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Abstract
Plane stress numerical simulations of elastic-plastic deformations are commonly
based on in-plane projected equations. It is shown that in case of the isotropic
Von Mises material model the numerical procedure can be simplified and faster
when the full 3D yield criterion is used. Plane stress is preserved by plane stress
trial stresses in the return mapping procedure.
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1 INTRODUCTION

Plane stress numerical simulations of elastic-plastic deformations are commonly based on in-plane projected equations,
that is, direct inclusion of the plane stress constraints into the three-dimensional elastic predictor and plastic corrector
algorithm. In case of a full three-dimensional formulation (without plane stress constraints) and a Von Mises yield
criterion, a closed form return mapping can be obtained, resulting in a linear equation for the scalar plastic multiplier
and subsequently an explicit constitutive function1(pg 223 eq. 7.101 and 7.103). An algorithm for plane stress using the full 3D
constitutive formulation is introduced by de Borst,2 by enforcing plane stress at the structural level rather than in the
constitutive integration algorithm. In this approach the plane stress constraint is satisfied only at converged equilibrium
conditions. For an explicite code this approach is not appropriate as there is no equilibrium iteration. By applying the
in-plane projected equations a nonlinear equation for the scalar plastic multiplier is obtained1(remark 9.8 pg 376). In this
paper it is shown that yet a linear equation for the plastic multiplier and an explicit constitutive function that satisfies
the plane stress constraints can be obtained. Section 2.2 summarizes the plane stress formulation by De Souza Neto.1
Consequences of plane stress projected equations are presented in Section 2.3, and an explicit closed form radial return
algorithm for plane stress in Section 2.4.

2 PLANE STRESS RETURN MAPPING

2.1 The Von Mises yield criterion

The Von Mises yield function is commonly defined by

Φ =
√

3J2 − 𝜎yld
(
𝜖

p)
. (1)
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In tensor notation J2 = 1
2
s ∶ s is the second invariant of the deviator stress:

s = 𝝈 − 1
3

tr(𝝈)I, (2)

𝝈 is the Cauchy stress, I is the second order unit tensor and 𝜎yld(𝜖p) is the unidirectional yield stress function, depending
on the (equivalent) plastic strain 𝜖p.

2.2 Recapitulation of plane stress strategy from Reference 1

The yield function projected to plane stress in matrix-vector notation is:

Φ∗ = q∗ − 𝜎yld
(
𝜖

p) =
√

3
2
𝝈
∗TP∗𝝈∗ − 𝜎yld

(
𝜖

p)
. (3)

For convenience a squared form of the yield function is used instead:

Ψ∗ = 1
2
𝝈
∗TP∗𝝈∗ − 1

3
𝜎

2
yld
(
𝜖

p) (4)

within matrix form

P∗ = 1
3

⎡
⎢
⎢
⎢
⎣

2 −1 0
− 1 2 0
0 0 6

⎤
⎥
⎥
⎥
⎦

(5)

and the Cauchy stress vector

𝝈
∗T = [𝜎x, 𝜎y, 𝜏xy]. (6)

In order to distinguish between plane stress and full 3D an asterisk (*) is added to plane stress related symbols. BesidesΦ
for the root form,Ψ is denoted for the square form respectively, (3) and (4). The in-plane plastic strain increment is then:

Δ𝜺∗p = Δ𝜆𝜕Ψ
∗

𝜕𝝈

= Δ𝜆P∗𝝈∗. (7)

For plane stress the in-plane relation between stresses and strains is derived from the 3D version using Hooke’s law. By
requiring that 𝜎z, 𝜎xz, 𝜎yz vanish, and condensing the corresponding rows and columns from the elasticity matrix, the
elastic in-plane stress-strain relation reduces to:

𝝈
∗ = De

𝜺
e
, 𝜺

e = (𝜺 − 𝜺p) (8)

within matrix notation 𝝈∗ =

[
𝜎x
𝜎y
𝜏xy

]

, De = E
1−𝜈2

⎡
⎢
⎢
⎣

1 𝜈 0
𝜈 1 0
0 0 (1−𝜈)

2

⎤
⎥
⎥
⎦
, 𝜺 =

[
𝜀x
𝜀y

2𝜀xy

]

, 𝜺p =
⎡
⎢
⎢
⎢
⎣

𝜖
p
x

𝜖
p
y

2𝜖p
xy

⎤
⎥
⎥
⎥
⎦

and

𝜀xz = 𝜀yz = 0, 𝜀e
z = −

𝜈

1 − 𝜈
(
𝜀

e
x + 𝜀e

y
)
. (9)

Assuming that at step (n) all stresses and strains are known and satisfy equilibrium, and the next strain increment
Δ𝜺∗n+1 is known, then for the new stress in step (n+1) one can write

𝝈
∗trial
n+1 = 𝝈∗n +DeΔ𝜺∗n+1, (10)

𝝈
∗
n+1 = 𝝈

∗trial
n+1 −DeΔ𝜆P∗𝝈∗n+1. (11)
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2124 VAN ’T HOF et al.

In Reference 1 this is rewritten to:

𝝈
∗
n+1 = [C + Δ𝜆P]−1C𝝈∗trial

n+1 (12)

with

C = (De)−1
. (13)

In contrast to the scalar relation found for sn+1 in the 3D formulation, eq. (7.90) in Reference 1, now an inverse matrix
equation for 𝝈∗n+1 is obtained. When substituting (12) in the quadratic yield function (4), a single scalar nonlinear
equation, having the incremental plastic multiplier Δ𝜆 as the unknown, is obtained (eqs. 9.57–9.59 in Reference 1). The
equation is reported to be nonlinear even in case of perfectly plastic material, opposite to its 3D counterpart. To solve
this nonlinear equation for Δ𝜆 a Newton Raphson procedure is used in Reference 1. Removing the out of plane stress
components from the yield function apparently complicates the determination of the plastic strain increments and the
return mapping. In the next sections is shown how the nonlinearity can be avoided.

2.3 Consequences of plane stress projected equations

For plane stress a (in-plane) deviator stress is defined by De Souza Neto:1

s∗ = P∗𝝈∗, (14)

s∗T =
[

sx, sy, sxy

]
= 1

3

[
(2𝜎x − 𝜎y), (2𝜎y − 𝜎x), 6𝜏xy

]
. (15)

Note: The deviator stress (vector) defined by (14)1 is confusing and different from the (tensor) definition (2) as here
sxy = 2𝜏xy.

For plane stress holds (with 𝝈∗T according to (6)):

𝝈
∗TP∗𝝈∗ = 𝝈∗Ts∗ = 𝜎xsx + 𝜎ysy + 𝜏xysxy, (16)

or

𝝈
∗TP∗𝝈∗ = sxsx + sysy + 𝜏xysxy +

1
3
(𝜎x + 𝜎y)(sx + sy). (17)

The Cauchy stress terms do not directly vanish. However by definition sx + sy ≡ −sz,
Therefore in plane stress sx + sy = −sz = 1

3
(𝜎x + 𝜎y) as 𝜎z = 0

Consequently

1
3
(𝜎x + 𝜎y)(sx + sy) = szsz (18)

and, as the out of plane shear stress components vanish in plane stress:

𝝈
∗TP∗𝝈∗ = sxsx + sysy + 𝜏xysxy + szsz = sxsx + sysy + 2𝜏xy𝜏xy + szsz = s ∶ s = 2J2. (19)

Whereas the out-of-plane shear stress components vanish in plane stress, the deviator normal component sz does not.
Obviously in plane stress the values of the yield functions for plane stress and full 3D are identical:

Ψ∗ = 1
2
𝝈
∗TP∗𝝈∗ − 1

3
𝜎

2
yld
(
𝜖

p) = Ψ = J2 −
1
3
𝜎

2
yld
(
𝜖

p)
. (20)

The full 3D criterion in quadratic form can be expressed similar to the plane stress form (4)

Ψ = 1
2
𝝈

TP𝝈 − 1
3
𝜎

2
yld(𝜖

p) = 0 (21)
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VAN ’T HOF et al. 2125

with

P = 1
3

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −1 −1 0 0 0
− 1 2 −1 0 0 0
− 1 −1 2 0 0 0
0 0 0 6 0 0
0 0 0 0 6 0
0 0 0 0 0 6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (22)

In plane stress:

𝝈
T = [𝜎x, 𝜎y, 𝜎z, 𝜏xy, 𝜏xz, 𝜏yz] = [𝜎x, 𝜎y, 0, 𝜏xy, 0, 0] (23)

and the deviatoric stress vector:

s̃T = (P𝝈)T = 1
3

[
(2𝜎x − 𝜎y), (2𝜎y − 𝜎x), (−𝜎x − 𝜎y), 6𝜏xy, 0, 0

]
=
[

sx, sy, sz, sxy, 0, 0
]
. (24)

Observe that the in-plane deviator stress components in (15) are identical to the corresponding deviator stress component
in (24), however, the nonvanishing deviator-component (sz) is still present in (24) but is missing in (15) due to the plane
stress projection. As a consequence of the plane stress projection, important information thus is lost, resulting in a more
complicated nonlinear solution procedure.

For the Von Mises model replacing (1) by the plane stress projection (4) may be justified if it results in a more simple
solution, but that is not the case as will be shown in the next section. Restricting to plane stress yield criteria may be
required for more sophisticated sheet metal models that are expressed by in-plane stresses only, that is, Barlat et al.,3
Yoshida et al.,4 sheet metal models based on the Hill yield criterion Huetink et al.,5 the Vegter yield criterion Vegter et al.6
The latter model is based on biaxial sheet material tests.

2.4 Closed form radial return algorithm for plane stress

There is no need to stick to Cauchy stresses in the yield function. Also for plane stress the yield function can be expressed
in deviator stress components (19) and (20). Besides, as shown below, a linear equation for the plastic multiplier and
an explicit constitutive function that satisfy the plane stress constraint can be obtained. Requiring that Ψ∗ = 0 at plastic
deformation in plane stress may be replaced by requiring that Ψ = 0, according to (20).

Note that the trial stress obtained by (10) satisfies the plane stress condition and is projected to the 3D stress
vector (23):

𝝈
∗T(trial) = [𝜎x, 𝜎y𝜏xy]trial → 𝝈

T(trial) = [𝜎x, 𝜎y, 0, 𝜏xy, 0, 0]trial (25)

and the deviator stress vector

sT(trial) = [sx, sy, sz, 𝜏xy, 0, 0]trial = [sx, sy,−(sx + sy), 𝜏xy, 0, 0]trial (26)

In order to be compatible with the full 3D formulation (as in Reference 1 (subsection 7.3.1)) a tensor representation is
used in the following elaboration. Confusion about the definition of the deviator stress vector s̃ (24) and the deviator stress
tensor s (2) is then avoided. The components of a deviator stress tensor are:

[s] =
⎡
⎢
⎢
⎢
⎣

sx 𝜏xy 0
𝜏xy sy 0
0 0 sz

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

sx 𝜏xy 0
𝜏xy sy 0
0 0 −(sx + sy)

⎤
⎥
⎥
⎥
⎦

. (27)
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The plastic strain increment (now including the out-of-plane component) is:

Δ𝜺p = Δ𝜆𝜕Ψ
𝜕𝝈

= Δ𝜆s (28)

and

sn+1 = strial
n+1 − 2GΔ𝜺p

. (29)

With substitution of (28):

sn+1 + 2GΔ𝜆sn+1 = strial
n+1 (30)

or

sn+1 =
strial

n+1

(1 + 2GΔ𝜆)
. (31)

Now the plastic multiplier Δ𝜆 is solved by requiring: Ψ(sn+1) = 0

→ Ψ = 1
2
(
𝝈

TP𝝈
)

n+1 −
1
3
𝜎

2
yld
(
𝜖

p
n+1

)
= 1

2
sn+1 ∶ sn+1 −

1
3
𝜎

2
yld
(
𝜖

p
n+1

)
= 0 (32)

or, with (31),

Ψ = 1
2

strial
n+1 ∶ strial

n+1

(1 + 2GΔ𝜆)2
− 1

3
𝜎

2
yld
(
𝜖

p
n+1

)
= 0, (33)

1
2

strial
n+1 ∶ strial

n+1 =
1
3
𝜎

2
yld
(
𝜖

p
n+1

)
(1 + 2GΔ𝜆)2, (34)

√
3
2

strial
n+1 ∶ strial

n+1 = 𝜎yld
(
𝜖

p
n+1

)
(1 + 2GΔ𝜆), (35)

and in case of ideal plasticity an explicit expression for the plastic multiplier is obtained:

Δ𝜆 =

√
3
2
strial

n+1 ∶ strial
n+1 − 𝜎yld

2G𝜎yld
(36)

or

Δ𝜆 = Φtrial

2G𝜎yld
. (37)

This can easily be extended to linearized hardening, see Appendix A.
Substitution of (37) into (31) gives the new deviator stress:

sn+1 =
strial

n+1

(1 + 2GΔ𝜆)
=

strial
n+1(

1 + Φtrial

𝜎yld

) (38)

The in-plane Cauchy stress component can directly be calculated from the in-plane deviator components using the inverse
of matrix P∗:

𝝈
∗
n+1 = P∗−1s∗n+1 (39)
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VAN ’T HOF et al. 2127

with

P∗−1 =
⎡
⎢
⎢
⎢
⎣

2 1 0
1 2 0
0 0 1

2

⎤
⎥
⎥
⎥
⎦

. (40)

Note that matrix P∗ is regular (contrary to its 3D counterpart P) so the inverse exists. Be aware that here for sxy(n+1)
should be substituted sxy(n+1) = 2𝜏xy(n+1) before applying (39), see also the note at (15).

Alternatively the new Cauchy stress can be calculated by substitution of (37) into (11)

𝝈
∗
n+1 = 𝝈

∗trial
n+1 −DeΔ𝜆s∗n+1 = 𝝈

∗trial
n+1 −De Φtrial

2G𝜎yld
s∗n+1 (41)

and

Δ𝜺p = Δ𝜆sn+1 =
Φtrial

2G
strial

n+1

(𝜎yld + Φtrial)
. (42)

3 VERIFICATION

The closed form radial return algorithm for plane stress from Section 2.4 is implemented in Matlab. The response was
compared to simple, square single-element ABAQUS simulations and a simulation with the open source Dieka package
(http://www.dieka.org).

The results coincide very well, see Figure 1.
The the Abaqus mesh consist of one square plane stress element. The square Dieka mesh consist of four (trian-

gular) plane stress elements, see Figure 2. All boundary nodal displacements are prescribed in both simulations in a
way that 𝜀22 = −0.5𝜀11 . The the mid-node displacements in the triangular mesh are the only unconstrained decrees
of freedom.

The material properties are: Youngs Modulus: 210,000 MPa, Poisson’s ratio: 0.3, Yield stress: 400 Mpa, (no hardening).
The simulation with 4 triangular elements is bases on a simplified plane stress version of the Hill yield criterion for

plane stress sheet metal deformation and in-plane isotropy as described by Huetink et al.5 The simplified Hill criterion

F I G U R E 1 Predicted strains and stresses (solid lines), ABAQUS results (dashed lines) and Dieka results (black lines)
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2128 VAN ’T HOF et al.

F I G U R E 2 Triangular mesh, initial and deformed (exaggerated)

can then be written as:

ΦHill =
√

3
2
𝝈

TPHill
𝝈 −

√
(R + 1)

2
(
𝜎yld(𝜖p)

)
(43)

with

PHill = 1
3

⎡
⎢
⎢
⎢
⎣

(R + 1) −R 0
− R (R + 1) 0

0 0 2(2R + 1)

⎤
⎥
⎥
⎥
⎦

, (44)

where R is the ratio of the transverse strain and the thickness strain in a tensile test in the in-plane x-direction: R = 𝜖y

𝜖z
.

For verification R = 1, resulting in isotropy and coinciding with the method described by De Souza Neto et al.1
De Vries et al.7 presented a Return Mapping algorithm for plane stress dedicated to thin walled pipes and vessels. Their

approach is based on a 3D Von Mises yield criterion without a plane stress projection for the yield function. However,
they introduced a constraint for the circumferential stress in the cylindrical pipe or vessel by the so called pressure vessel
equation: 𝜎𝜃 = (pint−pext)D

2t
This constraint and the hardening model make their problem nonlinear.

4 CONCLUSIONS

It is shown that in plane stress plasticity problems it is not required and may not be profitable to directly apply inclusion
of the plane stress constraints into the three-dimensional elastic predictor and plastic corrector algorithm. It is sufficient
to restrict the elastic predictor to plane stress and apply the unconstrained yield function.

Direct inclusion of the plane stress constraints into the yield function will lead to a nonlinear problem even in the
case of an ideally plastic Von Mises criterion, whereas the unconstrained yield function result is a linear equation for the
plastic multiplier. A Newton Raphson procedure can be avoided. The only real required constraint in plane stress is the
calculation of the trial stress.

DATA AVAILABILITY STATEMENT
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APPENDIX . EXTENSION TO LINEARIZED HARDENING

𝜎yld
(
𝜖

p
(n+1)

)
= 𝜎yld

(
𝜖

p
n
)
+

d𝜎yld

d𝜖p
Δ𝜖p = 𝜎yld

(
𝜖

p
n
)
+ hΔ𝜖p (A1)

with the equivalent plastic strain increment Δ𝜖p = Δ𝜆 2
3
𝜎yld . The plastic multiplier (37) changes accordingly:

Δ𝜆 = 3
2

Φtrial

(3G + h)𝜎yld
(A2)

The plastic multiplier obtained from the quadratic yield function differs from the square root formulation obtained in
Reference 1(eq. (7.101)):

Δ𝛾 = Δ𝜆𝜎yld
2
3
= Φtrial

3G + h
. (A3)
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