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We examined the setting in which a variable that is subject to missingness is used
both as an inclusion/exclusion criterion for creating the analytic sample and
subsequently as the primary exposure in the analysis model that is of scientific
interest. An example is cancer stage, where patients with stage IV cancer are
often excluded from the analytic sample, and cancer stage (I to III) is an exposure
variable in the analysis model. We considered two analytic strate-
gies. The first strategy, referred to as “exclude-then-impute,” excludes
subjects for whom the observed value of the target variable is equal
to the specified value and then uses multiple imputation to com-
plete the data in the resultant sample. The second strategy, referred to
as “impute-then-exclude,” first uses multiple imputation to complete
the data and then excludes subjects based on the observed or filled-in values
in the completed samples. Monte Carlo simulations were used to compare
five methods (one based on “exclude-then-impute” and four based on
“impute-then-exclude”) along with the use of a complete case analysis. We
considered both missing completely at random and missing at random miss-
ing data mechanisms. We found that an impute-then-exclude strategy using
substantive model compatible fully conditional specification tended to have
superior performance across 72 different scenarios. We illustrated the
application of these methods using empirical data on patients hospitalized
with heart failure when heart failure subtype was used for cohort creation
(excluding subjects with heart failure with preserved ejection fraction) and was
also an exposure in the analysis model.

K E Y W O R D S

missing data, Monte Carlo simulations, multiple imputation

1 INTRODUCTION

Missing data is common in clinical and epidemiological research. Missing data occurs when the value of a variable is
recorded for some subjects in the sample, but not for all subjects. Failure to correctly account for missing data can lead to
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2 AUSTIN et al.

estimates with reduced precision and to biased parameter estimates. Multiple imputation (MI), developed by Rubin, is a
popular method for addressing missing data.1 MI entails the use of an imputation model to generate M (M > 1) plausible
values for each missing observation, resulting in M complete or filled-in datasets. A separate analysis is conducted in
each of the M complete datasets, with the estimated quantities (eg, regression coefficients) pooled across the M complete
datasets. Unlike single imputation, MI reflects the uncertainty around the missing values, and allows the analyst to recover
some of the lost information. For these reasons, MI is increasingly seen in clinical research as the preferred approach for
addressing missing data.

An issue that has not been addressed in the methodological literature is how best to impute a variable that is used as
an inclusion/exclusion criterion when constructing the analytic sample and that is also an exposure variable of interest
in the analysis model that is of scientific interest. Examples of this occur in the cancer literature. Cancer stage describes
the size of a given cancer and the degree to which it has spread. One common cancer staging system classifies a given
cancer into one of four stages: stage I, stage II, stage III, and stage IV (there is also a stage 0 that denotes the presence of
abnormal cells that have not yet become cancerous).2 Stage IV denotes a cancer that has spread to distant parts of the body.
Many cancer studies exclude patients with stage IV cancers, as these patients have a prognosis that is substantially worse
than patients with non-stage IV cancers.3-7 Thus, cancer stage is often used as an inclusion/exclusion criterion when
creating a study sample. In the study sample, cancer stage can then be used as an exposure variable in the subsequent
analysis model that is of scientific interest. Thus, the outcome (eg, cause-specific mortality) is regressed on cancer stage
(stages I to III) and a set of covariates, allowing the analyst to estimate the independent association of cancer stage with
the outcome.

Cancer stage is often subject to missingness, so that cancer stage is not documented for some subjects. The likelihood
of missing data on cancer stage can depend on type of cancer, issues of data quality, characteristics of patients with poor
life expectancy, and characteristics of patients associated with poor access to quality health services.8 Research has sug-
gested that the proportion of missing data on cancer stage is higher in the elderly, those with high levels of comorbidity or
complex care needs, and those in institutionalized settings.9-11 Similarly, race, gender, marital status, place of residence,
and receipt of surgical treatment have also been associated with missing data on cancer stage.12 In addition, there is evi-
dence that patients with missing data on cancer stage have survival probabilities that lie between regional and advanced
(metastatic) disease.13,14 For these reasons, one can assume that when cancer stage data are missing, that they are not
missing completely at random (MCAR). Prior studies have suggested using MI to address the issue of missing data on can-
cer stage in population-based cancer registries under the assumption that missing data mechanism is missing at random
(MAR).15,16

The best strategy has not been determined for imputing missing data when a variable that is subject to missingness
is used both for inclusion/exclusion criteria and as an independent exposure variable in the subsequent analysis model.
In the cancer literature, some studies have used what we refer to as an “exclude-then-impute” strategy.17-19 Using this
strategy, subjects who have documented evidence of a stage IV cancer are excluded from the sample. The resultant sample
consists of those subjects with documented evidence of stage I, II, or III cancer or who have missing data on cancer stage.
Within this sample, MI is used to fill in missing values of cancer stage. Since the only observed values of cancer stage in
this restricted sample are I, II, or III, subjects who have missing cancer stage are restricted to having one of these 3 values
imputed to fill in missing values of cancer stage. An alternative strategy can be referred to as “impute-then-exclude.”
Using this strategy, MI is applied in the full original sample to fill in missing values of cancer stage (allowing some of the
filled in values to be stage IV). Then, in each of the completed samples, stage is used as an inclusion/exclusion criterion
to exclude those with stage IV cancer. In each of the resultant restricted samples, the analysis model is fit in which the
outcome is regressed on cancer stage and a set of covariates. Despite the lack of methodological studies examining the
relative merits of these two strategies, the “exclude-then-impute” strategy has been used in the cancer literature.17-19 From
a theoretical perspective, the “impute-then-exclude” strategy would appear to be the better option, as it allows imputed
values of stage to take on any of the initially observed values (stage I to stage IV) (assuming those with stage 0 were
initially excluded). However, the “impute-then-exclude” approach could lead to bias in the pooled variance estimation
due to incompatibility, in that the sample used for imputation differs from the sample used for the substantive analysis (ie,
the analysis sample differs from the imputation sample).20 Given the lack of methodological studies examining these two
approaches, and the potential that the “impute-then-exclude” approach can suffer from incompatibility, it is important
that this question be addressed rigorously. We note that these two strategies are intended for use in observational studies,
rather than in randomized controlled trials, where there is less likely to be missing data on those variables that are used
for inclusion/exclusion criteria.
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AUSTIN et al. 3

In a recent study that developed a prognostic model for use in women with breast cancer, women with metastatic
cancer (equivalent to stage IV cancer) were excluded and then MI was conducted in the resultant restricted sample.17 In
another study examining breast cancer risk factors and survival by tumor subtype, the authors excluded those with stage
IV breast cancer, and then used imputation in the resultant restricted sample to impute stage for those with missing data
on stage.18 Similarly, in a recent study comparing laparoscopic versus open surgery for rectal cancer, the authors excluded
subjects with stage IV cancer and then imputed stage for those with missing stage in the resultant sample.19 Given the lack
of methodological studies evaluating the performance of the impute-then-exclude and the exclude-then-impute strategies,
it is not known what the consequences were of using the exclude-then-impute approach in these studies.

The objective of the current article was to compare the relative performance of two strategies to imputation,
exclude-then-impute versus impute-then-exclude, when a variable that is subject to missingness is used both as an inclu-
sion/exclusion criterion for cohort creation and as an exposure variable of interest in the analysis model. The article is
structured as follows: In Section 2, we describe a series of Monte Carlo simulations that were used to address this question.
In Section 3, we report the results of these simulations. In Section 4, we provide a case study illustrating the application
of these two strategies. Finally, in Section 5, we summarize our findings and place them in the context of the existing
literature.

2 MONTE CARLO SIMULATION METHODS

We conducted an extensive series of Monte Carlo simulations to compare the relative performance of
“exclude-then-impute” and “impute-then-exclude” when a variable that is subject to missingness is used both for cohort
creation and as the primary exposure variable in the analysis model. To simplify the simulations and their reporting,
we focus on a setting in which the target variable is a 3-level categorical variable and subjects from one level of this
variable are excluded from the analytic sample. We consider three strategies for dealing with missing data: (i) a complete
case analysis; (ii) “exclude-then-impute,” (iii) “impute-then-exclude.” With the latter strategy we consider four differ-
ent methods for imputing missing data. To simplify the design of the simulations, we explicitly assumed that only this
categorical variable is subject to missingness and that the other variables are not subject to missingness.

2.1 Factors in the Monte Carlo simulations

Let Z denote the 3-level categorical target variable that is used for both cohort creation and as the primary exposure
variable in the analysis model. Z takes on three values: 1, 2, and 3, and subjects with Z = 3 are excluded from the analysis
sample. We allowed two factors to vary in our simulations: (i) pZ=3 = Pr(Z = 3), the proportion of subjects for whom Z = 3;
(ii) pmissing, the proportion of subjects for whom Z is missing. The former took six values: from 0.1 to 0.6 in increments
of 0.1, while the latter took 12 values: from 0.05 to 0.60 in increments of 0.05. We thus considered 72 different scenarios
(6× 12) in a full factorial design.

2.2 Data-generating process

We simulated data for a super-population of size 1 000 000. For each subject we generated a 3-level exposure variable
from a multinomial distribution, such that the probability of each of the first two levels was Pr(Z = 1) = Pr(Z = 2) = 0.5
(1 − pZ=3), while the probability of the third level was Pr(Z = 3) = pZ=3. We then generated a continuous baseline
covariate, X , such that the mean of X varied across the levels of Z. X followed a normal distribution with SD equal
to 1 within each of the three levels of Z. The mean of X was −0.2, 0, and 0.2 in those with Z = 1, Z = 2, and Z = 3,
respectively. In the simulations that follow, the categorical variable Z will be used both as an inclusion/exclusion
criterion when creating the analytic sample and as the exposure of interest in the analysis model that is fit in the restricted
sample that excludes those with Z = 3.

Having generated a categorical exposure variable and a continuous baseline covariate, we then generated a binary
outcome Y using a logistic model. This is done in such a way that the log-odds of the outcome varies across the levels of
Z and so that the relationship between X and the log-odds of the outcome is different in those with Z = 3 than in those
with Z = 1 or Z = 2:
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4 AUSTIN et al.

logit(Pr(Y = 1)) =
⎧
⎪
⎨
⎪
⎩

𝛽0 + 𝛽3X if Z = 1,
𝛽0 + 𝛽1 + 𝛽3X if Z = 2,
𝛽0 + 𝛽2 + (𝛽3 + 𝛽4)X if Z = 3.

(1)

We have incorporated an interaction between the categorical variable Z and the continuous variable X , such that the
slope for X differs between those with Z = 3 and those with Z = 1 and Z = 2. The inclusion of this interaction was
motivated by the cancer stage variable in the cancer literature. As noted above, subjects with stage IV cancers are
often excluded from studies since their prognosis is very different from those subjects with stage I, II, or III cancers.
Furthermore, the association of covariates with the outcome may differ in those with stage IV cancers from the
association in those with other stages. The true values of the regression coefficients were: 𝛽0 = 0.25, 𝛽1 = log(0.75),
𝛽2 = log(0.50), 𝛽3 = log(1.5), and 𝛽4 = log(2) − log(1.5). In the restricted sample consisting of those subjects for whom
Z = 1 or Z = 2, the analysis model of interest is logit(Pr(Y = 1)) = 𝛽0 + 𝛽1I(Z = 2) + 𝛽3X . Thus, there is a common slope
for X , while the odds of the outcome differs for those with Z = 2 compared to those with Z = 1, after adjusting for X .

Having generated Z (a 3-level categorical variable), X (a continuous covariate), and Y (a binary outcome), we then
induced missing data in the super-population (we also retained a copy of the super-population in which no data were
missing). We induced missingness only in Z. This was done using two different mechanisms: (i) MCAR; (ii) MAR.1
Under each missing data mechanism, the proportion of subjects with missing data was equal to pmissing. Under a MCAR
mechanism, the probability that Z was set to missing was equal to pmissing for all subjects regardless of their values
of X , Z, and Y . Under a MAR mechanism, the likelihood that Z was set to missing was related to both X and Y (but not to
the value of Z itself, otherwise the data would be missing not at random [MNAR]). In the missing data model, the weight
for X was twice the weight for Y .

2.3 Analyzes in the simulated datasets

We drew a random sample of size 1000 from the super-population. This was done twice, first from the super-population
with no missing data (as noted above a copy of the super-population was retained in which no data were missing), second
from the super-population that was subject to missing data.

In the random sample with no missing data (drawn from the super-population in which no data were set to missing),
we excluded subjects with Z = 3 and fit the analysis model, in which the binary outcome was regressed on both Z and X
using a logistic regression model. The estimate of the three regression coefficients (the intercept, and the coefficients for
Z and X) and their standard errors were extracted. We refer to this analysis as the “no missing data” analysis. This reflects
the analysis that would be conducted had missing data not occurred. This analysis will serve as the “gold standard” against
which the other strategies will be compared.

We now describe analyzes for the three strategies for dealing with missing data: a complete case analysis,
“exclude-then-impute” and “impute-then exclude.” The first strategy was to conduct a complete case analysis. In the ran-
dom sample that was subject to missingness we excluded subjects with missing data. In this restricted sample, we then
excluded subjects with Z = 3. In this further restricted sample, we fit the analysis model as above. We refer to this strategy
as the “complete case” strategy.

The second strategy was “exclude-then-impute.” In the random sample that was subject to missingness we excluded
those subjects for whom Z = 3. In the resultant restricted sample, MI was used to fill in missing values of Z. Both X and
Y were included in the imputation model. We created M completed versions of the sample, where M was set equal to the
percentage of subjects in the sample for whom Z was missing.21 In each complete dataset the analysis model described
above was fit. Regression coefficients and their standard errors were pooled across the M imputed datasets using Rubin’s
Rules.1 We refer to this strategy as “exclude-then-impute.”

The third strategy was “impute-then-exclude.” In the random sample that was subject to missingness we used MI to
fill in missing values for Z. We created M completed versions of the sample, where M was equal to the percentage of
subjects in the sample for whom Z was missing. In each completed dataset we then excluded those subjects for whom
Z = 3 and fit the analysis model described above in the resultant restricted sample. Note that a given subject for whom Z
was missing, could have an imputed value of Z = 3 in some of the imputed datasets and Z≠ 3 in other imputed datasets.
Consequently, this subject will be excluded from some of the analysis samples and included in some of the analysis
samples. Thus there may be variation in the size of the complete datasets. Regression coefficients and their standard
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AUSTIN et al. 5

errors were pooled across the M imputed datasets using Rubin’s Rules. Within the “impute-then-exclude” strategy we
considered four different methods to impute missing values of Z. First, only X and Y were included as main effects
in the imputation model. We refer to this method as “impute-then-exclude (no interaction).” Second, a multiplicative
interaction between X and Z was created in the random sample (if Z were missing then the value of the interaction
term would be missing as well). In this second method of imputation, X , Y , and the interaction between X and Z were
included in the imputation model for Z. The interaction between X and Z was also imputed using the “just another
variable” (JAV) approach to imputing interactions.21 This method is referred to as “impute-then-exclude” (interaction -
JAV). The third method to imputation was similar to the second, except that passive imputation was done for the miss-
ing interaction terms between X and Z (ie, when Z was missing, its value was imputed and then the product X*Z was
computed). This method is referred to as “impute-then-exclude” (interaction - passive). The fourth method used sub-
stantive model compatible fully conditional specification (SMCFCS) to impute missing values.22 This method requires
the specification of an analysis model of interest. Since we are performing MI in the full sample prior to exclusion of
those with Z = 3, we used the analysis model that was used to generate outcomes in the full sample (this model is rep-
resented by formula (1) above). Note that for this method, the analysis model in the full sample differs from the model
of scientific interest, which is fit only in those with Z = 1 or Z = 2. We refer to this method as “impute-then-exclude
(interaction - SMCFCS).”

We thus considered three strategies, the latter of which included four different methods: complete case
analysis, “exclude-then-impute,” “impute-then-exclude (no interaction),” “impute-then-exclude (interaction-JAV),”
“impute-then-exclude (interaction - passive),” and “impute-then-exclude (interaction - SMCFCS).” Using each of these
six strategies/methods, we obtained the estimated regression coefficients and their associated standard errors (pooled
across the M complete datasets using Rubin’s Rules). Using these two quantities, 95% confidence intervals for the regres-
sion parameters were constructed in each of the simulated datasets using standard normal-theory methods. We repeated
the above process 1000 times, so that our simulations used 1000 simulation replicates. For each of the 6 methods, we
determined the mean of each of the three regression coefficients in the analysis model (𝛽1, 𝛽2, and 𝛽3) across the 1000

simulation replicates. The relative bias in each estimated coefficient was determined by: 100 ×
1

1,000

(1,000∑

i=1
𝛽

i
j−𝛽j

)

𝛽j
, j = 0, 1, 3,

where 𝛽 i
j denotes the pooled estimate of the jth regression coefficient in the ith simulation replicate. We also estimated the

empirical coverage rate of estimated 95% confidences as the proportion of constructed confidence intervals that contained
the true value of the parameter.

The above process was done once using a MCAR missing data mechanism and once using a MAR missing data
mechanism.

2.4 Software

The simulations were conducted using the R statistical programming language (version 3.6.3).23 The missing data mech-
anism was implemented using the ampute function from the mice package (version 3.13.0),24 while multiple imputation
using the MICE algorithm was done using the mice function. SMCFCS was implemented using the SMCFCS function
from the SMCFCS package (version 1.4.0).22

3 MONTE CARLO SIMULATION RESULTS

We summarize our results separately for the two missing data mechanisms (MCAR vs. MAR).

3.1 MCAR missing data mechanism

The relative bias in estimating the regression coefficients is reported in Figure 1 (𝛽0 - the regression intercept), Figure 2
(𝛽1 - the regression slope for Z = 2), and Figure 3 (𝛽3 - the regression slope for X). Each figure consisted of six
panels, one for each of the values of Pr(Z = 3). On each panel we have superimposed a horizontal line denoting a relative
bias of 0%.
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6 AUSTIN et al.

F I G U R E 1 Relative bias in estimating 𝛽0 (intercept) (MCAR)

The exclude-then-impute strategy tended to result in the greatest relative bias in estimating the intercept (𝛽0), with
the relative bias increasing with prevalence of missing data and as Pr(Z = 3) increased. Impute-then-exclude (no interac-
tions; interactions - JAV; interactions - passive) resulted in modest bias when the prevalence of missing data was high and
Pr(Z = 3)≥ 0.40. The complete case analysis and impute-then-exclude (interaction - SMCFCS) tended to result in esti-
mates of the intercept with minimal bias across all scenarios. The increasing bias observed for the exclude-then-impute
strategy may be explained by noting that the intercept in a logistic regression model is related to the probability of the
outcome for those with X = 0 in the reference category of Z. Using an exclude-then-impute strategy, subjects for whom
Z is missing have imputed values equal to either Z = 1 or Z = 2, whereas some of these subjects truly had Z = 3. The
value of 𝛽2 = log(0.50) (the regression coefficient for Z = 3) in the data-generating process implies that subjects with Z = 3
have a higher probability of the outcome than do subjects in the reference level (Z = 1). Incorrectly including subjects
who truly have Z = 3, but whose imputed value of Z is Z = 1, in the analysis sample will result in the estimated intercept
being biased. As the proportion of subjects with missing data increases, an increasing proportion of subjects will be
misclassified.

When estimating the slope for Z = 2 (𝛽1), most methods tended to result in estimates with modest bias when both the
prevalence of missing data was >0.50 and Pr(Z = 3)≥ 0.40.

When estimating the slope for X (𝛽3), the complete case analysis and impute-then-exclude (interaction - SMCFCS)
tended to result in estimates with minimal bias. With the other four methods, bias increased with both the increas-
ing prevalence of missing data and as Pr(Z = 3) increased. A potential explanation for the bias observed when using
exclude-then-impute is similar to that provided above. Of those subjects who truly have Z = 3, for whom there is a dif-
ferent X slope, those with missing data will be imputed as having Z = 1 or Z = 2. The inclusion of these subjects will
therefore result in bias in estimating the common slope for Z = 1 and Z = 2. Three of four impute-then-exclude methods
(excluding the interaction - SMCFCS strategy) likely resulted in bias in the estimated slope for X because the imputation
model was not able to account for the fact that in the original full sample, the slope for X differed in those with Z = 3
than it did in those with Z = 1 or Z = 2. Thanks to the specification of the correct complete-data analysis model, only the
SMCFCS strategy was able to account for this, thereby not introducing any subsequent bias.
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AUSTIN et al. 7

F I G U R E 2 Relative bias in estimating 𝛽1 (slope for Z = 2) (MCAR)

F I G U R E 3 Relative bias in estimating 𝛽3 (slope for X) (MCAR)
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8 AUSTIN et al.

Empirical coverage rates of estimated 95% confidence intervals are reported in Figure 4 (confidence intervals for 𝛽1,
the slope for Z = 2) and Figure 5 (confidence intervals for 𝛽3, the slope for X). Each figure consists of six panels, one for
each value of Pr(Z = 3). On each panel we have superimposed a horizontal line denoting the advertised coverage rate
of 95%. Due to our use of 1000 simulation iterations, an empirical coverage rate that is less than 93.65% or greater than
96.35% would be statistically significantly different from the advertised rate based on a standard normal-theory test. We
have added two additional horizontal lines denoting these two thresholds.

Confidence intervals for 𝛽1 tended to have the correct coverage rate except when the prevalence of missing data was
high and one of three methods were used: impute-then-exclude (no interaction), impute-then-exclude (interaction - JAV),
and impute-then-exclude (interaction - passive). In this case, empirical coverage rates tended to be below the advertised
rate. We hypothesize that these lower than advertised coverage rates were due to the minor bias in estimating 𝛽1 that was
observed above (Figure 2).

Confidence intervals for 𝛽3 tended to have the advertised coverage rate except with the exclude-then-impute strategy
when Pr(Z = 3)≥ 0.40. Impute-then-exclude (interaction - passive) had coverage rates slightly below the advertised rate
when Pr(Z = 3)≥ 0.40 and the prevalence of missing data was very high. In exclude-then-impute the proportion of impu-
tation errors (ie, imputing Z = 2 instead of true Z = 3) rises with P(Z = 3). Thus, in imputed Z = 2 we see more Y events
than there should be. This contributes to the bias in the intercept 𝛽0, and potentially, as a side effect, increases the proba-
bility of events to a range where the variance of the binomial becomes too small, leading to confidence intervals that are
too short.

In examining Figures 1-3, we note that there is a minor relative bias for the “no missing data” analysis in many of
the panels. However, the magnitude of the bias varies across panels. Furthermore, in Figures 4 and 5, the empirical
coverage rate for this analysis is never statistically significantly different from the advertised rate of 95%. This suggests
that the observed relative bias for the “no missing data” analysis in any given scenario simply reflects random variation.
We hypothesize that, with larger sample sizes, the magnitude of the relative bias would decrease across scenarios.

3.2 MAR missing data mechanism

Relative bias in estimating the regression coefficients is reported in Figure 6 (𝛽0 - the regression intercept), Figure 7 (𝛽1
- the regression slope for Z = 2), and Figure 8 (𝛽3 - the regression slope for X). These figures have a similar structure to
Figures 1 to 3.

When estimating the regression intercept, we do not show the relative bias for the complete case analysis, as its
relative bias was as large as 200%. Including it on the figures made it difficult to differentiate between the performance
of the other strategies. Of the different strategies, impute-then-exclude (interaction - SMCFCS) tended to have the best
performance, followed by impute-then-exclude (interaction - passive). When using impute-then-exclude (no interaction)
or impute-then-exclude (interaction - JAV), relative bias tended to increase as Pr(Z) increased and as the prevalence of
missing data increased. Exclude-then-impute tended to perform poorly when Pr(Z = 3)≥ 0.4. The large bias in estimat-
ing 𝛽0 when using the complete case analysis is likely due to the fact that under a MAR missing data mechanism, the
complete case sample is not a representative sample of included subjects (ie, of those with Z = 1 or Z = 2) and that the
prevalence of the outcome differs in the complete cases compared to the prevalence of the outcome in the full analysis
sample if there were no missing data. Subjects with missing data who truly had Z = 3 will have a higher prevalence of
the outcome. However, these subjects will have imputed values of Z that are either Z = 1 or Z = 2, resulting in biased
estimates of the regression intercept.

When estimating the slope for Z = 2, impute-then-exclude (interaction - JAV) tended to result in the largest bias, with
the relative bias increasing as Pr(Z = 3) increased and as the prevalence of missing data increased. The remaining methods
tended to have comparable performance to one another. We are unsure as to why the JAV approach performs poorly
compared to the passive imputation approach. We would note that not all statisticians would prefer the JAV approach
over the passive imputation approach.

When estimating the slope for X , the complete case strategy resulted in the largest relative biases, with a relative bias
that tended to increase with increasing prevalence of missing data. This bias is likely because, under a MAR missing data
mechanism, the complete case analysis sample is a nonrepresentative sample of the full analysis sample. Subjects with
missing data who truly had Z = 3 will have a different slope for X than will subjects with Z = 1 or Z = 2. However, these
subjects will have imputed values of Z that are either Z = 1 or Z = 2, resulting in biased estimates of the regression slope
for X . Of the remaining methods, impute-then-exclude (interaction - SMCFCS) tended to result in essentially unbiased
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AUSTIN et al. 9

F I G U R E 4 Coverage of 95% CIs for 𝛽1 (slope for Z = 2) (MCAR)

F I G U R E 5 Coverage of 95% CIs for 𝛽3 (slope for X) (MCAR)

 10970258, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9685 by C
ochrane N

etherlands, W
iley O

nline L
ibrary on [06/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 AUSTIN et al.

F I G U R E 6 Relative bias in estimating 𝛽0 (intercept) (MAR)

F I G U R E 7 Relative bias in estimating 𝛽1 (slope for Z = 2) (MAR)
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AUSTIN et al. 11

F I G U R E 8 Relative bias in estimating 𝛽3 (slope for X) (MAR)

F I G U R E 9 Coverage of 95% CIs for 𝛽1 (slope for Z = 2) (MAR)
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12 AUSTIN et al.

F I G U R E 10 Coverage of 95% CIs for 𝛽3 (slope for X) (MAR)

estimates. Exclude-then-impute tended to result in bias that increased as Pr(Z = 3) increased. Impute-then-exclude (no
interaction) and impute-then-exclude (interaction - JAV) resulted in increasing bias as both Pr(Z = 3) and the prevalence
of missing data increased. A similar phenomenon was observed for impute-then-exclude (interaction - passive), although
it tended to result in less bias than the former two methods.

Empirical coverage rates of estimated 95% confidence intervals are reported in Figure 9 (confidence intervals for 𝛽1,
the slope for Z = 2) and Figure 10 (confidence intervals for 𝛽3, the slope for X). These figures have a similar structure to
Figures 4 and 5.

Confidence intervals for 𝛽1 tended to have the correct coverage rate except when the prevalence of missing data was
high and one of three strategies were used: impute-then-exclude (no interaction), impute-then-exclude (interaction - JAV),
and impute-then-exclude (interaction - passive). In this case, empirical coverage rates tended to be below the advertised
rate.

Confidence intervals for 𝛽3 tended to have the advertised coverage rate except when either of two strategies was
used: complete case analysis or exclude-then-impute (with the latter tending to have the advertised coverage rate when
Pr(Z = 3)≤ 0.3). The suboptimal coverage rates when using the complete case analysis are likely due to the substantial
bias in estimating 𝛽3 observed above (Figure 8).

4 CASE STUDY

We provide a case study to illustrate the application of the strategies described above. The case study consisted of patients
hospitalized with heart failure (HF). HF is classified into one of three types: HF with reduced ejection fraction (HFrEF),
HF with a mid-range ejection fraction (HFmEF), and HF with preserved ejection fraction (HFpEF). Ejection fraction
(EF) is typically measured using echocardiography, which is not done for all patients, and so HF type is subject to
missingness. In some instances, EF is not measured because the hospital to which the patient was admitted had no
facilities for echocardiography. In other instances, EF is not assessed due to chance alone. Rarely, the patient died before
echocardiography could be done. Given that the imputation model included death and age (which is associated with
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AUSTIN et al. 13

death), it is reasonable to assume that missing data are MAR. Neither age nor death are subject to missingness as they
can be obtained from linkage with provincial registries that contain these data for all residents of Ontario.

Our objective is to form a restricted sample consisting of those with HFrEF and HFmEF (ie, excluding those with
HFpEF) and then use logistic regression to regress death within 1 year on HF type (HFrEF vs. HFmEF) and age.

4.1 Methods

The initial sample consisted of 9943 patients hospitalized with a diagnosis of HF. These data were from the first phase of
the enhanced feedback for effective cardiac treatment (EFFECT) study,25 which collected data on patients hospitalized
with HF in Ontario, Canada between 1999 and 2001. Of these patients, 2544 (26%) had documented HFrEF, 633 (6%) had
documented HFmEF, 1261 (13%) had documented HFpEF, while HF type was missing for 5505 (55%).

The outcome was a binary variable denoting death within 1 year of hospital admission. Of the 9943 patients, 3297
(33.2%) died within 1 year of hospital admission. The analysis model was a logistic regression model in which the binary
outcome was regressed on HF type and age.

We used the six strategies described above to create an analysis sample consisting of those with HFrEF and HFmEF.
When using MI, we created M complete samples, where M was the percentage of subjects with missing data. When using
exclude-then-impute, we used M = 63, while when using impute-then-exclude, we used M = 55. For a given strategy
(except the complete case strategy), a separate logistic regression model was fit in each of the M complete samples and
the estimated regression coefficients were pooled using Rubin’s Rules.

4.2 Results

The estimated regression coefficients for the intercept, the log-odds ratio for HFmEF versus HFrEF, and the log-odds ratio
for age (per 10-year increase in age) are reported in Figure 11. There is one panel each of the three regression coefficients.

F I G U R E 11 Coefficient estimates from case study
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14 AUSTIN et al.

Each panel consists of a forest plot depicting the estimated regression coefficient and its associated 95% confidence interval
obtained using each of the six strategies.

The six strategies resulted in qualitatively similar estimates of the intercept. The point estimate ranged from −4.09
(exclude-then-impute) to −3.91 (complete case analysis).

When estimating the log-odds ratio for HFmEF versus HFrEF, the use of impute-then-exclude (Interaction - JAV)
and impute-then-exclude (interaction - passive) resulted in estimates that were very similar to one another
(approximately −0.2, equivalent to an odds ratio of 0.82), whereas the other four methods resulted in estimated log-odds
ratios that were close to −0.4, which is equivalent to an odds ratio of approximately 0.67.

When estimating the log-odds ratio for a 10-year increase in age, the complete case analysis resulted in a log-odds
ratio of 0.42, corresponding to an odds ratio of 1.52. The other five strategies produced log-odds ratios of approximately
0.45, corresponding to odds ratios of approximately 1.57.

The greatest observable difference between strategies was when estimating the effect of HFmEF versus HFrEF.
Interestingly, impute-then-exclude (interaction with JAV or passive) produced qualitatively different estimates than the
other four methods. Based on the simulations, we would suggest that the estimate produced by impute-then-exclude
(interaction - SMCFCS) most likely produced the estimate that was the closest to the truth.

5 DISCUSSION

We examined the setting in which a variable that is subject to missingness is used both as an inclusion/exclusion criterion
in creating the analytic cohort and as an exposure variable in the analysis model that is of scientific interest. We compared
the relative performance of a strategy based on exclude-then-impute with that of four methods based on a strategy of
impute-then-exclude. These strategies were also compared with a complete case analysis strategy. We found that a strategy
based on impute-then-exclude using SMCFCS imputation in the original sample tended to have very good performance
across a wide range of scenarios.

We are unaware of previous methodological studies that have examined how to account for missing data in variables
that are used both for inclusion/exclusion criteria and that are included as exposures in the subsequent analysis model.
As discussed in the Introduction, such variables are common in the cancer literature, where cancer stage is often used to
exclude subjects with stage IV cancer from the analytic sample. Our case study included data from cardiology, where heart
failure subtype is an important variable that is both subject to missingness and can that be used as an inclusion/exclusion
criterion when creating the analytic sample. In the case study, data on heart failure subtype was missing for 55% of sub-
jects. A study by Giganti and Shepherd examined the setting in which a variable that is subject to missingness is used for
a study exclusion criterion.20 In their simulations, they considered a setting with a continuous variable that was subject
to missingness, and that subjects whose values of this continuous variable were greater than a specified threshold were
included in the analysis sample (whereas we considered a setting with a categorical variable that was subject to missing-
ness and was used for study inclusion/exclusion). They compared the Rubin’s Rules estimate of the variance of the pooled
estimate with that of an estimator proposed by Robins and Wang.26 They found that the Rubin’s Rules estimator resulted
in estimated 95% confidence intervals that were conservative. The variance estimator proposed by Robins and Wang is
“consistent even when the imputation and analysis models are misspecified and incompatible with one another.”26 We
did not consider the Robins and Wang variance estimator for two reasons. First, we did not consider this estimator due to
the lack of existing statistical software packages for obtaining this estimate. As noted by Hughes and colleagues, this esti-
mator “has the potential to provide more robust inferences, should the considerable challenges in provision of software
implementing the procedure be overcome.”27 Similarly, Giganti and Shepherd state that “creating software that general-
ized the RW estimator would be a challenging but worthy endeavor.”20 Given the lack of software for implementing this
method, we did not pursue it in the current study. Second, the Robins and Wang estimator requires that the imputation
model is a fully parametric probability model.26 Such a full parametric probability model is not, in general, provided by
the mice algorithm that we used for imputing missing data. Our use of Rubin’s Rules for estimating the variance of the
estimated regression coefficients is unlikely to be too problematic in this setting. While Giganti and Shepherd found that
the Robins and Wang estimator was more efficient (ie, the estimated variance was smaller) than the Rubin’s Rules esti-
mator, efficiency is unlikely to be the cause of the biases that we observed. Furthermore, Giganti and Shepherd found that
the use of Rubin’s Rules resulted in estimated 95% confidence intervals that were conservative (ie, the empirical coverage
rates exceeded the advertised rate). We would judge this to be a lesser problem than having confidence intervals whose
empirical coverage rates were lower than the advertised rate. We suggest that the use of Rubin’s Rules was satisfactory
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AUSTIN et al. 15

in the current study as the estimated confidence achieved at least the advertised coverage rates and a smaller variance
estimate would have been unlikely to affect our conclusions.

The current study is subject to certain limitations. First, we relied on the use of Monte Carlo simulations to examine the
relative performance of different strategies. Due to the computational complexity of our simulations, we were restricted to
considering a limited number of scenarios (eg, the simulations under the MAR scenarios when using impute-then-exclude
(interaction - passive) required 237 h (9.9 days) while the simulations using the impute-then-exclude (interaction - JAV)
method under the MAR scenarios required 310 h (12.9 days)). However, our 72 scenarios included a wide range of preva-
lences of missing data (from 0.05 to 0.60 in increments of 0.05) and a wide range of prevalences of level of the categorical
variable that was used for excluding subjects from the analytic sample (from 0.10 to 0.60 in increments of 0.10). These
72 scenarios were sufficient to illustrate that there were scenarios in which some strategies resulted in substantial bias.
For instance, the use of impute-then-exclude (interaction - JAV) resulted in biased estimation of both the log-odds ratio
for the categorical variable and the continuous variable when Pr(Z = 3) was at least 0.40 and the prevalence of miss-
ing data was moderate to high under a MAR missing data mechanism. Similarly, there were scenarios in which the
exclude-then-impute strategy led to biased estimation of the log-odds ratio for the continuous variable. Because of these
computational limitations, we limited our focus to settings in which the categorical variable that was subject to miss-
ingness was a 3-level categorical variable. We also restricted our focus to settings in which the sample size was 1000.
It is possible that the performance of SMCFCS may deteriorate in settings in which the categorical variable has more
than 3 levels or when the sample size is different. Second, in both the simulations and the case study, we assumed that
both the outcome and the other baseline covariates were not subject to missingness. In the case study this was a realistic
assumption, as these variables were obtained from provincial registries that contain demographic data on all residents of
Ontario. In different settings, other covariates may be subject to missingness. We hypothesize that, if the data are MAR
and an appropriate imputation model is used, then the results of the current simulations would hold. Third, we restricted
our examination to two different missing data mechanisms: MCAR and MAR. We did not examine settings in which the
missing data mechanism for the 3-level categorical variable was missing not at random (MNAR). We hypothesize that,
were the missing data mechanism to be MNAR, the different methods that were examined would fail to perform ade-
quately. Consistent with many studies examining the performance of MI, we have restricted our focus to MCAR and MAR
missing data mechanisms.

While we commented on several specific observations when summarizing the results of the Monte Carlo simulations
above, there are a few overarching themes that merit further discussion. First, estimation of 𝛽0 (the intercept) and 𝛽3 (the
slope for X) were biased with the complete case analysis under the MAR mechanism for missing data, but not under the
MCAR mechanism for missing data. These differences in bias are due entirely to the missing data mechanism. Under a
MCAR analysis, those with complete data are representative of the entire sample. Thus, a complete case analysis would
not be expected to result in bias. Second, in many scenarios bias increased with increasing prevalence of missing data and
as the Pr(Z = 3) increased. Third, we frequently observed that bias increased and coverage decreased as the proportion
of missing data increased and as Pr(Z = 3) increased. For three of the impute-then-exclude methods (all but the interac-
tions - SMCFCS approach), we suggest that this is due to incompatibility between the imputation model and the analysis
model. For the exclude-then-impute strategy, we suggest that this is due to systematic misclassification in Z in subjects for
whom Z was missing. Of those subjects who had missing Z, some truly had Z = 3. However, for all of these subjects, the
imputed value of Z would be either 1 or 2 when using exclude-then-impute. The inclusion of these subjects in the analysis
sample would then introduce bias in the estimation of the coefficients of the analysis model (which would also affect cov-
erage rates of 95% confidence intervals). The degree of systematic misclassification would increase as the proportion of
missing data increased and as Pr(Z = 3) increased. Fourth, impute-then-exclude (SMCFCS) was observed to perform well
across all scenarios. We suggest that the good performance of this method was due to the specification of an outcomes
model in the full sample that was consistent with the analysis model in the restricted sample. By including this addi-
tional information, we were able to resolve the issue of incompatibility between the imputation sample and the analysis
sample.

The success of the impute-then-exclude strategy with the SMCFCS method for imputation depends on the correct spec-
ification of the outcome (or analysis) model in the full sample. In both simulation and application, we allowed for different
slopes across the three groups. In the simulation context we know that the assumption is correct, but in the application
it remains an assumption. If the outcome model would have (incorrectly) specified equal slopes across the three levels of
Z (ie, a main effects model), then the results from SMCFCS would have been no better than the “impute-then-exclude”
no-interaction method. In the analytic problem of this article, the outcome model in the full sample differs from the
model of scientific interest, which includes only Z = 1 and Z = 2. Thus, in practice the information on the nature of
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16 AUSTIN et al.

the relations for subjects with Z = 3 could be scant as these subjects are generally removed before analysis. Outside the
simulation context, it may not always be obvious how to specify the outcome model in the full sample. It may help to
perform a preliminary analysis on the data using only Z = 3 subjects, which may suggest the need for an interaction (ie,
regressing the binary outcome on X in those subjects with Z = 3 can provide an indication of whether the slope for X is the
same in these subjects as in those with Z = 1 or Z = 2). Assuming as little as possible about the data seems like a wise strat-
egy in general, but—when taken to the extreme—also will weaken the impact of the analysis (or outcome) model in the
full sample.

In summary, we recommend that researchers consider the use of a strategy of impute-then-exclude using SMCFCS
with a carefully specified full-data model when faced with a variable that is subject to missing data that is used both for
inclusion/exclusion criteria and as an exposure variable in the analysis model.
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