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ARTICLE INFO ABSTRACT

Keywords: Ammonia is one of the most impactful pollutants emitted from agricultural activities, harming human health and
Ammonia contributing to biodiversity loss. In ammonia emission inventories, the spatial distribution of annual emissions is
Emission

mostly approximated by constant empirical emission fractions, which do not account for spatial variability, nor
for temporal variability within a year or between years caused by weather variations. Besides, factors like
manure properties, soil properties, and manure application techniques also lead to differences in the amount of
ammonia emitted into the atmosphere. By not or only partly accounting for these factors, significant un-
certainties are introduced into ammonia emission estimates at regional and national scales. In this study, we
applied the empirical ALFAM2 model to derive spatially explicit slurry application emission fractions from
cropland for use in the large-scale INTEGRATOR model, using the information on slurry properties (dry matter
content and pH), manure application rate, application technique, incorporation time, air temperature, wind
speed, and rainfall rate. In addition, the impact of weather on the ammonia emissions from animal housing and
manure storage systems was included through a temperature-dependent scaling. We applied the method to
investigate the year-to-year spatio-temporal variabilities of ammonia emissions and modeled concentrations
across Germany from 2015 to 2018. Through the comparison with in situ measurements and satellite-derived
observations, we studied how surface concentrations and total columns relate to local meteorology. We found
that the spatio-temporal variability in emission fractions improves the ability to reproduce the interannual
variability observed in ammonia concentration and total column measurements. This study shows that the
developed approach to derive spatially explicit emission fractions can significantly improve ammonia emission
modeling and is of great importance for studying the temporal variability between years.

Emission fraction
Spatial distribution
Temporal distribution

1. Introduction ammonia, exceeds the critical loads of natural ecosystems (Forsius et al.,

2021; Hettelingh et al., 2017). In Germany, the critical loads for

Ammonia (NH3) is an important air pollutant, causing negative ef-
fects on human health and biodiversity at elevated concentrations (de
Vries, 2021; Li et al., 2014). It reacts with sulphuric and nitric acid in the
atmosphere, forming fine particulate matter (PMy;s), which leads to
increased mortality related to lung disease (Giannadaki et al., 2018;
Stokstad, 2014; Wang et al., 2017). Once deposited, it can lead to
acidification and eutrophication in soils and surface waters, ultimately
resulting in biodiversity loss in terrestrial and aquatic ecosystems
(Erisman, 2021; Sutton et al., 2013). In many regions of the world,
reactive nitrogen (Nr) deposition, whose essential composition is
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eutrophication were estimated to have exceeded 70% of the ecosystem
area in 2015 (Schaap et al., 2018). Since European countries have not
managed to reduce ammonia emissions strongly, the negative impacts of
ammonia emissions are not expected to decline substantially in the near
future (European Environment Agency, 2019).

Agriculture is the dominant source of ammonia emission into the
atmosphere, accounting for more than 90% of the emission total in the E.
U. (Sintermann et al., 2012). Ammonia emissions from livestock manure
and mineral fertilizer constitute a significant but variable proportion of
reactive nitrogen loss (Amann et al, 2013; Hafner et al., 2019).
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Ammonia emissions from livestock manure, which includes manure
(urine and feces) in animal houses, manure in storage systems, and
manure applied to fields, contribute to nearly 80% of the total agricul-
tural emissions at the European scale (EU27) (De Vries et al., 2011; Leip
et al., 2015). Based on EMEP results in 2020, when EMEP revised the
country-reported annual emission per sector of 2018, manure manage-
ment (livestock housing and manure storage) for cattle, pigs, and
poultry adds up to about 23%, 15%, and 5% of the annual emission total
in Germany, respectively. In addition, the application of manure and
mineral fertilizer to fields contributes to around 33% and 12% of the
annual total (Umweltbundesamt, 2020).

Accurate estimates of ammonia emission are of great significance for
Nr budgets at the field- or farm scale (Sintermann et al., 2012; Sonne-
veld et al., 2008), landscape scale (Cellier et al., 2011; de Vries et al.,
2015), and national or continental scale (De Vries et al., 2011; Kros
et al., 2018). The nitrogen flow approach is a common method to model
annual ammonia emission within countries where emissions are calcu-
lated using emission fractions, which are the ratios between the emitted
ammonia to the atmosphere and the total ammoniacal N (TAN) allo-
cated in various agricultural sectors. This methodology has been adop-
ted by Hutchings et al. (2001) for Denmark, Webb and Misselbrook
(2004) for the U.K., Gac et al. (2007) for France, (Velthof et al., 2012) for
the Netherlands, and by Dammgen and Hutchings (2008) for Germany.

Many experiments on ammonia emission from livestock manure
applied to fields have been conducted to develop or evaluate emission
fractions (Sintermann et al., 2012; Webb and Misselbrook, 2004). The
emission fractions used in the inventories are usually derived by experts
averaging over time for each country, not considering either the spatial
variability of meteorology or the differences in manure properties,
application technique, and incorporation time. The need for including
such temporal and spatial differences due to meteorology for accurately
assessing ammonia emissions and deposition has been described in
several publications (Ge et al., 2020; Jiang et al., 2021; Sommer et al.,
2019; Truong et al., 2018; Van Damme et al., 2015). Neglecting such
spatial and temporal differences affects the timing of manure and fer-
tilizer application and the related emission fraction. The weather impact
is more prominent on the more temporally variable emissions from
manure and mineral fertilizer application than the less temporally var-
iable emissions from animal housing and manure storage (Ge et al.,
2020; Skjgth et al., 2011).

In assessing the temporal (intra-annual) and spatial variability using
the INTEGRATOR model with the agricultural management model
TIMELINES, Ge et al. (2020) identified overestimated ammonia emis-
sions in Southern Germany and an underestimation in the country’s
north. The authors stipulated that this was likely due to using constant
ammonia emission fractions for manure application, animal housing,
and manure storage all over Germany. Furthermore, several studies
have concluded that the currently available emission products do not
correctly reflect the impact of inter- and intra-annual variability of
ammonia emissions in terms of timing and amount (Backes et al., 2016;
Hellsten et al., 2008; Hendriks et al., 2016; Skjgth et al., 2011), high-
lighting the need to improve the emission fractions for agricultural
ammonia emission modeling.

The challenge of estimating field application emissions is formidable
because of many influencing variables such as application techniques,
manure properties, and the dependence on meteorological conditions.
Several models have been developed to predict ammonia emissions from
manure applied to fields (Congreves et al., 2016; Gericke et al., 2012;
Misselbrook et al., 2005; Nicholson et al., 2013; Smith et al., 2009). Most
of these models are empirical or process-based models that contain
specific empirical components (Cuddington et al., 2013; Hafner et al.,
2019), with each model type having its advantages and disadvantages.
Process-based models can more accurately predict complicated re-
sponses under specific conditions (Hafner et al., 2019), while empirical
models are generally easier to apply since they have fewer parameters
and inputs. Process-based models such as the Volt’Air (Génermont and
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Cellier, 1997) and Manure DNDC (Li et al., 2012) model by principle
follow a more mechanistic approach. Volt’Air simulates the gaseous
transfers between the soil and the lower atmosphere by dealing with
nitrogen’s physical and chemical equilibria, the soil surface’s energy
budget, and the transfers of heat, water, and solutes within the soil
profile (Génermont and Cellier, 1997). The Manure DNDC model is
based on thermodynamics and biogeochemical reaction kinetics,
controlled by a group of environmental factors (such as temperature, soil
moisture, and soil pH) (Li et al., 2012). In contrast, empirical models use
relationships based on observed behavior in the field situation. For
example, Huijsmans et al. (2018) utilized a logistic regression function
to mimic the emission relative to discrete intervals after manure appli-
cation. The ALFAM (Sggaard et al., 2002) and MANNER (Nicholson
et al., 2013) models are two other examples of fully empirical models.
They use a Michaelis-Menten function to predict the cumulative emis-
sions simply because the shape of the function is similar to the observed
pattern of emission over time. The semi-empirical dynamic model
ALFAM2 (Hafner et al., 2019) finds a balance between the simplicity of
empirical models and the more accurate representation of processes
achieved with a process-based approach and accounts for many control
variables. ALFAM2 is the successor of the widely used ALFAM model and
is built on a two times larger database of ammonia emissions from
field-application experiments than its predecessor. ALFAM2 accounts
for the impacts of manure properties (dry matter, slurry pH), meteo-
rology (air temperature, wind speed, and rainfall rate), and application
techniques and incorporation time.

This paper aims to improve the spatial and temporal (interannual)
variation of ammonia emissions within Germany by replacing country-
dependent emission fractions with spatially-explicit gridded matrices
using the ALFAM2 model approach. First, we describe the methodology
of (1) the INTEGRATOR emission model, which generates spatially
resolved N inputs in animal houses (excretion from urine and feces),
manure storage systems, N applied to fields by manure and fertilizer
application and by grazing; (2) the ALFAM2 model that predicts emis-
sion fractions of slurry manure application while accounting for varia-
tions in meteorology, manure properties, application techniques,
incorporation time and application rates; (3) the chemistry transport
model (CTM) LOTOS-EUROS which translates ammonia emission into
atmospheric concentrations; and (4) satellite observations of ammonia
total columns and in situ measurements of surface concentrations for
validation. Subsequently, we evaluate the model performance by
comparing modeled results and measurements over Germany from 2015
to 2018 to quantify the improved model’s capability to reproduce the
interannual variability of annual ammonia emission totals and the
spatial and temporal variability of ammonia emissions. Finally, the re-
sults, potential shortcomings, and possible future methodological im-
provements are discussed.

2. Methodology

A schematic overview of the modeling approach is presented in
Fig. 1. The emission model consists of three modules, including a spatial
allocator of manure, compost, and fertilizer N inputs, an emission
fraction predictor of those inputs, and a temporal allocator of ammonia
emissions. The spatial allocator produces the spatial distribution of N
excretion in animal housing and manure system and on the field through
manure and mineral fertilizer application and grazing using the INTE-
GRATOR model. The emission fraction predictor derives emission frac-
tions of slurry application with the ALFAM2 model and emission
fractions of animal housing and manure storage using a temperature-
based scaling (TBS) algorithm. The INTEGRATOR outputs on grazing
emissions and emissions from solid manure and mineral fertilizer
application were kept as they were. It has to be noted that emissions
from compost and digestate application are not included in INTE-
GRATOR. However, the official German inventory started to include this
sector in 2010. Therefore, we took the reported annual emission total of
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Fig. 1. Schematic overview of calculating the spatial and temporal distribution of ammonia emissions and validating by the comparison with measurements in

this study.

this sector from European Monitoring and Evaluation Programme
(EMEP) and used a top-down algorithm to spatially allocate the emission
over Germany. The details can be found in the supplementary material.
The temporal allocator creates emission time profiles that distribute
gridded annual emissions in time, which also predicts fertilization dates
that the emission fraction predictor requires.

The study area was set to be Germany due to data availability.
Therefore, the spatial domain was 5°E — 16°E with a resolution of 0.1
degrees in longitude and 46°N — 56°N with a resolution of 0.05 degrees
in latitude (approximately 6x6 km?), corresponding to a domain size of
110 pixels by 200 pixels in longitude and latitude, respectively. For each
year from 2015 to 2018, the 3D distribution of ammonia emissions
(gridded annual emissions and emission time profiles) was then im-
ported into the CTM LOTOS-EUROS to derive surface concentrations
and total columns of ammonia. The simulated values were evaluated
with remote sensing observations and in situ measurements.

2.1. Spatial allocator of manure, compost, and fertilizer inputs

2.1.1. The INTEGRATOR model

The INTEGRATOR model is a static N cycling model that can assess N
emissions from housing, manure storage systems, and the soil (due to
manure and mineral fertilizer application) in response to European-scale
changes in land use, land management, and climate (De Vries et al.,
2011). INTEGRATOR estimates emissions in NitroEurope Classification
Units (NCUs), which are multi-part polygons composed of 1 km x 1 km
grid cells in the ETRS89/LAEA Europe coordinate system (for a detailed
description of NCU, we refer to Ge et al. (2020).

The emission model starts with calculating total N excretion by
multiplying the number of animals at the NCU level with the N excretion
rate per animal per country for various animal categories (Kros et al.,
2012). The total manure production is derived by subtracting gaseous
emissions and leaching in housing and manure storage systems from the
N excretion. The N excreted within housing systems is the multiplication
of N manure excretion and the housing contribution fraction, while the
N excreted from grazing on land is obtained by subtracting N excreted in
housing systems from total N manure excretion. Manure is then

allocated over grassland and arable crop groups using various allocation
rules. Manure produced by grazing animals and in housing systems by
sheep and goats all enter grassland. A fraction is applied to arable land
for other manure, and the remaining fraction is applied to grass-
land/fodder crops. For the distribution of manure application on arable
land, we distinguish three arable crop groups with (i) a relatively high
use of manure (sugar beet, barley, rape, and soft wheat), (ii) an inter-
mediate use of manure (potatoes, durum wheat, rye, oats, grain maize,
other cereals including triticale, and sunflower), and (iii) low use of
manure (fruits, oil crops, grapes, and other crops) using weighing, based
on Velthof et al. (2009). Finally, no manure is allocated to dry pulses and
rice, fiber crops, other root crops, and vegetables. The amount of mineral
fertilizer needed is then estimated with an N-balanced approach, which
we refer to Ge et al. (2020) for more details.

After the N excretion distribution of housing, grazing, and manure
and fertilizer application is obtained, the gaseous emission of each
category is derived by the multiplication with the emission fraction per
housing system, for grazing, and manure and fertilizer application,
respectively (De Vries et al., 2020; Kros et al., 2012). The spatial allo-
cator in this study is the subcomponent of INTEGRATOR that produces
the N excretion distribution before multiplying emission fractions. The
NCU-level N excretion from the spatial allocator was resampled to the
grid cells in this paper. Furthermore, N from manure and mineral fer-
tilizer application on the fields was reallocated to the corresponding
crops and grassland based on the crop map.

2.1.2. Input data

The input data of INTEGRATOR are classified into three categories:
biophysical data (soil, land use, and climatic data), agricultural activity
data (animal numbers and N excretion rates), and emission information
(fractions of N emission, leaching, and runoff). The version of INTE-
GRATOR in this study was developed for the year 2010 and used by Ge
et al. (2020) to improve the spatial details of ammonia emission. Since
this study focused on 2015 - 2018, the input data on animal numbers
and land use were revised.
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2.1.3. Animal numbers

The livestock data in INTEGRATOR (version 2010) were obtained
from the FAO database at the country level, using Common Agricultural
Policy Regionalised Impact analysis (CAPRI) data for distribution at the
NUTS2 level. The data on livestock numbers of various animal cate-
gories at the NUTS2 level were downscaled to a 1 km x 1 km resolution
using expert-based judgment with spatial data sources on land use,
slope, altitude, and soil characteristics influencing the livestock carrying
capacity (Neumann et al., 2009). However, the animal number data
officially reported to EMEP from the German inventory differ substan-
tially from those in FAO used by INTEGRATOR, especially after 2010
(Haenel et al., 2020). There are several reasons for the diverging animal
numbers of the two datasets. For cattle (including buffalo), FAOSTAT
contains the data of the May census in the years 2011 - 2013, while
German inventory uses the data of the November census as required by
E.U. regulations. The FAOSTAT animal numbers for cattle only agree
with the official German data after 2013. The FAOSTAT numbers of pigs,
sheep, and goats are generally not comparable with the number in the
German inventory. Because in the German inventory, the number of
suckling piglets (i.e., piglets weighing less than 8 kg) is subtracted, the
number of sheep number was revised in 2010, and the number of goats
was linearly interpolated to fill in missing values (Haenel et al., 2020).
Therefore, we adjusted the animal numbers in INTEGRATOR for 2010 to
align them with those in the German inventory for the years 2015-2018,
according to:

N(ani, INT, NUTS) 05 2015 = N(ani, INT, NUTS) 10

N(ani, INT, state) s 15

1
N(ani, INT, state),, )

where N(ani,INT, state),,5_,0,5 is the reported animal numbers per
animal type per federal state in Germany averaged over the years 2015-
2018 and N(ani,INT,state),y,, is the calculated animal numbers per
animal type per state in Germany averaged for 2010 in INTEGRATOR,
based on the NUTS-level data.

2.1.4. Land use

The standard land use input in INTEGRATOR is the total area of each
arable crop or grassland for each NCU based on the year 2010, requiring
an update for 2015 — 2018. Thus, we used an updated map of crop and
land cover classes for Germany in 2016 based on the crop map devel-
oped by Griffiths et al. (2019), who integrated multitemporal multi-
spectral Sentinel-2 and Landsat reflectance data and subsequently
generated equidistant, dense, and intra-annual composite time series to
provide this national scale map. We used the crop raster map to derive
crop areas per NCU for the five years to control the number of variables,
assuming that crop rotation in a grid remains semi-constant over the
years.

2.2. Temporal allocator of ammonia emissions

The usual approach to characterizing the temporal variability in NH3
emissions is to use time profiles that distribute the annual emission total
in a grid cell over a year. Ge et al. (2020) explicitly described the tem-
poral allocation of NH3 emissions from manure and fertilizer applica-
tion, grazing, animal housing, and manure storage based on the concepts
of Skjgth et al. (2004), Gyldenkerne et al. (2005). The temporal allo-
cator in this study used TIMELINES (Hutchings et al., 2012) to predict
the fertilization days for the years between 2015 and 2018 by intro-
ducing a thermal time approach. Thermal time is the sum of the positive
differences between the daily mean air temperature and a base tem-
perature (0 degrees Celcius). Starting from 1 January, as soon as thermal
time on Julian day t reaches the reference thermal time for sowing (or
harvesting), it is considered that sowing (or harvesting) occurs on Julian
day t. Field operations like manure and mineral fertilizer applications
are related to it. The fertilization day predictions were used to construct
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the time profiles of ammonia emissions from manure and fertilizer
application. Regarding the details of the temporal allocator of ammonia
emission, we refer to Ge et al. (2020). The fertilization days were also
taken into account when we generated meteorological condictions for
emission fraction calculations in ALFAM2, which will be elaborated
later.

2.3. Emission fraction of manure slurry application

Originally, the obtained N distribution in housing systems and on the
field is then combined with the corresponding NH3-N emission fractions
in INTEGRATOR, which depend on the animal category, manure type
(liquid/solid), and the degree of implementation of emission-reducing
techniques per country. In this study, the INTEGRATOR outputs for N
slurry application rates were combined with information on meteo-
rology and manure properties for use in the second module (the emission
fraction predictor) to calculate the emission fraction of slurry applica-
tion using the ALFAM2 model.

2.3.1. The ALFAM2 model

The ALFAM2 model simulates the behavior of applied total ammo-
niacal nitrogen (TAN, kg ha™!) over time, based on Chantigny et al.
(2004). After the slurry is applied to land, TAN is immediately parti-
tioned between two pools: a "fast" pool representing slurry in direct
contact with the atmosphere, and a "slow" pool representing fractions
less available for emission due to slurry infiltration (Chantigny et al.,
2004; Sommer et al., 2004), adsorption of ammonium (NH4+) on cation
exchange sites (Pelster et al., 2019), crust formation (Thompson et al.,
1990), injection (Webb et al., 2010), or incorporation (Huijsmans,
2003). ALFAM2 parameters value on partitioning and transfer rates,
quantifying the effects of slurry application, were estimated from an
extensive data set of emissions from cattle and pig slurry (490 field plots
in 6 countries from the ALFAM2 database). An analysis of a large subset
of the ALFAM2 database showed that most total measured ammonia
emission from slurry application generally occurs within 72 hours
(Hafner et al., 2018). Consequently, the ALFAM2 model is restricted to a
maximum duration of 72 hours (3 days) after slurry application to allow
parameter estimation. Therefore, we calculated emission fractions as the
relative accumulated emission (ratio between N emitted as ammonia
and TAN applied) at the 72" hour.

Fig. 2 shows an example of accumulative fractional emission calcu-
lated with ALFAM2 for different surface temperature conditions to
inspect the impact of temperature. The x-axis represents the number of
hours after slurry application (72 hours maximum), and the y-axis is the
accumulative fractional emission. Three surface temperature (20, 15,
and 10 degrees Celsius) conditions were studied, while other variables
remained the same. In this experiment, the TAN was set to be 40 g/kg,
and the dry matter of manure is 8% the application method is broadcast
with an incorporation time of 2 hours after application. One can see that
the largest share of the ammonia emission takes place within the first 6
hours after application, and then it gradually increases at a much lower
rate. Furthermore, higher temperature results in higher N loss to the
atmosphere in the form of ammonia. The emission fractions for these
three temperature scenarios are around 0.40, 0.32, and 0.25, respec-
tively, illustrating the importance of meteorological conditions during
application activities.

2.3.2. Input data

ALFAM?2 input data include slurry dry matter and pH, application
rate, application method and incorporation time, air temperature, wind
speed, and rainfall rate. Consequently, these variables were included to
derive a spatially explicit and dynamic emission fraction product.

2.3.3. Manure properties and application rate
Manure properties accounted for in ALFAM2 include slurry dry
matter content and pH. The dry matter values of cattle, pig, and poultry
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Fig. 2. Accumulative relative emission as a function of time under average temperature conditions (20, 15, and 10 degrees Celsius).

liquid manure were reported averages of different types of manure
composition used in INTEGRATOR from the RAMIRAN network (Menzi
et al., 2002). The dry matter values of cattle and pig slurry were set to 67
g/kg and 52 g/kg, respectively. The pH of cattle and pig slurry were both
set at 7.9 based on Joubin (2018) and Martinez-Suller et al. (2010). The
spatial distribution of the slurry application rate was obtained from the
excretion allocator described previously.

2.3.4. Application method and incorporation time

Data on the slurry application method in Germany, which differen-
tiates broadcasting, trailing hose, trailing shoe, slot method, cultivator,
and injection, were derived from a survey in 2015, namely Wirt-
schaftsdiinger tierischer Herkunft in landwirtschaftlichen Betrieben/
Agrarstrukturerhebung, by the Federal Statistical Office of Germany
(Statistisches Bundesamt). This survey gives the area of cropland and
grassland on which each application technique was applied at the fed-
eral state (Bundesland) level. For arable land, the areas also include a
distinction in incorporation time, i.e., no incorporation, incorporation
right after application (incorporation time 0), incorporation within one
hour (incorporation time <1h), and after one hour (incorporation time
> 1h) following application. Since it is unknown which application

Table 1

method is applied on individual fields within a given federal state, we
calculated all possible emission fractions for all methods and incorpo-
ration options mentioned in the survey with ALFAM2. We then used
weighing factors, namely the area per application method per incorpo-
ration time divided by the total area, to derive weighted means of
emission fractions. An overview of the area percentage of the applica-
tion techniques on arable land at the state level is given in Table 1.

2.3.5. Meteorology

The ALFAM2 model requires air temperature, wind speed, and
rainfall rate as meteorological input for emission fraction prediction. We
obtained these variables from the ERA5-Land datasets in the Copernicus
Climate Data Store (https://cds.climate.copernicus.eu/cdsapp#!/data-
set/reanalysis-era5-land). The spatial resolution of the products is 0.1 by
0.1 degrees; thus, it was resampled to the grid in this study. ERA5-Land
is a reanalysis dataset providing land variables over several decades at
an enhanced resolution compared to ERAS5. As previously described, we
predicted the fertilization days for each crop from the temporal allocator
and calculated the mean air temperature, wind speed, and rainfall rate
for the five days before and after the predicted fertilization days. These
were the inputs for ALFAM2 so that the data derived could better

Fraction of different application methods and incorporation time applied on arable land per German federal state.

Application technique Broadcast Trailing hose Trailing shoe Slot injection

Incorporation time / 0 <1h >1h / 0 <1h >1h / 0 <1h >1h / 0 <1h >1h

Baden-Wurttemberg 0.401 0.033 0.116 0.122 0.165 0.008 0.027 0.029 0.034 0.001 0.005 0.005 0.020 0.004 0.015 0.016
Bayern 0.333 0.095 0.142 0.092 0.028 0.007 0.010 0.007 0.103 0.021 0.032 0.021 0.040 0.020 0.030 0.019
Berlin 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Brandenburg 0.035 0.054 0.058 0.043 0.211 0.104 0.112 0.083 0.024 0.007 0.007 0.005 0.038 0.076 0.082 0.061
Bremen 0.366  0.063 0.091 0.099 0.232 0.010 0.014 0.015 0.072 0.003 0.004 0.005 0.025 0.000 0.000 0.000
Hamburg 0.030 0.055 0.080 0.213 0.257 0.032 0.046 0.124 0.032 0.004 0.006 0.015 0.020 0.014 0.020 0.053
Hessen 0.345 0.036 0.175 0.188 0.113 0.006 0.030 0.032 0.017 0.002 0.008 0.008 0.011 0.003 0.013 0.014
Mecklenburg- 0.093 0.053 0.085 0.065 0.276 0.063 0.101 0.078 0.008 0.002 0.003 0.003 0.020 0.039 0.062 0.048

Vorpommern

Niedersachsen 0.165 0.053 0.117 0.060 0.232 0.040 0.088 0.045 0.057 0.008 0.018 0.009 0.020 0.020 0.044 0.023
Nordrhein-Westfalen 0.176 0.030 0.097 0.038 0.380 0.027 0.089 0.035 0.039 0.004 0.012 0.005 0.020 0.009 0.029 0.011
Rheinland-Pfalz 0.367 0.036 0.203 0.154 0.094 0.006 0.033 0.025 0.019 0.001 0.005 0.003 0.017 0.004 0.019 0.015
Saarland 0.327 0.014 0.333 0.185 0.053 0.001 0.027 0.015 0.000 0.000 0.005 0.003 0.031 0.000 0.004 0.002
Sachsen 0.028 0.080 0.021 0.017 0.077 0.089 0.023 0.019 0.025 0.008 0.002 0.002 0.098 0.347 0.090 0.075
Sachsen-Anhalt 0.042 0.058 0.029 0.038 0.213 0.110 0.055 0.072 0.030 0.011 0.006 0.007 0.038 0.135 0.068 0.088
Schleswig-Holstein 0.270  0.043 0.154 0.097 0.248 0.014 0.049 0.031 0.014 0.001 0.003 0.002 0.012 0.009 0.032 0.020
Thuringen 0.026 0.030 0.007 0.006 0.242 0.100 0.024 0.018 0.016 0.004 0.001 0.001 0.099 0.298 0.073  0.055
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represent the weather condition during fertilization.
The weighted mean of emission fractions at a location was calculated
as:

Areayr 1, (%,)
Aredgy, (x,y)

EF(x,y) =) EF A1 10y (%,Y) (2)

where (x, y) is the coordinates of a location. Areaarr,,,, (X,Y) is the area
of arable crops or grassland on which application technique AT with a
given incorporation time T is used in the German state where (x,y)
is located, Areagym(x,y) is the area sum of arable crops or grassland
surveyed in the same German state, EFarr,,,(X,Y) is the predicted

emission fraction of application technique AT with incorporation time
Tincorp from the ALFAM2 model, calculated as:

EFAT,T,,,‘.{,,,, (X.,y) :f,;\LFAMZ (ATv Tincra/uT(-x7y)7 W(x7y)7P(x7y)vDM7pH7Rapp (X.y))
3

where AT, Tincrop, T(x,y), W(x,y),P(x,y),DM,pH, Rqyp(x,y) are the
application method, incorporation time, temperature, wind speed, pre-
cipitation rate, manure dry matter, manure pH, and application rate at a
given location, respectively.

2.4. Emission fraction of animal housing and manure storage

We used a temperature-based scaling algorithm to derive the spatial
and interannual variability of animal housing and manure storage
emission fractions. Skjgth et al. (2011) and Gyldenkzrne et al. (2005)
describe the emission pattern from animal housing and manure storage
as below:

Fikt; = Ei(x,y) ¥ (T, )", Ti@,y) 2 Tooundary
18 +0.77 x (T(x,y) — 12.5), Houses with forced ventilation

Ti(x,y) = T(x,y) + 3, Open animal houses

T(x,y), Manure storage
(€]

where i refers to the index (1-3) of houses with forced ventilation, open
animal houses, and manure storage, respectively. x, y are the co-
ordinates of the emission grid. E;(x,y) represents the emission for the
corresponding agricultural sector within the grid cell. T;(x,y) is the
temperature function. T(x,y) is the 2-meter temperature at the given
location. Open houses and manure storage have almost the same emis-
sion pattern, except that the indoor temperature in open houses is 3
degrees higher than the outside temperature used for manure storage
(Gyldenkeerne et al., 2005). Tpoundary represents lower boundary condi-
tion for temperature in animal housing and manure storage, below
which emission is set to a constant level, and they are 18, 4, and 1 degree
for houses with forced ventilation, open animal houses, and manure
storage, respectively.

The concept of temperature-based scaling is to calculate the time
profile of the three categories (insulated housing, open housing, and
manure storage), using the mean temperature between 2015 and 2018
to represent the averaged pattern of ammonia emission spatially and
between years as the base. Subsequently, we used the temperature time
series of each year and calculated the deviations from the base at every
grid cell, aiming to introduce the variability of the emission fraction
based on the deviations.

First, we calculated the spatial distribution of the base emission
fraction EF; pgese(X,Y):

FKE 000 (%, )
mean (Fkt, ,,,)

i,mean

EF;pase (X, y) = X EF i 5)

where Fkt;

+ mean(X,Y) is the mean of the function values calculated by the

4-year mean temperature above Tponday at a given location,
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mean(FkL .., ) is the mean of Fkt; ., (X.y), EF; n: is the emission fraction
introduced in INTEGRATOR. This was under the assumption that the
static country-dependent emission fractions represent the emission level
with mean temperature conditions over the four years. Subsequently,
the gridded emission fraction of housing and storage in each year was
calculated as:

Fkt;(x,y,t)

EF()C7 y) = EFi.baxa(xvy) x Fkt.,.. (x.y.1)
= Fkli‘mé'{m (x7y7 t)

(6)

where Fkt;(x,y, t) is the function value at the hourly time step t in a year
at a given location using the original temperature data, Fkt; mean(X, Y, t) is
the function value at time step t at a given location using the 4-year
mean temperature.

2.5. Vadlidation of model estimates to measurements

To validate the emission estimates, we imported the gridded annual
emissions and time profiles into LOTOS-EUROS to derive surface con-
centration and total column which were compared with in situ mea-
surement and satellite observation, respectively.

2.5.1. The LOTOS-EUROS model

The LOTOS-EUROS model is an Eulerian chemistry transport model
that simulates air pollution in the lower troposphere (Manders et al.,
2017; Schaap et al., 2012, 2008). In this paper, the spatial resolution of
LOTOS-EUROS was set to be the same as the emission product, namely
0.1° in longitude and 0.05° in latitude. In the vertical, we applied the
well-mixed dynamic boundary layer concept. There are four dynamic
layers and a surface layer. The lowest dynamic layer is the mixing layer,
followed by three reservoir layers. The model’s physical processes
include advection, diffusion, dry and wet deposition, chemistry reaction,
and sedimentation. LOTOS-EUROS uses a set of temporal factors
(monthly, daily, and hourly) to break down annual total emissions into
hourly emissions. LOTOS-EUROS has been used for a wide range of
applications supporting scientific research. It is used for daily opera-
tional air quality forecasts over Europe (Marécal et al., 2015) and the
Netherlands (Hendriks et al., 2013), as well as for daily forecasts of dust
concentrations over North Africa (Dominguez-Rodriguez et al., 2020),
and the forecast of dust storms in China (Jin et al., 2021).

The LOTOS-EUROS CTM was used to simulate surface concentrations
and total columns from the emission products. After replacing the
gridded annual ammonia emission input with the newly developed
emission distribution and replacing the fixed simplified temporal factors
with updated spatially explicit time profiles, the improvements can be
evaluated by comparing modeling results with in situ measurements and
satellite observations.

Three LOTOS-EUROS simulations with a 4-year duration were per-
formed in this study: 1) the base scenario (referred to as BASE in this
paper) using the gridded annual emissions from the INTEGRATOR
output that was scaled by reported country totals (as in Ge et al. (2020))
and the default simplified hourly emission time profile setting in
LOTOS-EUROS; 2) a second reference case (referred to as TIME) which
uses the same gridded annual emissions in BASE and the dynamic and a
spatially explicit time profile developed with the method from Ge et al.
(2020); 3) the test case (referred to as SPACETIME) using the gridded N
distribution from INTEGRATOR combined with meteorology-dependent
emission fractions for slurry application, animal housing and manure
storage with ALFAM2 and the same activity time profile as in TIME. An
overview of the three scenarios is listed in Table 2. By comparing the
BASE and TIME scenarios, the impact of dynamic time profiles can be
determined since meteorological conditions affect the timing of fertil-
ization practices and thereby the intra-annual time distribution of
ammonia emission (Ge et al. (2020)). By comparing the TIME and
SPACETIME scenarios, the improvement introduced by the updated
emission fractions in this study can be quantified.
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Table 2

An overview of emission input the three model runs in this study.

Scenario Gridded annual emission Time profile
BASE INTEGRATOR output with Country-dependent, fixed time
constant emission fractions and profile in LOTOS-EUROS
scaled with national totals per
sector (Ge et al., 2020)
TIME INTEGRATOR output with Spatially explicit activity time
constant emission fractions and profile, varying per year
scaled with national totals per depending on meteorological
sector (Ge et al., 2020) conditions (Ge et al., 2020)
SPACETIME  INTEGRATOR output with As above, the timing remains the

meteorology-dependent
spatially explicit emission
fractions

same but the amplitude is
adjusted due to different gridded
emissions induced by the

meteorology-dependent
emission fractions the timing

2.5.2. Satellite observations of ammonia total columns

To evaluate the modeled distributions we used satellite observations.
The Cross-track Infrared Sounder (CrIS) instrument is a Fourier Trans-
form Spectrometer (FTS) launched by the U.S. NOAA/NASA on both the
Suomi National Polar-orbiting Partnership (S-NPP) satellite on 28
October 2011 and the NOAA-20 satellite on 29 November 2017 (Shep-
hard et al.,, 2020; Shephard and Cady-Pereira, 2015). CrIS is an
across-track scanning hyperspectral infrared instrument in a
sun-synchronous orbit (824 km) with a 2200 km swath width (+500)
with the total angular field of view consisting of a 3 x 3 array of circular
pixels of 14 km diameter each (nadir spatial resolution). CrIS provides
soundings of the atmosphere over three wavelength bands in the
infrared with a spectral resolution of 0.625 cm ™. The wavelength range
9.14-15.38 um (650-1095 cm_l) is used to retrieve ammonia, as the
main ammonia infrared absorbing band lies in this spectral region, with
the strongest absorption features between 960 and 970 cm—1 (Shep-
hard and Cady-Pereira, 2015).

The CrIS has some advantages in contrast to other instruments. First,
it has dense global coverage. In addition, it has improved sensitivity in
the boundary layer due to the low spectral noise of ~0.04 K at 280K (4
times lower than IASI (Clarisse et al., 2009; Van Damme et al., 2017)) in
the ammonia spectral region (Zavyalov et al., 2013). Therefore, it has
the potential to detect smaller ammonia concentrations than are
currently possible with IASI. Furthermore, the early afternoon overpass
(a mean local daytime overpass time of 13:30 in the ascending node)
coincides with higher thermal contrast (difference between the surface
and air temperature), which is a more favorable measurement condition
for infrared instruments (Shephard et al., 2020). Lastly, the CrIS fast
physical retrieval (Shephard and Cady-Pereira, 2015) provides vertical
sensitivity and robust and straightforward retrieval error estimate based
on the retrieval input parameter. The CrIS averaging kernel usually has a
maximum between 680 hPa and 850 hPa depending on the local con-
ditions and a significant decrease near the surface since the instrument
has reduced sensitivity near the surface. We only used the simulated
output closest to the measurements in space and time to harmonize
modeled and measured total columns during comparison. Furthermore,
we applied the linearized averaging kernel (Cao et al., 2022) of each
CrIS observation to the corresponding model result when calculating
total columns from the LOTOS-EUROS three-dimensional
concentrations.

The CrIS v1.6.1 data product was downloaded from https://hpfx.
collab.science.gc.ca/~mas001/satellite_ext/cris/snpp/nh3/. Daytime
observations between January 2015 and December 2018 were used for
this study. Furthermore, only observations with a quality flag of 3 were
selected. The measurements with signal-to-noise ratio >2, degrees of
freedom >0.8, and thermal contrast >—2 K were selected to filter out
anomalous values due to thin clouds, very cold surfaces, and observa-
tions with low information content (Shephard et al., 2020).
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It has to be noted that there is a background level ammonia total
column from CrIS observations. Shephard and Cady-Pereira (2015)
determined the minimum ammonia detection limit of CrIS, which is
caused by the relatively weak atmospheric spectral signal of ammonia
compared with the background infrared signal. The minimum detection
limit was assumed to be where SNR is between 1 and 2. When ammonia
concentration is low, the infrared signal will also be small. The CrIS
instrument has relatively lower minimum detection levels, and here a
more conservative limit of 0.9 ppb is assumed to cover most of the
conditions found in the observations (Shephard and Cady-Pereira,
2015). Assuming that 1 ppb is equal to a total column (2+1)x
10'5molec/cm?, so the lower limits of CrIS was set to be (1.8 +£0.9) x
10 molec/cm? (Dammers et al., 2019). However, the threshold used in
this paper to exclude the background constant total column is much
higher (1 x 10'®molec/cm?), below which a measurement was omitted,
because we wanted to focus on the agriculturally active regions.

2.5.3. In situ measurements of ammonia surface concentrations

In addition to satellite observations of total columns, there are sur-
face concentration measurements that were conducted by the Umwelt-
bundesamt (UBA) research foundation. UBA sets up monitoring stations,
providing information on air pollutants to governments and the public.
It measures species, including ammonia and greenhouse gases, essential
for improving air quality and climate change knowledge. The UBA also
collects data from the network of the German federal states. In this
study, the in situ data is available for 2015 — 2018 with weekly temporal
resolution.

2.5.4. Calculation of the mean surface concentrations and total columns
during peak periods

Emissions from slurry application and animal housing in single grid
cells are expected to differentiate after applying the new emission
fractions. However, the change is disaggregated into hourly time series
using the time profiles, making it less noticeable in an absolute sense and
more challenging to detect the improvement brought by our de-
velopments. Since the paper aims to reproduce the emission trend
brought on by meteorology, we can validate it by analyzing if the new
model can reproduce the trends illustrated by the sensitivity of surface
concentration and total columns to temperature. This is because the
temperature is the most decisive factor for the emission potential since
other factors such as application methods and manure properties were
kept the same at the state level every year.

The in situ measurements have extensive temporal coverage but low
spatial representativeness, while the satellite observations have large
spatial coverage but limited temporal continuity due to measurement
quality. Therefore, it is more reasonable to look at the ammonia level in
a larger region instead of a single location to illustrate the improvements
of the new methodology. The UBA measurements and CrIS observations
usually show three ammonia level peaks in a year. These are a promi-
nent peak in the time block I between Julian Day 77 and 137 (caused by
the first spring fertilization) and a lower peak in the time block II be-
tween Julian Day 147 and 197 (due to the second spring fertilization),
and a flatter and more subtle peak (representing summer application
and housing/storage emissions) in the time block III between Julian Day
207 and 277. Therefore, we calculated the mean surface concentrations
and total columns of the three time blocks for each state in the four years
and studied the trends against the mean temperature of the corre-
sponding time blocks and states. To identify the models’ capability to
simulate concentrations in response to temperature, we conducted a
comparison between simulated and measured slopes of the response of
surface concentration to temperature in the three periods. It has to be
noted that during the comparison of surface concentration trend, there
was a distinguishment between coastal stations (which only exist in
Mecklenburg-Vorpommern and Niedersachsen) and in-land stations.
The ammonia levels measured by coastal stations demonstrated
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significantly fluctuating patterns due to their unique locations with
strong wind and humidity and ammonia’s high reactive properties. As a
result, they were excluded during the validation.

3. Results
3.1. Annual emission totals and time series per sector

The emission totals for Germany calculated with the updated emis-
sion fractions as categorized in the EMEP database for years from 2015
to 2018 are compared with the ones with the static emission fractions in
Table 3. The magnitudes of the estimated annual emission totals using
weather-dependent emission fractions were only slightly different from
those estimated using the original (constant) emission fractions in the
INTEGRATOR model for animal housing and manure storage. Some
newly estimated emission totals are quite different from the original
ones, the deviation is especially apparent for manure application emis-
sions, which increased by 22% (2016) and 29% (2018). The interannual
variability of manure application emissions was also induced, even
though it was rather limited with the largest relative difference of 6.4%
between 2016 and 2018. On the contrary, the emissions from other
livestock management sources (animal housing and manure storage) did
not change significantly, which was within our expectations. The
temperature-based scaling impacted the spatial variation of emissions
more than the absolute totals because it was based on the static emission
fractions used in INTEGRATOR, representing the averaged ammonia
level per sector over the whole country. The largest interannual varia-
tion is cattle housing and storage emissions, which is 8.7% between
2016 and 2018.

By comparing the modeled emissions in Table 3 with the officially
reported data in Table 4, one can see that the updated emissions are
more aligned with the official data for fertilizer and manure application
but less for cattle housing. For other sectors, the results are rather
similar. The absolute relative difference in manure application emis-
sions between this study and official data decreased from around 17% to
within 10% (1.58% in 2016). In addition, manure housing and storage
emissions differ quite dramatically for both the original and updated
emissions, especially for cattle (around -26%) and pigs (around +30%).
The deviations between reported and modeled emissions from cattle and
pig housing and manure storage are caused mainly by excretion rates
and emission fractions used in INTEGRATOR. After adding reported
emissions from compost and digestate application into INTEGRATOR
results, the relative difference between the reported country totals and
the updated estimated totals has been reduced except for 2018.

There are also deviations in interannual trends between the reported
and newly updated emission estimates. The effect of including temper-
ature change caused a slight increase in the updated modeled emissions
in all sectors from 2016 to 2018, with the last increase from manure
application (from 203 kton to 216 kton). On the contrary, the reported
numbers were either constant or indicated a slight decline (for cattle
housing and mineral fertilizer application) during these years, even

Table 3
Comparison of reported emission total per sector and corresponding estimated
emission total using the original emission fraction in INTEGRATOR.

EMEP category Emission using variable emission Constant EF

fraction (kiloton)

2015 2016 2017 2018 2015-2018
Cattle housing and storage 105 103 104 112 106
Pig housing and storage 121 122 121 127 123
Poultry housing and storage 30 30 30 31 31
Manure application 209 203 213 216 167
Mineral fertilizer application 100 100 100 101 100
Grazing 25 25 25 26 24
Compost application 56 56 55 56 56
Total 648 640 649 669 607
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Table 4
Annual ammonia emission total per sector officially reported by Germany be-
tween 2015 and 2018.

EMEP category Reported emission (kiloton)

2015 2016 2017 2018

Cattle housing and storage 152 150 148 146
Pig housing and storage 94 93 94 91
Poultry housing and storage 30 30 30 31
Manure application 201 200 199 197
Mineral fertilizer application 105 100 94 74
Grazing 9 9 9 9
Compost application 56 56 55 56
Total 647 639 630 602

though the extent is rather low (from 201 kton to 197 kton). The total
uncertainty of reported emissions from German agriculture is 10.7%,
which is primarily determined by the uncertainties in the manure
management of dairy cows and fattening pigs, the application of mineral
fertilizers, and the spreading of animal manures (Rosemann et al.,
2021). The difference between the updated emission estimates and the
reported data lies within the uncertainties.

An example of the weekly time series of ammonia emission from
animal houses, manure storage, and fertilization on various crops from
2015 to 2018 is given in Fig. 3. Fig. 3(top) and (bottom) represent the
scenarios TIME and SPACETIME which use the INTEGRATOR annual
distribution and the emission estimates with the original and updated
emission fractions, respectively. The most noticeable feature in both
time series is the seasonal cycle, with ammonia concentrations being at
peaks in the warm growing season and at much lower levels during the
colder period from late autumn to early spring. There are multiple peaks
in concentration amounts during the growing season that can be asso-
ciated with emissions from fertilization on various crops in spring,
emissions from animal housing following increasing temperatures, and
emissions from fertilization on winter crops. For both time series, cattle
housing emissions experienced a rise from January to summer, followed
by a decline till winter. In contrast, pig and poultry housing emissions
are more constant over the years. This is because cattle houses are
mostly open, while pig and poultry houses are partly or completely
closed with forced ventilation. As a result, cattle housing is more sen-
sitive to temperature changes, while the other housings keep a more
constant level regardless of the temperature variability.

As expected, the application emission level fluctuates more when
using weather-dependent emission fractions (Fig. 3(bottom)) than with
constant emission fractions (Fig. 3(top)) with the most obvious change
for fodder maize, since the difference between the original and updated
emission fractions of manure application were largest on fodder maize.
Fig. 3(top) shows that the emission peak is the highest in 2017 (slightly
under 1.4 Gg/week) and the lowest in 2016, even though the difference
is very small. However, in Fig. 3(bottom), the peak in 2018 is about at
the same level as in 2017, being the highest among the years. This is
because the temperature in 2018 is on average higher than that in 2017,
which resulted in higher emission fractions from slurry manure
application.

3.2. Simulated and measured surface concentrations in response to
temperature

For the three above-mentioned time blocks of 2015 — 2018, we
calculated the mean concentrations and the mean temperature for each
state. Then, linear regression was performed per time block for each
scenario and slopes of the linear regression between the response of
surface concentration to temperature were derived. Fig. 4 compares the
slopes (temp-sfcconc coefficient) in all German states during the three
time blocks (from up to bottom is the time block I, II, IIT) derived from
the measurements and the three simulation runs (from left to right is the
BASE, TIME, SPACETIME scenarios). We then applied linear regression
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Weekly emission time series using original emission fraction
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Weekly emission time series using updated emission fraction

0'00 13 26 39 52 65 78 91
Weeks after 2015-01-01

m  Oats
Maize B Sugar beet o

m  Cattle housing
W Pig housing
W Poultry housing

B Manure storage
B Grassland
W Grazing

m  Barley
W Rey

Common wheat

117 130 143 156 169 182 195 208

B Potatoes B Vineyards
Fodder maize

W Other cereals B Rapeseeds

Fig. 3. An example of ammonia emission time series per sector at a selected location in Germany, using INTEGRATOR output scaled with national totals per sector
and constant emission fractions (TIME, top) and with updated weather dependents emission fractions (SPACETIME, bottom).

on the slopes, which indicates how well the three simulation runs can
represent the changes in surface concentrations brought by temperature
in the three periods. It is apparent that from BASE to TIME, there is an
improvement in slope reproduction, illustrated by the linear regression
line tilting towards y=x. There is further improvement from TIME to
SPACETIME, but to a lesser extent. As a result, we assessed the quality of
the simulated slopes by calculating the statistics illustrated in Table 5.
One can see that for all three time blocks, the comparison between the
measured slopes and the BASE results is the worst for almost all in-
dicators except correlation. SPACETIME shows a better linear regression
coefficient when compared with measurements than TIME but it per-
formed worse when it comes to other indicators for the time block I,
although not to a large extent. It can be observed from Table 5 that the
improvement in time blocks I and II, namely in spring, is more obvious
than in time block III. To be more specific, all three scenarios do not
demonstrate good estimates in summer. This is because the emission in
spring is dominated by manure and fertilizer application while emission
in summer is more related to animal housing and therefore less sensitive
to temperature. To summarize, the improvement from BASE to TIME is

larger than that from TIME to SPACETIME for all three time blocks. It
implies that the meteorology-dependent activity time profile is of
greater importance when it comes to the reproduction of interannual
variability of surface concentrations.

3.3. Simulated and measured total columns in response to temperature

Similar to the comparison of surface concentrations, we also studied
the response of averaged total column to temperature during the three
time blocks from 2015 to 2018. As an example, the average total column
weekly time series of a 1 by 1 degree window in the North Rhine-
Westphalia region is shown in Fig. 5. The red vertical lines are the
start of spring peaks based on the observations and the gray shows
indicate the wintertime. One can see that the CrIS observations differ-
entiate severely from all three scenarios, especially during wintertime,
because the satellite instrument measures the thermal signal and be-
comes less sensitive under colder conditions (with the signal-to-noise
ratio decreasing). The autumn of 2015 witnessed an extremely high
peak which is not present in all estimates. However, comparing
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Fig. 4. Comparison of simulated and measured slopes of surface concentrations to temperature in time block I (top; from Day 77 to 137 linked to first spring
fertilization), time block II (middle; from Day 147 to 197 linked to second spring fertilization), and time block III (bottom; from Day 207 to 277 representing summer
application and housing/storage emissions) for the BASE (left), TIME (middle) and SPACETIME (right) scenarios. The x-axis is the slope (temp-sfcconc coefficient)
from the in situ measurements, the y-axis is the slope from the simulations.

Table 5
Quality assessment of the comparison based on simulated and measured slopes of surface concentrations in response to temperature. The scenarios with the best
statistics are marked green, the second best is marked yellow.

Time block Scenario Fitting Coef. Correlation NRMSE (%) NMAE (%) EF 1A

1 BASE 0.43 0.86 44 82 -1.48 0.75
TIME 0.73 0.76 22 41 0.48 0.87
SPACETIME 1.02 0.71 29 51 0.22 0.76

2 BASE 0.07 0.22 110 224 -13.67 0.28
TIME 0.52 0.74 36 56 0.07 0.82
SPACETIME 0.70 0.79 25 47 0.50 0.88

3 BASE 0.01 0.09 511 249 -221.42 0.12
TIME 0.09 0.40 156 156 -25.73 0.31
SPACETIME 0.13 0.47 127 128 -15.59 0.38
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Fig. 5. Weekly time series of total columns between 2015 and 2018 from CrIS observations (a) and simulations of the runs with the scenarios BASE (b), SPACE (c),
and SPACETIME (d). The red vertical lines are the start of spring peaks based on the observations and the gray shows indicate the wintertime.

estimates (TIME in Fig. 5(c) or SPACETIME in Fig. 5(d)) with the satellite
measurements (in Fig. 5(a)) indicates that these predicted the peaks
more accurately, while Fig. 5(b) exposes the limitation of the static time
profile in LOTOS-EUROS.

Fig. 6 shows the comparisons of the slopes (temp-totcol coefficient)
of the simulated (from left to right is BASE, TIME, SPACETIME) and
measured total column in response to temperature in all German states

for the three time blocks (from up to bottom is the time block I, II, III).
For the time block I and III, TIME and SPACETIME both show better
predictions of the slope compared to BASE. Even though the difference
between TIME and SPACETIME is less noticeable, it is still visible that
there is a slight improvement from TIME to SPACETIME, especially for
the time block I. The quality of comparison of trends between total
column and temperature is illustrated in Table 6. The SPACETIME result
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Fig. 6. Comparison of simulated and measured slopes of total columns to temperature in time block I (top; between Day 77 and 137 linked to first spring fertil-
ization), time block II (middle; between Day 147 and 197 linked to second spring fertilization), and time block III (bottom; between Day 207 and 277 representing
summer application and housing/storage emissions) for the BASE (left), TIME (middle) and SPACETIME (right) scenarios. The x-axis is the slope (temp-totcol co-
efficient) from the satellite measurements, the y-axis is the slope from the simulations.

Table 6

Quality assessment of the comparison of measured and modeled trends of total columns in the three time blocks. The scenarios with the best statistics are marked green,
the second best is marked yellow.

Time block Scenario Fitting Coef. Correlation NRMSE (%) NMAE (%) EF 1A

1 BASE 0.54 0.89 28 61 0.13 0.87
TIME 0.67 0.85 17 50 0.55 0.90
SPACETIME 0.83 0.84 15 48 0.64 0.91

2 BASE 0.55 0.68 33 90 -0.14 0.76
TIME 0.77 0.70 21 56 0.45 0.83
SPACETIME 0.82 0.72 21 50 0.49 0.84

3 BASE 0.19 0.52 104 25 -8.24 0.46
TIME 0.26 0.53 65 21 -2.59 0.59
SPACETIME 0.26 0.50 62 19 -2.12 0.60
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has outperformed the other two cases in every statistic. Still, the
improvement in time block II and III (warmer season) from TIME to
SPACETIME is not as considerable as the comparison of surface con-
centrations. We can safely conclude that for the springtime, there is an
improvement in reproducing total column slopes from BASE to TIME,
while SPACETIME improves further, but to a smaller extent.

4. Discussion and conclusion

This study is based on the previous work of Ge et al. (2020) and
included the neglected parameter (meteorology, slurry application
techniques and incorporation time, manure properties) in emission
fractions estimates. The spatially explicit emission database is aimed to
improve the spatial distribution and interannual variability of ammonia
emission. We can see a clear improvement in the results but there still
exist some uncertainties, which are interpreted and described as follows.

4.1. Comparison of annual emission totals and time series

In general, the update of the emission fractions used in INTEGRATOR
for housing and manure storage and slurry manure application resulted
in a closer agreement between calculated and official reported emissions
(except for the year 2018). Still, for some categories differences were
substantial. Cattle and pig management (animal housing and manure
storage) contributed to around -45 (-30%) and 30 Gg (33%) difference in
annual emission, respectively. Since we scaled the animal number dis-
tribution input of INTEGRATOR to match the average state sums of the
multi-year official data (which does not vary as strongly as the emis-
sions), the difference should not come from animal numbers of cattle
and pigs. Therefore, a likely reason is the different methods to estimate
excretion from animal numbers. For example, in INTEGRATOR, it was
obtained by multiplying animal numbers with excretion rate which
stands for the ratio between the total N excreted and the number of
animals (kg N per animal) for each animal type. The coefficients of the
INTEGRATOR model come from scaling the GAINS model (Asman et al.,
2011), which was submitted by national experts (Klimont and Brink,
2004). The official German excretions, however, were derived using an
N-balanced approach (Haenel et al., 2014). In the case of dairy cattle,
excretion was calculated by extracting the amount of N retained in
weight gained, exported with milk, and in conception products from the
amount of N taken in with feed (Haenel et al., 2020). This can explain
the underestimation in cattle management emissions reported in this
study; a similar explanation can be applied to pig and poultry
management.

To further improve the excretion rates, N excretion rates at the
regional level can be introduced in INTEGRATOR. For example, Velthof
(2014) included the impact of the Nitrates Directive on gaseous N
emission in calculating N excretion rates from dairy cattle (in kg per
dairy cow per NUTS-2 region). They found out that the N excretion rate
is generally higher in the north (115 — 135 kg N per cow) than in the
south of Germany (larger than 95 — 115 kg N per cow), with the highest
rates in Detmold and Amsberg. In addition, Velthof (2014) showed that
N input to grassland (kg N per ha per year) has an impact on N excretion
rate (kg N per cow per year). Under the assumption of a total feed
requirement of 7000 kg dry matter per cow, the N excretion rate in-
creases almost linearly when N input on grassland increases and the
slope rises along with the percentage of grazed grass in the 7000 kg dry
matter feed.

In INTEGRATOR, the excretion of animals in housing systems and of
grazing animals in pastures is separated, based on data for the number of
grazing days at the country level. For the German inventory, N excre-
tions were split into shares for the house, the milking area, and grazing.
The division contributed to both the deviation in cattle management
emission and grazing emission. Instead of being a country-dependent
constant, the division should be more variable as the grazing systems
applied and the duration of daytime grazing together determine the
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amounts of excretion in animal housing during grazing seasons for dairy
cows (van Bruggen et al., 2012). For instance, van Bruggen et al. (2010)
assumed that for the Netherlands, excretion amounts in animal housing
for day and night grazing and daytime grazing is proportional to the
number of barn hours. van Bruggen et al. (2012) categorized grazing
systems into unlimited grazing, limited grazing, or full-time housing and
presented the percentage of N excretion within housing systems for each
grazing system applied. A better survey on the distribution of various
grazing systems is needed to derive more accurate estimates of emissions
from housing and storage systems at the regional level.

Regarding the trend of manure application emissions, the official
data showed a gradual decline over the years, while the updated model
output implied a rise between 2016 and 2018. This is because the
German inventory used to obtain emission estimates accounts for
changes in animal numbers but not for meteorology between years,
while our simulations included the impact of meteorology but not ani-
mal numbers as we used a 4-year average of the reported values. In
addition, uncertainties in the predicted emission fractions affect the
simulated emissions. First of all, in many cases, predictions will be based
on only limited predictor variables, undoubtedly resulting in inaccurate
predictions among locations or even at a single location on different
dates (e.g., with differences in soil properties including soil pH and soil
water content). Missing variables limit the utility of the ALFAM2 model
because, in this case, the ALFAM2 results would be less variable than
reality as information on additional driving variables is not available.
For example, slurry and soil pH are essential to simulate the impact of
the system pH change on ammonia volatilization. In addition, the
measurements used to develop ALFAM2 from the individual institutes
are not harmonized and balanced, which indicates that the indepen-
dence of the abundant observations can lead to possible systematic
differences. The neglect of variable confoundment (interactions between
variables such as soil moisture and manure dry matter) is likely to
contribute to bias or inaccurate effect estimates. Therefore, increasing
the variety of measurements and improving harmonization through
future emission measurement experiments can help to estimate emission
fractions better. In particular, emission measurements from regions not
well represented in the database would be of great value. It is also
essential to include more variables when recording ammonia emissions.
Hafner et al. (2018) made a list of minimum recommendations for
variables to be measured and reported to ensure valuable results. Sys-
tematic biases affect absolute emissions, but not necessarily relative
differences. Thus, predictions of relative effects on emission are more
accurate than predictions of absolute emission. Since we focused on
interannual variation instead of the absolute emission, ALFAM2 was
without a doubt of great significance for this study.

The difference in emission total over the years resulted in the same
trends of the time series in terms of the magnitudes of peaks (see Fig. 1),
as they used the same activity time profile. This is why the spring of
2018 witnessed the highest peak over the five years in Fig. 1(b) while it
was in 2017 in Fig. 1(a). If we look at the sector component of the
emission time series, the difference mostly came from spring fertiliza-
tion on fodder maize because fodder maize dominates the crop type in
this area and N excretion allocated here is the highest. For other sectors
such as animal housing and manure storage, changes from temperature-
based scaling were not significant, especially for insulated buildings
with forced ventilation like pig and poultry housing (Gyldenkarne et al.,
2005). However, cattle housing and manure storage are more sensitive
to temperature variation within a year than between years because the
temperature-based scaling ensured that the average ammonia emission
level corresponds to the original INTEGRATOR output. To achieve a
more accurate emission fraction for housing and manure storage, it is of
great help to have access to detailed hourly ammonia measurements
over a long period on an extensive network. Sommer et al. (2019)
pointed out that during the measurements, it is important to record the
following factors defining the housing categories and affecting emission:
(1) the ratio of slatted floor to concrete floor area for pigs, (2) floor
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opening area, (3) distribution of excreta within the building, which is
affected by the positioning of feeders and drinkers, and behavior of pigs
as related to age and temperature, (4) capacity of in-house storage, (5)
age of animals, (6) climate, and (7) feeding practice.

4.2. Comparison of simulated and measured slopes of surface
concentrations with respect to temperature

Regarding surface concentration’s response to temperature (temp-
sfcconc calculated as the slope of linear regression), we included the
BASE scenario to investigate to which extent the updated emission
fractions or spatially explicit time profiles improved the estimates
compared to in situ measurements. When we compared the slopes temp-
sfccone, the simulations based on the TIME scenario compared much
better with observations than those from the BASE scenario, while the
SPACETIME scenario usually outperformed TIME, but to a lesser extent.
It implies that using a spatially explicit time allocation (Ge et al., 2020)
improves the model’s ability to detect ammonia interannual variability
(brought by meteorology), while the utilization of weather-dependent
emission fractions improves the simulations further. The improvement
was bigger in spring than in summer, which may be caused by three
reasons. First, the summer ammonia level in the model was usually
dominated by animal housing and manure storage, among which only
cattle housing is more sensitive to temperature since cattle houses were
considered open houses. As a result, the slope temp-sfcconc brought
from the slurry application emission fraction is less noticeable. Another
reason is that the absolute temperature is higher in summer. Sutton
et al. (2013) concluded from the results of various field campaigns that
the percentage of N volatilized as ammonia increased exponentially as a
function of average temperature. Bleizgys et al. (2013) also found
similar correlations from experiment results from a naturally ventilated
open cowshed lab, namely, ammonia increased emission gains at higher
temperatures. This behavior was also captured by the modeled results
from ALFAM2. It means that the calculated emission fractions are more
sensitive to uncertainties. Another factor that could affect the quality of
the trend comparisons is the separation of the three time blocks. Time
block I (from Day 77 to 137) is linked to first spring fertilization), time
block II (between Day 147 and 197) is related to second spring fertil-
ization), and time block III (from Day 207 to 277) represents summer
application and housing/storage emissions). The separation was derived
using visual inspection to distinguish multiple fertilizations. However,
as Ge et al. (2020) pointed out, the sowing (fertilization) day of a certain
crop varies according to temperature, rainfall, and legislative con-
straints, with the temperature being the dominant factor. Therefore,
when it comes to a relatively larger country like Germany, the separa-
tion of time blocks might be more flexible.

4.3. Comparison of simulated and measured slopes of total columns with
respect to temperature

Regarding simulated slopes of total columns with respect to tem-
perature (temp-totcol), the simulations based on the TIME scenario
compared much better with observations than those from the BASE
scenario for time blocks I and II, but the improvement was much less
visible for time block III, as well as from TIME to SPACETIME was
weaker. Therefore, we can come to a similar conclusion that spatially
explicit time profiles (Ge et al., 2020) improve the model’s ability to
detect ammonia interannual variability, while the newly developed
emission fractions improve the simulations more, especially for spring-
time. The improvements in total column slopes are not very apparent in
summer, which could be caused by the following reasons. One possible
reason is the uncertainties in total column measurement from the CrIS
instrument. Even though the higher temperature in summer makes CrIS
more sensitive, the uncertainties in summer are also higher.

Another factor is that we defined a threshold before calculating
averaged total columns per state to only include the ammonia hot spot
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during the agriculturally active period. Because 1) there is a minimum
detection value of ammonia in CrIS observations and 2) we wanted to
exclude background ammonia levels over the non-agricultural area
(forest and urban). It should be mentioned that the threshold to exclude
background ammonia also has an impact on the overall performance.
We also did a sensitivity study on how the threshold can impact the
quality of the comparison. When the threshold increased from 0 to
approximately 1 x 10'®molec/cm?, the improvement in calculated total
column slope in the SPACETIME scenario went from unclear (random
trends) to gradually visible. After 1 x 10'®molec/cm?, the improvement
of SPACETIME declined, especially for time block III. It means that the
model performance worsens when selectively focusing on high levels of
ammonia in summer, which could be caused by the spatial allocation of
emissions from animal housing and manure storage. Emissions from
animal houses and manure storage facilities should be seen as point
sources, but due to the absence of information on the locations of animal
houses, we evenly distributed them all over the NCUs, which smoothens
the emission hot spots of animal housing. During the first stage of the
threshold increase from O to approximately 1 x 10'°molec/cm?, the
background constant ammonia was gradually excluded. The second
stage of the threshold increase after 1 x 10'®molec/cm?, however,
exposed the shortcoming of the spatial allocation of housing emissions.
Since housing emissions were more spread out instead of point sources,
they were excluded as well. This also explains the reduced improvement
over summer because housing emissions became more dominant as
application emissions in summer dropped compared to spring. Conse-
quently, access to the coordinates of animal houses to attribute emis-
sions to the right locations would be helpful. Ge et al. (2022) confirmed
for the Netherlands that the improvement brought about by the detailed
information on housing locations is significant. Without housing loca-
tions, the emissions from animal houses and manure storage facilities
were distributed all over the NCU, which resulted in smoothened spatial
characteristics.

We also compared the weekly total column time series of a selected 1
by 1 degree window from CrIS observations with the modeled results
from the three scenarios (Fig. 5). When it comes to spring peaks, the
BASE scenario always overestimated the total columns at the beginning
of the year because the fixed time profile used does not account for the
actual practice of fertilization which is affected by temperature and
resembles the spring peak earlier than reality. On the contrary, for both
the TIME and SPACETIME cases which used the same time profile, the
spring peaks synchronized with CrIS measurements, which also vali-
dates the time profile algorithm of Ge et al. (2020). In addition, the
comparison in winter seemed quite poor. This is because satellite ob-
servations measure in the infrared portion of the radiation source. When
the thermal signal is decreased under colder conditions (such as in
winter), the overall signal-to-noise ratio (SNR) and sensitivity will
reduce (Dammers et al., 2019). Furthermore, the number of observa-
tions that pass the quality criteria is much lower than in spring and
summer. Therefore, we focused on the period between 1 March and 30
September. Shephard et al. (2020) proposed to average CrIS observa-
tions over longer periods (e.g. monthly, seasonal, and annual) instead of
weekly.

The comparison of the ammonia total column implies that better
satellite data is of great importance, which requires higher spatial res-
olution, higher sensitivity and shorter revisit time. The revisit time can
be improved by assimilating various data sources such as IASI, but data
harmonization would be needed. For now, satellite measurements are
valuable for the validation of ammonia budgets over a larger region or a
long period. It is however not yet sufficient for point sources or grid cells
of limited size less than the measurements’ spatial resolution.

4.4. Conclusions and outlook

In this study, we presented an ammonia emission inventory using
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weather (air temperature, wind speed, and rainfall rate) dependent
emission fractions for slurry application to crops (obtained with
ALFAM2), and temperature-dependent emission fractions for animal
housing and manure storage, aiming to improve the model’s ability to
reproduce interannual variation observed in satellite observations and
in situ measurements. The emission fractions for slurry application also
accounted for differences in dry matter content and pH of the slurry and
slurry application method. The newly modeled annual emission totals
(and manure application emissions) were closer to the officially reported
values (except for 2018), but deviations in some categories (cattle and
pig housing/storage) remained relatively large. For emissions from an-
imal housing and manure storage, the temperature-based scaling
method affects the spatial distribution and temporal distribution within
a year and between years, rather than the absolute magnitude.
Compared to a national generic time allocation of emission within the
year, a spatially explicit time profile already largely improved the ability
to reproduce interannual ammonia surface concentrations and total
columns. The updated weather-dependent emission fractions further
improved the comparison of simulated and measured surface concen-
trations and total columns. This study showed that modeling the vari-
ability of ammonia emissions is a crucial step to improve the
performance (the comparison of predicted and observed variability in
ammonia concentration levels) of chemistry transport models.

To further develop the modeling of ammonia emissions from agri-
culture, priorities should focus on improving both the spatial and tem-
poral distribution of emission estimates, as well as the retrievals of
ground-based surface concentrations and satellite-derived total col-
umns for validation. Several aspects can improve ammonia emission
modeling. First of all, the spatial details of basic input data for the model
can be refined, including livestock and crop distributions, animal
housing locations, fertilizer use, application techniques and incorpora-
tion times, and timing of fertilization. Secondly, the ammonia emission
functions (emission fractions and temporalization) should be further
developed by better accounting for impacts of site conditions, including
crop type, climate, and soil properties, which are regionally available.
Last but not least, data affecting the N manure input, and thus the
ammonia emission, can also be ameliorated, including N excretion rates
and the division of N excretion over grazing and housing. In situ mea-
surements offer great possibilities for the validation of temporal varia-
tions while satellite-derived observations can be used to validate the
spatial variation in large-scale estimates of ammonia emissions. How-
ever, most ground stations in Western Europe offer concentrations at the
monthly resolution, which is not detailed enough to validate the timing
of emission from manure and fertilizer application. The progressing
development of satellite remote sensing nowadays provides great op-
portunities for better constraining ammonia emissions in space and
time. Since approximately 2018, CrIS and IASI satellite observations,
combined with relevant emission inventory, have been widely to
calculate NH3 emission fluxes and identify ammonia emission hotspots
at the global scale (Clarisse et al., 2019; Dammers et al., 2019; Evan-
geliou et al., 2021; Luo et al., 2022; Van Damme et al., 2018). At the
regional scale, it is also feasible to make use of satellite data, combined
with high-resolution emission inventories, to reduce the uncertainties in
ammonia emission and deposition in space and time. For instance, we
can take advantage of the averaging kernels and error covariance matrix
provided in the CrIS retrieved product to provide top-down constraints
on the ammonia emissions (Cao et al., 2020; Shephard et al., 2020).
Examples of use at the regional scale are still quite limited with notable
examples of their application in the UK (Marais et al., 2021), the US
(Chen et al., 2021), and China (Liu et al., 2022). To improve ammonia
total columns observed by CrIS, we can refine the retrievals over
elevated concentration values on high elevations wintertime conditions
and enhance the a-priori profiles and constraints used in the retrieval
(Shephard et al., 2020).
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