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ARTICLE INFO ABSTRACT

Keywords: Ammonia emissions to the atmosphere have a range of negative impacts on environmental quality, human
Ammonia health, and biodiversity. Despite the considerable efforts in quantifying spatially explicit ammonia emissions,
Emission

there are significant uncertainties in ammonia emission estimates at regional scales. We aimed to improve the
modeling of atmospheric ammonia emission variability in space and time across the Netherlands by updating an
agricultural ammonia emission model with a newly derived high-resolution crop map and a livestock housing
location database of the Netherlands. To generate a crop map of 12 agricultural land cover classes, we applied
random forest classification to the multi-temporal multispectral observations of surface reflectance and vege-
tation indices derived from Sentinel-2. The crop statistics were used to calculate ammonia emission distribution
based on nitrogen demand (manure and mineral fertilizer needed) of different crop types using the INTEGRATOR
model. Next, the crop map was utilized to spatially allocate the ammonia emissions to a high-resolution grid
across the Netherlands. In addition, ammonia emissions from livestock housing systems were introduced as point
sources using location data from the Geographic Information Agricultural Business system. The temporal
emission variability was updated using a recently developed TIMELINES module. After the spatial and temporal
distribution of ammonia emission was obtained with the crop map and housing information, it was imported into
the chemistry transport model LOTOS-EUROS to model ammonia surface concentration for validation with in
situ measurements.

The performed crop classification has an average accuracy score of 0.73. The derived crop map was compared
with Dutch national statistics, and the results showed that the absolute median of the relative difference between
Sentinel-2 derived crop areas and national statistical information is around 5%. The newly modeled ammonia
monthly surface concentrations compared better with in situ measurements in terms of the magnitude and
temporal variability than those derived from the original emission distribution, indicating that the temporal
distribution of ammonia emissions was improved. The comparison of modeled and measured annual averaged
surface concentrations illustrated that the spatial distribution of ammonia emission was also improved. All model
performance indicators significantly improved, and the performance of the updated model was more stable and
robust. The improvement was more evident at the stations where livestock housing is the main emission source.
This study illustrates that apart from a satellite-derived crop map, information on the locations of animal housing
systems also plays an essential role in better estimates of the spatial and temporal distribution of ammonia
emissions. It can be worthwhile to extrapolate the method to other regions in Europe and elsewhere.

Spatial distribution
Temporal distribution
Crop mapping

1. Introduction substantially on a global scale during the twentieth century in response
to the demand for food of a rapidly growing population that leads to
Ammonia (NH3) emission to the atmosphere has increased enhanced nitrogen fertilization (Erisman et al., 2008). Large increases
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are mainly witnessed in areas with intense agricultural activities, such as
Europe, the US, and China, with declines in the last decade, especially in
Europe (Schmitz et al., 2019) and the US (Gilliam et al., 2019) due to
legislation. Ammonia is the primary form of reactive nitrogen in the
environment (Sutton et al., 2014), and its primary emission source is
agriculture which contributes to more than 90% of the total emissions in
EU-28 (Elzing and Monteny, 1997; Velthof et al., 2012). Agricultural
ammonia is lost to the environment during and after fertilizer and
manure application to the land, through animal excretion in housing
systems, and during grazing (Erisman et al., 2007; Galloway et al.,
2003).

The atmospheric lifetime of ammonia is limited to several hours as it
is effectively removed by dry and wet deposition (Fangmeier et al.,
1994; Schaap et al., 2017). Once deposited, the reduced nitrogen com-
ponents contribute to the acidification and eutrophication of forests and
other (vulnerable) terrestrial ecosystems (Bowman et al., 2008, 2008de
Vries et al., 2014), which can lead to biodiversity loss (Bobbink et al.,
2010; Krupa, 2003; Midolo et al., 2019; van Dobben and de Vries, 2017).
In addition, ammonia reacts with sulfuric and nitric acid in the atmo-
sphere, leading to the formation of fine particulate matter (Schaap et al.,
2004), which is an important cause of smog and consequently threatens
human health with heart and lung conditions (Brunekreef and Holgate,
2002; Fowler et al., 2009; Pope et al., 2009). Ammonia remains a major
concern as either near-zero or increasing trends have been observed in
concentration and deposition measurements over large parts of Europe
(Colette et al., 2016). Hence, a better understanding of ammonia emis-
sion and its fate in the atmosphere is of great significance.

The Netherlands is a densely populated, urbanized, and industrial-
ized country in western Europe. As the second-largest exporter of food
and agricultural products globally, the small country has a very inten-
sive agricultural system (Dollmann et al., 2021). Consequently, the
Netherlands has the highest ammonia emission density in Europe, with
an average of about 3180 kg NH3-N per square kilometer (Wever et al.,
2019). Due to the short lifetime of ammonia in the atmosphere, a large
fraction of the emission deposits within the country. It is modeled that
Dutch agriculture contributes nearly half of the total nitrogen deposition
to its nature areas (Stokstad, 2019). It is estimated that in 118 of 162
Dutch nature reserves, the nitrogen deposition exceeds critical load
thresholds by an average of 50% (Stokstad, 2019). As control regulations
have been gradually implemented in the last 30 years, the reported
ammonia emissions in the Netherlands declined by 51% and 22%
respectively between 1993 and 2005 and between 2005 and 2014, but
the trends in emissions and concentrations of ammonia diverge over the
period 2005-2014 (van Zanten et al., 2017). A recent study into this
discrepancy showed that the effects of meteorological variability and
changing atmospheric chemical regimes could explain one-third of the
difference between the observed and modeled trends in concentrations
(Wichink Kruit et al., 2017). The remaining inconsistency was not
explained, but an incomplete understanding of the processes involved in
ammonia emissions likely plays a crucial role in this context. However,
because of expanding dairy operations, Dutch ammonia emissions have
not significantly decreased in the last decade (Stokstad, 2019).

There are still significant uncertainties in ammonia emission esti-
mates which are prone to considerable spatial and temporal variability
(Battye et al., 2003; Erisman et al., 2007; Sutton et al., 2003, 2014).
Many studies have highlighted that the spatial and temporal variability
of ammonia concentrations modeled with chemistry transport models
(CTMs) using static time profiles, such as GEOS-Chem (Bey et al., 2001;
Paulot et al., 2014), MOZART-4 (Emmons et al., 2010; Liu et al., 2017),
CHIMERE (Hamaoui-Laguel et al., 2011, 2014), LOTOS-EUROS (Hen-
driks et al., 2016), and PMCAMzx (Pinder et al., 2006), is poorly repre-
sented and needs improvement. Several studies have developed
approaches to include meteorology-dependent emission variability in
CTMs (Backes et al., 2016; Hendriks et al., 2016; Skjgth et al., 2011).
Many studies are based on the work of Ambelas Skjgth et al. (2004), who
proposed a dynamic parameterization of the temporal variation of NHj
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emission based on meteorology, information about agricultural practice,
and a simple crop growth model. The parameterization was then
improved by including the effect of ventilation rates inside buildings,
ambient wind speeds and a more realistic description of temperatures
inside animal housing systems (Gyldenkerne et al., 2005). Werner et al.
(2015) and Hendriks et al. (2016) showed that replacing the static
emission profiles with those account for regional adaptation of meteo-
rology and other variables improves the CTM performance against ob-
servations considerably.

At the same time, Ge et al. (2020) developed a novel ammonia
emission model for Germany and the Benelux by combing an agricul-
tural emission model (INTEGRATOR (de Vries et al., 2021; Kros et al.,
2012)) and an agricultural management model (TIMELINES (Hutchings
et al., 2012)). INTEGRATOR provided high-resolution (in the form of
polygons called NCUs illustrated in Ge et al. (2020)) spatial distribution
of ammonia emission, differentiating types of manure and fertilizer
applied on croplands and grassland, grazing, and animal housing sys-
tems. TIMELINES (Hutchings et al., 2012) was adapted to provide the
timing of manure and fertilizer application on various crops while
housing emissions were prescribed following Gyldenkerne et al. (2005).
The resulting spatially explicit crop type-, fertilizer type-, and animal
housing type-dependent ammonia time profiles were used in the CTM
LOTOS-EUROS (Manders et al., 2017). Although the evaluation against
observations of ammonia showed a significant improvement, it was
recognized that the spatial representation in the agricultural emission
model, the so-called NCUs, which can be rather large areas, is a disad-
vantage. Within each NCU polygon, the emission is assumed to be evenly
distributed, which does not reflect the distribution of crops and animal
housing systems within the NCU. Hence, crop distributions and livestock
housing information should be taken into account (Ge et al., 2020).

Many studies have used remote sensing data to perform analyses of
vegetation indices time series to obtain agricultural land use and crop
development information (Dubovyk et al., 2015; Marais Sicre et al.,
2016; Vaglio Laurin et al., 2018; Waldhoff et al., 2017). The new
Sentinel-2 instruments offer new opportunities to better distinguish
between different crop types thanks to their sensor and orbit charac-
teristics, high spatial resolution, and relatively short revisit time (Belgiu
and Csillik, 2018; Kobayashi et al., 2020; Sonobe et al., 2018; Yi et al.,
2020). Although new crop maps based on sentinel-2 are becoming
available (Griffiths et al., 2019), their use for the quantification of
agricultural ammonia emissions has not been explored yet.

This study aimed to improve upon the emission model of Ge et al.
(2020) by introducing a high-resolution crop map and livestock housing
information for the Netherlands. In this paper, we first describe the
methodology of crop mapping from Sentinel-2 observations, the subse-
quent calculation of the spatial and temporal allocation of ammonia
emission, which also accounts for livestock housing locations, and the
evaluation of the updated emission product with the use of the CTM
LOTOS-EUROS and in situ measurements. Next, we provide the results,
including the obtained crop map, the updated emission estimates, and
the validation of the emission products by comparing modeled surface
concentrations with in situ measurements. Finally, we discuss the im-
provements in the emission model brought by the updated crop map and
animal housing information and point out future perspectives for this
work.

2. Methodology
The workflow in this study is separated into three steps (Fig. 1).

(1) Crop mapping through random forest classification using
Sentinel-2 multi-temporal multispectral surface reflectance ob-
servations and vegetation indices calculated from surface
reflectance.

(2) Adaptation of the spatial and temporal allocation of ammonia
emissions by integration of the crop map and livestock housing
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Fig. 1. The schematic workflow in this study is composed of three modules: crop classification that derives a high-resolution crop map of the Netherlands from
Sentinel-2 observations, emission model that obtains the spatial and temporal distribution of ammonia emissions, and model evaluation with in situ measurements.

locations in the INTEGRATOR - TIMELINES emission model,
described in Ge et al. (2020).

(3) Simulation of ammonia surface concentrations with the CTM
LOTOS-EUROS using the original (without updates on crop map
and livestock housing locations) and updated (with updates on
crop map and livestock housing locations) ammonia emissions
and validation of the simulated surface concentrations with in
situ measurements.

Each of the steps is described in detail below.
2.1. Crop mapping with Sentinel-2 observations

Crop mapping is the process of identifying crop types and obtaining
the spatial distribution of crops, which can be done with either con-
ventional methods or automated machine learning-based methods. In a
machine learning-based framework, crop types are determined using a
crop classifier, which is an advanced tree-based, ensemble-based tool
built by ground truth data to identify specific spectral and spatiotem-
poral crop signatures. Nowadays, multitemporal multispectral obser-
vations from optical satellites are used to estimate the spatial
distribution of various crops due to their benefits of saving time and
labor force (Yan et al., 2021). In this study, we conducted crop mapping
by applying random forest classification to Sentinel-2 observations. An
introduction to Sentinel-2 can be found in Section S.1 in the supple-
mentary material, and random forest classification will be talked about
in the text below. The study area for crop mapping covers not only the
Netherlands but also North Rhine-Westphalia of Germany to increase
the number of ground truth data. The area was divided into 263 patches
of the sizes of 20,000 m by 20,000 m (see Fig. 2) for data downloading,
pre-processing, processing and classification to save processing power
and time.

The crop map of the Netherlands is obtained in the following steps.

(i) Collect ground truth land parcels from land surveys and geore-
ferenced land parcels.

(ii) Derive the time series of Sentinel-2 surface reflectance and
vegetation indices of the ground truth land parcels.
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Fig. 2. The area of interest for crop mapping covers the Netherlands and North-
Rhine Westphalia and is divided into 263 patches for data downloading and
processing. The coordinates are in WGS84/UTM 32N coordinate sys-
tem (EPSG:32,632).

(iii) Divide the ground truth land parcels into a training set and a test
set. Obtain a crop classifier by applying random forest classifi-
cation and determine the model performance by applying a 5-fold
cross-validation.

(iv) Use the classifier to predict crop types for all land parcels, and
assess the quality of the obtained crop map by comparing it with
other statistical sources.

Details of the various steps are given in the sub-sections below.

2.1.1. Ground truth land parcels preparation

Eurostat has carried out the Land Use and Coverage Area frame
Survey (LUCAS) every three years since 2006 to identify changes in the
European Union in the socioeconomic use of land (for instance, agri-
culture) (Orgiazzi et al., 2018). LUCAS contains harmonized in situ land
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cover and land use data collection based on observations made by sur-
veyors throughout Europe (Ballin et al., 2018). The survey is conducted
on a 2 km by 2 km grid, which means that land cover information is
available at points that are 2 km away from each other. Since Sentinel-2
is available for full-year coverage from 2016 onwards, LUCAS 2018 data
on arable crops and grasslands were selected in this study.

To reduce the uncertainties in Sentinel-2 observations and save
processing time, we spatially averaged Sentinel-2 observations within
each agricultural land parcel instead of looking at pixels. Land Parcel
Identification System (LPIS) offers georeferenced polygons of agricul-
tural plots derived from aerial photographs and high-precision satellite
images (Montaghi et al., 2013; Zimmermann et al., 2016). The polygons
demonstrate the exact shape and size of the land parcels whose contours
often intersect with roads or other facilities. Therefore, we utilized QGIS
to buffer each ground truth land parcel inwards by 10 m within its
boundary so that tiny and narrow polygons were eliminated and the
remaining polygons were ensured to lay within the farmlands or grass-
land. For each land parcel that contains a LUCAS point, we assigned the
crop information to the land parcel to derive ground truth land parcels.
We chose grassland and the 11 most common arable crops presented in
the ground truth land parcels as the target classes. The arable crops are
barley, flower, fodder, maize, nursery, oat, other cereal, potato, rye,
sugar beet, and wheat.

2.1.2. Derivation of Sentinel-2 surface reflectance and vegetation indices
time series

Satellite data from Sentinel-2 were downloaded through the open-
source Python package sentinelhub (https://eo-learn.readthedocs.io/e
n/latest/) to access and process Sentinel-2 spatiotemporal satellite im-
ages. The Sentinel-2 observations used for crop mapping were Level 2A
Bottom-Of-Atmosphere (BOA) reflectance. For specific days on which no
Level 2A BOA reflectance data were available, we conducted pre-
processing on Level 1C Top-Of-Atmosphere (TOA) orthoimages to
create Level 2A BOA-corrected reflectance images, using the Sen2Cor
processor (Main-Knorn et al., 2017). The pre-processing includes at-
mospheric, terrain, and cirrus correction (Li et al., 2018; Louis et al.,
2016). Afterward, scene classification was conducted, resulting in a
classification map of three classes of clouds and six other classes of
shadows, cloud shadows, vegetation, not vegetated, water, and snow
(Louis et al., 2010). Only pixels with less than 25% cloud probability
were kept to ensure that all pixels used were under cloud-free conditions
to reduce the impact of clouds. Besides, pixels in Sen2Cor’s scene clas-
sification map labeled NO DATA, Saturated or defective pixel, Cloud
shadows, Cloud medium probability, Cloud high probability, and Thin cirrus
were regarded as invalid as well. When more than 60% of the pixels in
an image were invalid, this image was removed.

In this study, 10-day averages of surface reflectance of 6 bands and
11 vegetation indices from February to November were utilized to
derive their temporal patterns for machine learning. Most indices used
were normalized differential indices based on differences in reflectance
behavior between land cover types. For example, well-nourished, living
plants absorb red light and reflect near-infrared light, while dead
vegetation absorbs relatively less red light than healthy vegetation
(Agapiou et al., 2014). Details on the chosen vegetation indices and their
advantages are given in Section S.2 in the supplementary material. For
each parcel, we calculated the time series of the spatially averaged
surface reflectance and vegetation indices. Examples of the NDVI and
EVI time series of the ground truth land parcels of grassland and maize
are given in Section S.3 in the supplementary material.

It has to be noted that filtering was done to the ground truth parcels
based on the 10-day averaged time series of surface reflectance to obtain
more uniform ground truth data and to have a similar number of ground
truth data for each crop type. When more than eight values were missing
or invalid in a time series (30 values in total), the time series was left out.
An outlier detection was performed on the observations to determine if
an observation was invalid. For ground truth parcels of each crop type,
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the mean (R,,) and standard deviation (Rgq) of surface reflectance at
each timestamp were calculated. The observations that lay outside
[Rm —CRstq, Rm +CRyq] were regarded invalid. The c is a constant that
made sure there were no more than 30 valid time series for each crop.

2.1.3. Random forest classification

In this study, machine learning with random forest (RF) was used to
obtain a crop classifier. The ground truth land parcels were divided into
a training set (80%) and a test set (20%) using stratified sampling, which
means that the samples were selected in the same proportion as they
appeared in the original ground truth data. In this way, we eliminated
the sampling bias in a test set and made sure that it represented the
entire population. A 5-fold cross-validation was conducted to determine
the robustness of the classifier. The ground truth data were divided into
five batches, and RF machine learning was performed five times, with
each time four batches (80%) being the training set and the remaining
batch (20%) being the test set.

A random forest is a collection of a large number of individual de-
cision trees on randomly selected samples (Breiman, 2001). By looking
at features, a decision tree makes decisions by splitting nodes into
sub-nodes to create relatively pure nodes. A feature, also known as a
predictor variable, is an individual measurable property or character-
istic used as input for effective algorithms in pattern recognition and
classification (Bishop, 2016). This node-splitting process is performed
multiple times during the training process until only homogenous nodes
are left. Each decision tree returns a classification prediction, and the
class with the most votes is the prediction of the forest (Lan et al., 2020).
Compared to other algorithms, the random forest algorithm is consid-
ered more accurate and robust because of the enormous number of de-
cision trees involved in the process (Guo et al., 2007). Taking the most
voted class cancels out potential biases, which helps avoid the over-
fitting problem. Furthermore, when one set of observations does not
have all feature values, RF can deal with the missing value, which is
replaced with the median or the proximity-weighted average of all ob-
servations of that feature (Cutler et al., 2012). Last but not least, RF can
diagnose the relative feature importance, which assists in selecting the
most contributing features for classification (Rogers and Gunn, 2006).
Variables with low importance might be omitted from the model,
making it simpler and faster to fit and predict. RF has achieved efficient
classification results in various remote sensing studies, including crop
mapping (Hao et al., 2015; Novelli et al., 2016; Pelletier et al., 2016).

Regarding the random forest classification in this study, the 10-day
averages of surface reflectance of 6 bands and 11 vegetation indices
from February to November resulted in 510 features. The number of
trees (ntree) should be chosen as large as possible, especially if the data
comprises many predictors. The choice of ntree is usually a compromise
between accuracy and computational speed (Janitza and Hornung,
2018). Goldstein et al. (2010) concluded that for their genome-wide
data set, 1000 trees might be sufficient. Diaz-Uriarte and Alvarez de
Andrés (2006) found that the results for random forests with 1000 trees
and those for RF with 40,000 trees were almost the same. Genuer et al.
(2008) found out that in the high-dimensional settings, RF with 500
trees yielded very similar out-of-bag (OOB) errors to that with 1000
trees. Following these findings and through experimentation, the num-
ber of trees was set to 1000 in this study. Following the random forest
classification results reported by Belgiu and Dragut (2016) and Gislason
etal. (2006), the number of variables used for tree nodes splitting (mtry)
was established as the square root of the number of features and was set
to 25.

After obtaining the crop classifier with the training set, we applied it
to the test set and compared the predictions with the ground truth. The
accuracy score of the classifier prediction on the test set, being the
fraction of predictions our model succeeded in making, was 0.73. Fig. 3
shows the importance scores of the features and indicates that vegeta-
tion indices generally were given more weight than the Sentinel-2
bands, but there was no dominant feature, with importance values
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Fig. 3. Importance values of various feature values (6 satellite bands (B02, BO3,
B04, B08, B11, B12) and 11 vegetation indices shown in Table S1 in the sup-
plementary material) used for machine learning.

ranging from 0.04 to 0.07. The accuracy scores of the 5-fold cross-
validation were 0.67, 0.69, 0.69, 0.73, and 0.74 (0.71 on average),
respectively. The resulting crop distributions are very similar. It means
that the model was robust and not overfitted. As a result, we did not
reduce the number of predictor features for crop mapping.

2.1.4. Derivation and validation of the crop map

After we calculated the same features (10-day averages of surface
reflectance of 6 bands and 11 vegetation indices from February to
November) of all crop parcels in the country in 2017, we applied the
classifier to them to obtain a complete crop map of the Netherlands in
2017. Although the crop classifier was validated with the test data, it
was important to verify the crop map on a national scale. Therefore, the
resulting crop distribution was validated by comparing the predicted
crop areas of grassland and the top four arable crops by area (maize,
potato, wheat, and sugar beet) in each Dutch province with the official
statistics in 2017 from Statistics Netherlands (CBS) (https://opendata.
cbs.nl/#/CBS/en/dataset/7100eng/table). In addition, we also
compared crop area per province to an online crop map dataset, OneSoil,
to see how our map performed compared to a commercial service (http
s://map.onesoil.ai/).

2.2. Emission modeling with the updated crop map and housing
information

As mentioned, the purpose of the study is to update the ammonia
emission model described in Ge et al. (2020) with a detailed crop map
and locations of animal housing systems. The emission model is
composed of two modules, namely, a spatial allocator (INTEGRATOR)
and a temporal allocator (TIMELINES) (Ge et al., 2020). The former
generates the gridded annual emission map, while the latter disaggre-
gates each gridded annual emission in time. INTEGRATOR is a static
nitrogen cycling model which was used to calculate ammonia emissions
from animal housing systems and manure and mineral fertilizer appli-
cation (De Vries et al., 2020; Kros et al., 2012). For a detailed description
of INTEGRATOR, we refer to De Vries et al. (2011) and Ge et al. (2020).
For information on the temporal allocator TIMELINES, we refer to Ge
etal. (2020). Below, we only describe the critical aspects of the approach
to calculate the ammonia emissions from animal housing systems and
manure and mineral fertilizer application. To account for the influence
of emissions from outside the Netherlands, for example, by long-distance
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transport, we chose the area of interest that covers the Netherlands and
surrounding regions that may affect ammonia concentrations in the
country. Therefore, being larger than the study area of crop mapping,
the study area of ammonia emission modeling is 2°E—9°E in longitude
and 50°N—54°N in latitude with a step of 0.015625° in longitude and
0.0078125° in latitude, resulting in a spatial resolution of approximately
1.7 km x 1.7 km.

In INTEGRATOR, the total N excreted was calculated by multiplying
the number of animals at the NCU level with N excretion rates per an-
imal per country for eight animal categories (dairy cows, other cows,
pigs, laying hens, other poultry, sheep and goats, horses and fur ani-
mals). A division was made between the excretion of animals in housing
systems and grazing animals in pastures based on national data for the
number of grazing days. The N excreted in housing systems was derived
by multiplying total N excretion with the housing fraction, while the N
excreted on land during grazing was calculated by subtracting N
excreted in housing systems from total N manure excretion. The total
manure production was calculated from the N excreted in housing sys-
tems after correcting for losses (gaseous emissions and leaching) in
housing systems.

2.2.1. Spatial distribution of annual emission from manure and fertilizer
application using the crop map

Manure was distributed over grassland and arable crops using
various allocation rules. Manure produced by grazing animals all
entered grassland. Manure produced for sheep and goats was completely
applied to grassland. For other manure, a fraction was applied to arable
land, and the remaining fraction went to grassland/fodder crops, ac-
cording to Menzi et al. (2002). Manure types were lumped into (i) liquid
manure of dairy/other cattle, (ii) solid manure of dairy/other cattle, (iii)
liquid manure of pigs, (iv) solid manure of pigs, and (v) poultry manure.
Regarding fertilizer, a distinction was made between urea and other
fertilizer. Manure distribution on arable land was divided over four
arable crop groups, adapted after Velthof et al. (2009). The mineral
fertilizer N demand of each crop was calculated by a balanced N fertil-
ization approach based on the N demand of each crop (Ge et al., 2020).
The ammonia emissions from grazing and application on arable crops
and grassland were calculated by multiplying the N inputs by grazing
cattle and by manure and fertilizer application with the corresponding N
emission fractions.

The derived crop map influences the spatial distribution of ammonia
emissions in two ways. First, the crop map leads to changes in manure
distribution due to the above allocation rules and fertilizer distribution
because of different nitrogen demands. Secondly, instead of evenly
distributing emissions within the whole NCU as in Ge et al. (2020), we
allocated the crop-dependent application emissions to where the cor-
responding crops are located within an NCU.

2.2.2. Spatial distribution of annual emission from animal housing systems
using livestock housing information

The ammonia emissions from animal housing systems include
emissions in animal houses and manure storage facilities. Ge et al.
(2020) pointed out that allocating housing emissions evenly within each
NCU was a source of uncertainties in the emission model. Therefore,
animal housing locations are useful for treating housing emissions as
point sources. Information on the locations of animal housing systems is
based on the so-called GIAB (Geographic Information Agricultural
Business) system, as used in the INITTATOR model, which is an adapted
version of INTEGRATOR built specifically for the Netherlands (de Vries
et al., 2015). GIAB includes information on the exact location of all
housing systems of each farm in the Netherlands. (GIAB: (Gies et al.,
2015); GIABplus (van Os et al., 2016):). Since we did not have direct
access to GIAB, we used INITIATOR output for 2017, from which we
extracted the coordinates of animal housing systems in the Netherlands.
Then ammonia emissions from animal housing systems within each NCU
were evenly assigned to the animal housing systems in that NCU as point
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sources. The same animal categories in manure types were used in
housing systems.

2.3. Surface concentration modeling for the evaluation with in situ
measurements

To validate the improvement in the emission products brought by the
crop map and livestock housing locations, we used the in situ mea-
surements of surface concentrations in the Netherlands. The spatial and
temporal distribution of ammonia emissions was imported into LOTOS-
EUROS to calculate surface concentrations. LOTOS-EUROS is a 3-dimen-
sional regional CTM (Manders et al., 2009, 2017; Schaap et al., 2008)
that uses a description of the bidirectional surface-atmosphere exchange
of ammonia (Wichink Kruit et al., 2017). The model is regularly used to
address reactive nitrogen budgets (Banzhaf et al., 2015; Hendriks et al.,
2016, 2016v; van der Graaf et al., 2018, 2020an der Graaf et al., 2020),
and we refer to these publications for a detailed model description.

This paper conducted two LOTOS-EUROS simulation runs to quan-
tify the changes in modeled ammonia concentrations brought by the
update. The first base simulation (referred to as INT) used the INTE-
GRATOR ammonia emission, which was distributed as described in Ge
et al. (2020). The second (referred to as INT-SEN) utilized the emission
information as described in the paper, using the updated crop distribu-
tions and livestock housing locations. For both simulations,
non-agricultural emissions were derived from the TNO-MACC emission
inventory (Kuenen et al., 2014).

Modeled ammonia surface concentrations were compared to in-situ
measurements from the Measuring Ammonia in Nature (MAN)
network. In this network, monthly mean ammonia concentrations at 255
sites in 60 Natura2000 areas were monitored (https://man.rivim.nl/)
(Lolkema et al., 2015). Natura2000 areas have been designated to pre-
serve the ecological value of natural areas, and they are protected under

European legislation. The ammonia measurements from MAN use
low-cost passive samplers. For the measurement method, calibration
method, and uncertainties, we referred to Lolkema et al. (2015). When
assessing the comparison of monthly and annual averaged concentra-
tions, the stations were divided into three groups, which were deter-
mined by the primary source of local ammonia emission. If application
emission or housing emission occupied more than 60% of the total
emission within the grid where a station was located, this station was
categorized as an application-dominated or housing-dominated station,
respectively. The remaining stations were called “other stations”. In this
way, we could inspect the improvement brought by the updated crop
map and animal housing systems information separately. In addition,
measurements at all stations were also compared with the modeled re-
sults to assess the overall performance. The model performance in-
dicators included relative bias, correlation, the normalized root mean
square error (NRMSE), normalized mean absolute error (NMAE), model
efficiency (EF), and index of agreement (IA) between the measurements
and modeled results (see Ge et al. (2020) for the equations). In addition,
the fraction of predictions that were within a factor of two of the ob-
servations (FAC2) were also calculated as it is a simple and robust
measure, which is not overly influenced by the extreme values (high and
low) in a time series. (Chang and Hanna, 2004; Hanna and Chang,
2012).

3. Results
3.1. The derived crop map

The national crop map derived from Sentinel-2 is presented in Fig. 4.
The dominant agricultural land is grassland, with a total area near 1.0
million ha in the Netherlands, which is dominantly distributed in the
provinces of Friesland (north), Overijssel (east), and Utrecht (center)
(see Fig. 4(a)). Maize production is mainly found in the eastern part of
the country (Drenthe, Eastern Overijssel, Eastern Gelderland, Nord-
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Fig. 4. Crop Map of the Netherlands (top) and the zoomed map of Gronin-
gen (bottom).

Brabant, and Limburg). As for potato, oat, wheat, and sugar beet, the
distribution is less spread out but concentrated in some highly agricul-
turally active regions like Flevoland, the coastal areas of Friesland and
Groningen, and along the German border in the north-east. Zeeland and
Limburg in the south also have potato production but to a lesser extent.
Regarding flowers, being a less important crop in terms of area, its fields
are correctly identified in the provinces of Flevoland, North Holland,
and some smaller areas like Noordwijkerhout and De Zilk. Fig. 4(b)
shows the zoomed crop map of Groningen. One can see that grassland
tends to be located in the lands inwards to the west, and arable crops
(mainly wheat and potato) are mainly situated in the north by the ocean
or to the east.

Based on the CBS dataset, important arable crops by area in the
Netherlands are maize (218 k ha), potato (163 k ha), wheat (116 k ha),
sugar beet (85 k ha), vegetables (61 k ha), and barley (30 k ha) (see
Table 1). Table 1 summarizes the total areas of grassland and the six
arable crops by area in the Netherlands, comparing estimates from our
study with the Dutch statistics from CBS and with the statistics from the
OneSoil. The crop areas derived from Sentinel-2 in our study demon-
strate better alignment with CBS than those obtained from OneSoil for
almost all crops except wheat and vegetables. The absolute median of
the relative difference between Sentinel-2 derived crop areas and CBS is
around 5%, while that between OneSoil and CBS is larger than 15%. The
lowest deviations between the derived crop areas and CBS are found for
grassland and barley, with the relative difference being —0.8% and
3.0%, respectively. However, the area of wheat obtained in this study is
overestimated by 33%, while OneSoil has a lower relative error of 4.2%.
Moreover, the obtained crop map rarely contains vegetables, while
OneSoil also does poorly predict the vegetable area with a 60.7% de-
viation. We also compared the total area per province of grassland and
the top four arable crops with the CBS statistics, and the details are given
in Section S.4 in the supplementary material.
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Table 1
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Total production area for five major arable crops and grassland in the Netherlands (k ha) from Dutch statistics CBS, this study, and the OneSoil database, as well as the

relative difference of the two estimates with respect to CBS data in 2017.

Grassland Maize Potato Wheat Sugar beet Vegetable Barley
CBS 992 218 163 116 85 61 30
This study 984 (—0.8%) 207 (—5.1%) 171 (+4.9%) 155 (+33.0%) 103 (+20.7%) 0.01 (—100%) 31(+3.0%)
OneSoil 1139 (+14.8%) 258 (+18.5) 129 (—20.9%) 121 (+4.12%) 138 (+61.5%) 97 (+60.7%) 35 (+16.9%)

3.2. Ammonia emission distribution

Fig. 5 shows the original (left column, without the use of the crop
map and livestock housing locations) and updated (right column, with
updates on the crop map and livestock housing locations) annual
ammonia emission maps in 2017. Fig. 5(a) and (e) show the national
emission maps, whereas Fig. 5(b) and (f) are zoomed annual emission
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maps of Groningen. The updated maps are characterized by a high de-
gree of granularity (spatial details) and a more prominent contrast in
ammonia levels between agricultural and natural regions because the
updated model only allocated emissions at sources instead of all over the
NCUs, which eliminates ammonia emissions in non-agricultural areas.
However, the main features of the ammonia emission distribution across
the country are comparable to the original data. Cattle housing
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Fig. 5. Maps of the spatial variation (presented at 1.7 km x 1.7 km resolution) in annual total ammonia emission over the Netherlands (a, e), and zoomed map of
total emission (b, f), cattle manure application emission (c, g) and cattle housing emission (d, h) in Groningen.
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emissions in Fig. 5(h) are point sources, so they are less spread out and at
larger magnitudes than in Fig. 5(d). Significant differences in spatial
distribution also occur from cattle manure application (Fig. 5(c) and
(g)). For example, the application emission level in Fig. 5(c) is much
higher in the north, close to the coast, and other new hot spots appear in
central Groningen because the derived crop map affects the spatial
allocation of ammonia emissions and introduces new maxima in the
distribution. The crop map tells that northern Groningen is mainly
occupied by potatoes and wheat. However, the original land use input
data of INTEGRATOR indicate that there is broader coverage for vege-
tables than potatoes in this area. INTEGRATOR regards potato as an
arable crop with intermediate manure use, whereas it does not allocate
manure to vegetables, which results in more manure allocated here in
the updated model. Furthermore, since different crops have different
timings of fertilization (Ge et al., 2020), the temporal distribution of the
gridded emissions is also affected, causing emission peak shifts over the
year. To summarize, the accuracy of the crop distribution in the emission
model is significant in estimating manure/fertilizer distribution and the
subsequent spatial and temporal distribution of ammonia emission.

3.3. Comparison of the modeled and measured ammonia surface
concentrations

3.3.1. Monthly averaged ammonia surface concentrations

Fig. 6 shows two examples comparing ammonia surface concentra-
tions measured in the MAN network and simulated with the original and
updated emission products. In both Fig. 6(a) and (b), the updated
modeled result shows better correspondence with the measured con-
centrations, both in absolute magnitude and temporal variability. Both
INT and INT-SEN simulations show the spring and autumn peaks of
surface ammonia concentration at the application-dominated Station
Lauwersmeer-De Middelplaat (Fig. 6(a)). However, the spring peak
predicted by the INT scenario is largely overestimated, while INT-SEN
simulated the time series more accurately. Regarding the housing-
dominated Station Sarsven en De Banen- Sarsven (Fig. 6(b)), the
modeled temporal variabilities in both simulations are relatively similar,

Atmospheric Environment: X 17 (2023) 100207

except that the average concentration in the updated INT-SEN simula-
tion is higher than that from the INT simulation and better aligned with
the measurement. The INT simulation shows an earlier spring peak than
the measurements. This is because the original model distributes hous-
ing emissions to the whole NCU, which smoothens spatial characteristics
and reduces ammonia levels in the grid cell. In contrast, the updated
model keeps housing emissions where animal housing systems are
located, leading to higher ammonia levels in the grid cell.

Fig. 7 shows the scatter plots comparing modeled and measured
monthly averaged surface concentrations at application-dominated
stations (Fig. 7(a) and (b)), housing-dominated stations (Fig. 7(c) and
(d)), other stations (Fig. 7(e) and (f)) and all stations (Fig. 7(g) and (h)).
Table 2 presents the model performance indicators for the comparison of
simulated and measured monthly averaged surface concentrations in the
INT and INT-SEN simulations for the four groups of stations. At
application-dominated stations, both simulations seem to over-allocate
a considerable amount of emission in springtime (February, March,
and April) to account for the fertilization of spring crops. The over-
estimation in spring in the INT-SEN simulation is less severe, and the
spread of the scatter points is narrower (Fig. 7(b)), resulting in better
model performance indicators (see Table 2). Similar results are observed
in the comparison at other stations. In Fig. 7(c) and (d), there is both
under- and overestimation for both comparisons in springtime, with the
updated model reducing the deviations compared to the original model.
However, for summer, the majority of the scatter points are still located
above the y = x line, which means that the tendency to overestimate the
ammonia levels in summer remains. At housing-dominated stations, the
improvement is more evident, even though the overestimation in sum-
mer remains. In Table 2, almost all indicators have improved except that
the bias for housing-dominated stations remained almost the same
(slight increase). Error measures, including relative standard deviation,
NRMSE, and NMAE, have dropped substantially, especially for housing-
dominated stations. The reductions in relative standard deviation and
NMAE are more pronounced than those in the NRMSE. This is because
the individual differences are weighted equally in the standard deviation
and NMAE calculation, while the NRMSE gives a relatively high weight
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Fig. 6. Comparison of surface ammonia concentration time series measured in the MAN network and modeled with the original emissions (the INT simulation) and
the updated emissions (the INT-SEN simulation) at an application-dominated station (top) and a housing-dominated station (bottom). There were no valid data for
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Fig. 7. Scatter plots of monthly averaged modeled and measured ammonia surface concentrations comparing the original (the left panel) and updated (the right
panel) modeled results with measurements at application-dominated stations (a, b), housing-dominated stations (c, d), other stations (e, f) and all stations (g, h).

to large errors (overestimation in spring). In addition, both model effi-
ciency and index of agreement suggest that the INT-SEN simulation can
reproduce and predict ammonia surface concentrations in better
agreement with in situ measurement. Finally, the FAC2 factors of INT-
SEN modeled results are larger than those of INT simulations for any
station type, which means that the INT-SEN model is more robust and
less influenced by extreme values.

3.3.2. Annual averaged ammonia surface concentrations
Annual averaged ammonia surface concentrations were also

calculated, giving insight into the quality of the spatial distribution of
estimated ammonia emissions. Fig. 8 shows the scatter plots of com-
parisons between measurements and the two simulations INT and INT-
SEN at application-dominated stations, housing-dominated stations,
other stations, and all stations. Table 3 summarizes model performance
indicators for the comparison. At application-dominated stations (Fig. 8
(a) and (b)), all indicators have been improved (see Table 3), with
scatter points being much more concentrically distributed around the y
= x line and narrower width of spreading, which corresponds to a higher
correlation and lower errors. For housing-dominated stations (Fig. 8(c)
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Table 2

Atmospheric Environment: X 17 (2023) 100207

Quality assessment of the comparison between measured monthly averaged surface concentrations and simulated concentrations with the original (INT) and updated

(INT-SEN) INTEGRATOR model.

Station type Simulation Rel. bias (%) Rel. std (%) Correlation NRMSE NMAE EF 1A FAC2
Application -dominated INT 6.68 72 0.38 14 45 0.05 0.57 0.75
INT-SEN 0.53 56 0.55 13 40 0.28 0.71 0.76
Housing-dominated INT 22.02 69 0.31 20 41 0.04 0.53 0.78
INT-SEN 22.13 50 0.58 20 33 0.22 0.70 0.84
Other INT 6.00 80 0.52 12 49 0.25 0.67 0.68
INT-SEN 3.77 60 0.64 12 44 0.40 0.77 0.74
All INT 7.58 74 0.46 13 46 0.16 0.64 0.73
INT-SEN 1.06 58 0.62 12 40 0.29 0.75 0.76

and (d)), all indicators except relative bias have been improved (see also
Table 3). The most remarkable improvement is the increased correlation
between observations and predictions at housing-dominated stations
(from almost 0 to 0.45) since housing emissions are point sources in the
updated model. When looking at all stations (Fig. 8(g) and (h)), we can
conclude that the spatial distribution of ammonia emission has been
improved.

4. Discussion

This paper aimed to improve the spatial and temporal distribution of
ammonia emission estimates by updating the agricultural emission
model INTEGRATOR with a high-resolution crop map obtained with
Sentinel-2 observations and livestock housing information. Their impact
on the spatial distribution of manure distribution and N excreted in
housing resulted in higher details of ammonia emissions in space and
time. Evaluation of the measured and modeled ammonia surface con-
centration data illustrated that the model improved the spatial and
temporal emission estimates, although certain divergences between
modeled and observed concentrations remain. Below, we discuss the
main directions for improvement based on this work.

4.1. Crop mapping

The acquisition of ground truth data plays a major part in developing
and validating land cover maps (Foody et al., 2016; Kavzoglu, 2009).
This study employed the LUCAS database as the ground truth for ma-
chine learning, being one of the most extensive training samples for
large-scale crop mapping in Europe. However, there exist some chal-
lenges. First of all, geolocation errors related to GPS measurements in
the field and image misregistration errors contribute to wrongly classi-
fied ground truth data, resulting in a miscalculation of the temporal
variability of vegetation indices of the training samples and test samples
(Mack et al., 2017). Secondly, LUCAS georeferenced observation points
are aligned on a 2 km by 2 km grid, which means that the number of data
points for certain crop classes might be too limited. For a selected area,
regardless of the size, there may be limited availability of training data
for less-grown crops but an abundant number of samples for the most
common crop types. For instance, the number of training samples is only
five for vegetables compared to more than dozens for other crops and
grassland. It is a known challenge to map small-sized classes and esti-
mate the associated accuracy (Stehman, 2000), as larger classes signif-
icantly impact overall accuracy. Furthermore, dominant land cover
classes in the training data are classified at the expense of smaller classes
because the overrepresentation of larger classes in a land cover map
mainly affects the validation results of the smaller class. We observed
such effects, for example, between wheat, the larger class, and vegeta-
bles, the smaller class. Even though vegetables should cover various
plants with different temporal patterns in vegetation indices, the
training sample of vegetables in this study showed spectral similarities
with wheat in the training data. This is why vegetables rarely appeared
in our crop map and wheat cover was overestimated.

The spectral properties of a target class and the size of crop parcels

10

also play an essential role in crop mapping. From the extensive valida-
tion with the CBS dataset and comparison to the OneSoil database, it can
be seen that good validation results were achieved for maize and
grassland (see Table 1 and Fig. S2 in the supplementary material), which
have relatively distinct temporal patterns of reflectance and vegetation
indices (see Fig. S1 in the supplementary material). On the contrary,
cereal types, including rye, wheat, and oat, have similar phenological
and morphological patterns, hampering their spectral differentiation
and resulting in lower classification accuracy for the classes. Moreover,
smaller parcel sizes may also have affected classification accuracy as the
risk of mixing spectral properties with adjacent land covers increases.
This hinders the compilation of representative training data and sub-
sequent land cover predictions.

The misclassification in crop types impacts ammonia emission esti-
mates in INTEGRATOR because different arable crop groups have
different manure demands. The impact is limited for the cereal types
(rye, wheat, and oat) since they are all in the same group of intermediate
manure use. However, for instance, when vegetables are classified as
wheat, an overestimation in ammonia application emission will occur
because no manure is applied to vegetables. In contrast, wheat belongs
to the crop group with intermediate manure use.

To further improve classification accuracy, collecting additional
training data through manual or automated approaches may help to
distinguish spectrally or temporally distinct classes (Radoux et al.,
2014). Besides additional ground truth data, integrating other
multi-sensor time series such as Landsat-7, Landsat-8, and MODIS,
which provides observations of similar nature as Sentinel-2, allows
improving the temporal frequency of time series, shortening the revisit
time to 2-5 days (Drusch et al., 2012; Wulder et al., 2015). Finally, there
have been studies exploring the synergies of optical and high-resolution
synthetic aperture radar (SAR) time series (e.g., from Sentinel-1 C-Band)
for the mapping and analysis of phenology in agricultural land cover
(Baumann et al., 2018; Mercier et al., 2019; Reiche et al., 2018). Unlike
optical images, whose quality and availability may be affected by the
presence of clouds and haze, SAR sensors can gather data regardless of
weather conditions and sun illumination, resulting in a more frequent
revisit time (Clerici et al., 2017; Mestre-Quereda et al., 2020). These
techniques may be used to discriminate crop types better in the future.

4.2. Emission model assessment

After the comparison with MAN in situ measurements, one can see
that the updated emission model has improved both the spatial (Table 3)
and temporal (Table 2) distribution of ammonia emission, while the
improvement is more evident at housing-dominated stations.

The model simulations at the application-dominated stations (Fig. 7
(a) and (b)) showed an overestimation of ammonia surface concentra-
tion in springtime (February, March, and April). However, it is less se-
vere when using the improved emission product. There are three
possible explanations. First and foremost, it could be incorrect crop in-
formation, which leads to inaccurate manure and fertilizer distribution
that affects the spatial distribution, and estimated fertilization day that
impacts the temporal distribution of ammonia emissions. In the original
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Table 3

Atmospheric Environment: X 17 (2023) 100207

Quality assessment of the comparison between measured annual averaged surface concentrations and simulated concentrations with the original (INT) and updated

(INT-SEN) INTEGRATOR model.

Station type Simulation Rel. bias (%) Rel. std (%) Correlation NRMSE NMAE EF 1A FAC2
Application-dominated INT 6.61 43 0.48 24 32 0.11 0.67 0.93
INT-SEN 1.02 35 0.59 21 27 0.28 0.76 0.97
Housing-dominated INT 21.22 42 0.02 52 35 -2.32 0.45 1
INT-SEN 22.07 32 0.45 43 27 -1.41 0.63 1
Other INT 3.90 42 0.76 19 31 0.57 0.84 0.92
INT-SEN 5.76 32 0.83 16 27 0.68 0.89 0.93
All INT 7.03 44 0.62 21 32 0.35 0.77 0.93
INT-SEN 0.99 36 0.72 17 27 0.51 0.84 0.96

emission model, due to outdated land use data in INTEGRATOR and an
allocation algorithm distributing emissions from fertilization evenly
within each NCU, the derived emission maps are smeared out, even
including relatively strong emissions from non-agricultural areas. In the
updated model, crops sown and fertilized between spring and autumn
can be wrongly classified as spring crops. As a result, emissions that are
supposed to occur in late spring are allocated to early spring. Secondly,
the emission fractions used to derive ammonia emission from applied
nitrogen could be inaccurate. Even though emission fractions influence
annual total emissions, more emissions are allocated at peaks than at
other times in a year during temporal allocation, leading to larger un-
certainties at peaks. The emission fractions in INTEGRATOR are
country-dependent constants that only differentiate among manure and
fertilizer types. They neglect the influence of meteorological conditions,
soil properties, application methods, etc. For example, air temperature
has a positive impact on ammonia volatilization (Sommer et al., 1991).
When the realistic temperature during fertilization in the Netherlands is
lower than the assumed average temperature used to estimate emission
fractions in INTEGRATOR, annual application emission totals and spring
emissions will be overestimated. The last possible source of over-
estimation in spring is the misrepresentation of ground station mea-
surement in the simulations. The MAN stations can be seen as points, so
the distance between a station and the emission source plays an essential
role in the measured values. If a station within a grid cell is located close
to a farm, then the effect of overallocation to spring will be strengthened
due to higher sensitivity. Even though the spatial resolution of the two
model runs is 1.7 km x 1.7 km, it cannot fully represent what a ground
station measures.

At housing-dominated stations, the comparison of surface concen-
trations has low correlations (see Table 2), and the spread in the scatter
plots is quite wide (Fig. 7(c) and (d)). The updated modeled results have
improved, but there still exist considerable errors. Firstly, even though
housing emissions are treated as point sources and assigned to where
animal housing systems are located, housing emissions are still evenly
divided among animal housing systems in one NCU, regardless of the
differences in animal numbers and N excretion in the houses due to the
lack of data availability. This brings out the errors in the absolute
ammonia emission level at individual locations. Secondly, there is still
an overestimation in March/April because housing-dominated stations
are still affected by the uncertainties of application emissions. Last, the
difference in modeled and measured ammonia surface concentrations
also comes from the uncertainties of the MAN measurements, including
the random uncertainties of a single MAN measurement, the calibration
procedure, and the calibration standard (Lolkema et al., 2015). The
relative uncertainty decreases with the magnitude of the ammonia
concentration, from 41% to 20% when measured monthly average
ammonia concentrations increase from 1 to 20 yg-m> (Lolkema et al.,
2015).

Other systematic errors also affect the uncertainty and inaccuracy in
the spatial and temporal allocation of ammonia emissions, such as the
negligence of alternative emission sources and the spatial variability of
emission fractions. For example, animal waste like manure not only goes
to storage facilities but also is handled in biogas powerplants, which was
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not accounted for in the study and will have affected the spatial distri-
bution of ammonia emission depending on biogas powerplant locations.
Additionally, the spatial variation of housing type for each animal
category in each country was not taken into account. The emission
fractions for animal houses and manure storage in INTEGRATOR are a
function of animal category and manure category (solid manure or
liquid manure) per country (De Vries et al., 2020; Kros et al., 2012). The
differences in countries are related to the animal houses and manure
storage facilities that occur (high, medium, or low emission systems).
One average housing or storage type per country and animal category is
used without distinguishing the differences within a country. Describing
the fraction of excreted nitrogen that volatilizes as ammonia as a con-
stant may cause large uncertainties in local scale estimations. Ammonia
emissions from animal excretion are highly climate-sensitive (Jiang
etal., 2021). Sutton et al. (2013) showed an increase in emission rates of
a factor of nine between 5 and 25 °C, with additional effects from hu-
midity and precipitation (Riddick et al., 2017). Skjoth and Geels (2013)
emphasized the substantial impact of annual variations in meteorology
and variations in overall climate on ammonia emissions because the
volatilization of ammonia is very sensitive to air temperature. They
argued that emissions could easily vary by 20% for different
geographical locations within a country due to overall variations in
climate. The amount of nitrogen emitted as ammonia from manure
application is also affected by soil properties, such as soil pH, soil
moisture, and mineral soil substrate (Raymond et al., 2016). The soil pH
can significantly affect ammonia volatilization positively, meaning
higher soil-pH values lead to higher rates of ammonia volatilization
(Raymond, 2016). There are spatial variations in the geographical dis-
tribution of soil pH, and the typical values range between 5.8 and 7.0
depending on the crop types, which is usually lower than the pH of
manure (Riddick et al., 2016).

There is limited research on determining the magnitude of ammonia
emissions from farming while considering the effects mentioned above.
Most of the previous studies used empirical methods. For instance,
Sommer and Hutchings (2001) reviewed various empirical models that
used experiment-derived equations to predict ammonia volatilization
from slurry application. However, only one or two factors were studied,
and the interactions between these factors were not investigated. Mis-
selbrook et al. (2000) derived ammonia emission fractions under various
farming practices in the UK, but the impacts from climate are only
accounted for to a small extent in these emission factors. Another
method for estimating ammonia emission fractions is to use
process-based models, which take into account a theoretical under-
standing of relevant processes (Moring et al., 2016; Nemitz et al., 2001;
Sutton et al., 1995). For field-applied slurry, Hafner et al. (2019) built a
semi-empirical dynamic model to predict ammonia volatilization as well
as emission fractions. Values for parameters that quantify the effects of
the following predictor variables on partitioning and transfer rates were
estimated: slurry dry matter, application method, application rate,
incorporation (shallow or deep), air temperature, wind speed, and
rainfall rate. Moreover, along with ammonia emission, soil pH changes
simultaneously because the hydrolysis of ammonia production can
change the soil pH. Moring et al. (2016) proposed a dynamic scheme for
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simulating soil pH in a field scale model and had a reasonable approx-
imation against measurement. We think that detailing the emission
fraction dynamically could be a worthwhile step to improve the emis-
sion model further.

5. Conclusions

A Sentinel-2-derived high-resolution crop map and the locations of
animal housing systems in the Netherlands were used to update an
ammonia emission model, resulting in more refined spatial details and
temporal variability of ammonia emissions across the country. Using the
crop map and housing information in LOTOS-EUROS, the modeled
monthly and annual ammonia surface concentrations compared better
with in situ measurements than those derived with the original emission
product, indicating that the spatial and temporal distribution of
ammonia emission estimates was improved. The model captured the
magnitude and temporal variability of in situ measurements at both
application-dominated and housing-dominated stations. Almost all
model performance indicators have improved, with more significant
improvements at housing-dominated stations. However, the model still
had uncertainties, illustrated by the overestimated ammonia emission in
spring. The findings indicate that including the locations of livestock
housing systems and the satellite-derived crop map has improved
ammonia emission estimates in space and time, and the methodology
can be relatively easily applied to a larger region such as EU-27. The next
step to refine the emission model would be replacing the constant
emission fractions of animal housing and manure/fertilizer application
with spatially explicit ones that account for the spatial variations in
explanatory variables related to meteorology, manure properties,
application method, and soil properties.
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