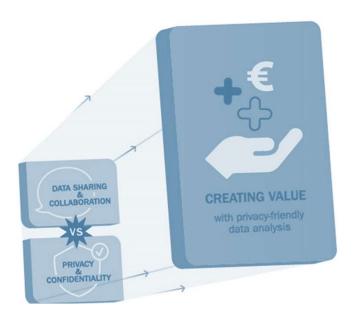

AI MODELS

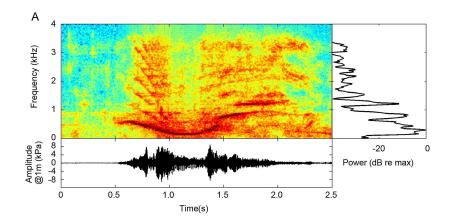
POSSIBILITIES AND CHALLENGES

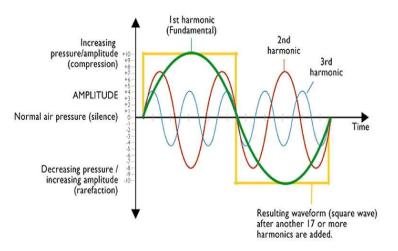
) Huge potential in Al solutions

 Al models, especially deep learning models, are very data-hungry


Data is often available, but cannot be shared and combined across organizations or even departments due to privacy and IP concerns

PRIVACY ENHANCING TECHNOLOGIES


- Privacy Enhancing Technologies (PET) offer ways to efficiently and safely learn models on distributed datasets
-) TNO has broad expertise in secure multi-party computation (MPC), Federated Learning (FL), and synthetic data generation (SDG)
-) Speech data comes with its own characteristics which PET to use?



SPEECH DATA

- Speech + its transcriptions can be used to learn powerful Automatic Speech Recognition (ASR) systems
-) Unstructured data
-) Time-series data
-) Many layers of data in speech signal
 -) Wavelength
 -) Amplitude
 -) Time period
 - Frequency (Hz)
 - Velocity

FEATURES THAT CAN BE EXTRACTED FROM SPEECH DATA

-) Body measure (height and weight)
-) Mood and emotional state
-) Age
-) Gender
- Personality trait, particularly the "Big Five" openness, conscientiousness, extroversion, agreeableness and neuroticism.
-) Deception, are you trying to lie
-) Sleepiness
-) Intoxication
-) Accent and dialect indicate geographical origin
- Health, relating to the vocal cord and beyond such as Alzheimer's and Parkinson's

- Mental illnesses such as schizophrenia and severe depression
- Interpersonal perception, that is how are they preceived by other people (relating to personality trait, for example fast talkers are considered more competent)
-) Socioeconomic status such as education
- Acoustic scenes and events, such as the location of the speaker
- Biometric identity, speakers can be uniquely identified by a voice sample

) ...

e location of the uely identified by a

Kröger, J. L., Lutz, O. H. M., & Raschke, P. (2020). Privacy implications of voice and speech analysis–information disclosure by inference. In *IFIP International Summer School on Privacy and Identity Management* (pp. 242-258). Springer, Cham.

THREE TYPES OF SENSITIVE FEATURES

Who, where, when - metadata

- Date/time
- Location
- Names of speakers
- ...

How - Acoustic characteristics speakers

- Gender
- Age
- Native language
- Emotional state
- Health status (dementia, Parkinsons, covid-19...)
- Deception
- ...

What (Content) - Intellectual property

- Content of television show
- Speech/talk/class
- Discussion of medical information
- Police hearing
- Court case
- ...

WHICH ASPECTS MATTER MOST TO YOU?

Questionnaire:

- What sensitive features are present in the speech data of your organization?
- What needs to be protected most? Metadata-level, contentlevel, or acoustic-level features?
- Is there a prioritization between the different sensitive features?
- Do you curently have an Al solution that was learned on your speech data, and if yes, what is its performance?
- When gain in performance for a speech model is your organization aiming for?

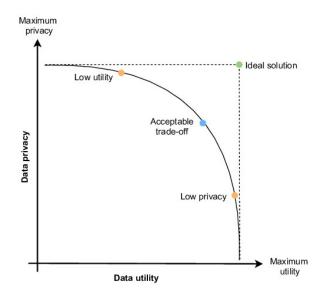


Fig 1 | Privacy-utility trade-off – the more you protect, the more difficult it will be to learn a high-performing Al model

