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How certain are we that our automated driving system is safe?

Erwin de Gelder and Olaf Op den Camp

Integrated Vehicle Safety, TNO, Helmond, The Netherlands

ABSTRACT
Objective: Regulations are currently being drafted by the European Commission for the safe intro-
duction of automated driving systems (ADSs) with conditional or higher automation (SAE level 3 and
above). One of the main challenges for complying with the drafted regulations is proving that the
residual risk of an ADS is lower than the existing state of the art without the ADS and that the cur-
rent safety state of European roads is not compromised. Therefore, much research has been con-
ducted to estimate the safety risk of ADS. One proposed method for estimating the risk is data-
driven, scenario-based assessment, where tests are partially automatically generated based on
recorded traffic data. Although this is a promising method, uncertainties in the estimated risk arise
from, among others, the limited number of tests that are conducted and the limited data that have
been used to generate the tests. This work addresses the following question: “Given the limitations
of the data and the number of tests, what is the uncertainty of the estimated safety risk of the ADS?”
Methods: To compute the safety risk, parameterized test scenarios are based on large-scale collec-
tions of road scenarios that are stored in a scenario database. The exposure of the scenarios and
the parameter distributions are estimated using the data as well as confidence bounds of these
estimates. Next, virtual simulations are conducted of the scenarios for a variety of parameter val-
ues. Using a probabilistic framework, all results are combined to estimate the residual risk as well
as the uncertainty of this estimation.
Results: The results are used to provide confidence bounds on the calculated fatality rate in case an
ADS is implemented in the vehicle. For example, using the proposed probabilistic framework, it is pos-
sible to claim with 95% certainty that the fatality rate is less than 10�7 fatalities per hour of driving. The
proposed method is illustrated with a case study in which the risk and its uncertainty are quantified for
a longitudinal controller in 3 different types of scenarios. The case study code is publicly available.
Conclusions: If results show that the uncertainty is too high, the proposed method allows answer-
ing questions like “How much more data do we need?” or “How many more (virtual) simulations
must be conducted?” Therefore, the method can be used to set requirements on the amount of
data and the number of (virtual) simulations. For a reliable risk estimate, though, much more data
are needed than those used in the case study. Furthermore, because the method relies on (virtual)
simulations, the reliability of the result depends on the validity of the models used in the simula-
tions. The presented case study illustrates that the proposed method is able to quantify the uncer-
tainty of the estimated safety risk of an ADS. Future work involves incorporating the proposed
method into the type approval framework for future ADSs of SAE levels 3, 4, and 5, as proposed
in the upcoming European Union implementing regulation for ADS.
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Introduction

Automated driving systems (ADSs) have the potential of
making traffic safer by eliminating human errors, enabling
more comfortable rides, and reducing traffic congestion
(Chan 2017). Lower levels of automation systems, such as
adaptive cruise control (ACC) and lane keeping assist sys-
tems, are already widely deployed in modern cars and
trucks. Such systems are considered as driver assistance
(level 1) or partial driving automation (level 2) systems
(SAE J3016 2021). Here, the driver is still responsible for
intervening if the ADS fails, so the human driver is

accountable in case of any damage caused by the vehicle.
For conditional driving automation (level 3), high driving
automation (level 4), and full driving automation (level 5),
however, the driver is neither required nor expected to
intervene immediately when the ADS fails. Hence, for ADSs
of SAE level 3 and above, the accountability shifts away
from the driver (Luetge 2017). Therefore, for such systems,
it is even more important to ensure that the risk of ADS is
lower than existing state-of-the-art vehicles with no ADS or
an ADS of SAE level 2 and below. In fact, new regulations
are currently being drafted by the European Commission for
the safe introduction of ADS of SAE level 4 (European
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Commission 2022) that require that the ADS be free from
unreasonable risks. Hence, much research has been con-
ducted to estimating the risk of an ADS.

A scenario-based approach for prospective risk assess-
ment of an ADS is broadly supported by the automotive
field (Roesener et al. 2017; P€utz et al. 2017; Elrofai et al.
2018; Ploeg et al. 2018; Menzel et al. 2018; Thorn et al.
2018; Antona-Makoshi et al. 2019; Riedmaier et al. 2020; de
Gelder et al. 2021; Scholtes et al. 2021). For the scenario-
based approach, it is important that the scenarios provide a
representation of the real world and that the scenarios used
for the risk assessment cover the same variety that is found
in real life (Riedmaier et al. 2020). A popular approach is to
use real-world data collected from vehicles operating in traf-
fic to extract scenarios that occur in real life (P€utz et al.
2017; Elrofai et al. 2018; Ploeg et al. 2018; Antona-Makoshi
et al. 2019). Therefore, in this work, we follow the data-
driven, scenario-based risk quantification of an ADS as pro-
posed by de Gelder et al. (2021). In de Gelder et al. 2021,
scenarios were extracted from a data set. These scenarios
were used to generate new scenarios for which the response
of the ADS under test was tested in virtual simulations.
Using the data, the exposure of the scenarios in real-world
traffic was estimated. By combining the estimated exposure
with the calculated crash probability and injury rate, how
frequent crashes and severe injuries are when the ADS is
activated was estimated. The proposed method for quantify-
ing the risk can be applied to assess risks based on ISO
26262 (2018) and ISO 21448 (2022), the leading standards
in automotive safety.

When quantifying the risk using a data-driven, scenario-
based approach, the calculated risk will be an estimation of
the actual risk. Uncertainties in the estimated risk arise from
the limited data and the limited number of simulation runs.
The limited data lead to uncertainty in the estimated expos-
ure of the scenarios. Furthermore, the generated scenarios
may not fully represent the variations in real traffic due to
the limited data.

This resulted in an uncertainty of the estimated crash
probability. Also, the limited number of simulation runs
contributed to the uncertainty of the crash probability. In
the literature, several metrics have been proposed to quan-
tify the degree of completeness of the data (Wang et al.
2017; de Gelder et al. 2019; Hauer et al. 2019). However, to
the best of our knowledge, there is no method that quanti-
fies how the limited data affect the uncertainty in the esti-
mated risk of an ADS. This work presents a method to
estimate the uncertainty of the quantified risk as a result of
the limited data and the limited number of simulation runs.
To do this, we first estimate the uncertainty of the estimated
exposure based on how often a type of scenario is seen in
an hour of driving and how this varies from hour to hour.
Second, the uncertainty of the crash probability as a result
of the limited data is estimated using bootstrapping (Efron
1979) of the original data. Third, the uncertainty of the
crash probability as a result of the limited number of simu-
lations is estimated using a standard formula used for
importance sampling with Monte Carlo simulations (Owen

2013). Finally, the 3 uncertainties are combined to calculate
the uncertainty of the estimated risk.

To illustrate the proposed method, a case study is per-
formed in which the risk and its uncertainty are estimated
while considering 3 different types of scenarios. In this case
study, the uncertainty of the exposure, the crash probability,
and the risk are estimated while considering a varying
amount of data and a varying number of simulation runs. The
case study demonstrates that more data and a larger number
of simulation runs lead to a lower uncertainty of the estimated
risk. The case study code is publicly available (https://github.
com/ErwindeGelder/ScenarioRiskQuantification).

This article is organized as follows. The next section
describes the problem in more detail. Then, a method is
proposed as a solution to this problem. Next is a case study
in which the proposed method is illustrated. A discussion
follows, including our conclusions.

Problem definition

An ADS is designed for a specific operational design domain
(ODD), where the ODD refers to the operating conditions
under which the ADS is specifically designed to function
(SAE J3016 2021). Therefore, the ODD is used to confine
the risk analysis (Gyllenhammar et al. 2020). Still, it is
expected that there will be a very large variety of scenarios
within a specific ODD and that an ADS must act appropri-
ately in the majority of those scenarios in order to be con-
sidered safe enough. In addition, an ADS must safely handle
scenarios in which the ADS threatens to unintentionally exit
its ODD. Here, we define a scenario as a “quantitative
description of the relevant characteristics and activities
and/or goals of the ego vehicle(s), the static environment,
the dynamic environment, and all events that are relevant to
the ego vehicle(s) within the time interval between the first
and the last relevant event” (de Gelder et al. 2022, p.303).
To deal with this very large variety of scenarios, we group
the scenarios into so-called scenario categories. A scenario
category refers to a qualitative description of a scenario (de
Gelder et al. 2022).

By distinguishing between scenarios and scenario catego-
ries, the question of how certain we are that our ADS is safe
can be split into two. First, are all relevant scenario catego-
ries considered during the risk assessment? Second, is the
variability of the scenarios within a scenario category suffi-
ciently considered during the risk assessment? This work
focuses on the second question. We will come back to the
first question in the discussion.

In de Gelder et al. 2021, a method was provided to esti-
mate the probability that an ADS cannot avoid a crash in a
scenario from a specific scenario category. To estimate this
probability, (virtual) simulations of the scenarios are used.
The scenarios themselves are generated based on observed
scenarios in real-world data. Because neither infinite data
are available nor an infinite number of simulations is per-
formed, the estimated probability of a crash approximates
the real crash probability. Therefore, this work aims to
answer the following question: How does the limited data
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and the limited number of simulations influence the uncer-
tainty of the estimated crash probability of an ADS in scen-
arios of scenario category C?

Method

For the risk quantification, this work adopts the approach
presented by de Gelder et al. (2021). This section first
explains how the risk is estimated by combining the exposure
and the crash probability. Next, we propose methods to esti-
mate the uncertainty of the exposure and the uncertainty of
the crash probability, where the latter uncertainty is caused
by the limited data and the limited number of simulation
runs. Finally, this section shows how the uncertainties are
combined to estimate the uncertainty of the estimated risk.

Risk quantification

This section summarizes the method for quantifying the risk
described by de Gelder et al. (2021). For more details, we
refer the reader to (de Gelder et al. 2021). Let us assume
that n hours of driving data have been collected. Let mi

denote the number of scenarios of C that have been
observed in the i-th hour with i 2 1, :::, nf g: The exposure
of scenario category C is expressed as the expectation of m,
which is estimated as follows:

E m½ � ¼ 1
n

Xn

i¼1
mi ¼ N

n
(1)

with N ¼Pn
i¼1 mi denoting the total number of scenarios

that were encountered during the n hours of driving data.
The N scenarios of scenario category C are parameterized

such that the j-th scenario is described by the vector xj 2
R

d, where d denotes the number of parameters that are
used to describe the scenarios from scenario category C:
The probability density function (PDF) of the scenario
parameters is estimated using kernel density estimation
(KDE; Rosenblatt 1956; Parzen 1962):

f̂ xð Þ ¼ 1
Nhd

XN

j¼1
K

1
h

x� xjð Þ
� �

, (2)

with K �ð Þ and h denoting the kernel function and band-
width, respectively. Because the choice of the kernel function
is not as important as the choice of the bandwidth (Chen
2017; Turlach 1993), the often-used Gaussian kernel is
adopted. Note that our method also applies with alternative
kernels. The Gaussian kernel is given by

K uð Þ ¼ 1

2pð Þd2
exp � 1

2
kuk22

� �
, (3)

where kuk22 ¼ uTu denotes the squared 2-norm of u: The
bandwidth h > 0 controls the smoothness of the estimated
PDF. Choosing the appropriate value is a trade-off because
larger values result in a smoother PDF but choosing h too
large may result in loss of details in the PDF. As shown in
Turlach (1993), using leave-one-out cross-validation to deter-
mine the bandwidth minimizes the discrepancy between the
estimated PDF and the real, unknown PDF according to the

Kullback-Leibler divergence. Thus, this work uses leave-one-
out cross-validation to determine h:

Let R xð Þ denote the outcome of a simulation of a scen-
ario that is parameterized by x: If R xð Þ ¼ 1 denotes a simu-
lation run that ends in a crash and R xð Þ ¼ 0 otherwise, then
E R xð Þ½ � is the expected probability of a crash. A straightfor-
ward way to estimate E½R xð Þ� is using a crude Monte Carlo
simulation:

E R xð Þ½ � � 1
NMC

XNMC

k¼1
R xkð Þ, xk � f̂ , (4)

where NMC denotes the number of simulation runs.
Following Zhang (1996), nonparametric importance sam-
pling is used to accelerate the evaluation. With importance
sampling, instead of sampling the scenario parameter values
from f̂ , the scenario parameter values are sampled from the
so-called importance density, g: With nonparametric
importance sampling, the importance density is calculated in
a similar manner as f̂ in Eq. (2), but instead of using the
scenario parameter values from the data, the parameter val-
ues of the most NC < NMC critical scenarios that are simu-
lated during the crude Monte Carlo simulation are used.
Many metrics exist for determining the criticality of a simu-
lated scenario (Mullakkal-Babu et al. 2017; C. Wang et al.
2021; Westhofen et al. 2022; de Gelder et al. 2023), and
choosing appropriate metrics depends on the scenarios that
are simulated. In this work, the criticality of a simulated
scenario is measured using the minimum time to collision
(Hayward 1972), where a lower value indicates a more crit-
ical scenario. Note that the time to collision is an appropri-
ate metric for the scenarios considered in our case study
(Mullakkal-Babu et al. 2017), but this might not be an
appropriate metric to measure the criticality in simulations
of other type of scenarios. To acquire an unbiased estimate
of E R xð Þ½ �, the simulation results are weighted to correct for
the fact that we sample from g instead of f̂ :

E R xð Þ½ � � lNIS ¼
1

NNIS

XNNIS

k¼1
R xkð Þ f̂ xkð Þ

g xkð Þ , xk � g, (5)

where NNIS denotes the number of simulation runs with
importance sampling.

To compute the risk of a crash given a scenario category
C, the exposure and the crash probability are multiplied:

Risk Cð Þ ¼ E m½ � � E R xð Þ½ �: (6)

Uncertainty of the exposure

Assuming that mi is uncorrelated with mj for i 6¼ j, the
unbiased estimator of the variance of m is

V m½ � � 1
n� 1

Xn

i¼1
mi � N

n

� �2

: (7)

Here, V �½ � denotes the variance. Thus, the variance of the
estimated exposure of Eq. (1) is

V
N
n

� �
� r̂2

exposure ¼
1

n n� 1ð Þ
Xn

i¼1
mi � N

n

� �2

: (8)
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We will express the uncertainty of the exposure as the
estimated standard deviation of the expected exposure; that
is, r̂exposure:

Remark 1. It is not uncommon to assume thatm is distributed
according to the Poisson distribution. In that case, the variance
ofm equals the exposure of Eq. (1), so Eq. (8) simplifies to

V
N
n

� �
¼ N

n2
: (9)

Uncertainty because of limited data

The underlying distribution of the scenario parameters is
estimated using f̂ �ð Þ of Eq. (2). Assuming that the real
underlying distribution is smooth, the estimated PDF con-
verges to the real PDF as h ! 0 and Nhd ! 1 (Wasserman
2006). In reality, N will be finite, so f̂ �ð Þ will deviate from
the real underlying PDF. According to Chen (2017), a
method to estimate the asymptotic variance of f̂ �ð Þ is using
bootstrapping (Efron 1979). In a similar manner, this work
uses bootstrapping to estimate the uncertainty of lNIS as a
result of the variance of f̂ �ð Þ:

The bootstrapping works as follows. We select N scenario
parameter vectors from the set xjf gNj¼1

with replacement.
Note that some scenario parameter vectors will be selected
more than once, whereas some other scenario parameter
vectors will not be selected at all. Using the selected scenario
parameter vectors, a new estimate of the PDF is constructed
using KDE, similar to f̂ �ð Þ in Eq. (2). Let us denote this esti-
mated PDF by f̂

�
l �ð Þ, where l denotes the index of the boot-

strap and the asterisk highlights the fact that this PDF is
estimated by resampling xjf gNj¼1

: This procedure is repeated
B times, so l ¼ 1, :::,B: Next, based on the PDF f̂

�
l �ð Þ, the

crash probability lNIS is evaluated. It would be time-con-
suming to redo the Monte Carlo simulation for each f̂

�
l �ð Þ:

Instead, lNIS is directly evaluated by substituting f̂
�
l �ð Þ for

f̂ �ð Þ in Eq. (5):

l�NIS, l ¼
1

NNIS

XNNIS

k¼1
R xkð Þ f̂

�
l xkð Þ
g xkð Þ , (10)

where the same set of scenario parameter values xkf gNNIS
k¼1 is

used as for evaluating Eq. (5).
Evaluating Eq. (10) B times leads to B estimates of

E R xð Þ½ �: The variance of lNIS resulting from the variance in
f̂ �ð Þ is approximated using

V lNIS½ � � r2l, data ¼
1

B� 1

XB

l¼1
l�NIS, l �

XB

l0¼1
l�NIS, l0

� 	2
:

(11)

The estimated standard deviation rl, data is used as a
measure of the uncertainty of the crash probability as a
result of the limited number of scenarios.

Remark 2. Note that the importance density, g �ð Þ, is based
on the original estimated PDF, f̂ �ð Þ: This importance density
is chosen such that lNIS converges as quickly as possible to
E R xð Þ½ � while assuming that f̂ �ð Þ is a good estimate of f �ð Þ:
Determining the importance density using f̂

�
l �ð Þ instead of

f̂ �ð Þ is likely to result in a slightly different importance dens-
ity. As a result, using g �ð Þ might not be optimal in the sense
that another importance density might lead to a faster con-
vergence of lNIS toward E R xð Þ½ �: However, it is expected
that this effect is minor, because f̂

�
l xð Þ � f̂ ðxÞ for all x:

Hence, the advantage of reusing the Monte Carlo results
outweighs the disadvantage of the (potential) slower conver-
gence of the estimation of E R xð Þ½ � during bootstrapping.

Uncertainty because of limited number of simulations

We express the uncertainty resulting from the limited num-
ber of simulations using the standard deviation of lNIS: In a
similar manner that Eq. (8) estimates the variance of Eq.
(1), the variance of lNIS resulting from the limited number
of simulations can be approximated using (Owen 2013)

V lNIS½ � � r̂2
l, simulations ¼

1
NNIS NNIS � 1ð Þ

�
XNNIS

k¼1
R xkð Þ f̂ xkð Þ

g xkð Þ � lNIS

 !2

, xk � g:

(12)

Combining all uncertainties

To combine the uncertainties of Eqs. (8), (11), and (12), the
following is assumed:

	 Because both estimations of Eqs. (1) and (5) are
unbiased, the estimated exposure of Eq. (1) is uncorre-
lated with the estimated crash probability of Eq. (5).

	 Because the estimator of the crash probability of Eq. (5)
is unbiased, the influence of the number of simulations
on the estimated crash probability does not depend on
the number of hours that are used to collect the data.

Based on the second assumption, the combined effect of
the limited data and the limited number of simulations on
the variance of lNIS is simply the sum of the variances of
Eqs. (11) and (12):

V lNIS½ � � r̂2
l ¼ r̂2

l, data þ r̂2
l, simulations: (13)

Based on the first assumption, the uncertainty of the
risk, RiskðCÞ, is computed by treating the estimations of
E½m� and E½R xð Þ� as independent. Hence, the variance of
RiskðCÞ follows from the standard formula used for calcu-
lating the variance of two independent variables (Goodman
1960):

V Risk Cð Þ½ � ¼ E
N
n

� �� �2

� V lNIS½ � þ E lNIS½ �
 �2 � V N
n

� �

þV
N
n

� �
� V lNIS½ � (14)

� N
n


 �2 � r̂2
l þ l2NIS � r̂2

exposure þ r̂2
exposure � r̂2

l: (15)

The influence of the number of observed scenarios, N, is
shown in an illustrative way in Eq. (14):
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	 If many scenarios were observed, the variance of the esti-
mated PDF will be reduced. As a result, it is expected
that V lNIS½ � will be lower compared to the case where
only a few scenarios were observed. However, the expos-
ure, N=n, will be relatively high. These two effects coun-
teract in the first term in Eq. (14).

	 Because it is expected that r̂2
exposure is proportional with

N (see Eq. (9)), the second term in Eq. (14) scales lin-
early with l2NIS and the exposure, N=n:

	 With a similar reasoning as for the first term of Eq. (14),
a large value of N typically results in a relatively large
value of V

N
n

� 

and a relatively small value of V lNIS½ �:

These two effects will have an opposite effect on the
third term of Eq. (14).

Results

This section applies the methods of the previous section in a
case study. First, the 3 scenario categories that we consider
are described. Next, details regarding the data set are pro-
vided. Then, a subsection is dedicated to the description of
the ADS that we consider in this case study. Then the
resulting estimations of the uncertainties of the exposure
and the crash probability are studied. Finally, the risk and
its uncertainty are presented.

Scenario categories and parameterization

This work considers 3 scenario categories: leading vehicle
decelerating (LVD), cut-in, and approaching slower vehicle
(ASV). The first 2 scenario categories are mentioned as pos-
sibly critical scenarios in the regulation of automated lane
keeping systems (World Forum for Harmonization of
Vehicle Regulations 2021). The third scenario category
accounts for more than 25% of all crashes that involve 2
vehicles in the United States (Najm et al. 2007).

In an LVD scenario, the ego vehicle is following a leading
vehicle that decelerates. Three parameters describe an LVD
scenario: v0, Dv, and a: The first parameter, v0, denotes the
initial speed at which both the ego vehicle and the leading
vehicle are driving. The leading vehicle decelerates with an
average deceleration of a such that the final speed is v0 �
Dv: Note that v0 > 0, 0 < Dv 
 v0, and a > 0:

In a cut-in scenario, another vehicle is changing lane
such that it becomes the leading vehicle of the ego vehicle.
Three parameters describe a cut-in scenario: g0, ve, 0, and
vl, 0: The parameter g0 denotes the gap between the ego
vehicle and the other vehicle at the moment of the cut-in.
The initial speeds of the ego vehicle and the other vehicle
are ve, 0 and vl, 0, respectively. It is assumed that the other
vehicle is driving at a constant speed. Note that g0 > 0,
ve, 0 > 0, and vl, 0 > 0:

In an ASV scenario, the ego vehicle is approaching a
slower vehicle. The 2 parameters that describe an ASV scen-
ario are the initial speed of the ego vehicle, ve, 0, and the
speed of the vehicle in front of the ego vehicle, vl, 0: Note
that for an ASV scenario, ve, 0 > 0, and 0 < vl, 0 < ve, 0:

Data set

The data set described in Paardekooper et al. (2019) is used
to estimate the exposure and the PDF of the scenario
parameters. The data were recorded from a single vehicle in
which 20 experienced drivers were asked to drive a pre-
scribed route. Each driver drove the 50 km route 6 times,
which resulted in 63 h of data. The route includes urban
roads, rural roads, and highways. The surrounding traffic
was measured by fusing the radar and camera data as
described in Elfring et al. 2016. To extract the scenarios
from the data set, the approach described by de Gelder et al.
(2020) was used. In 63 h of driving, 1,300 LVD scenarios,
297 cut-in scenarios, and 291 ASV scenarios were found (de
Gelder et al. 2021).

When using the KDE of Eq. (2) to estimate the PDF, the
parameters are normalized such that the standard deviation
is 1 for each of the parameters (Duong 2007). Parameter
values that are outside the valid range of values reported in
the previous subsection will have a positive probability dens-
ity due to the infinite support of the Gaussian kernel of
Eq. (3). To avoid sampling parameter values that are invalid,
the estimated PDFs are set to 0 for all invalid parameter val-
ues. For example, the PDF for LVD scenarios is set to 0 for
v0 
 0, Dv 
 0, Dv > v0, and a 
 0: The resulting PDFs
are rescaled such that they still integrate to 1.

Automated driving system under test

The ACC described by Xiao et al. (2017), which is based on
the ACC proposed by Milan�es and Shladover (2014), is used
in this case study. The ACC maintains a safe distance from
a leading vehicle while not exceeding a speed that is set by
the user of the ACC. With the ACC, the acceleration of the
ego vehicle is based on the speed of the ego vehicle, ve tð Þ;
the speed of the leading vehicle, vl tð Þ; and the gap between
the leading vehicle’s back and the ego vehicle’s front, g tð Þ,
at time t: The acceleration of the ego vehicle at time t is
described by the following equations (Xiao et al. 2017):

ae tð Þ ¼ max min aACC tð Þ, aCC tð Þð Þ, � dmaxð Þ, (16)

aACC tð Þ ¼
k1 g tð Þ � d0 ve tð Þð Þ � shve tð Þ
 �

þk2 vl tð Þ � ve tð Þð Þ if g tð Þ < dACC,
aCC tð Þ otherwise,

8<
:

(17)

d0 uð Þ ¼
5 m if u � 15 m=s,
7 m if u < 10:8 m=s,

75 m2=s
u

otherwise,

8>><
>>: (18)

aCC tð Þ ¼ kCC vset � ve tð Þð Þ: (19)

The values and descriptions of the parameters dmax,
dACC, k1, k2, sh, and kCC are provided in Table 1. The par-
ameter vset is the desired speed, which is assumed to be the
same as the initial speed of the ego vehicle in each simula-
tion run; that is, ve 0ð Þ ¼ vset:
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Uncertainty of exposure

Table 2 summarizes the results. In n ¼ 63 h of driving data,
N ¼ 1, 300 LVD scenarios, N ¼ 297 cut-in scenarios, and N ¼
291 ASV scenarios were extracted. Thus, following Eq. (1), the
exposure for the corresponding scenario categories is 20:6,
4:71, and 4:62 h�1, respectively. To determine the uncertainty
of the estimated exposure, we assume that mi is uncorrelated
with mj for i 6¼ j, such that we can use Eq. (8). We have per-
formed the Ljung-Box test (Ljung and Box 1978) to check for
autocorrelations up to a lag of 3, following the recommenda-
tion of Burns (2002). For the LVD and cut-in scenarios, there
is no significant evidence that mi is not independently distrib-
uted (P > :05). For the ASV scenarios, however, there might
be an autocorrelation present, because the probability that
there is no autocorrelation of lag 1 is P ¼ :023 according to the
Ljung-Box test. As a result, the estimated uncertainty of the
exposure of the ASV scenarios might be inaccurate. Applying
Eq. (8) results in the estimated uncertainty of the exposure:
r̂exposure � 1:2 h�1 for LVD scenarios, r̂exposure ¼ 0:52 h�1 for
cut-in scenarios, and r̂exposure ¼ 0:34 h�1 for ASV scenarios.

Figure 1 shows the estimated exposure of Eq. (1) for an
increasing number of hours of driving data. The colored
area around each line represents the uncertainty; that is, the
area between N=n� r̂exposure and N=nþ r̂exposure: Figure 1
illustrates that the uncertainty decreases when more data are
available: the height of the colored area decreases for higher
values of n: Furthermore, it can be observed that a higher
exposure typically results in a higher uncertainty. In relative
terms—that is, the ratio of r̂exposure and N=n—the uncertainty
is typically lower for higher values of N=n because r̂exposure is
typically proportional with the square root of N=n (cf. Eq. (9)).

Uncertainty because of limited data

As reported in Table 2, the estimated crash probability is 7:32 �
10�3 in case the ACC encounters an LVD scenario. The uncer-
tainty resulting from the variance of f̂ �ð Þ is estimated using
bootstrapping according to Eq. (11) with B ¼ 1000: This
results in r̂l, data ¼ 1:52 � 10�3: The estimated crash probability
for a cut-in scenario is about 4 times lower: 1:88 � 10�3: Note,
however, that the uncertainty resulting from the limited data is
only slightly lower: 1:38 � 10�3: This result illustrates the

influence of the number of scenarios, N, that are used to com-
pute f̂ �ð Þ :more scenarios lead to a relatively lower uncertainty.
In other words, r̂l, data=lNIS is generally lower for higher values
of N: For the ASV scenarios, r̂l, data ¼ 5:05 � 10�3 is also rela-
tively large compared to lNIS ¼ 9:20 � 10�3:

Figure 2 shows the result of the bootstrapping for different
number of hours of data. The lines represent the mean of the
values l�NIS, l, l 2 1, :::,Bf g: Note that this mean might deviate
from the lNIS from Eq. (5). The colored areas denote the mean
plus or minus r̂l, data: Figure 2 clearly illustrates that the uncer-
tainty r̂l, data decreases with increasing n: This is an expected
result because the variance of f̂ �ð Þ decreases if more data are
used. Perhaps more surprising is the effect that the estimated
crash probability itself is decreasing with the use of more data.
One explanation for this is that with less data, the bandwidth
used for the KDE tends to be larger. As a result, the tails of the
estimated PDF, f̂ �ð Þ, tend to be larger and the crashes typically

Table 1. Parameters of the system under test. The values of the parameters
k1, k2, sh, and kCC are adopted from Xiao et al. (2017).

Parameter Description Value

dmax Maximum deceleration 6 m=s2

dACC Maximum sensor range of ACC 150 m
k1 Distance gain of ACC 0:23 s�2

k2 Speed gain of ACC 0:07 s�1

sh Time gap setting, also known as desired time headway 1:1 s
kCC Speed gain of cruise control 0:4 s�1

vset Desired speed Variable

Figure 1. Estimated exposure of LVD, cut-in, and ASV scenarios based on n
hours of collected data, where n varies between 18 and 63 h: The colored areas
mark the estimated exposure plus or minus the uncertainty, r̂exposure:

Table 2. Summary of results with n ¼ 63 h, NMC ¼ NNIS ¼ 10, 000, and NC ¼ 200:

Scenario category N=n (h�1) r̂exposure (h�1) lNIS r̂l, data r̂l, simulations RiskðCÞ (h�1)

LVD 20.6 1.2 7:32 � 10�3 1:52 � 10�3 1:33 � 10�4 0.151
Cut-in 4.71 0.52 1:88 � 10�3 1:38 � 10�3 9:04 � 10�5 8:85 � 10�3

ASV 4.62 0.34 9:20 � 10�3 5:05 � 10�3 1:33 � 10�4 4:25 � 10�2

Figure 2. Estimated crash probability of LVD, cut-in, and ASV scenarios based
on n hours of collected data, where n varies between 18 and 63 h: The colored
areas mark the estimated exposure plus or minus the uncertainty r̂l, data, which
results from the variance of the estimated PDF; see Eq. (11).
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occur at the tails of the parameter distributions. It is expected
that this effect diminishes as Nhd ! 1 (Cadre 2006).

Uncertainty because of limited number of simulations

Table 2 reports the values of r̂l, simulations for the 3 scenario catego-
ries in case NMC ¼ NNIS ¼ 10, 000 and NC ¼ NMC=50 ¼ 200:
The uncertainty resulting from the limited number of simulations
is an order of magnitude smaller than the uncertainty resulting
from the limited data; that is, r̂l, data � r̂l, simulations:

In Figure 3, the estimated crash probability is shown for
varying number of performed simulations during the import-
ance sampling. Figure 3 shows that r̂l, simulations is substantially
lower than r̂l, data, even if fewer simulation runs are per-
formed. Note that also in case of lower values of NNIS, there
are still NMC ¼ 10, 000 simulation runs performed during the
crude Monte Carlo sampling. Using lower values of NMC may
result in wrong choices of the importance density, thus result-
ing in a slow convergence of the result during importance
sampling. Figure 3 illustrates the effect of using more simula-
tion runs to estimate the crash probability: The uncertainty of
the estimated crash probability decreases if more simulation
runs are used.

Uncertainty of the estimated risk

Using Eq. (6), the estimated exposure and crash probability
are multiplied to estimate the risk. When using the complete
data set of 63 h of driving data and NNIS ¼ 10, 000, it is
estimated that the evaluated ACC crashes about 0.151 times
in an LVD scenario per hour of driving; see Table 2. For
the cut-in and ASV scenarios, this is 8:85 � 10�3 and 4:25 �
10�2 times per hour, respectively. Note that these risk esti-
mations assume that a human driver does not intervene.
Note that the estimated crash probability in an ASV

scenario is higher than the estimated crash probability in an
LVD scenario, but due to the higher exposure of LVD scen-
arios, the estimated risk for LVD scenarios is higher.

Employing the uncertainties of the exposure and the
crash probability, the variance of the estimated risk can be
estimated using Eq. (15). The estimated uncertainty of the
estimated risk is listed in Table 3. The standard deviation of
the estimated risk of the LVD scenario category is 3:26 �
10�2 h�1, which is roughly 5 times smaller than the actual
risk. For the cut-in and ASV scenario categories, the uncer-
tainties of the estimated risks are lower: 6:64 � 10�3 and
2:36 � 10�2 h�1, respectively. However, relatively speaking,
the uncertainties are higher, because the uncertainties are
75 % and 56 %, respectively, of the estimated risk.

When looking at the 3 terms in Eq. (15) that constitute the
variance of the risk estimation, the first term is an order of
magnitude higher than the other 2 terms; see Table 3. In fact,
the first term contributes 93 % to the total variance
(9:87 � 10�4 of 1:06 � 10�3), whereas the second only contrib-
utes 7 % and the third term contributes less than 1 %. In other
words, in this example, the exposure and the uncertainty of
the crash probability (first term in Eq. (15)) have the largest
influence on the estimated uncertainty of the risk, whereas
the crash probability and the uncertainty of the exposure
(second term in Eq. (15)) contribute substantially less to the
risk uncertainty. For the cut-in and ASV scenario categories,
the first term of Eq. (15) contributes even more to the total
variance: 97 % and 98 %, respectively.

Figure 4 shows the estimated risk and its estimated
uncertainty when using different amounts of data. This fig-
ure illustrates that using more data leads to less uncertainty
of the estimated risk. It is interesting to note the small peak
of the estimated risk for the ASV scenario category at
around n ¼ 37 h: An explanation for this is that the data
contain an ASV scenario after a bit less than 37 h of driving

Figure 3. Estimated crash probability of LVD, cut-in, and ASV scenarios based
on NNIS simulations, where NNIS varies between 625 and 10,000. The colored
areas mark the estimated uncertainty r̂l, simulations, which results from the lim-
ited number of simulations; see Eq. (12).

Table 3. Uncertainty of the estimated risk and the contribution of each of the terms to the total variance with n ¼ 63 h, NMC ¼ NNIS ¼ 10, 000, and NC ¼ 200:

Scenario category Uncertainty (h�1) V½Risk Cð Þ� (h�2) N
n


 �2 � r̂2
l (h�2) l2NIS � r̂2

exposure (h�2) r̂2
exposure � r̂2

l (h�2)

LVD 3:26 � 10�2 1:06 � 10�3 9:87 � 10�4 7:34 � 10�5 3:21 � 10�6

Cut-in 6:64 � 10�3 4:41 � 10�5 4:27 � 10�5 9:45 � 10�7 5:15 � 10�7

ASV 2:36 � 10�2 5:58 � 10�4 5:45 � 10�4 9:96 � 10�6 3:01 � 10�6

Figure 4. Estimated risk of a collision in LVD, a cut-in, and an ASV scenario per
hour of driving. The colored areas mark the estimated uncertainty,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V Risk Cð Þ½ �p

, where V Risk Cð Þ½ � is estimated using Eq. (15).
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in which the ego vehicle is driving at 27:9 m=s while
approaching a vehicle that drives only 11:5 m=s: Adding
this scenario to the data results in a change of the estimated
PDF of the scenario parameters that has a large influence on
the tail of the PDF. Because most crashes occur for scenario
parameters within the tail of the PDF, the inclusion of the
scenario just before 37 h of driving influences the estimated
crash probability. Note that these effects become less sub-
stantial as more and more data are used.

Discussion

In this work, we have presented a method to estimate the
uncertainty of the estimated risk of ADS as a result of lack
of data. This lack of data concerns the limited scenarios that
were observed in the data and the limited simulations that
were carried out. Note that uncertainties of the estimated
risk may also result from the following:

	 Inaccuracies in the acquired data or inaccuracies in the
simulation of the scenarios.

	 Simplification of the scenarios; for example, by assuming
that the scenario of a specific scenario category can be
described by a finite number of parameters.

	 A misspecification of the ODD of the ADS. For example,
if the actual ODD of an ADS is substantially different
from the operating conditions under which the data were
acquired, the data may not be representative of the actual
ODD. This may result in inaccuracies of the estimated
exposure and the estimated PDF of the scenario
parameters.

As mentioned in the problem definition, we distinguish
between scenarios and scenario categories. In this work, a
method is provided to determine whether the variability of
the scenarios within a scenario category is sufficiently con-
sidered. Another important question is whether all relevant
scenario categories are considered during the risk assess-
ment. To tackle this question, another approach might be
taken. Whereas the scenarios—described with parameter val-
ues—within a scenario category are uncountable, scenario
categories may be treated as countable. In Hauer et al.
(2019), the problem of estimating whether all scenario cate-
gories are observed in real traffic is treated as the coupon
collector’s problem. Another way to look at this problem is
to consider it as the so-called unseen species problem
(Bunge and Fitzpatrick 1993). In case of the unseen species
problem, the entire population is partitioned into M classes
and the objective is to estimate M given only a part of the
entire population.

The uncertainty of the estimated risk can be used as a
metric to quantify whether more data have to be collected
or more simulations have to be conducted, because more
data and more simulations will generally result in a lower
uncertainty of the estimated risk. In de Gelder et al. 2019,
an alternative metric to quantify the completeness of the
data was proposed. The metric of de Gelder et al. (2019)
estimates the similarity between the estimated PDF of the

scenario parameters and the real underlying, unknown PDF.
To do this, the whole PDF is considered in de Gelder et al.
2019. In this work, however, only the part of the PDF
where the scenario parameters describe a scenario that
results in a crash—that is, R xð Þ ¼ 1—is considered. If the
purpose of the data is to assess the risk of an ADS, then the
accuracy of the estimated PDF for scenario parameters that
do not lead to scenarios in which the vehicle with the ADS
crashes is less relevant. Therefore, in that case, the method
provided in this work may be better to answer the question
of whether enough data were collected. Another consider-
ation is that compared to the metric in de Gelder et al.
(2019), this work’s method to quantify the uncertainty of
the estimated risk requires (a model of) an ADS.

When using the uncertainty of the estimated risk to
determine whether more data have to be collected or more
simulations have to be conducted, a threshold needs to be
chosen. Only in case of an infinite set of data and an infinite
number of simulations does the uncertainty approach 0.
When choosing a threshold, this might be a threshold for
the uncertainty itself, but it is also possible to require
enough certainty that the risk is below a certain threshold.
In the latter case, this implies that the uncertainty may be
larger as long as the estimated risk is equivalently lower.

We used virtual simulations to estimate the risk. Note
that the simulations we conducted are deterministic. High-
fidelity simulators typically also include stochastic behavior
of, for example, the sensor models, to replicate the imperfect
sensors that are used in real life. Modeling the stochastic
nature is a whole research topic on its own and is outside
the scope of this work. We refer the interested reader to
Rosique et al. (2019) and Kaur et al. (2021) for an overview
of simulators used for the assessment of ADSs.

The case study illustrates the application of the provided
method for estimating the risk and its uncertainty. Note,
however, that the case study comes with a few limitations.
First, the actual data set considers only 63 h of driving. To
do a complete risk assessment of an ADS, much more data
are required. Second, as a proof of concept, we considered a
simplified ACC controller as our ADS under test. The
results of the ACC controller may not represent state-of-the-
art ADSs. In particular, the fact that the risk of a crash in
an LVD scenario is estimated to be 0.151 per hour is likely
to be unacceptable. We chose to use the simplified ACC
controller for several reasons. First, using this simple con-
troller contributes to the explainability of the results, ensures
short simulation run times, and facilitates the reproducibility
of the results. Second, though the actual ACC model is not
the focus of the article, the proposed method for the estima-
tion of the risk uncertainty can also be applied to state-of-
the-art ADSs. Third, the ACC controller studied in this
work is often used in the literature (Milan�es and Shladover
2014; Xiao et al. 2017). Fourth, for a state-of-the-art ADS
with a much lower crash probability, it is expected that
much more data will be required to obtain enough certainty.
Therefore, for the purpose of demonstration, the current
studied ACC might be more suitable. Future work involves
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applying the method on a larger data set and considering a
more mature ADS.

For ADSs with conditional or higher automation level,
the responsibility and accountability shift from the human
driver to the ADS when the ADS is activated. Therefore, for
the safe introduction of such ADSs, it must be assured that
the safety risk is lower than the existing state of the art
and that the current safety state is not compromised. One
proposed method for estimating the risk is through a data-
driven, scenario-based assessment. This work has summar-
ized this method and uses scenarios extracted from existing
data to derive tests that are used to evaluate the exposure of
scenarios and the crash probability. The risk is defined as
the product of the exposure and the crash probability. The
resulting risk is directly influenced by the data set used for
the risk assessment. The fact that the data set is finite intro-
duces an uncertainty in the estimated exposure and crash
probability. In this work, we show how these uncertainties
can be estimated and how this leads to the uncertainty of
the estimated risk itself. This, in turn, can be used to quan-
tify how certain we are that our ADS is safe.

To illustrate the method, we applied the method to esti-
mate the risk and its uncertainty in a case study that is pub-
licly available. This case study considered 3 types of
scenarios: scenarios with a leading vehicle decelerating, cut-
in scenarios, and scenarios in which the ego vehicle
approaches a slower leading vehicle. For each of these 3
scenario categories, the uncertainty of the exposure, the
crash probability, and the risk were estimated while consid-
ering a varying amount of data. This illustrates that the
uncertainty is expected to decrease if more data are avail-
able. Furthermore, when more simulation runs are con-
ducted when estimating the crash probability, the
uncertainty decreases. In the case study, though, the limited
amount of data appeared to contribute substantially more to
the uncertainty of the risk than the limited number of simu-
lation runs.

Future work involves applying the proposed method with
more data and a state-of-the-art ADS. Because it is expected
that the fatality rate of an ADS is on the order of 10�7 fatal-
ities per hour of driving or less, the amount of data to
obtain enough certainty is likely to be orders of magnitude
larger than the data set used in the case study. The proposed
method for quantifying the uncertainty of the estimated risk
can be a measure for determining whether more data are
required. Other future work involves incorporating the pro-
posed method into the type approval framework for future
ADSs of SAE levels 3, 4, and 5, such as proposed in the
draft European Union implementing regulation for ADS
(European Commission 2022).
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