interest. Development 
of infrastructures, including data platforms and rele-
vant architecture are required to integrate and channel 
the high volume and time series data from different 
sources. Methods should be developed to streamline 
these data streams to support data assimilation and 
data management. Also, privacy and security of sensor 
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data linked to individual workers should receive ad-
equate attention to ensure the privacy of individual 
workers and companies, focussing on the security of 
data (storage, analysis, sharing) and ethical issues of 
concern.

From a policy and regulation perspective, the use of 
sensor data may require new methods for compliance 
testing and sensor-specific exposure limits that are more 
in line with time-resolved exposures, its uncertainty, and 
its interpretation.

Conclusion

This commentary explored the possibilities of model-
ling with miniature sensor data, looking at enriching 
existing models and developing new ones. To develop 
sensor networks and new models, we identified a few 
important requirements: (i) to obtain more sensor data 
with reliable sensor technologies including the required 
methodologies, (ii) to invest in statistical and new 
model developments including data infrastructures, (iii) 
to comply with privacy and security issues and con-
cerns, and (iv) to support different target groups to 
facilitate acceptance of these new technologies (work-
forces, employers) and for policymakers and technology 
developers to stimulate it. To this end, a collaboration 
and engagement in partnerships will be important to 
bridge the gap between researchers, industry, and pol-
icymakers, which will require a new way of thinking 
about high resolution and individualized data and how 
workplace exposures can be managed more effectively.
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