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A B S T R A C T   

Ammonia is one of the most impactful pollutants emitted from agricultural activities, harming human health and 
contributing to biodiversity loss. In ammonia emission inventories, the spatial distribution of annual emissions is 
mostly approximated by constant empirical emission fractions, which do not account for spatial variability, nor 
for temporal variability within a year or between years caused by weather variations. Besides, factors like 
manure properties, soil properties, and manure application techniques also lead to differences in the amount of 
ammonia emitted into the atmosphere. By not or only partly accounting for these factors, significant un
certainties are introduced into ammonia emission estimates at regional and national scales. In this study, we 
applied the empirical ALFAM2 model to derive spatially explicit slurry application emission fractions from 
cropland for use in the large-scale INTEGRATOR model, using the information on slurry properties (dry matter 
content and pH), manure application rate, application technique, incorporation time, air temperature, wind 
speed, and rainfall rate. In addition, the impact of weather on the ammonia emissions from animal housing and 
manure storage systems was included through a temperature-dependent scaling. We applied the method to 
investigate the year-to-year spatio-temporal variabilities of ammonia emissions and modeled concentrations 
across Germany from 2015 to 2018. Through the comparison with in situ measurements and satellite-derived 
observations, we studied how surface concentrations and total columns relate to local meteorology. We found 
that the spatio-temporal variability in emission fractions improves the ability to reproduce the interannual 
variability observed in ammonia concentration and total column measurements. This study shows that the 
developed approach to derive spatially explicit emission fractions can significantly improve ammonia emission 
modeling and is of great importance for studying the temporal variability between years.   

1. Introduction 

Ammonia (NH3) is an important air pollutant, causing negative ef
fects on human health and biodiversity at elevated concentrations (de 
Vries, 2021; Li et al., 2014). It reacts with sulphuric and nitric acid in the 
atmosphere, forming fine particulate matter (PM2.5), which leads to 
increased mortality related to lung disease (Giannadaki et al., 2018; 
Stokstad, 2014; Wang et al., 2017). Once deposited, it can lead to 
acidification and eutrophication in soils and surface waters, ultimately 
resulting in biodiversity loss in terrestrial and aquatic ecosystems 
(Erisman, 2021; Sutton et al., 2013). In many regions of the world, 
reactive nitrogen (Nr) deposition, whose essential composition is 

ammonia, exceeds the critical loads of natural ecosystems (Forsius et al., 
2021; Hettelingh et al., 2017). In Germany, the critical loads for 
eutrophication were estimated to have exceeded 70% of the ecosystem 
area in 2015 (Schaap et al., 2018). Since European countries have not 
managed to reduce ammonia emissions strongly, the negative impacts of 
ammonia emissions are not expected to decline substantially in the near 
future (European Environment Agency, 2019). 

Agriculture is the dominant source of ammonia emission into the 
atmosphere, accounting for more than 90% of the emission total in the E. 
U. (Sintermann et al., 2012). Ammonia emissions from livestock manure 
and mineral fertilizer constitute a significant but variable proportion of 
reactive nitrogen loss (Amann et al., 2013; Hafner et al., 2019). 
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Ammonia emissions from livestock manure, which includes manure 
(urine and feces) in animal houses, manure in storage systems, and 
manure applied to fields, contribute to nearly 80% of the total agricul
tural emissions at the European scale (EU27) (De Vries et al., 2011; Leip 
et al., 2015). Based on EMEP results in 2020, when EMEP revised the 
country-reported annual emission per sector of 2018, manure manage
ment (livestock housing and manure storage) for cattle, pigs, and 
poultry adds up to about 23%, 15%, and 5% of the annual emission total 
in Germany, respectively. In addition, the application of manure and 
mineral fertilizer to fields contributes to around 33% and 12% of the 
annual total (Umweltbundesamt, 2020). 

Accurate estimates of ammonia emission are of great significance for 
Nr budgets at the field- or farm scale (Sintermann et al., 2012; Sonne
veld et al., 2008), landscape scale (Cellier et al., 2011; de Vries et al., 
2015), and national or continental scale (De Vries et al., 2011; Kros 
et al., 2018). The nitrogen flow approach is a common method to model 
annual ammonia emission within countries where emissions are calcu
lated using emission fractions, which are the ratios between the emitted 
ammonia to the atmosphere and the total ammoniacal N (TAN) allo
cated in various agricultural sectors. This methodology has been adop
ted by Hutchings et al. (2001) for Denmark, Webb and Misselbrook 
(2004) for the U.K., Gac et al. (2007) for France, (Velthof et al., 2012) for 
the Netherlands, and by Dämmgen and Hutchings (2008) for Germany. 

Many experiments on ammonia emission from livestock manure 
applied to fields have been conducted to develop or evaluate emission 
fractions (Sintermann et al., 2012; Webb and Misselbrook, 2004). The 
emission fractions used in the inventories are usually derived by experts 
averaging over time for each country, not considering either the spatial 
variability of meteorology or the differences in manure properties, 
application technique, and incorporation time. The need for including 
such temporal and spatial differences due to meteorology for accurately 
assessing ammonia emissions and deposition has been described in 
several publications (Ge et al., 2020; Jiang et al., 2021; Sommer et al., 
2019; Truong et al., 2018; Van Damme et al., 2015). Neglecting such 
spatial and temporal differences affects the timing of manure and fer
tilizer application and the related emission fraction. The weather impact 
is more prominent on the more temporally variable emissions from 
manure and mineral fertilizer application than the less temporally var
iable emissions from animal housing and manure storage (Ge et al., 
2020; Skjøth et al., 2011). 

In assessing the temporal (intra-annual) and spatial variability using 
the INTEGRATOR model with the agricultural management model 
TIMELINES, Ge et al. (2020) identified overestimated ammonia emis
sions in Southern Germany and an underestimation in the country’s 
north. The authors stipulated that this was likely due to using constant 
ammonia emission fractions for manure application, animal housing, 
and manure storage all over Germany. Furthermore, several studies 
have concluded that the currently available emission products do not 
correctly reflect the impact of inter- and intra-annual variability of 
ammonia emissions in terms of timing and amount (Backes et al., 2016; 
Hellsten et al., 2008; Hendriks et al., 2016; Skjøth et al., 2011), high
lighting the need to improve the emission fractions for agricultural 
ammonia emission modeling. 

The challenge of estimating field application emissions is formidable 
because of many influencing variables such as application techniques, 
manure properties, and the dependence on meteorological conditions. 
Several models have been developed to predict ammonia emissions from 
manure applied to fields (Congreves et al., 2016; Gericke et al., 2012; 
Misselbrook et al., 2005; Nicholson et al., 2013; Smith et al., 2009). Most 
of these models are empirical or process-based models that contain 
specific empirical components (Cuddington et al., 2013; Hafner et al., 
2019), with each model type having its advantages and disadvantages. 
Process-based models can more accurately predict complicated re
sponses under specific conditions (Hafner et al., 2019), while empirical 
models are generally easier to apply since they have fewer parameters 
and inputs. Process-based models such as the Volt’Air (Génermont and 

Cellier, 1997) and Manure DNDC (Li et al., 2012) model by principle 
follow a more mechanistic approach. Volt’Air simulates the gaseous 
transfers between the soil and the lower atmosphere by dealing with 
nitrogen’s physical and chemical equilibria, the soil surface’s energy 
budget, and the transfers of heat, water, and solutes within the soil 
profile (Génermont and Cellier, 1997). The Manure DNDC model is 
based on thermodynamics and biogeochemical reaction kinetics, 
controlled by a group of environmental factors (such as temperature, soil 
moisture, and soil pH) (Li et al., 2012). In contrast, empirical models use 
relationships based on observed behavior in the field situation. For 
example, Huijsmans et al. (2018) utilized a logistic regression function 
to mimic the emission relative to discrete intervals after manure appli
cation. The ALFAM (Søgaard et al., 2002) and MANNER (Nicholson 
et al., 2013) models are two other examples of fully empirical models. 
They use a Michaelis-Menten function to predict the cumulative emis
sions simply because the shape of the function is similar to the observed 
pattern of emission over time. The semi-empirical dynamic model 
ALFAM2 (Hafner et al., 2019) finds a balance between the simplicity of 
empirical models and the more accurate representation of processes 
achieved with a process-based approach and accounts for many control 
variables. ALFAM2 is the successor of the widely used ALFAM model and 
is built on a two times larger database of ammonia emissions from 
field-application experiments than its predecessor. ALFAM2 accounts 
for the impacts of manure properties (dry matter, slurry pH), meteo
rology (air temperature, wind speed, and rainfall rate), and application 
techniques and incorporation time. 

This paper aims to improve the spatial and temporal (interannual) 
variation of ammonia emissions within Germany by replacing country- 
dependent emission fractions with spatially-explicit gridded matrices 
using the ALFAM2 model approach. First, we describe the methodology 
of (1) the INTEGRATOR emission model, which generates spatially 
resolved N inputs in animal houses (excretion from urine and feces), 
manure storage systems, N applied to fields by manure and fertilizer 
application and by grazing; (2) the ALFAM2 model that predicts emis
sion fractions of slurry manure application while accounting for varia
tions in meteorology, manure properties, application techniques, 
incorporation time and application rates; (3) the chemistry transport 
model (CTM) LOTOS-EUROS which translates ammonia emission into 
atmospheric concentrations; and (4) satellite observations of ammonia 
total columns and in situ measurements of surface concentrations for 
validation. Subsequently, we evaluate the model performance by 
comparing modeled results and measurements over Germany from 2015 
to 2018 to quantify the improved model’s capability to reproduce the 
interannual variability of annual ammonia emission totals and the 
spatial and temporal variability of ammonia emissions. Finally, the re
sults, potential shortcomings, and possible future methodological im
provements are discussed. 

2. Methodology 

A schematic overview of the modeling approach is presented in 
Fig. 1. The emission model consists of three modules, including a spatial 
allocator of manure, compost, and fertilizer N inputs, an emission 
fraction predictor of those inputs, and a temporal allocator of ammonia 
emissions. The spatial allocator produces the spatial distribution of N 
excretion in animal housing and manure system and on the field through 
manure and mineral fertilizer application and grazing using the INTE
GRATOR model. The emission fraction predictor derives emission frac
tions of slurry application with the ALFAM2 model and emission 
fractions of animal housing and manure storage using a temperature- 
based scaling (TBS) algorithm. The INTEGRATOR outputs on grazing 
emissions and emissions from solid manure and mineral fertilizer 
application were kept as they were. It has to be noted that emissions 
from compost and digestate application are not included in INTE
GRATOR. However, the official German inventory started to include this 
sector in 2010. Therefore, we took the reported annual emission total of 

X. Ge et al.                                                                                                                                                                                                                                       



Agricultural and Forest Meteorology 334 (2023) 109432

3

this sector from European Monitoring and Evaluation Programme 
(EMEP) and used a top-down algorithm to spatially allocate the emission 
over Germany. The details can be found in the supplementary material. 
The temporal allocator creates emission time profiles that distribute 
gridded annual emissions in time, which also predicts fertilization dates 
that the emission fraction predictor requires. 

The study area was set to be Germany due to data availability. 
Therefore, the spatial domain was 5◦E – 16◦E with a resolution of 0.1 
degrees in longitude and 46◦N – 56◦N with a resolution of 0.05 degrees 
in latitude (approximately 6×6 km2), corresponding to a domain size of 
110 pixels by 200 pixels in longitude and latitude, respectively. For each 
year from 2015 to 2018, the 3D distribution of ammonia emissions 
(gridded annual emissions and emission time profiles) was then im
ported into the CTM LOTOS-EUROS to derive surface concentrations 
and total columns of ammonia. The simulated values were evaluated 
with remote sensing observations and in situ measurements. 

2.1. Spatial allocator of manure, compost, and fertilizer inputs 

2.1.1. The INTEGRATOR model 
The INTEGRATOR model is a static N cycling model that can assess N 

emissions from housing, manure storage systems, and the soil (due to 
manure and mineral fertilizer application) in response to European-scale 
changes in land use, land management, and climate (De Vries et al., 
2011). INTEGRATOR estimates emissions in NitroEurope Classification 
Units (NCUs), which are multi-part polygons composed of 1 km × 1 km 
grid cells in the ETRS89/LAEA Europe coordinate system (for a detailed 
description of NCU, we refer to Ge et al. (2020). 

The emission model starts with calculating total N excretion by 
multiplying the number of animals at the NCU level with the N excretion 
rate per animal per country for various animal categories (Kros et al., 
2012). The total manure production is derived by subtracting gaseous 
emissions and leaching in housing and manure storage systems from the 
N excretion. The N excreted within housing systems is the multiplication 
of N manure excretion and the housing contribution fraction, while the 
N excreted from grazing on land is obtained by subtracting N excreted in 
housing systems from total N manure excretion. Manure is then 

allocated over grassland and arable crop groups using various allocation 
rules. Manure produced by grazing animals and in housing systems by 
sheep and goats all enter grassland. A fraction is applied to arable land 
for other manure, and the remaining fraction is applied to grass
land/fodder crops. For the distribution of manure application on arable 
land, we distinguish three arable crop groups with (i) a relatively high 
use of manure (sugar beet, barley, rape, and soft wheat), (ii) an inter
mediate use of manure (potatoes, durum wheat, rye, oats, grain maize, 
other cereals including triticale, and sunflower), and (iii) low use of 
manure (fruits, oil crops, grapes, and other crops) using weighing, based 
on Velthof et al. (2009). Finally, no manure is allocated to dry pulses and 
rice, fiber crops, other root crops, and vegetables. The amount of mineral 
fertilizer needed is then estimated with an N-balanced approach, which 
we refer to Ge et al. (2020) for more details. 

After the N excretion distribution of housing, grazing, and manure 
and fertilizer application is obtained, the gaseous emission of each 
category is derived by the multiplication with the emission fraction per 
housing system, for grazing, and manure and fertilizer application, 
respectively (De Vries et al., 2020; Kros et al., 2012). The spatial allo
cator in this study is the subcomponent of INTEGRATOR that produces 
the N excretion distribution before multiplying emission fractions. The 
NCU-level N excretion from the spatial allocator was resampled to the 
grid cells in this paper. Furthermore, N from manure and mineral fer
tilizer application on the fields was reallocated to the corresponding 
crops and grassland based on the crop map. 

2.1.2. Input data 
The input data of INTEGRATOR are classified into three categories: 

biophysical data (soil, land use, and climatic data), agricultural activity 
data (animal numbers and N excretion rates), and emission information 
(fractions of N emission, leaching, and runoff). The version of INTE
GRATOR in this study was developed for the year 2010 and used by Ge 
et al. (2020) to improve the spatial details of ammonia emission. Since 
this study focused on 2015 – 2018, the input data on animal numbers 
and land use were revised. 

Fig. 1. Schematic overview of calculating the spatial and temporal distribution of ammonia emissions and validating by the comparison with measurements in 
this study. 
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2.1.3. Animal numbers 
The livestock data in INTEGRATOR (version 2010) were obtained 

from the FAO database at the country level, using Common Agricultural 
Policy Regionalised Impact analysis (CAPRI) data for distribution at the 
NUTS2 level. The data on livestock numbers of various animal cate
gories at the NUTS2 level were downscaled to a 1 km × 1 km resolution 
using expert-based judgment with spatial data sources on land use, 
slope, altitude, and soil characteristics influencing the livestock carrying 
capacity (Neumann et al., 2009). However, the animal number data 
officially reported to EMEP from the German inventory differ substan
tially from those in FAO used by INTEGRATOR, especially after 2010 
(Haenel et al., 2020). There are several reasons for the diverging animal 
numbers of the two datasets. For cattle (including buffalo), FAOSTAT 
contains the data of the May census in the years 2011 – 2013, while 
German inventory uses the data of the November census as required by 
E.U. regulations. The FAOSTAT animal numbers for cattle only agree 
with the official German data after 2013. The FAOSTAT numbers of pigs, 
sheep, and goats are generally not comparable with the number in the 
German inventory. Because in the German inventory, the number of 
suckling piglets (i.e., piglets weighing less than 8 kg) is subtracted, the 
number of sheep number was revised in 2010, and the number of goats 
was linearly interpolated to fill in missing values (Haenel et al., 2020). 
Therefore, we adjusted the animal numbers in INTEGRATOR for 2010 to 
align them with those in the German inventory for the years 2015-2018, 
according to: 

N(ani, INT,NUTS)2015− 2018 = N(ani, INT,NUTS)2010

×
N(ani, INT, state)2015− 2018

N(ani, INT, state)2010
(1)  

where N(ani, INT, state)2015− 2018 is the reported animal numbers per 
animal type per federal state in Germany averaged over the years 2015- 
2018 and N(ani, INT, state)2010 is the calculated animal numbers per 
animal type per state in Germany averaged for 2010 in INTEGRATOR, 
based on the NUTS-level data. 

2.1.4. Land use 
The standard land use input in INTEGRATOR is the total area of each 

arable crop or grassland for each NCU based on the year 2010, requiring 
an update for 2015 – 2018. Thus, we used an updated map of crop and 
land cover classes for Germany in 2016 based on the crop map devel
oped by Griffiths et al. (2019), who integrated multitemporal multi
spectral Sentinel-2 and Landsat reflectance data and subsequently 
generated equidistant, dense, and intra-annual composite time series to 
provide this national scale map. We used the crop raster map to derive 
crop areas per NCU for the five years to control the number of variables, 
assuming that crop rotation in a grid remains semi-constant over the 
years. 

2.2. Temporal allocator of ammonia emissions 

The usual approach to characterizing the temporal variability in NH3 
emissions is to use time profiles that distribute the annual emission total 
in a grid cell over a year. Ge et al. (2020) explicitly described the tem
poral allocation of NH3 emissions from manure and fertilizer applica
tion, grazing, animal housing, and manure storage based on the concepts 
of Skjøth et al. (2004), Gyldenkærne et al. (2005). The temporal allo
cator in this study used TIMELINES (Hutchings et al., 2012) to predict 
the fertilization days for the years between 2015 and 2018 by intro
ducing a thermal time approach. Thermal time is the sum of the positive 
differences between the daily mean air temperature and a base tem
perature (0 degrees Celcius). Starting from 1 January, as soon as thermal 
time on Julian day t reaches the reference thermal time for sowing (or 
harvesting), it is considered that sowing (or harvesting) occurs on Julian 
day t. Field operations like manure and mineral fertilizer applications 
are related to it. The fertilization day predictions were used to construct 

the time profiles of ammonia emissions from manure and fertilizer 
application. Regarding the details of the temporal allocator of ammonia 
emission, we refer to Ge et al. (2020). The fertilization days were also 
taken into account when we generated meteorological condictions for 
emission fraction calculations in ALFAM2, which will be elaborated 
later. 

2.3. Emission fraction of manure slurry application 

Originally, the obtained N distribution in housing systems and on the 
field is then combined with the corresponding NH3-N emission fractions 
in INTEGRATOR, which depend on the animal category, manure type 
(liquid/solid), and the degree of implementation of emission-reducing 
techniques per country. In this study, the INTEGRATOR outputs for N 
slurry application rates were combined with information on meteo
rology and manure properties for use in the second module (the emission 
fraction predictor) to calculate the emission fraction of slurry applica
tion using the ALFAM2 model. 

2.3.1. The ALFAM2 model 
The ALFAM2 model simulates the behavior of applied total ammo

niacal nitrogen (TAN, kg ha− 1) over time, based on Chantigny et al. 
(2004). After the slurry is applied to land, TAN is immediately parti
tioned between two pools: a "fast" pool representing slurry in direct 
contact with the atmosphere, and a "slow" pool representing fractions 
less available for emission due to slurry infiltration (Chantigny et al., 
2004; Sommer et al., 2004), adsorption of ammonium (NH4+) on cation 
exchange sites (Pelster et al., 2019), crust formation (Thompson et al., 
1990), injection (Webb et al., 2010), or incorporation (Huijsmans, 
2003). ALFAM2 parameters value on partitioning and transfer rates, 
quantifying the effects of slurry application, were estimated from an 
extensive data set of emissions from cattle and pig slurry (490 field plots 
in 6 countries from the ALFAM2 database). An analysis of a large subset 
of the ALFAM2 database showed that most total measured ammonia 
emission from slurry application generally occurs within 72 hours 
(Hafner et al., 2018). Consequently, the ALFAM2 model is restricted to a 
maximum duration of 72 hours (3 days) after slurry application to allow 
parameter estimation. Therefore, we calculated emission fractions as the 
relative accumulated emission (ratio between N emitted as ammonia 
and TAN applied) at the 72nd hour. 

Fig. 2 shows an example of accumulative fractional emission calcu
lated with ALFAM2 for different surface temperature conditions to 
inspect the impact of temperature. The x-axis represents the number of 
hours after slurry application (72 hours maximum), and the y-axis is the 
accumulative fractional emission. Three surface temperature (20, 15, 
and 10 degrees Celsius) conditions were studied, while other variables 
remained the same. In this experiment, the TAN was set to be 40 g/kg, 
and the dry matter of manure is 8% the application method is broadcast 
with an incorporation time of 2 hours after application. One can see that 
the largest share of the ammonia emission takes place within the first 6 
hours after application, and then it gradually increases at a much lower 
rate. Furthermore, higher temperature results in higher N loss to the 
atmosphere in the form of ammonia. The emission fractions for these 
three temperature scenarios are around 0.40, 0.32, and 0.25, respec
tively, illustrating the importance of meteorological conditions during 
application activities. 

2.3.2. Input data 
ALFAM2 input data include slurry dry matter and pH, application 

rate, application method and incorporation time, air temperature, wind 
speed, and rainfall rate. Consequently, these variables were included to 
derive a spatially explicit and dynamic emission fraction product. 

2.3.3. Manure properties and application rate 
Manure properties accounted for in ALFAM2 include slurry dry 

matter content and pH. The dry matter values of cattle, pig, and poultry 

X. Ge et al.                                                                                                                                                                                                                                       



Agricultural and Forest Meteorology 334 (2023) 109432

5

liquid manure were reported averages of different types of manure 
composition used in INTEGRATOR from the RAMIRAN network (Menzi 
et al., 2002). The dry matter values of cattle and pig slurry were set to 67 
g/kg and 52 g/kg, respectively. The pH of cattle and pig slurry were both 
set at 7.9 based on Joubin (2018) and Martínez-Suller et al. (2010). The 
spatial distribution of the slurry application rate was obtained from the 
excretion allocator described previously. 

2.3.4. Application method and incorporation time 
Data on the slurry application method in Germany, which differen

tiates broadcasting, trailing hose, trailing shoe, slot method, cultivator, 
and injection, were derived from a survey in 2015, namely Wirt
schaftsdünger tierischer Herkunft in landwirtschaftlichen Betrieben/ 
Agrarstrukturerhebung, by the Federal Statistical Office of Germany 
(Statistisches Bundesamt). This survey gives the area of cropland and 
grassland on which each application technique was applied at the fed
eral state (Bundesland) level. For arable land, the areas also include a 
distinction in incorporation time, i.e., no incorporation, incorporation 
right after application (incorporation time 0), incorporation within one 
hour (incorporation time <1h), and after one hour (incorporation time 
> 1h) following application. Since it is unknown which application 

method is applied on individual fields within a given federal state, we 
calculated all possible emission fractions for all methods and incorpo
ration options mentioned in the survey with ALFAM2. We then used 
weighing factors, namely the area per application method per incorpo
ration time divided by the total area, to derive weighted means of 
emission fractions. An overview of the area percentage of the applica
tion techniques on arable land at the state level is given in Table 1. 

2.3.5. Meteorology 
The ALFAM2 model requires air temperature, wind speed, and 

rainfall rate as meteorological input for emission fraction prediction. We 
obtained these variables from the ERA5-Land datasets in the Copernicus 
Climate Data Store (https://cds.climate.copernicus.eu/cdsapp#!/data
set/reanalysis-era5-land). The spatial resolution of the products is 0.1 by 
0.1 degrees; thus, it was resampled to the grid in this study. ERA5-Land 
is a reanalysis dataset providing land variables over several decades at 
an enhanced resolution compared to ERA5. As previously described, we 
predicted the fertilization days for each crop from the temporal allocator 
and calculated the mean air temperature, wind speed, and rainfall rate 
for the five days before and after the predicted fertilization days. These 
were the inputs for ALFAM2 so that the data derived could better 

Fig. 2. Accumulative relative emission as a function of time under average temperature conditions (20, 15, and 10 degrees Celsius).  

Table 1 
Fraction of different application methods and incorporation time applied on arable land per German federal state.  

Application technique Broadcast Trailing hose Trailing shoe Slot injection 
Incorporation time / 0 <1h >1h / 0 <1h >1h / 0 <1h >1h / 0 <1h >1h 

Baden-Wurttemberg 0.401 0.033 0.116 0.122 0.165 0.008 0.027 0.029 0.034 0.001 0.005 0.005 0.020 0.004 0.015 0.016 
Bayern 0.333 0.095 0.142 0.092 0.028 0.007 0.010 0.007 0.103 0.021 0.032 0.021 0.040 0.020 0.030 0.019 
Berlin 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Brandenburg 0.035 0.054 0.058 0.043 0.211 0.104 0.112 0.083 0.024 0.007 0.007 0.005 0.038 0.076 0.082 0.061 
Bremen 0.366 0.063 0.091 0.099 0.232 0.010 0.014 0.015 0.072 0.003 0.004 0.005 0.025 0.000 0.000 0.000 
Hamburg 0.030 0.055 0.080 0.213 0.257 0.032 0.046 0.124 0.032 0.004 0.006 0.015 0.020 0.014 0.020 0.053 
Hessen 0.345 0.036 0.175 0.188 0.113 0.006 0.030 0.032 0.017 0.002 0.008 0.008 0.011 0.003 0.013 0.014 
Mecklenburg- 

Vorpommern 
0.093 0.053 0.085 0.065 0.276 0.063 0.101 0.078 0.008 0.002 0.003 0.003 0.020 0.039 0.062 0.048 

Niedersachsen 0.165 0.053 0.117 0.060 0.232 0.040 0.088 0.045 0.057 0.008 0.018 0.009 0.020 0.020 0.044 0.023 
Nordrhein-Westfalen 0.176 0.030 0.097 0.038 0.380 0.027 0.089 0.035 0.039 0.004 0.012 0.005 0.020 0.009 0.029 0.011 
Rheinland-Pfalz 0.367 0.036 0.203 0.154 0.094 0.006 0.033 0.025 0.019 0.001 0.005 0.003 0.017 0.004 0.019 0.015 
Saarland 0.327 0.014 0.333 0.185 0.053 0.001 0.027 0.015 0.000 0.000 0.005 0.003 0.031 0.000 0.004 0.002 
Sachsen 0.028 0.080 0.021 0.017 0.077 0.089 0.023 0.019 0.025 0.008 0.002 0.002 0.098 0.347 0.090 0.075 
Sachsen-Anhalt 0.042 0.058 0.029 0.038 0.213 0.110 0.055 0.072 0.030 0.011 0.006 0.007 0.038 0.135 0.068 0.088 
Schleswig-Holstein 0.270 0.043 0.154 0.097 0.248 0.014 0.049 0.031 0.014 0.001 0.003 0.002 0.012 0.009 0.032 0.020 
Thuringen 0.026 0.030 0.007 0.006 0.242 0.100 0.024 0.018 0.016 0.004 0.001 0.001 0.099 0.298 0.073 0.055  
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represent the weather condition during fertilization. 
The weighted mean of emission fractions at a location was calculated 

as: 

EF(x, y) =
∑AreaAT,Tincorp (x, y)

Areasum(x, y)
EFAT,Tincorp (x, y) (2)  

where (x, y) is the coordinates of a location. AreaAT,Tincorp (x, y) is the area 
of arable crops or grassland on which application technique AT with a 
given incorporation time Tincorp is used in the German state where (x, y)
is located, Areasum(x, y) is the area sum of arable crops or grassland 
surveyed in the same German state, EFAT,Tincorp (x, y) is the predicted 
emission fraction of application technique AT with incorporation time 
Tincorp from the ALFAM2 model, calculated as: 

EFAT,Tincorp (x,y)= fALFAM2
(
AT,Tincrop,T(x,y),W(x,y),P(x,y),DM,pH,Rapp(x,y)

)

(3)  

where AT,Tincrop,T(x, y), W(x, y),P(x, y),DM, pH,Rapp(x, y) are the 
application method, incorporation time, temperature, wind speed, pre
cipitation rate, manure dry matter, manure pH, and application rate at a 
given location, respectively. 

2.4. Emission fraction of animal housing and manure storage 

We used a temperature-based scaling algorithm to derive the spatial 
and interannual variability of animal housing and manure storage 
emission fractions. Skjøth et al. (2011) and Gyldenkærne et al. (2005) 
describe the emission pattern from animal housing and manure storage 
as below: 

⎧
⎪⎪⎨

⎪⎪⎩

Fkti = Ei(x, y) × (Ti(x, y))0.89
, Ti(x, y) ≥ Tboundary

Ti(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

18 + 0.77 × (T(x, y) − 12.5), Houses with forced ventilation

T(x, y) + 3, Open animal houses

T(x, y), Manure storage
(4)  

where i refers to the index (1-3) of houses with forced ventilation, open 
animal houses, and manure storage, respectively. x, y are the co
ordinates of the emission grid. Ei(x, y) represents the emission for the 
corresponding agricultural sector within the grid cell. Ti(x, y) is the 
temperature function. T(x, y) is the 2-meter temperature at the given 
location. Open houses and manure storage have almost the same emis
sion pattern, except that the indoor temperature in open houses is 3 
degrees higher than the outside temperature used for manure storage 
(Gyldenkærne et al., 2005). Tboundary represents lower boundary condi
tion for temperature in animal housing and manure storage, below 
which emission is set to a constant level, and they are 18, 4, and 1 degree 
for houses with forced ventilation, open animal houses, and manure 
storage, respectively. 

The concept of temperature-based scaling is to calculate the time 
profile of the three categories (insulated housing, open housing, and 
manure storage), using the mean temperature between 2015 and 2018 
to represent the averaged pattern of ammonia emission spatially and 
between years as the base. Subsequently, we used the temperature time 
series of each year and calculated the deviations from the base at every 
grid cell, aiming to introduce the variability of the emission fraction 
based on the deviations. 

First, we calculated the spatial distribution of the base emission 
fraction EFi, base(x,y): 

EFi,base(x, y) =
Fkt′i,mean(x, y)
mean

(
Fkt′i,mean

)× EFi,int (5)  

where Fkt′i,mean(x, y) is the mean of the function values calculated by the 
4-year mean temperature above Tboundary at a given location, 

mean(Fkt′i,mean) is the mean of Fkt′i,mean(x,y), EFi,int is the emission fraction 
introduced in INTEGRATOR. This was under the assumption that the 
static country-dependent emission fractions represent the emission level 
with mean temperature conditions over the four years. Subsequently, 
the gridded emission fraction of housing and storage in each year was 
calculated as: 

EF(x, y) = EFi,base(x, y) ×
∑n

t=1

Fkti(x, y, t)
Fkti,mean(x, y, t)

(6)  

where Fkti(x, y, t) is the function value at the hourly time step t in a year 
at a given location using the original temperature data, Fkti,mean(x, y, t) is 
the function value at time step t at a given location using the 4-year 
mean temperature. 

2.5. Validation of model estimates to measurements 

To validate the emission estimates, we imported the gridded annual 
emissions and time profiles into LOTOS-EUROS to derive surface con
centration and total column which were compared with in situ mea
surement and satellite observation, respectively. 

2.5.1. The LOTOS-EUROS model 
The LOTOS-EUROS model is an Eulerian chemistry transport model 

that simulates air pollution in the lower troposphere (Manders et al., 
2017; Schaap et al., 2012, 2008). In this paper, the spatial resolution of 
LOTOS-EUROS was set to be the same as the emission product, namely 
0.1◦ in longitude and 0.05◦ in latitude. In the vertical, we applied the 
well-mixed dynamic boundary layer concept. There are four dynamic 
layers and a surface layer. The lowest dynamic layer is the mixing layer, 
followed by three reservoir layers. The model’s physical processes 
include advection, diffusion, dry and wet deposition, chemistry reaction, 
and sedimentation. LOTOS-EUROS uses a set of temporal factors 
(monthly, daily, and hourly) to break down annual total emissions into 
hourly emissions. LOTOS-EUROS has been used for a wide range of 
applications supporting scientific research. It is used for daily opera
tional air quality forecasts over Europe (Marécal et al., 2015) and the 
Netherlands (Hendriks et al., 2013), as well as for daily forecasts of dust 
concentrations over North Africa (Dominguez-Rodriguez et al., 2020), 
and the forecast of dust storms in China (Jin et al., 2021). 

The LOTOS-EUROS CTM was used to simulate surface concentrations 
and total columns from the emission products. After replacing the 
gridded annual ammonia emission input with the newly developed 
emission distribution and replacing the fixed simplified temporal factors 
with updated spatially explicit time profiles, the improvements can be 
evaluated by comparing modeling results with in situ measurements and 
satellite observations. 

Three LOTOS-EUROS simulations with a 4-year duration were per
formed in this study: 1) the base scenario (referred to as BASE in this 
paper) using the gridded annual emissions from the INTEGRATOR 
output that was scaled by reported country totals (as in Ge et al. (2020)) 
and the default simplified hourly emission time profile setting in 
LOTOS-EUROS; 2) a second reference case (referred to as TIME) which 
uses the same gridded annual emissions in BASE and the dynamic and a 
spatially explicit time profile developed with the method from Ge et al. 
(2020); 3) the test case (referred to as SPACETIME) using the gridded N 
distribution from INTEGRATOR combined with meteorology-dependent 
emission fractions for slurry application, animal housing and manure 
storage with ALFAM2 and the same activity time profile as in TIME. An 
overview of the three scenarios is listed in Table 2. By comparing the 
BASE and TIME scenarios, the impact of dynamic time profiles can be 
determined since meteorological conditions affect the timing of fertil
ization practices and thereby the intra-annual time distribution of 
ammonia emission (Ge et al. (2020)). By comparing the TIME and 
SPACETIME scenarios, the improvement introduced by the updated 
emission fractions in this study can be quantified. 

X. Ge et al.                                                                                                                                                                                                                                       
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2.5.2. Satellite observations of ammonia total columns 
To evaluate the modeled distributions we used satellite observations. 

The Cross-track Infrared Sounder (CrIS) instrument is a Fourier Trans
form Spectrometer (FTS) launched by the U.S. NOAA/NASA on both the 
Suomi National Polar-orbiting Partnership (S-NPP) satellite on 28 
October 2011 and the NOAA-20 satellite on 29 November 2017 (Shep
hard et al., 2020; Shephard and Cady-Pereira, 2015). CrIS is an 
across-track scanning hyperspectral infrared instrument in a 
sun-synchronous orbit (824 km) with a 2200 km swath width (±50◦) 
with the total angular field of view consisting of a 3 × 3 array of circular 
pixels of 14 km diameter each (nadir spatial resolution). CrIS provides 
soundings of the atmosphere over three wavelength bands in the 
infrared with a spectral resolution of 0.625 cm− 1. The wavelength range 
9.14–15.38 µm (650–1095 cm− 1) is used to retrieve ammonia, as the 
main ammonia infrared absorbing band lies in this spectral region, with 
the strongest absorption features between 960 and 970 cm− 1 (Shep
hard and Cady-Pereira, 2015). 

The CrIS has some advantages in contrast to other instruments. First, 
it has dense global coverage. In addition, it has improved sensitivity in 
the boundary layer due to the low spectral noise of ~0.04 K at 280K (4 
times lower than IASI (Clarisse et al., 2009; Van Damme et al., 2017)) in 
the ammonia spectral region (Zavyalov et al., 2013). Therefore, it has 
the potential to detect smaller ammonia concentrations than are 
currently possible with IASI. Furthermore, the early afternoon overpass 
(a mean local daytime overpass time of 13:30 in the ascending node) 
coincides with higher thermal contrast (difference between the surface 
and air temperature), which is a more favorable measurement condition 
for infrared instruments (Shephard et al., 2020). Lastly, the CrIS fast 
physical retrieval (Shephard and Cady-Pereira, 2015) provides vertical 
sensitivity and robust and straightforward retrieval error estimate based 
on the retrieval input parameter. The CrIS averaging kernel usually has a 
maximum between 680 hPa and 850 hPa depending on the local con
ditions and a significant decrease near the surface since the instrument 
has reduced sensitivity near the surface. We only used the simulated 
output closest to the measurements in space and time to harmonize 
modeled and measured total columns during comparison. Furthermore, 
we applied the linearized averaging kernel (Cao et al., 2022) of each 
CrIS observation to the corresponding model result when calculating 
total columns from the LOTOS-EUROS three-dimensional 
concentrations. 

The CrIS v1.6.1 data product was downloaded from https://hpfx. 
collab.science.gc.ca/~mas001/satellite_ext/cris/snpp/nh3/. Daytime 
observations between January 2015 and December 2018 were used for 
this study. Furthermore, only observations with a quality flag of 3 were 
selected. The measurements with signal-to-noise ratio >2, degrees of 
freedom >0.8, and thermal contrast >− 2 K were selected to filter out 
anomalous values due to thin clouds, very cold surfaces, and observa
tions with low information content (Shephard et al., 2020). 

It has to be noted that there is a background level ammonia total 
column from CrIS observations. Shephard and Cady-Pereira (2015) 
determined the minimum ammonia detection limit of CrIS, which is 
caused by the relatively weak atmospheric spectral signal of ammonia 
compared with the background infrared signal. The minimum detection 
limit was assumed to be where SNR is between 1 and 2. When ammonia 
concentration is low, the infrared signal will also be small. The CrIS 
instrument has relatively lower minimum detection levels, and here a 
more conservative limit of 0.9 ppb is assumed to cover most of the 
conditions found in the observations (Shephard and Cady-Pereira, 
2015). Assuming that 1 ppb is equal to a total column (2 ± 1)×
1015molec/cm2, so the lower limits of CrIS was set to be (1.8 ± 0.9) ×
1015molec/cm2 (Dammers et al., 2019). However, the threshold used in 
this paper to exclude the background constant total column is much 
higher (1× 1016molec/cm2), below which a measurement was omitted, 
because we wanted to focus on the agriculturally active regions. 

2.5.3. In situ measurements of ammonia surface concentrations 
In addition to satellite observations of total columns, there are sur

face concentration measurements that were conducted by the Umwelt
bundesamt (UBA) research foundation. UBA sets up monitoring stations, 
providing information on air pollutants to governments and the public. 
It measures species, including ammonia and greenhouse gases, essential 
for improving air quality and climate change knowledge. The UBA also 
collects data from the network of the German federal states. In this 
study, the in situ data is available for 2015 – 2018 with weekly temporal 
resolution. 

2.5.4. Calculation of the mean surface concentrations and total columns 
during peak periods 

Emissions from slurry application and animal housing in single grid 
cells are expected to differentiate after applying the new emission 
fractions. However, the change is disaggregated into hourly time series 
using the time profiles, making it less noticeable in an absolute sense and 
more challenging to detect the improvement brought by our de
velopments. Since the paper aims to reproduce the emission trend 
brought on by meteorology, we can validate it by analyzing if the new 
model can reproduce the trends illustrated by the sensitivity of surface 
concentration and total columns to temperature. This is because the 
temperature is the most decisive factor for the emission potential since 
other factors such as application methods and manure properties were 
kept the same at the state level every year. 

The in situ measurements have extensive temporal coverage but low 
spatial representativeness, while the satellite observations have large 
spatial coverage but limited temporal continuity due to measurement 
quality. Therefore, it is more reasonable to look at the ammonia level in 
a larger region instead of a single location to illustrate the improvements 
of the new methodology. The UBA measurements and CrIS observations 
usually show three ammonia level peaks in a year. These are a promi
nent peak in the time block I between Julian Day 77 and 137 (caused by 
the first spring fertilization) and a lower peak in the time block II be
tween Julian Day 147 and 197 (due to the second spring fertilization), 
and a flatter and more subtle peak (representing summer application 
and housing/storage emissions) in the time block III between Julian Day 
207 and 277. Therefore, we calculated the mean surface concentrations 
and total columns of the three time blocks for each state in the four years 
and studied the trends against the mean temperature of the corre
sponding time blocks and states. To identify the models’ capability to 
simulate concentrations in response to temperature, we conducted a 
comparison between simulated and measured slopes of the response of 
surface concentration to temperature in the three periods. It has to be 
noted that during the comparison of surface concentration trend, there 
was a distinguishment between coastal stations (which only exist in 
Mecklenburg-Vorpommern and Niedersachsen) and in-land stations. 
The ammonia levels measured by coastal stations demonstrated 

Table 2 
An overview of emission input the three model runs in this study.  

Scenario Gridded annual emission Time profile 

BASE INTEGRATOR output with 
constant emission fractions and 
scaled with national totals per 
sector (Ge et al., 2020) 

Country-dependent, fixed time 
profile in LOTOS-EUROS 

TIME INTEGRATOR output with 
constant emission fractions and 
scaled with national totals per 
sector (Ge et al., 2020) 

Spatially explicit activity time 
profile, varying per year 
depending on meteorological 
conditions (Ge et al., 2020)  

SPACETIME INTEGRATOR output with 
meteorology-dependent 
spatially explicit emission 
fractions 

As above, the timing remains the 
same but the amplitude is 
adjusted due to different gridded 
emissions induced by the 
meteorology-dependent 
emission fractions the timing  
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significantly fluctuating patterns due to their unique locations with 
strong wind and humidity and ammonia’s high reactive properties. As a 
result, they were excluded during the validation. 

3. Results 

3.1. Annual emission totals and time series per sector 

The emission totals for Germany calculated with the updated emis
sion fractions as categorized in the EMEP database for years from 2015 
to 2018 are compared with the ones with the static emission fractions in 
Table 3. The magnitudes of the estimated annual emission totals using 
weather-dependent emission fractions were only slightly different from 
those estimated using the original (constant) emission fractions in the 
INTEGRATOR model for animal housing and manure storage. Some 
newly estimated emission totals are quite different from the original 
ones, the deviation is especially apparent for manure application emis
sions, which increased by 22% (2016) and 29% (2018). The interannual 
variability of manure application emissions was also induced, even 
though it was rather limited with the largest relative difference of 6.4% 
between 2016 and 2018. On the contrary, the emissions from other 
livestock management sources (animal housing and manure storage) did 
not change significantly, which was within our expectations. The 
temperature-based scaling impacted the spatial variation of emissions 
more than the absolute totals because it was based on the static emission 
fractions used in INTEGRATOR, representing the averaged ammonia 
level per sector over the whole country. The largest interannual varia
tion is cattle housing and storage emissions, which is 8.7% between 
2016 and 2018. 

By comparing the modeled emissions in Table 3 with the officially 
reported data in Table 4, one can see that the updated emissions are 
more aligned with the official data for fertilizer and manure application 
but less for cattle housing. For other sectors, the results are rather 
similar. The absolute relative difference in manure application emis
sions between this study and official data decreased from around 17% to 
within 10% (1.58% in 2016). In addition, manure housing and storage 
emissions differ quite dramatically for both the original and updated 
emissions, especially for cattle (around -26%) and pigs (around +30%). 
The deviations between reported and modeled emissions from cattle and 
pig housing and manure storage are caused mainly by excretion rates 
and emission fractions used in INTEGRATOR. After adding reported 
emissions from compost and digestate application into INTEGRATOR 
results, the relative difference between the reported country totals and 
the updated estimated totals has been reduced except for 2018. 

There are also deviations in interannual trends between the reported 
and newly updated emission estimates. The effect of including temper
ature change caused a slight increase in the updated modeled emissions 
in all sectors from 2016 to 2018, with the last increase from manure 
application (from 203 kton to 216 kton). On the contrary, the reported 
numbers were either constant or indicated a slight decline (for cattle 
housing and mineral fertilizer application) during these years, even 

though the extent is rather low (from 201 kton to 197 kton). The total 
uncertainty of reported emissions from German agriculture is 10.7%, 
which is primarily determined by the uncertainties in the manure 
management of dairy cows and fattening pigs, the application of mineral 
fertilizers, and the spreading of animal manures (Rösemann et al., 
2021). The difference between the updated emission estimates and the 
reported data lies within the uncertainties. 

An example of the weekly time series of ammonia emission from 
animal houses, manure storage, and fertilization on various crops from 
2015 to 2018 is given in Fig. 3. Fig. 3(top) and (bottom) represent the 
scenarios TIME and SPACETIME which use the INTEGRATOR annual 
distribution and the emission estimates with the original and updated 
emission fractions, respectively. The most noticeable feature in both 
time series is the seasonal cycle, with ammonia concentrations being at 
peaks in the warm growing season and at much lower levels during the 
colder period from late autumn to early spring. There are multiple peaks 
in concentration amounts during the growing season that can be asso
ciated with emissions from fertilization on various crops in spring, 
emissions from animal housing following increasing temperatures, and 
emissions from fertilization on winter crops. For both time series, cattle 
housing emissions experienced a rise from January to summer, followed 
by a decline till winter. In contrast, pig and poultry housing emissions 
are more constant over the years. This is because cattle houses are 
mostly open, while pig and poultry houses are partly or completely 
closed with forced ventilation. As a result, cattle housing is more sen
sitive to temperature changes, while the other housings keep a more 
constant level regardless of the temperature variability. 

As expected, the application emission level fluctuates more when 
using weather-dependent emission fractions (Fig. 3(bottom)) than with 
constant emission fractions (Fig. 3(top)) with the most obvious change 
for fodder maize, since the difference between the original and updated 
emission fractions of manure application were largest on fodder maize. 
Fig. 3(top) shows that the emission peak is the highest in 2017 (slightly 
under 1.4 Gg/week) and the lowest in 2016, even though the difference 
is very small. However, in Fig. 3(bottom), the peak in 2018 is about at 
the same level as in 2017, being the highest among the years. This is 
because the temperature in 2018 is on average higher than that in 2017, 
which resulted in higher emission fractions from slurry manure 
application. 

3.2. Simulated and measured surface concentrations in response to 
temperature 

For the three above-mentioned time blocks of 2015 – 2018, we 
calculated the mean concentrations and the mean temperature for each 
state. Then, linear regression was performed per time block for each 
scenario and slopes of the linear regression between the response of 
surface concentration to temperature were derived. Fig. 4 compares the 
slopes (temp-sfcconc coefficient) in all German states during the three 
time blocks (from up to bottom is the time block I, II, III) derived from 
the measurements and the three simulation runs (from left to right is the 
BASE, TIME, SPACETIME scenarios). We then applied linear regression 

Table 3 
Comparison of reported emission total per sector and corresponding estimated 
emission total using the original emission fraction in INTEGRATOR.  

EMEP category Emission using variable emission 
fraction (kiloton) 

Constant EF 

2015 2016 2017 2018 2015-2018 

Cattle housing and storage 105 103 104 112 106 
Pig housing and storage 121 122 121 127 123 
Poultry housing and storage 30 30 30 31 31 
Manure application 209 203 213 216 167 
Mineral fertilizer application 100 100 100 101 100 
Grazing 25 25 25 26 24 
Compost application 56 56 55 56 56 
Total 648 640 649 669 607  

Table 4 
Annual ammonia emission total per sector officially reported by Germany be
tween 2015 and 2018.  

EMEP category Reported emission (kiloton) 
2015 2016 2017 2018 

Cattle housing and storage 152 150 148 146 
Pig housing and storage 94 93 94 91 
Poultry housing and storage 30 30 30 31 
Manure application 201 200 199 197 
Mineral fertilizer application 105 100 94 74 
Grazing 9 9 9 9 
Compost application 56 56 55 56 
Total 647 639 630 602  
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on the slopes, which indicates how well the three simulation runs can 
represent the changes in surface concentrations brought by temperature 
in the three periods. It is apparent that from BASE to TIME, there is an 
improvement in slope reproduction, illustrated by the linear regression 
line tilting towards y=x. There is further improvement from TIME to 
SPACETIME, but to a lesser extent. As a result, we assessed the quality of 
the simulated slopes by calculating the statistics illustrated in Table 5. 
One can see that for all three time blocks, the comparison between the 
measured slopes and the BASE results is the worst for almost all in
dicators except correlation. SPACETIME shows a better linear regression 
coefficient when compared with measurements than TIME but it per
formed worse when it comes to other indicators for the time block I, 
although not to a large extent. It can be observed from Table 5 that the 
improvement in time blocks I and II, namely in spring, is more obvious 
than in time block III. To be more specific, all three scenarios do not 
demonstrate good estimates in summer. This is because the emission in 
spring is dominated by manure and fertilizer application while emission 
in summer is more related to animal housing and therefore less sensitive 
to temperature. To summarize, the improvement from BASE to TIME is 

larger than that from TIME to SPACETIME for all three time blocks. It 
implies that the meteorology-dependent activity time profile is of 
greater importance when it comes to the reproduction of interannual 
variability of surface concentrations. 

3.3. Simulated and measured total columns in response to temperature 

Similar to the comparison of surface concentrations, we also studied 
the response of averaged total column to temperature during the three 
time blocks from 2015 to 2018. As an example, the average total column 
weekly time series of a 1 by 1 degree window in the North Rhine- 
Westphalia region is shown in Fig. 5. The red vertical lines are the 
start of spring peaks based on the observations and the gray shows 
indicate the wintertime. One can see that the CrIS observations differ
entiate severely from all three scenarios, especially during wintertime, 
because the satellite instrument measures the thermal signal and be
comes less sensitive under colder conditions (with the signal-to-noise 
ratio decreasing). The autumn of 2015 witnessed an extremely high 
peak which is not present in all estimates. However, comparing 

Fig. 3. An example of ammonia emission time series per sector at a selected location in Germany, using INTEGRATOR output scaled with national totals per sector 
and constant emission fractions (TIME, top) and with updated weather dependents emission fractions (SPACETIME, bottom). 
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Fig. 4. Comparison of simulated and measured slopes of surface concentrations to temperature in time block I (top; from Day 77 to 137 linked to first spring 
fertilization), time block II (middle; from Day 147 to 197 linked to second spring fertilization), and time block III (bottom; from Day 207 to 277 representing summer 
application and housing/storage emissions) for the BASE (left), TIME (middle) and SPACETIME (right) scenarios. The x-axis is the slope (temp-sfcconc coefficient) 
from the in situ measurements, the y-axis is the slope from the simulations. 

Table 5 
Quality assessment of the comparison based on simulated and measured slopes of surface concentrations in response to temperature. The scenarios with the best 
statistics are marked green, the second best is marked yellow.  

Time block Scenario Fitting Coef. Correlation NRMSE (%) NMAE (%) EF IA 

1 BASE 0.43 0.86 44 82 -1.48 0.75  
TIME 0.73 0.76 22 41 0.48 0.87  
SPACETIME 1.02 0.71 29 51 0.22 0.76 

2 BASE 0.07 0.22 110 224 -13.67 0.28  
TIME 0.52 0.74 36 56 0.07 0.82  
SPACETIME 0.70 0.79 25 47 0.50 0.88 

3 BASE 0.01 0.09 511 249 -221.42 0.12  
TIME 0.09 0.40 156 156 -25.73 0.31  
SPACETIME 0.13 0.47 127 128 -15.59 0.38  
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estimates (TIME in Fig. 5(c) or SPACETIME in Fig. 5(d)) with the satellite 
measurements (in Fig. 5(a)) indicates that these predicted the peaks 
more accurately, while Fig. 5(b) exposes the limitation of the static time 
profile in LOTOS-EUROS. 

Fig. 6 shows the comparisons of the slopes (temp-totcol coefficient) 
of the simulated (from left to right is BASE, TIME, SPACETIME) and 
measured total column in response to temperature in all German states 

for the three time blocks (from up to bottom is the time block I, II, III). 
For the time block I and III, TIME and SPACETIME both show better 
predictions of the slope compared to BASE. Even though the difference 
between TIME and SPACETIME is less noticeable, it is still visible that 
there is a slight improvement from TIME to SPACETIME, especially for 
the time block I. The quality of comparison of trends between total 
column and temperature is illustrated in Table 6. The SPACETIME result 

Fig. 5. Weekly time series of total columns between 2015 and 2018 from CrIS observations (a) and simulations of the runs with the scenarios BASE (b), SPACE (c), 
and SPACETIME (d). The red vertical lines are the start of spring peaks based on the observations and the gray shows indicate the wintertime. 
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Fig. 6. Comparison of simulated and measured slopes of total columns to temperature in time block I (top; between Day 77 and 137 linked to first spring fertil
ization), time block II (middle; between Day 147 and 197 linked to second spring fertilization), and time block III (bottom; between Day 207 and 277 representing 
summer application and housing/storage emissions) for the BASE (left), TIME (middle) and SPACETIME (right) scenarios. The x-axis is the slope (temp-totcol co
efficient) from the satellite measurements, the y-axis is the slope from the simulations. 

Table 6 
Quality assessment of the comparison of measured and modeled trends of total columns in the three time blocks. The scenarios with the best statistics are marked green, 
the second best is marked yellow.  

Time block Scenario Fitting Coef. Correlation NRMSE (%) NMAE (%) EF IA 

1 BASE 0.54 0.89 28 61 0.13 0.87  
TIME 0.67 0.85 17 50 0.55 0.90  
SPACETIME 0.83 0.84 15 48 0.64 0.91 

2 BASE 0.55 0.68 33 90 -0.14 0.76  
TIME 0.77 0.70 21 56 0.45 0.83  
SPACETIME 0.82 0.72 21 50 0.49 0.84 

3 BASE 0.19 0.52 104 25 -8.24 0.46  
TIME 0.26 0.53 65 21 -2.59 0.59  
SPACETIME 0.26 0.50 62 19 -2.12 0.60  
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has outperformed the other two cases in every statistic. Still, the 
improvement in time block II and III (warmer season) from TIME to 
SPACETIME is not as considerable as the comparison of surface con
centrations. We can safely conclude that for the springtime, there is an 
improvement in reproducing total column slopes from BASE to TIME, 
while SPACETIME improves further, but to a smaller extent. 

4. Discussion and conclusion 

This study is based on the previous work of Ge et al. (2020) and 
included the neglected parameter (meteorology, slurry application 
techniques and incorporation time, manure properties) in emission 
fractions estimates. The spatially explicit emission database is aimed to 
improve the spatial distribution and interannual variability of ammonia 
emission. We can see a clear improvement in the results but there still 
exist some uncertainties, which are interpreted and described as follows. 

4.1. Comparison of annual emission totals and time series 

In general, the update of the emission fractions used in INTEGRATOR 
for housing and manure storage and slurry manure application resulted 
in a closer agreement between calculated and official reported emissions 
(except for the year 2018). Still, for some categories differences were 
substantial. Cattle and pig management (animal housing and manure 
storage) contributed to around -45 (-30%) and 30 Gg (33%) difference in 
annual emission, respectively. Since we scaled the animal number dis
tribution input of INTEGRATOR to match the average state sums of the 
multi-year official data (which does not vary as strongly as the emis
sions), the difference should not come from animal numbers of cattle 
and pigs. Therefore, a likely reason is the different methods to estimate 
excretion from animal numbers. For example, in INTEGRATOR, it was 
obtained by multiplying animal numbers with excretion rate which 
stands for the ratio between the total N excreted and the number of 
animals (kg N per animal) for each animal type. The coefficients of the 
INTEGRATOR model come from scaling the GAINS model (Asman et al., 
2011), which was submitted by national experts (Klimont and Brink, 
2004). The official German excretions, however, were derived using an 
N-balanced approach (Haenel et al., 2014). In the case of dairy cattle, 
excretion was calculated by extracting the amount of N retained in 
weight gained, exported with milk, and in conception products from the 
amount of N taken in with feed (Haenel et al., 2020). This can explain 
the underestimation in cattle management emissions reported in this 
study; a similar explanation can be applied to pig and poultry 
management. 

To further improve the excretion rates, N excretion rates at the 
regional level can be introduced in INTEGRATOR. For example, Velthof 
(2014) included the impact of the Nitrates Directive on gaseous N 
emission in calculating N excretion rates from dairy cattle (in kg per 
dairy cow per NUTS-2 region). They found out that the N excretion rate 
is generally higher in the north (115 – 135 kg N per cow) than in the 
south of Germany (larger than 95 – 115 kg N per cow), with the highest 
rates in Detmold and Amsberg. In addition, Velthof (2014) showed that 
N input to grassland (kg N per ha per year) has an impact on N excretion 
rate (kg N per cow per year). Under the assumption of a total feed 
requirement of 7000 kg dry matter per cow, the N excretion rate in
creases almost linearly when N input on grassland increases and the 
slope rises along with the percentage of grazed grass in the 7000 kg dry 
matter feed. 

In INTEGRATOR, the excretion of animals in housing systems and of 
grazing animals in pastures is separated, based on data for the number of 
grazing days at the country level. For the German inventory, N excre
tions were split into shares for the house, the milking area, and grazing. 
The division contributed to both the deviation in cattle management 
emission and grazing emission. Instead of being a country-dependent 
constant, the division should be more variable as the grazing systems 
applied and the duration of daytime grazing together determine the 

amounts of excretion in animal housing during grazing seasons for dairy 
cows (van Bruggen et al., 2012). For instance, van Bruggen et al. (2010) 
assumed that for the Netherlands, excretion amounts in animal housing 
for day and night grazing and daytime grazing is proportional to the 
number of barn hours. van Bruggen et al. (2012) categorized grazing 
systems into unlimited grazing, limited grazing, or full-time housing and 
presented the percentage of N excretion within housing systems for each 
grazing system applied. A better survey on the distribution of various 
grazing systems is needed to derive more accurate estimates of emissions 
from housing and storage systems at the regional level. 

Regarding the trend of manure application emissions, the official 
data showed a gradual decline over the years, while the updated model 
output implied a rise between 2016 and 2018. This is because the 
German inventory used to obtain emission estimates accounts for 
changes in animal numbers but not for meteorology between years, 
while our simulations included the impact of meteorology but not ani
mal numbers as we used a 4-year average of the reported values. In 
addition, uncertainties in the predicted emission fractions affect the 
simulated emissions. First of all, in many cases, predictions will be based 
on only limited predictor variables, undoubtedly resulting in inaccurate 
predictions among locations or even at a single location on different 
dates (e.g., with differences in soil properties including soil pH and soil 
water content). Missing variables limit the utility of the ALFAM2 model 
because, in this case, the ALFAM2 results would be less variable than 
reality as information on additional driving variables is not available. 
For example, slurry and soil pH are essential to simulate the impact of 
the system pH change on ammonia volatilization. In addition, the 
measurements used to develop ALFAM2 from the individual institutes 
are not harmonized and balanced, which indicates that the indepen
dence of the abundant observations can lead to possible systematic 
differences. The neglect of variable confoundment (interactions between 
variables such as soil moisture and manure dry matter) is likely to 
contribute to bias or inaccurate effect estimates. Therefore, increasing 
the variety of measurements and improving harmonization through 
future emission measurement experiments can help to estimate emission 
fractions better. In particular, emission measurements from regions not 
well represented in the database would be of great value. It is also 
essential to include more variables when recording ammonia emissions. 
Hafner et al. (2018) made a list of minimum recommendations for 
variables to be measured and reported to ensure valuable results. Sys
tematic biases affect absolute emissions, but not necessarily relative 
differences. Thus, predictions of relative effects on emission are more 
accurate than predictions of absolute emission. Since we focused on 
interannual variation instead of the absolute emission, ALFAM2 was 
without a doubt of great significance for this study. 

The difference in emission total over the years resulted in the same 
trends of the time series in terms of the magnitudes of peaks (see Fig. 1), 
as they used the same activity time profile. This is why the spring of 
2018 witnessed the highest peak over the five years in Fig. 1(b) while it 
was in 2017 in Fig. 1(a). If we look at the sector component of the 
emission time series, the difference mostly came from spring fertiliza
tion on fodder maize because fodder maize dominates the crop type in 
this area and N excretion allocated here is the highest. For other sectors 
such as animal housing and manure storage, changes from temperature- 
based scaling were not significant, especially for insulated buildings 
with forced ventilation like pig and poultry housing (Gyldenkærne et al., 
2005). However, cattle housing and manure storage are more sensitive 
to temperature variation within a year than between years because the 
temperature-based scaling ensured that the average ammonia emission 
level corresponds to the original INTEGRATOR output. To achieve a 
more accurate emission fraction for housing and manure storage, it is of 
great help to have access to detailed hourly ammonia measurements 
over a long period on an extensive network. Sommer et al. (2019) 
pointed out that during the measurements, it is important to record the 
following factors defining the housing categories and affecting emission: 
(1) the ratio of slatted floor to concrete floor area for pigs, (2) floor 
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opening area, (3) distribution of excreta within the building, which is 
affected by the positioning of feeders and drinkers, and behavior of pigs 
as related to age and temperature, (4) capacity of in-house storage, (5) 
age of animals, (6) climate, and (7) feeding practice. 

4.2. Comparison of simulated and measured slopes of surface 
concentrations with respect to temperature 

Regarding surface concentration’s response to temperature (temp- 
sfcconc calculated as the slope of linear regression), we included the 
BASE scenario to investigate to which extent the updated emission 
fractions or spatially explicit time profiles improved the estimates 
compared to in situ measurements. When we compared the slopes temp- 
sfcconc, the simulations based on the TIME scenario compared much 
better with observations than those from the BASE scenario, while the 
SPACETIME scenario usually outperformed TIME, but to a lesser extent. 
It implies that using a spatially explicit time allocation (Ge et al., 2020) 
improves the model’s ability to detect ammonia interannual variability 
(brought by meteorology), while the utilization of weather-dependent 
emission fractions improves the simulations further. The improvement 
was bigger in spring than in summer, which may be caused by three 
reasons. First, the summer ammonia level in the model was usually 
dominated by animal housing and manure storage, among which only 
cattle housing is more sensitive to temperature since cattle houses were 
considered open houses. As a result, the slope temp-sfcconc brought 
from the slurry application emission fraction is less noticeable. Another 
reason is that the absolute temperature is higher in summer. Sutton 
et al. (2013) concluded from the results of various field campaigns that 
the percentage of N volatilized as ammonia increased exponentially as a 
function of average temperature. Bleizgys et al. (2013) also found 
similar correlations from experiment results from a naturally ventilated 
open cowshed lab, namely, ammonia increased emission gains at higher 
temperatures. This behavior was also captured by the modeled results 
from ALFAM2. It means that the calculated emission fractions are more 
sensitive to uncertainties. Another factor that could affect the quality of 
the trend comparisons is the separation of the three time blocks. Time 
block I (from Day 77 to 137) is linked to first spring fertilization), time 
block II (between Day 147 and 197) is related to second spring fertil
ization), and time block III (from Day 207 to 277) represents summer 
application and housing/storage emissions). The separation was derived 
using visual inspection to distinguish multiple fertilizations. However, 
as Ge et al. (2020) pointed out, the sowing (fertilization) day of a certain 
crop varies according to temperature, rainfall, and legislative con
straints, with the temperature being the dominant factor. Therefore, 
when it comes to a relatively larger country like Germany, the separa
tion of time blocks might be more flexible. 

4.3. Comparison of simulated and measured slopes of total columns with 
respect to temperature 

Regarding simulated slopes of total columns with respect to tem
perature (temp-totcol), the simulations based on the TIME scenario 
compared much better with observations than those from the BASE 
scenario for time blocks I and II, but the improvement was much less 
visible for time block III, as well as from TIME to SPACETIME was 
weaker. Therefore, we can come to a similar conclusion that spatially 
explicit time profiles (Ge et al., 2020) improve the model’s ability to 
detect ammonia interannual variability, while the newly developed 
emission fractions improve the simulations more, especially for spring
time. The improvements in total column slopes are not very apparent in 
summer, which could be caused by the following reasons. One possible 
reason is the uncertainties in total column measurement from the CrIS 
instrument. Even though the higher temperature in summer makes CrIS 
more sensitive, the uncertainties in summer are also higher. 

Another factor is that we defined a threshold before calculating 
averaged total columns per state to only include the ammonia hot spot 

during the agriculturally active period. Because 1) there is a minimum 
detection value of ammonia in CrIS observations and 2) we wanted to 
exclude background ammonia levels over the non-agricultural area 
(forest and urban). It should be mentioned that the threshold to exclude 
background ammonia also has an impact on the overall performance. 
We also did a sensitivity study on how the threshold can impact the 
quality of the comparison. When the threshold increased from 0 to 
approximately 1× 1016molec/cm2, the improvement in calculated total 
column slope in the SPACETIME scenario went from unclear (random 
trends) to gradually visible. After 1× 1016molec/cm2, the improvement 
of SPACETIME declined, especially for time block III. It means that the 
model performance worsens when selectively focusing on high levels of 
ammonia in summer, which could be caused by the spatial allocation of 
emissions from animal housing and manure storage. Emissions from 
animal houses and manure storage facilities should be seen as point 
sources, but due to the absence of information on the locations of animal 
houses, we evenly distributed them all over the NCUs, which smoothens 
the emission hot spots of animal housing. During the first stage of the 
threshold increase from 0 to approximately 1× 1016molec/cm2, the 
background constant ammonia was gradually excluded. The second 
stage of the threshold increase after 1× 1016molec/cm2, however, 
exposed the shortcoming of the spatial allocation of housing emissions. 
Since housing emissions were more spread out instead of point sources, 
they were excluded as well. This also explains the reduced improvement 
over summer because housing emissions became more dominant as 
application emissions in summer dropped compared to spring. Conse
quently, access to the coordinates of animal houses to attribute emis
sions to the right locations would be helpful. Ge et al. (2022) confirmed 
for the Netherlands that the improvement brought about by the detailed 
information on housing locations is significant. Without housing loca
tions, the emissions from animal houses and manure storage facilities 
were distributed all over the NCU, which resulted in smoothened spatial 
characteristics. 

We also compared the weekly total column time series of a selected 1 
by 1 degree window from CrIS observations with the modeled results 
from the three scenarios (Fig. 5). When it comes to spring peaks, the 
BASE scenario always overestimated the total columns at the beginning 
of the year because the fixed time profile used does not account for the 
actual practice of fertilization which is affected by temperature and 
resembles the spring peak earlier than reality. On the contrary, for both 
the TIME and SPACETIME cases which used the same time profile, the 
spring peaks synchronized with CrIS measurements, which also vali
dates the time profile algorithm of Ge et al. (2020). In addition, the 
comparison in winter seemed quite poor. This is because satellite ob
servations measure in the infrared portion of the radiation source. When 
the thermal signal is decreased under colder conditions (such as in 
winter), the overall signal-to-noise ratio (SNR) and sensitivity will 
reduce (Dammers et al., 2019). Furthermore, the number of observa
tions that pass the quality criteria is much lower than in spring and 
summer. Therefore, we focused on the period between 1 March and 30 
September. Shephard et al. (2020) proposed to average CrIS observa
tions over longer periods (e.g. monthly, seasonal, and annual) instead of 
weekly. 

The comparison of the ammonia total column implies that better 
satellite data is of great importance, which requires higher spatial res
olution, higher sensitivity and shorter revisit time. The revisit time can 
be improved by assimilating various data sources such as IASI, but data 
harmonization would be needed. For now, satellite measurements are 
valuable for the validation of ammonia budgets over a larger region or a 
long period. It is however not yet sufficient for point sources or grid cells 
of limited size less than the measurements’ spatial resolution. 

4.4. Conclusions and outlook 

In this study, we presented an ammonia emission inventory using 
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weather (air temperature, wind speed, and rainfall rate) dependent 
emission fractions for slurry application to crops (obtained with 
ALFAM2), and temperature-dependent emission fractions for animal 
housing and manure storage, aiming to improve the model’s ability to 
reproduce interannual variation observed in satellite observations and 
in situ measurements. The emission fractions for slurry application also 
accounted for differences in dry matter content and pH of the slurry and 
slurry application method. The newly modeled annual emission totals 
(and manure application emissions) were closer to the officially reported 
values (except for 2018), but deviations in some categories (cattle and 
pig housing/storage) remained relatively large. For emissions from an
imal housing and manure storage, the temperature-based scaling 
method affects the spatial distribution and temporal distribution within 
a year and between years, rather than the absolute magnitude. 
Compared to a national generic time allocation of emission within the 
year, a spatially explicit time profile already largely improved the ability 
to reproduce interannual ammonia surface concentrations and total 
columns. The updated weather-dependent emission fractions further 
improved the comparison of simulated and measured surface concen
trations and total columns. This study showed that modeling the vari
ability of ammonia emissions is a crucial step to improve the 
performance (the comparison of predicted and observed variability in 
ammonia concentration levels) of chemistry transport models. 

To further develop the modeling of ammonia emissions from agri
culture, priorities should focus on improving both the spatial and tem
poral distribution of emission estimates, as well as the retrievals of 
ground-based surface concentrations and satellite-derived total col
umns for validation. Several aspects can improve ammonia emission 
modeling. First of all, the spatial details of basic input data for the model 
can be refined, including livestock and crop distributions, animal 
housing locations, fertilizer use, application techniques and incorpora
tion times, and timing of fertilization. Secondly, the ammonia emission 
functions (emission fractions and temporalization) should be further 
developed by better accounting for impacts of site conditions, including 
crop type, climate, and soil properties, which are regionally available. 
Last but not least, data affecting the N manure input, and thus the 
ammonia emission, can also be ameliorated, including N excretion rates 
and the division of N excretion over grazing and housing. In situ mea
surements offer great possibilities for the validation of temporal varia
tions while satellite-derived observations can be used to validate the 
spatial variation in large-scale estimates of ammonia emissions. How
ever, most ground stations in Western Europe offer concentrations at the 
monthly resolution, which is not detailed enough to validate the timing 
of emission from manure and fertilizer application. The progressing 
development of satellite remote sensing nowadays provides great op
portunities for better constraining ammonia emissions in space and 
time. Since approximately 2018, CrIS and IASI satellite observations, 
combined with relevant emission inventory, have been widely to 
calculate NH3 emission fluxes and identify ammonia emission hotspots 
at the global scale (Clarisse et al., 2019; Dammers et al., 2019; Evan
geliou et al., 2021; Luo et al., 2022; Van Damme et al., 2018). At the 
regional scale, it is also feasible to make use of satellite data, combined 
with high-resolution emission inventories, to reduce the uncertainties in 
ammonia emission and deposition in space and time. For instance, we 
can take advantage of the averaging kernels and error covariance matrix 
provided in the CrIS retrieved product to provide top-down constraints 
on the ammonia emissions (Cao et al., 2020; Shephard et al., 2020). 
Examples of use at the regional scale are still quite limited with notable 
examples of their application in the UK (Marais et al., 2021), the US 
(Chen et al., 2021), and China (Liu et al., 2022). To improve ammonia 
total columns observed by CrIS, we can refine the retrievals over 
elevated concentration values on high elevations wintertime conditions 
and enhance the a-priori profiles and constraints used in the retrieval 
(Shephard et al., 2020). 
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Freibauer, A., Döhler, H., Schreiner, C., Osterburg, B., Fuß, R., 2020. Calculations of 
gaseous and particulate emissions from German agriculture 1990 - 2018: Input data 
and emission results. 10.3220/DATA20200312140923. 
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und partikelförmigen Emissionen aus der deutschen Landwirtschaft 1990 - 2019: 
Report zu Methoden u. Johann-Heinrich-von-Thünen-Institut, Braunschweig, 
Germany. https://doi.org/10.3220/REP1616572444000.  

Schaap, M., Hendriks, C., Kranenburg, R., Kuenen, J., Segers, A., Schlutow, A., Nagel, H. 
D., Ritter, A., Banzhaf, S., 2018. PINETI-3: Modellierung atmosphärischer 
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