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ABSTRACT

Activity-based travel demand models provide a high level of detail when modeling complex
travel behavior. Since stochastic simulation is used, however, this high level may induce large
random fluctuations in the output, necessitating many model reruns to produce reliable output.
This may become prohibitive in terms of computation time when comparing travel behavior
between multiple scenarios, in which case each scenario requires its own simulation.

To alleviate this issue, we study the use of common random numbers, which is a technique
that reuses the same random numbers for choices made by travelers between scenarios. This
ensures that any observed difference in output across scenarios cannot be attributed to mutual
differences in drawn random numbers, eliminating an important source of random fluctuation.
We demonstrate by a numerical study that common random numbers can greatly reduce the
number of runs needed, and thus also the required computation time, to obtain reliable output.
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1. Introduction

In this paper, we study an efficient simulation method to compare the travel demand behaviour under different traffic
scenarios by means of activity-based travel demand modeling (ABM). Owing to its flexibility, robustness and high level
of detail, ABM offers a highly suitable methodology to model complex travel behaviour. In travel demand simulation,
for each individual, ABM predicts what, where (destination), when (time) and for how long (duration) travel activities
are conducted as well as which mode chain of transport is involved (Rasouli and Timmermans, 2012). To achieve this
high level of detail, an ABM may for example consist of different discrete choice models which successively make
choices on e.g. destinations, time, duration, and mode. In most cases, these models adopt a simulation approach that
makes choices based on (pseudo-)random numbers. The variability caused by the generation of these random numbers
however trigger random fluctuations in the output of the ABM (Vovsha, Donnelly and Gupta, 2008), also referred to
as simulation error. This may cause the activity-based model to have to be rerun many times in order to get reliable
results, which may not be feasible due to the excessive simulation effort required.

As mentioned above, ABM models travel behaviour at a high level of detail, and thus provides output at a very
low level of aggregation. In the literature, multiple studies have shown that the lower the level of aggregation of a
model’s output is, the more profound the issue of variability/simulation error becomes, underlining the fact that this is
especially a complication for ABM. Indeed, while Veldhuisen, Timmermans and Kapoen (2000) concluded that in the
context of their RAMBLAS framework, a microsimulation model, the simulation error is negligible when studying the
output at a highly aggregated level, Castiglione, Freedman and Bradley (2003) confirmed this finding based on a case
study on the travel demand in San Francisco but with the remark that simulation error becomes problematic when there
are many choice alternatives or when some of these alternatives are very rare. To quantify these effects, Bao, Kochan,
Bellemans, Janssens and Wets 2015 used FEATHERS, a rule-based model, to determine the minimum number of runs
required to obtain enough ‘confidence’ at different aggregation levels, i.e., the minimum number of runs required so
that the output is sufficiently reliable. The results of this work indicate that the lower the aggregation level is of the
desired output, the more model runs are required. We also mention Horni, Charypar and Axhausen (2011), where the
random variability over multiple runs of MATSim is studied by analyzing travel demand on specific road links in a
traffic network. The authors concluded that there is relatively little variability when regarding daily volumes, but that
variability is significant when considering hourly volumes. This is in line with the fact that the lower the aggregation
level of the results is, the more variability becomes an issue. It is worth noting that in traffic modeling, travel demand
models and travel assignment models are often used in an alternating way, so that unreliable results in travel demand
have direct ramifications for travel assignment. These ramifications have been studied in e.g. Vovsha et al. (2008);
Horni et al. (2011); Bekhor, Kheifits and Sorani (2014).

While the studies mentioned above are mainly focusing on the model output of a single traffic scenario, the issue of
simulation error is even more profound when comparing multiple traffic scenarios for the purpose of quantifying the
difference between them. Especially when the actual difference between scenarios is not very large, much computation
time may have to be spent to produce a reliable output for each of the scenarios, before any conclusion can be drawn
regarding the difference. In this context it should be noted that when differences between scenarios are small, this
does not necessarily mean that such differences are by definition irrelevant. For example, even when a certain scenario
leads to only a 2% increase in the number of trips undertaken, in the regime of a highly loaded network this may
have a significant impact on the level of congestion. In this paper, we discuss techniques to control the simulation-
error issue in this multi-scenario context. More particularly, we study the use of the technique of common random
numbers (CRN) to overcome the problem of requiring too many simulation runs to reliably estimate the simulation
error. CRN is a celebrated technique stemming from the stochastic simulation community that attempts to induce a
positive correlation between the outputs of different scenarios. It does so by using the same generated pseudo-random
numbers for the same purposes across the simulation of different scenarios. When doing this, the observed difference
in the model output for the different scenarios can then not be attributed to the fact that random numbers across
scenarios differ, which is one of the sources of simulation error. This increases the likelihood that any difference in
observed model output is a result of the intrinsically different features of the scenarios. This means that the number of
required simulation runs will decrease, and as a result it induces less required computation time. For a more detailed
explanation on CRN, see Glasserman and Yao (1992) and Section 9.7 of Ross (2013). In the context of activity-
based travel demand modeling, the use of CRN in has been suggested before in e.g. Vovsha et al. (2008) and has been
implemented in CEMDAP (Pinjari, Eluru, Srinivasan, Guo, Copperman, Sener and Bhat, 2008) and MATSim (Horni,
Nagel and Axhausen, 2016). As a result, we are not the first to implement CRN in an ABM. However, to the best of




our knowledge, there has been no quantitative study on the added value of CRN in terms of required numbers of runs
and computation time savings. This paper seeks to fill that gap. More particularly, in the rest of this paper, we aim to
show how computation times can be shortened drastically by using CRN.

The contributions of this work can be summarized as follows. First, we demonstrate how to implement CRN in an
activity-based travel demand model to compare multiple scenarios. We do this based on an extension of an activity-
based travel demand model, which was recently developed by the authors (Zhou, Dorsman, Mandjes and Snelder,
2020). This extended ABM integrates a tour-based multimodal mode choice component in the activity-based model,
which makes travel mode chain choices on each trip of a tour using a multinomial probit choice model. We however
stress that the technique of CRN can- and in this paper will - also be applied to all other components of an ABM, also
those based on a multinomial logit choice model, which we will also cover. Secondly, based on this extension, we
demonstrate the potential of CRN when assessing multiple scenarios, in particular with regard to the question which
scenario is more favorable (according to a given criterion). We do so by analyzing the variability of the difference
between the model output of these scenarios, with and without the implementation of CRN, and we will conclude
that the implementation of CRN greatly reduces this variability (measured in terms of the sample variance of the
differences). As aresult, to obtain reliable output, only a fraction of the earlier required simulation runs is still needed.
For example, we show that, to keep the width of the confidence intervals of simulated indicators under a certain
level, a reduction of the number of required simulation runs by a factor 100 is not an exception, which evidently has
a drastic effect on the computation time needed. It turns out that CRN is especially worthwhile when the order of
magnitude of the differences between the scenario outputs is either not too large, in which case traditional methods
are already able to reliably indicate which scenario is favorable in an acceptable amount of time, or not too small, in
which case the scenarios hardly differ in terms of the indicator studied anyway. We back all the aforementioned claims
by studying numerical results of our extended model based on data of the metropolitan region Rotterdam-The Hague
in The Netherlands stemming from various sources, such as Snelder, Araghi, Ashari, Charoniti, Klunder, Sterkenburg,
Van der Tuin, Spruijtenburg, Kochan, Bellemans and de Romph (2021); Van de Werken (2018).

The remainder of this paper is organized as follows. Section 2 explains how CRN can be incorporated in an
activity-based travel demand model. It furthermore introduces several ways of assessing the impact of CRN, such
as by computation of the minimum required number of runs in order to keep confidence interval widths limited. In
Section 3, we present the numerical study investigating the potential of CRN, which leads to the findings mentioned
above. Finally, Section 4 presents conclusions and a brief discussion.

2. Method

An activity-based travel demand model makes, based on generated random numbers, choices at several levels.
That is, from the perspective of a traveler, subsequent choices are made on long-term decisions, number of tours to be
undertaken during a day, number of trips to be undertaken in each tour and finally the start time, duration, destination
and mode of each trip. Since stochasticity is introduced on each of these choice levels, the final model output may be
prone to large random fluctuations, which may lead to having to rerun the model many times and average the results to
obtain reliable output. To address this issue, the use of CRN may be introduced at any of these levels. To explain this,
we first give a description of the ABM that we use in the remainder of this paper to demonstrate the impact of CRN.
This ABM is an extended model integrated within ActivitySim (Gali, Eidenbenz, Mniszewski, Cuellar and Teuscher,
2008). Then, in Section 2.2, we demonstrate how to implement CRN at each level. More specifically, Section 2.2.1
describes how CRN is applied in our extended model based on a multinomial probit choice model, while Section 2.2.2
explains how CRN is applied in the other components of ActivitySim mainly using a multinomial logit model. Then,
in Section 2.3, we describe several ways to assess the impact of CRN.

2.1. The activity-based travel demand model

To explain the implementation of CRN into an ABM, we take the extended ABM considered in our previous
work (Zhou et al., 2020) as an example. This ABM makes choices sequentially through a series different choice
components using random utility maximization theory. The first of these components makes long-term decisions on
work and/or school locations for every individual of the synthesized population. Based on the output of this component,
the next component determines the daily activity pattern of each individual while taking into account the interaction
between the individuals in every single household. The following component then makes decisions for each individual
on the number of tours undertaken, the duration of these tours and the main travel mode used in each tour. Afterwards,




the subsequent component starts to make more detailed choices, namely on the number of stops to be made in each
tour, including the departure time, duration and destination of each trip resulting as a result from the stops in the tour.
We note that the tours may have a mandatory nature, such as work and study tours, but there are also non-mandatory
tours, which most of the time have a more leisurely character. For the components mentioned so far, we have used
the implementation of ActivitySim (Gali et al., 2008). The final component used in the model of (Zhou et al., 2020)
was however coded by the authors. This component makes mode choices for every trip undertaken by a travelling
individual as part of the daily activity schedule. While the standard implementation in ActivitySim contains such a
component, our customly coded component also allows for making multimodal mode choices, i.e. it can be decided
that a traveling individual uses multiple modes within a single trip. This is an attractive feature when for example
considering ‘Mobility as a Service’ (MaaS). To explain this concept, it is worth noting that we are witnessing the
development of new transport technologies, such as connected vehicles using 5G, level 3, 4 or 5 automatic vehicles,
and mobile app-based car-sharing or ride-sharing services. MaaS combines all these technologies and services, thus
offering a tailored mobility package for individual travelers (see e.g. Jittrapirom, Caiati, Feneri, Ebrahimigharehbaghi,
Gonzélez and Narayan (2017) for more background). Therefore, when a traveler owns a MaaS subscription, this person
has access to a shared car, a shared bike and a shared e-bike. Furthermore, the subscription enables the use of a shared
taxi, minibus or other shared modes which are not used in conventional public transport (such as the bus, tram, metro
and train). Finally, we mention that this component is based on a multinomial probit choice model.

2.2. CRN generation in ABM

In this section, we turn to the implementation of CRN. That is, in Section 2.2.1, we demonstrate how to implement
CRN in a multinomial probit choice model, by taking the customly coded multimodal mode choice component as an
example. Afterwards, in Section 2.2.2 we show how CRN can be implemented in a multinomial logit choice model,
which is the used model for all the other, original components in the ActivitySim implementation. It is worth noting
that for the numerical study, which we perform in Section 3, we apply CRN to all components of the model, according
to the directions below.

2.2.1. Multinomial probit choice model

As an activity-based travel behavior model, ActivitySim produces random numbers to make choices on the level
of individuals, households, tours and trips. For instance, at an individual level, random numbers are used to select
the individual’s choice on the location of work or school, while at a trip level, they are used to make choices for trip
duration and destination. To apply CRN, one needs to make sure that across different scenarios, the same random
numbers are used for the same choices, even when the scenario input is different. While ActivitySim incorporates an
option to do this on all levels, implementation of CRN is perhaps best explained based on the extension we performed
in Zhou et al. (2020).

Before explaining how to implement CRN, we therefore first treat the extension in detail. The extension concerns a
customly coded component, which makes multimodal mode choices at a trip level by combining the access, main and
egress modes, while making sure that the combination of these multimodal modes within a complete tour is feasible.
For example, when dealing with a tour that consists of a home-work trip and work-home trip, and when the mode
used for the outbound trip is the multimodal mode walk-car-bike (access-main-egress), the component will ensure
that not just the bike as a unimodal mode is used for the inbound trip, since the car needs to be at home at the end
of a tour. The model considers in total 32 feasible multimodal modes (consisting of access, main and egress modes)
based on the following seven modes of transport: walk, bike, e-bike, car, car-passenger, demand-responsive-transport
(DRT) and public transport. As described in our previous work (Zhou et al., 2020), each of these modes represents
a specific mode category based on speed, weight, vehicle space per person occupied measured in passenger car units
(PCU) and passenger capacity. For instance, ‘bike’ represents a category of modes which travel at a speed between
5-20 km/h, have a micro-modal nature, come with a vehicle space per person between 0.25 and 0.5 PCU and have no
passenger capacity. As a result, not only the private bike fits this category. For example, this category also captured
the shared bike, even though it may require some search time unlike the private bike. Whether or not this search time
is incurred by the traveler depends on characteristics of the traveler, for instance concerning ownership of a MaaS
subscription (governing whether shared services are used). Similar notes apply for the ‘e-bike’ and ‘car’ categories.
The ‘car-passenger’ category is self-explanatory, while the ‘DRT’ category captures taxi services, ride-hailing services,
et cetera.

To make choices in this component, a multinomial probit choice model is used. That is, a utility function is




evaluated for each multimodal mode choice for every trip in the tour. This utility function incorporates two normally
distributed error samples: one error sample is specific to every traveler/mode combination and models the traveler’s
personal mode preference (and is thus considered equal across trips), while the other error sample is specific to every
traveler/mode/trip combination and models other random effects. Ultimately, the choice for all trip modes in the tour
corresponds to the feasible mode combination with the highest aggregated utility. For the numerical study in this paper,
we adopt the error parameters used in Zhou et al. (2020).

To apply CRN in this additional ABM component, one needs to make sure that across scenarios the same error
samples are used for every traveler/mode combination and every traveler/mode/trip combination respectively. To make
this happen, we use the notion of initial seeds. Every time the same initial seed is set in a random number generator
(RNG), it will generate the same sequence of random numbers. Therefore, incorporating CRN for traveler/mode
combinations errors can be done by associating with each traveler a seed. Then, every time a different scenario is
considered, the RNG will still generate the same traveler/mode errors, independent of the actual scenario. For the
traveler/mode/trip errors, this can be done at a trip level: we associate with each trip a seed, so that each time the trip
is considered, the same traveler/model/trip errors are computed. This way, the errors between scenarios are maximally
synchronized. Furthermore, this strategy has the additional computational advantage that, when a trip is not undertaken
in a certain scenario, the required traveler/mode/trip errors will not be generated either, saving computation time.

2.2.2. Multinomial logit choice model

The multimodal mode choice component treated above incorporates a multinomial probit choice model. In travel
demand modeling, however, multinomial logit choice models are also omnipresent. Unlike probit choice models, which
assume error terms to be normally distributed, logit choice models assume error terms to be Gumbel distributed. By
doing this, these models are able to directly assign a probability to each alternative without having to sample the error
terms. A final choice is then made using a single uniformly distributed random number. We explain how this works
through an example. Suppose there are three alternatives: A, B and C. Furthermore, let us suppose the multinomial
logit choice model assigns probabilities 0.5, 0.3 and 0.2 to these alternatives, respectively. Then, when the single
uniform random number happens to be smaller than 0.5, the choice for alternative A is made, alternative B is chosen
when the random number is greater or equal to 0.5 and smaller than 0.8, and otherwise, alternative C will be the choice
made.

In travel demand modeling, many choices for a traveling individual may be made this way within a single simulation
experiment. To apply CRN in a multinomial logit choice model, one cannot reuse error samples between scenarios
as before, since there are no error terms to be sampled anymore. Instead, the variability of results now stems from
the uniformly distributed random numbers. Therefore, in multinomial logit choice models, when contemplating the
same choice between scenarios, CRN will now be reusing the same uniform random number. For the sole choice
mentioned in the previous paragraph, suppose that the uniform number sample would be 0.663, so that alternative B
is chosen. Furthermore, suppose that as a result of a change in scenario, the probability of choosing alternative A
would increase by 0.1, while the probability of choosing any of the other two alternatives lowers by 0.05 each. In this
new scenario, the ‘probability boundaries’ move from 0.5 and 0.8 to 0.6 and 0.85. CRN would however again use
the number 0.663, so that again scenario B would be chosen. By using this principle for every choice generated by a
multinomial logit choice model between scenarios, different choices would only be made as a result of the probability
boundaries shifting, making sure that different output is caused by the a difference in the nature of the scenario.

2.3. Assessing the impact of CRN

We now detail how we will assess the impact of CRN in this section. In particular, we will regard two scenarios,
which we will describe in more detail in Section 3.2, in the metropolitan region Rotterdam-The Hague (MRDH) in
The Netherlands. For this pair of scenarios, we record the differences of several indicators in each of the following
two experiments, adopting the model parameters from Zhou et al. (2020) (unless specified otherwise):

1. Base experiment: we run the model 30 times for both scenarios, and we do not apply CRN.
2. Inclusion of CRN: we run the model 30 times for both scenarios while using the same initial seeds, and thus
applying CRN.

Note that in our model, each run covers one day of activities. In both experiments, we opted to observe 30 simula-
tion runs, as this number enables graphical presentation of all outcomes, while at the same time it allows us to make
conclusions regarding the effectiveness of CRN. For any considered indicator, each of these experiments thus leads to




30 differences X, ..., X3(. These differences are obtained by subtracting the simulated indicator values found under
the second scenario from those found under the first scenario. To assess the impact of CRN, we use several statistical
measures. We now proceed to describe them, after which we remark on the assumptions required to use these measures
and on why these assumptions are satisfied.

Sample variance S)z(. We consider the sample variance of the differences
1 30
Sy =50 (X, = X7,
29 5

where X represents the sample mean of the 30 differences. The sample variance, which equals the square of the sample
standard deviation Sy of the differences, is a proxy for the reliability of the results. From a mathematical perspective,
it is to be expected that CRN leads to a smaller sample variance, since the indicators under both scenarios are now
positively correlated. At the same time, the lower the variance of the differences are compared to the sample mean, the
more reliable and representative the results are. To make the notion of reliability more precise, we build upon the sam-
ple variance to obtain the next two performance measures, in line with e.g. Wunderlich, Vasudevan, Wang et al. (2019).

Width of the confidence interval. Using basic statistics, assuming for the moment that modeling assumptions are
correct, the real expected difference between the indicators corresponding to the two scenarios lies with 95% probability

between the numbers X — f59 975 Sy / V30 and X + t59 5 975 Sx/ V30, with #9975 & 2.045 representing the 97.5%
quantile of the student t-distribution with 29 degrees of freedom. The resulting interval

[)_(—t290975S—X X+1290975S—X] (1)
N30 V30

is therefore called the 95% confidence interval (CI). One ideally would like the CI to be as narrow as possible, which

is why the width of the 95%-ClI, being 21,9 975 Sx/V/ 30, is a good proxy for the reliability of the results after 30
simulation runs. We expect CRN to result in higher reliability, and thus a smaller confidence interval.

Required number of simulation runs. Another approach to assess reliability would be to pose the question of how many
models runs would be minimally required so that the width of the 95%-CI is smaller than a fraction § of the actual
expected difference u. In case the actual variance of the difference between the indicators is given by o2, the width
of the 95%-CI based on N runs is given by 2¢gq 975 6/V N, where g 975 = 1.96 is the 97.5% quantile of the normal

distribution. We are thus looking for the smallest number N for which 2¢q 975 6/V N < fu, which is given by

N = 44,975
min ﬂzﬂz
Since both u and 62 are unknown parameters, we use X and Sg( to estimate these, yielding the formula
4(]2 SZ
Npin = | —22X 1. 2
min ﬂzXz

It is easily argued that the lower N, the lower the computation time that is required to obtain reliable output. In line
with earlier statements, we generally anticipate the second experiment with CRN to have a much lower N, than the
first experiment without CRN. In the next section, we choose f = 0.2 for reporting the number of N;,. Thus, the
number reported is the minimum number of simulation runs required so that the width of the confidence interval does
not exceed 20% of the average of the indicator values found. It is worth noting, however, that, although the value of
p will affect the the values of N,;, themselves, the percentual reduction of N, as a result of implementing CRN is
insensitive to the actual value of § considered. This is due to the fact that the numbers for both the base experiment
and the experiment including CRN are calculated using the same value of § (cf. the denominator of the fraction in (2)).




It should be noted that the three measures discussed above are related. Therefore, in the following analysis, we
may not compute every of these measures for every indicator that we consider. For example, when CRN decreases the
required number of runs significantly, one can already conclude that the width of the confidence interval for a fixed
number of runs will also be considerably smaller. Next to these measures, we will at times also perform a standard
double-sided t-test on the differences. More particularly, for several indicators in the second experiment, we may test
the null hypothesis that the expectation of the differences between scenarios equals zero. Should the t-test not reject
this hypothesis with a confidence level of 95%, we induce that there is not an observed significant difference between
the indicators under both scenarios. We will see that even though the implementation of CRN in those cases reduces
the width of the 95%-CI and N, significantly, the computation times remain infeasibly long.

min
Remark. The use of the measures introduced above requires several assumptions to be justified. For example, to
have the sample variance form an unbiased estimator of the actual variance of the distribution of the differences, it
should hold that the differences X, ..., X5y are mutually statistically independent. By nature of our experiments, this
is evidently the case. Furthermore, each of our experiments is based on 30 differences, so that the law of large numbers
implies that the sample mean X and sample variance S)z( are highly accurate estimations of the actual mean u and
variance ¢ of the distribution of X1, ..., Xz, Similarly, to use the confidence interval and N, as presented in (1)
and (2), respectively, it is required that the sample mean X is (near-)normally distributed. Since this sample mean is
based on 30 different observations, the central limit theorem indeed implies the fact that the distribution of the sample
mean X is nearly normally distributed with mean y and variance 62 The validity behind the equations (1) and (2) are
immediate consequences of this fact. In the absence of knowledge on the exact values of u and 62, the sample mean X
and sample variance Sf are used in these equations, because of their known accuracy. For the confidence interval (1),
we have opted 1o use the quantile tyg ) 75 rather than the corresponding quantile of the normal distribution to make
the confidence interval slightly more conservative to offset for the fact that the sample mean X is not exactly normally
distributed. An exact normal distribution would only be obtained by the sampling of an infinite number of differences,
which is obviously infeasible.

3. Experimental results

In this section, we describe the results obtained from doing the two experiments described in the previous section.
As mentioned before, to perform these experiments, we apply the model of Zhou et al. (2020) to data for the metropoli-
tan region Rotterdam-The Hague (MRDH) in The Netherlands taken from various sources, which are also described
in Zhou et al. (2020). We describe this data in more detail in Section 3.1, and we describe the scenarios considered
in Section 3.2. Then, we perform the first two experiments presented in Section 2.3 using several indicators, namely
for the average daily number of trips per day and per part of the day (Section 3.3), average travel distance per traveler
per day (Section 3.4), modal split and average travel distance per mode (Section 3.5). All numbers reported in this
section can also be found in Tables 1 and 2. Note that the output presented in these sections is the result of a series of
subsequent choice components, involving both multinomial probit models and multinomial logit choice models. Thus,
CRN is applied in each of these components as explained in Section 2.2.

3.1. Input data

The input data, on which the numerical experiments are based, include information on the population and land
use as well as level-of-service data on travel times, distances and travel costs for each conceivable origin-destination
trip pair in the MRDH area. This area covers the cities of Delft, Pijnacker, Nootdorp and Zoetermeer, being located
between the two major cities of Rotterdam and The Hague. These data origin from various sources, which can be
found in Zhou et al. (2020).

The population data that we use for this area have been synthesized in Snelder et al. (2021). The dataset con-
sists of 278 698 individuals, making up 131466 households. For our simulation, we randomly selected 10% of these
households to base our simulation on, for the purposes of reducing the computational burden. Since these households
are randomly selected, they form an unbiased representation of the population. As a result, hardly any impact is ex-
pected on the absolute values of the performance indicators. Within the selected households, 18% of the population
is younger than 15 years old, 14% is between 15 (inclusive) and 25 years old, 26% is between 25 (inclusive) and 45,
27% is between 45 (inclusive) and 65 and finally, 15% of the population is older than or equal to 65 years old. For each
individual, the synthesized data contains information on the home location, household composition, gender, whether
the individual possesses a driving license and/or a student subscription for free public transport, level of education,
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income, migration background, types of owned bikes and/or vehicles, as well as urbanization level (which specifies
the address density in the direct area of the individual’s residence).

Concerning land use, the input data contains per traffic analysis zone information on the number of places of
employment (offices, shops, etc.), number of education places, area (in m?) and the average parking costs per hour.

3.2. Scenario descriptions
For the numerical study, we focus on the impact of Mobility as a Service on travel demand. To assess this impact,
in the experiments we consider the following two scenarios, differing in terms of the adoption level of MaaS:

1. In the first scenario, to be referred to as ‘partial MaaS’, 10% of the people younger than 15 or older than 65 have
a MaasS subscription, while 20% of the remaining population also has a Maa$S subscription. As a result, 16.5%
of the overall population has a MaaS subscription.

2. In the second scenario, ‘full MaaS’, 100% of the population has a MaaS subscription.

The main goal is to quantitatively assess the difference between both scenarios in terms of several indicators.

3.3. Average daily number of trips

The first indicator that we study is the average number of trips undertaken by a traveler during a day, which illustrates
the impact of CRN particularly well. We first consider the number of daily trips for all age classes mentioned in
Section 3.1 together. We then also regard results at a more detailed level, which distinguishes between the different
age classes of the population.

3.3.1. Daily number of trips for all age classes combined

The study of the average number of trips undertaken by a traveler during a day turns out to illustrate the beneficial
effects of CRN remarkably well. Figure la presents the average numbers of daily trips undertaken by a traveler in
30 different simulation runs for each of the two scenarios independently, using the base experiment where no CRN is
applied. Although the mean value of the blue plot (i.e., partial MaaS) appears to be smaller than that of the orange
plot (full MaaS), basing firm conclusions on this figure would be hard. Indeed, the sample variance of the difference
of the left-hand figure, having value 0.00027, is still significant compared to the average of these differences, bearing
the value of 0.007. In Figure 1b, we plot the same quantities based on the same number of runs, but this time we
do apply CRN, and thus introduce positive correlation. We consider the same simulation output as before for partial
MaaS (and hence obtain the same blue plot), but unlike before, we use the exact same error samples for the simulation
of the average number of daily trips for full MaaS, leading to a different orange plot. The effect is clear: the level of
variability observed in both plots is similar to that of the base experiment, but the plots move almost parallel and do
not intersect anymore as a result of the synchronization. Specifically, the figure shows that the differences between the
simulated number of trips are roughly constant. This is also illustrated by the fact that, although the average difference
in the right-hand picture is 0.012 (which is similar to the average in the left-hand picture as expected), the sample
variance of the differences in the right-hand picture now is only around the order of 8.8 x 107, confirming the fact
that CRN offers a lot more reliability.

Figure 1 confirms that by applying CRN the variability of simulated indicator value differences reduces dramati-
cally, as these differences can now solely arise as a result of different scenarios. Therefore, one can now much more
comfortably draw the conclusion that MaaS will probably lead to more trips per day per traveler. Indeed, if we deploy
a t-test as explained in Section 2.3 on the 30 differences of the values plotted on Figure 1b, it rejects the null hypothesis
that the expected number of trips per traveler per day are equal under both scenarios. This supports such a conclusion,
which can be explained by the fact that a MaaS subscription makes traveling more accessible and flexible, and therefore
more attractive. If we were to deploy a t-test on the 30 differences of Figure 1a, however, the t-test would not reject,
which is in line with the fact that Figure 1b sketches a more reliable picture.

To quantify the impact of CRN in practical terms, computation of N, as provided in Section 2.3 leads to 2042
runs for the base experiment, while the inclusion of CRN brings this number down to 23. This means that, to obtain
a confidence interval for the indicator difference that has a width less than 20% of the actual expected difference, the
minimally required number of runs (and thus the minimally required computation time) is reduced by almost 99%
when using CRN. Again, this shows the beneficial impact of CRN on numerical experiments.




3.3.2. Daily number of trips per age class

We now regard the daily number of traveler trips for all different age classes separately. The age class covering
travelers between 15 and 25 years old sketches a similar picture as that of the aggregated level combining all age
classes. That is, in the absence of CRN, it is hard to identify the influence of the varying natures of the scenarios on the
difference of the average number of trips undertaken by a traveler based on 30 simulation runs, as shown in Figure 2c.

In contrast, Figure 2d, which includes CRN, again clearly shows that the possession of a MaaS subscription in-
creases the traveling activity of young travelers. This is probably because MaaS provides convenient travel modes to
do more activities. We obtain similar findings when regarding the age classes representing travelers younger than 15
years old, travelers between 25 and 45 years old, and travelers older than 65 years old, see Figures 2a, 2b, 2e, 2f, 2i
and 2j. For each of these age classes, the double-sided t-test applied on the 30 observed differences rejects the null
hypothesis that the expected difference in the number of trips undertaken by a traveler equals zero, and N, in all of
these four age classes is reduced by over 94% due to the use of CRN.

The age class concerning the population between 45 and 65 years old, however, shows an additional effect. For
this case, Figure 2g again shows much more variability in the differences than Figure 2h, in which the two plots are
rather parallel to one another. However, even in the latter figure, the plots intersect a lot, so that no reliable conclusions
can be drawn on which of the two scenarios leads to more trips in this age class. Indeed, the sample variance of the
observed differences equals 0.000022, while the average of these differences only equals 0.00086 (see Table 1). As a
result, the variability of the differences based on these 30 runs is still too large to produce a reliable conclusion. These
findings are confirmed by performing a t-test, which does not at all reject the null hypothesis that there is no difference
in indicator value between the two scenarios.

This is not to say that CRN in this case bears no effect. Indeed, the width of the 95%-CI based on the 30 runs
reduces from 0.026 to 0.0035. While the latter number is still very large (relative to the quantity we wish to estimate,
that is), the reduction is significant. Similarly, we find that by implementation of CRN, N .. is reduced from 698 551
to 11487, yielding a decrease of required runs of about 98%. Yet, performing 11 487 simulation runs is prohibitive in
terms of computation time. The conclusion to be drawn here is that CRN still is very effective, but that, at the same
time, the actual difference between scenarios in this case is so small, that the effect of using CRN is too small to allow
for a feasible computation time. This being said, one may wonder how important this unfeasible simulation would be,
as the conclusion could be drawn that the difference between the two scenarios for this age class is negligible anyway.
Intuitively, this is not surprising when considering the fact that most activities undertaken by these individuals are
mandatory, since relatively a large number of trips undertaken by this age class is work-related. In other words, having
a MaasS subscription may alter the travel mode used, but in the absence of such a subscription, no trips will be dropped
in this age class.

Other related indicators are the daily number of trips during the morning peak, evening peak and the rest of the
day. These are reported on in Tables 1 and 2 and also show a significant effect of CRN on required runtime.

3.4. Average travel distance per traveler

The next indicator that we consider is the average travel distance covered by a traveler within a day in kilometers.
When performing the base experiment and the experiment including CRN for all travelers, we obtain Figure 3. Again,
the effect of CRN is clear as the differences in the right-hand picture are more constant than in the left-hand picture, and
thus more firm conclusions can be drawn. However, one may argue that also based on the left-hand picture, although
the blue and orange plot are less parallel than the right-hand picture, one can comfortably conclude that the more MaaS
is available to travelers, the more they will travel in terms of distance covered.

The fact that the left-hand picture already is rather informative is due to the fact that the difference between the
two scenarios is relatively large. In fact, it is so large, that the variability of the differences in the left-hand picture (the
sample variance of the differences is 0.067) does not outweigh the actual difference (the sample mean of the differences
is 1.7. Still, CRN has a substantial effect on computational complexity in this case. The widths of the 95%-CIs of the
differences observed for the 30 runs of Figures 3a and 3b are 0.193 and 0.057, respectively, the latter thus offering
a much higher level of reliability. Similarly, the value N, for the base experiment would be 9, while this number
equals 1 for the experiment which incorporates CRN. Therefore, although one may argue that CRN is not needed for
this indicator, still a substantial amount of computation time can be saved when doing batch experiments. Tables 1 and
2 also report on the travel distance per traveler in the separate age classes considered in Section 3.3.2. These separate
age classes show similar effects as the aggregate observations mentioned here.




3.5. Modal split

Finally, we inspect the so-called ‘modal split’ for travelers used. That is, we regard the (differences in) the per-
centage of trips that are undertaken by each mode (between scenarios). As mentioned in Section 2.2, next to the seven
unimodal modes (walk, bike, e-bike, car, car-passenger, demand-responsive transport and public transport), we also
consider 25 multimodal mode alternatives made up of a combination of single modes. In Figure 4 differences in mode
use between the partial MaaS scenario and the full MaaS scenario are plotted. Each bar corresponds to one of the 30
simulation runs and represents the difference observed in the percentage of trips undertaken with the corresponding
mode (‘full MaaS minus partial MaaS’). For the purposes of this section, we have combined all 25 multimodal modes
in a single category ‘multimodal’. Figure 4a shows the results observed in the base experiment, while Figure 4b shows
them for the experiment including CRN.

As expected, the figures show that when moving from a partial MaaS to a full MaaS scenario, the e-bike and
multimodal modes gain in popularity at the cost of the car modes and demand-responsive transport. In particular, in
Figure 4b, the share of the car mode dropped by 7.8% on average, while the e-bike was used in an additional 3.4%
of the trips. Moreover, in an additional 7.3% of the trips on average, multimodal modes were chosen. Also the bike
mode became less popular, which can be explained as follows. When travelers for example choose to use a personal
bike for an outbound trip of a tour, typically it also needs to be chosen for an inbound trip. However, with access to
MaaS, many more mode options are considered for use in each of the trips. As a result, if one of those modes is much
more favourable than the bike for an inbound trip, then this also has automatic ramifications for the mode choice of
the outbound trip, making the choice for the bike less obvious. The modes of walking and public transport do not have
this issue, making them slightly more popular at the expense of the bike. The astute reader, however, will note that the
effects impacting the bike mode should also impact the e-bike mode. However, for the e-bike mode, these effects are
offset by the fact that a MaaS subscription makes the e-bike more popular.

What is intriguing is that Figures 4a and 4b hardly present mutually differing pictures, like in the previous sections.
Indeed, in both the base experiment and the experiment including CRN, N,;, is very small, almost never exceeding
ten simulation runs for any mode. The only exception to this is the bike mode in the base experiment, for which
N_in = 121 which is indeed confirmed by the fact that the ‘bike bars’ in Figure 4a show a lot of variability.

The reason for this is that in this case variability of results is not so much an issue as it was in Sections 3.3 and 3.4.
As mentioned in Section 2.2, mode choice is dictated by a multinomial probit choice model, and in many of these
modes, the error terms only have a small impact on the ultimate mode choice. That is, the variability caused by the
error terms in general is a lot smaller than the actual difference in observed utility’ between the modes. As a result, the
variability of the error terms do not have a lot of impact on e.g. whether or not the car is chosen. Since a similar effect
also plays for the full MaaS scenario, the variability of the random number generation cannot trigger large fluctuations
in terms of which modes are chosen. As a result, one cannot hope for a large impact of CRN in terms of N, either.
An exception to this is the bike mode, where the variability of the errors actually does impact the utilities of the bike
modes enough to cause changes in the ultimate mode choice. Since variability is thus more of an issue here, CRN
indeed has a larger impact.

In Tables 1 and 2, we also report on the difference in average travel distance per travel mode between the two
scenarios. These show similar impacts of CRN as the modal split.

In summary, these findings show that when variability of pseudo-random number generation is not a problem, there
is not much to solve for CRN either. As a result, the use of CRN overall does not have as much a dramatic impact as
it had in the previous sections. That said, this does not mean that CRN does not have any merit at all. For example,
the width of the computed 95%-CI in the percentage difference of trips that are taken with the car is reduced by 33.9%
after implementation of CRN, which adds to the reliability of simulation results. As a final remark considering the
modal split, it is reasonable that one would argue that, for the purposes of correct modeling, the variance parameters
of the normal distributions underlying the error terms should have been estimated differently (i.e., taken to be a bit
larger), so that error terms will have a larger influence on the mode choice. In that case, the variability of the errors
will increase, and as a result, we expect the impact of CRN to be larger as well.

4. Conclusions and discussion

In this paper, we have considered the use of CRN in the context of activity-based travel demand modeling. More
particularly, in this paper we showed how this technique can be applied to effectively simulate the impact of scenario
changes to any indicator. By making sure that between scenarios the exact same pseudo-random numbers are used for




the same purposes, any difference in output can in all likelihood be attributed to the change in scenarios. As a result,
the variability of the simulated differences is much smaller, and therefore less simulation runs and less computation
time is required to perform a simulation study with a meaningful output.

After we explained how CRN can be implemented in an activity-based travel demand model, we set out to demon-
strate the potential of CRN in practice by studying the impact of MaaS on travel demand in the Metropolitan region
Rotterdam-The Hague. In particular, we studied the question of whether a scenario in which the complete population
has a MaaS subscription yields different indicators than the scenario in which only a small part of the population has
such a subscription. We found that the implementation of CRN yields a computationally very efficient tool to answer
this question in the affirmative: when everybody has a MaaS subscription, travelers will travel more, and use different
(possibly multimodal) modes. That is, by implementing CRN in all components, such conclusions can be reliably
drawn using up to 99% less simulation runs than the conventional setting without CRN. In a similar vein, when we
compute the 95%-CI of a certain indicator difference based on a fixed number of runs, a simulation setting with CRN
typically comes with a much smaller interval than a setting without. This shows that CRN can shorten the computa-
tion times required drastically, especially when considering the complete sequence of choice models/components in
an ABM. It should be noted that it is not guaranteed that every scenario and indicator may lead to similar (or higher)
amounts of speedup as (than) reported in this paper. Even in those cases, however, it is beneficial to implement CRN,
because it will always lead to some amount of speedup, while the implementation efforts required are low.

By comparing various indicators, we also found that CRN is especially worthy of implementation when the differ-
ences between scenarios are moderate. In case they are very large, CRN still reduces computational complexity, but
conventional simulation methods already can provide conclusions in reasonable time. In contrast, when differences
are very small so that they are hardly observable, even though CRN reduces computational complexity also in this
case, the setting with CRN still requires too many runs in order to decide which of the scenarios scores better. In such
a setting, however, one can say that the difference in the nature of the scenarios hardly has an impact on the indicators.

Finally, we showed that the impact of CRN is related to the degree at which the variability of generated random
numbers can cause random fluctuations in the model output. We saw that when this cannot occur to a large extent,
CRN cannot be expected to yield up to 99% less required simulation runs as reported above.

In general, while in theory reliable results can still be had without the implementation of CRN by making sure
that enough runs are performed, in practice the number of runs required may be practically infeasible. As can be
deduced from Table 2, CRN may bring down the number of required runs to a manageable level, therefore enabling
computational studies which might otherwise be impossible to perform. Since the implementational effort required for
CRN is modest, and the required number of runs is guaranteed to come down, we therefore advocate the use of CRN
when interested in indicator changes as a result from adopting different scenarios.

We now discuss opportunities for further research. Some of these opportunities concern the scenarios considered
in this study. That is, we have considered the impact of CRN based on two scenarios that mainly differed in the
penetration rate of MaaS subscription. The actual penetration rates considered, as well as other parameters, are chosen
to reflect current and future reality as much as possible and are based on expert judgement. However, the scenarios
might possibly be tuned to match reality even better, which is a topic for further study. Moreover, it would be possible to
choose other scenarios to study the impact of CRN. That is, while CRN is guaranteed to lead to some level of speedup,
the question of which characteristics of a scenario enable the obtained speedup levels of this paper and beyond, is
another fruitful direction to pursue. In our subsequent work (Zhou, Dorsman, Mandjes and Snelder, 2022), which is
entirely devoted to a case study in the MRDH region, CRN is also used in other scenarios for other indicators having
different measures such as different parking price, in-vehicle time of a specified travel mode.

Furthermore, it would be worth studying the potential of other variance reduction techniques developed in the
stochastic simulation literature in the context of travel modeling. For example, we believe that the results in this paper
may be further improved by implementing advanced sampling techniques such as hypercube sampling.

Next, we mention that, in this study, we have mostly focused on reducing simulation error by the introduction of
CRN. However, there also exist other sources of error. That is, the results obtained in this study for the MRDH region
may be biased as a result of for instance inaccuracies in the estimation of certain parameters and the used structure for
the utility functions, even though they have been selected according to expert judgement. While these inaccuracies in
principle do not impact the conclusion of this paper regarding the impact of CRN, they yield many opportunities for
further research. In this regard, it is also important to refer to our follow-up work Zhou et al. (2022), which is devoted
to a case study in the MRDH region.

The final venue of further research that we highlight can be found in the direction of travel assignment models.
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Since this study only focused on the travel demand, any change of level-of-service output such as travel time of trips is
not considered. This would require a connection of the current travel demand model with a travel assignment model.
When this connection would be made, the impact of CRN on the whole model chain could be considered. Given the
results in this paper, we would expect that CRN also has great potential when considering the complete model chain.
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Figure 1: Average daily numbers of trips per traveler in 30 simulation runs.
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Figure 3: Average daily travel distance per traveler in kilometers in 30 simulation runs
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Figure 4: The difference in modal split between two scenarios: a positive value means that mode use is higher for the full
Maas scenario than for the partial MaaS scenario. Each bar corresponds to one of the 30 simulation runs and represents
the difference observed in the percentage of trips using the corresponding mode.
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No-CRN Sample  CRN Sample  No-CRN Sample CRN Sample

Name mean of mean of variance of variance of
the difference the difference the difference the difference

Daily number of trips 0.007 0.012 2.7x107* 8.8 x 107°
Daily number of trips <15 years 0.047 0.0382 1.3%x 1072 1.6 x 107
Daily number of trips 15-25 years 0.009 0.0152 2.6x 1073 2.8x 107
Daily number of trips 25-45 years -0.01 0.0087 9.6 x 107* 3.7x 107
Daily number of trips 45-65 years -0.0008 0.00086 1.2x1073 2.2x 107
Daily number of trips >= 65 years 0.0035 0.0055 1.4x 1073 49x107
Total trips in the morning peak 20 10 25856 442
Total trips in the evening peak 15 29 31014 1137
Total trips in the rest of day 161 297 153169 5304
Travel distance per person 1.70 1.74 0.067 0.006
Travel distance <15 years 3.73 3.54 0.035 0.044
Travel distance 15-25 years 1.42 1.21 0.488 0.0156
Travel distance 25-45 years 1.25 1.57 0.333 0.0201
Travel distance 45-65 years 1.17 1.23 0.404 0.0299
Travel distance >=65 years 1.35 1.35 0.287 0.0286
Travel distance by bike 0.29 0.29 0.001 0.0004
Travel distance by car -0.38 -0.34 0.027 0.019
Travel distance by car-passenger -1.66 -1.67 0.046 0.015
Travel distance by DRT -4.1 -4.0 0.096 0.046
Travel distance by ebike -0.67 -0.67 0.002 0.002
Travel distance by walk 0.14 0.14 0.0002 0.0001
Travel distance by public transport -2.1 -2.1 0.269 0.063
Travel distance by multimodal modes  0.59 0.59 0.116 0.09
Trips by bike -553 -493 96503 39332
Trips by car -6766 -6706 38698 16885
Trips by car-passenger -1815 -1820 11781 6405
Trips by DRT -2193 -2206 10582 6221
Trips by ebike 2901 2934 12208 8155
Trips by walk 1852 1854 31704 12617
Trips by public transport 466 475 11319 3190
Trips by multimodal modes 6305 6298 15261 6786

Table 1
Sample means and sample variances of the indicator differences between both scenarios.
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Table 2

Confidence interval widths of the indicator differences between both scenarios, as well as the required number of runs

No-CRN

CRN

Name Width of CI Width of I NO"“RN Nmin - CRN N
Daily number of trips 0.012 0.0022 2042 23
Daily number of trips <15 years 0.027 0.003 221 4
Daily number of trips 15-25 years 0.038 0.004 12384 47
Daily number of trips 25-45 years 0.023 0.0045 3383 188
Daily number of trips 45-65 years 0.026 0.0035 698551 11487
Daily number of trips >= 65 years 0.028 0.0052 42613 629
Total trips in the morning peak 120 15.7 24999 1780
Total trips in the evening peak 132 25.2 51343 510
Total trips in the rest of day 292 54.4 2278 23
Travel distance per person 0.193 0.057 9 1
Travel distance <15 years 0.441 0.157 10 1
Travel distance 15-25 years 0.522 0.093 93 4
Travel distance 25-45 years 0.431 0.106 82 3
Travel distance 45-65 years 0.474 0.129 114 8
Travel distance >=65 years 0.400 0.126 60 6
Travel distance by bike 0.02 0.02 5 2
Travel distance by car 0.12 0.1 74 65
Travel distance by car-passenger 0.16 0.09 7 2
Travel distance by DRT 0.23 0.16 3 2
Travel distance by ebike 0.04 0.03 3 2
Travel distance by walk 0.01 0.01 4 3
Travel distance by public transport 0.39 0.19 24 6
Travel distance by multimodal modes  0.25 0.22 127 101
Trips by bike 232 148 121 62
Trips by car 147 97 1 1
Trips by car-passenger 81 60 2 1
Trips by DRT 77 59 1 1
Trips by ebike 83 67 1 1
Trips by walk 133 84 4 2
Trips by public transport 79 42 20 6
Trips by multimodal modes 92 62 1 1

Npnin to obtain reliable estimates.
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