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ABSTRACT: Monolithic two-terminal (2T) perovskite/CuInSe2 (CIS) tandem
solar cells (TSCs) combine the promise of an efficient tandem photovoltaic (PV)
technology with the simplicity of an all-thin-film device architecture that is
compatible with flexible and lightweight PV. In this work, we present the first-ever
2T perovskite/CIS TSC with a power conversion efficiency (PCE) approaching 25%
(23.5% certified, area 0.5 cm2). The relatively planar surface profile and narrow
band gap (∼1.03 eV) of our CIS bottom cell allow us to exploit the optoelectronic
properties and photostability of a low-Br-containing perovskite top cell as revealed
by advanced characterization techniques. Current matching was attained by proper
tuning of the thickness and bandgap of the perovskite, along with the optimization
of an antireflective coating for improved light in-coupling. Our study sets the
baseline for fabricating efficient perovskite/CIS TSCs, paving the way for future
developments that might push the efficiencies to over 30%.

The photovoltaic (PV) market is currently dominated
by single-junction devices: primarily, silicon (Si) solar
cells. However, single-junction Si PV cells have

matured over the decades to the point where their efficiency
approaches the practical limit.1 Nonetheless, by stacking two
or more compatible solar cells in a tandem configuration, the
solar spectrum can be utilized more efficiently to obtain power
conversion efficiencies (PCEs) exceeding the limit of single-
junction devices, which also promises a decreased levelized
cost of electricity.2,3 Thanks to their outstanding optoelec-
tronic properties and an intense effort from the scientific
community over the past decade, single-junction perovskite
solar cells (PSCs) have demonstrated impressive progress,
already surpassing a PCE of 25%.4 In fact, single-junction PSCs
are already rivaling established technologies such as Si and
CuIn(Ga)Se2 (CI(G)S).

4,5 In addition, their versatile process-
ing routes and band gap tunability make perovskite semi-
conductors prime candidates for tandem PV devices, leading to
a record PCE of 29.8% and 24.2% for a tandem solar cell
(TSC) with a Si and CI(G)S bottom solar cell, respectively.4

As an all-thin-film technology, perovskite/CI(G)S TSCs
combine the promise of a high-efficiency tandem PV
technology with the ease of a device architecture that is
compatible with flexible PV and is light weight.6−10 With the
inspiration of the potential advantages of the technology,

efforts to fabricate efficient two-terminal (2T) perovskite/
CI(G)S TSCs started in the early stages of PSC develop-
ment.11 Notably, Han et al.12 used a polished thick ITO layer
between the CI(G)S and perovskite subcells to overcome the
challenge of processing the top cell on the rough surface of the
CI(G)S, achieving a certified PCE of 22.4%. Later, Albrecht
and co-workers implemented a series of innovations that
progressively improved the performance of 2T perovskite/
CI(G)S TSCs. In their first work, they used atomic layer
deposition (ALD) to conformally coat the rough bottom cell
surface with a thin layer of NiOx that, in combination with
PTAA, allowed processing the top cell directly on the as-grown
CI(G)S cell, achieving a PCE of 21.6%.13 Later, they used a
self-assembled monolayer (2PACz) as the hole transport layer
and reached a certified PCE of 23.3%.14 More recently, a
certified PCE of 24.2% was achieved by replacing 2PACz with

Received: March 25, 2022
Accepted: April 29, 2022
Published: June 8, 2022

Letter

http://pubs.acs.org/journal/aelccp

© 2022 The Authors. Published by
American Chemical Society

2273
https://doi.org/10.1021/acsenergylett.2c00707

ACS Energy Lett. 2022, 7, 2273−2281

D
ow

nl
oa

de
d 

vi
a 

T
N

O
 o

n 
Ja

nu
ar

y 
3,

 2
02

3 
at

 1
2:

16
:2

6 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Marco+A.+Ruiz-Preciado"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fabrizio+Gota"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Paul+Fassl"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ihteaz+M.+Hossain"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Roja+Singh"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Felix+Laufer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fabian+Schackmar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fabian+Schackmar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Thomas+Feeney"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ahmed+Farag"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Isabel+Allegro"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hang+Hu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Saba+Gharibzadeh"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bahram+Abdollahi+Nejand"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bahram+Abdollahi+Nejand"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Veronique+S.+Gevaerts"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Marcel+Simor"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pieter+J.+Bolt"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ulrich+W.+Paetzold"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsenergylett.2c00707&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.2c00707?ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.2c00707?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.2c00707?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.2c00707?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.2c00707?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/aelccp/7/7?ref=pdf
https://pubs.acs.org/toc/aelccp/7/7?ref=pdf
https://pubs.acs.org/toc/aelccp/7/7?ref=pdf
https://pubs.acs.org/toc/aelccp/7/7?ref=pdf
http://pubs.acs.org/journal/aelccp?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsenergylett.2c00707?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/aelccp?ref=pdf
https://http://pubs.acs.org/journal/aelccp?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


Me-4PACz and using defect passivation strategies on the
perovskite top cell.15

It is important to note that all of the aforementioned
developments were performed using wide-band-gap absorbers
for the top and bottom cells. However, the band gap of both
the perovskite top cell and the CI(G)S bottom cell can be
tuned by engineering of their composition.16−18 This versatility
is very useful when it comes to monolithic 2T TSCs with two
series-interconnected subcells that require matched current
generation in the top and bottom cells to maximize the power
output. In this regard, a detailed balance analysis for 2T TSCs
indicates that high efficiencies are possible when the band gaps
of the bottom and top absorbers are varied within a certain
range, with absolute optimal values at 0.94 eV for the bottom
cell and ca. 1.60 eV for the top cell.3,19−22 Critically, the band
gap of CI(G)S can be reduced to close to 1 eV by drastically
decreasing the gallium content in the composition of the
material in a graded fashion along the layer. This composition
is commonly referred to as CuInSe2 (CIS), and single-junction
solar cells based on it have already been reported showing
PCEs over 19%.17 Therefore, in a 2T tandem configuration,
CIS perfectly pairs with the best-performing p−i−n PSCs to
date, in which the perovskite absorber has a band gap slightly
below 1.6 eV.3,20,21,23 Despite that, research on perovskite/CIS
TSCs is scarce and has mostly focused on four-terminal
configurations17,18 or optical simulations of 2T TSCs.24 To the
best of our knowledge, there is only one previous experimental
report on 2T perovskite/CIS TSCs,25 and the PCE was limited
to ∼11%.
In this work, we present highly efficient 2T perovskite/CIS

TSCs for the first time. By optimizing the semitransparent
perovskite top cell when it is interconnected in tandem with a
narrow-band-gap CIS bottom cell, we obtain tandem PV
devices approaching a PCE of 25%. We report on improve-
ments in light management, addressing antireflective coatings
along with band-gap tuning to achieve current matching
between the subcells. We also discuss further the benefits of
using a CIS absorber with a narrow band gap of ca. 1.03 eV for
the bottom cell, which allows us to take advantage of the
excellent optoelectronic properties and phase stability of
perovskites with band gaps below 1.60 eV. Our study
demonstrates that perovskite/CIS TSCs have the potential to
reach PCEs exceeding our current results, paving the way for
future developments that might push the efficiencies over the
30% threshold.
In 2T tandem devices, the constituting top and bottom solar

cells are usually connected in series, leading to an addition of
the generated voltages and a recombination of the photo-
generated currents of each subcell at the junction. Thus, in
order to maximize the current generation of a 2T TSC, the
photocurrents of the top and bottom solar cells need to match.
Failing to do so will cause the overall tandem photocurrent to
be limited to that of the subcell generating the smaller current.
Here it should be noted that a slightly imbalanced short-circuit
current density (JSC) can increase the fill factor (FF) of a
tandem device, partially compensating the loss in PCE due to a
smaller JSC value.26,27 In order to match currents, the first step
is to identify a suitable combination of band gaps for the top
and bottom cells. We performed computational simulations
using the open-source modeling platform EYcalc28,29 to model
the performance of 2T TSCs for different band-gap
combinations. The simulations take the champion perov-
skite/CI(G)S TSC reported in this work (PCE of 24.9%) as a

reference point. Details concerning the calculations are
provided in the Supporting Information. A fit to our
experimental external quantum efficiency (EQE) and an
optical loss analysis can be found in Figure S1. On the basis
of our simulations, the contour plot of Figure 1 shows the

maximum PCE for a 2T TSC with a given combination of
band gaps for the top (perovskite) and bottom (CI(G)S)
absorbers. According to our model, it is possible to achieve
PCEs of up to 25% for a wide range of band-gap combinations,
i.e., ∼0.95−1.15 eV for the bottom cell and ∼1.54−1.72 eV for
the top cell. This is in good agreement with detailed balance
limit calculations for 2T TSCs.3 As was stated before, the band
gap of CI(G)S can be tuned in the range of ∼1−1.2 eV, where
the most efficient single-junction CI(G)S solar cell to date has
a band gap of ca. 1.08 eV.16 Our model shows that 1.08 eV for
the bottom cell is within a band-gap range that can produce a
high-efficiency 2T tandem device in combination with a
suitable top cell (Figure 1). However, to achieve the highest
possible performance, the band gap of the CI(G)S should be
further decreased to fit within the optimal range (∼0.95−1.03
eV), while the perovskite should be engineered to appropri-
ately pair with the chosen band gap of CI(G)S (∼1.56−1.66
eV). It should be noted that, for highly luminescent perovskite
top cells, a correction to lower band-gap energies should be
considered for the top absorber due to luminescent
coupling.30,31 Josť et al.15,32 reported on the recent record
2T perovskite/CI(G)S TSC having an architecture very similar
to that in this work with a certified efficiency of 24.2% for a
band gap combination of ∼1.13 and ∼1.68 eV for the CI(G)S
and perovskite, respectively. The PCE obtained from our
simulations matches their experimental result well for this
band-gap combination. Moreover, our model suggests that by
decreasing the band gap of the top and bottom absorbers by
∼100 meV, while the same electronic quality of the materials is
maintained, higher efficiencies can be achieved. For this, a CIS

Figure 1. Contour plot showing the maximum PCE of perovskite/
CI(G)S 2T tandem solar cells as a function of CI(G)S and
perovskite band gap. The simulations take the 24.9% perovskite/
CIS TSC introduced in this work as a reference from an optical
and electrical point of view. Figure S1 shows the optical response
(EQE, reflectance) of the reference cell and the corresponding
simulated values. The layer thicknesses are fixed for all band-gap
combinations. In particular, the perovskite thickness is set to 600
nm. The electrical parameters of the subcells for all of the CI(G)S
and perovskite band gaps were adjusted so that the VOC/qEg ratio
and the FF are equal for different band gaps. In particular, the
VOC/qEg ratio of the perovskite cells is set to 68% and the FF to
78%, while for the CI(G)S cells the VOC/qEg ratio is 52% and the
FF is 65%. Further information about the simulations can be found
in the Computational Simulations section of the Supporting
Information.
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bottom cell with a band gap closer to 1 eV in conjunction with
a perovskite top cell with a band gap of ca. 1.60 eV should be
considered. In this way, PCEs of over 25% should be feasible.
By coupling a low-Ga-containing CIS (∼1.03 eV) and a

triple-cation perovskite (∼1.59 eV) in a 2T tandem
configuration, we have fabricated high-performing 2T tandem
PV devices. The band gaps are determined from the inflection
point of the EQE (see Figure S2).33 A champion PCE of 24.9%
was measured in house with an open-circuit voltage (VOC), JSC,
and FF of 1.57 V, 21.1 mA cm−2 and 75.2%, respectively.
Figure 2a shows the current density−voltage (J−V) curve, and
statistics for 25 devices are provided in Figure S3. In Figure 2c
we display the maximum power point tracking (MPPT) of a
2T TSC exposed to continuous illumination at 1 sun for 17 h,
where the device exhibits no decrease in PCE. Figure 2b shows
the EQE for the champion device that exhibits nearly perfect
current matching, with the photocurrent of the TSC being only
slightly limited by the perovskite top cell. The integrated
photocurrents (JEQE) are 20.4 and 20.7 mA cm−2 for the top
and bottom cells, respectively.
We sent out various 2T TSCs for certification, and Figure 2d

shows the current−voltage (I−V) curve for the device with the

highest certified PCE of 23.5%, VOC of 1.59 V, JSC of 19.4 mA
cm−2, and FF of 75.5%. For clarification, we note that the
champion device in Figure 2a,b is not the same as the best
certified device in Figure 2d. To corroborate the accuracy of
our in-house measurements, we compare the PV parameters
and JEQE values obtained from both in-house and certified
measurements at CalLab Fraunhofer ISE for three different
TSCs (Table S1). In all cases, the discrepancy between the in-
house and certified measurements lies within a 5% margin,
validating the reliability of our measurements. We note that we
employ a class AAA LED solar simulator that matches the
AM1.5G spectrum very well over the complete relevant
spectral range (Figure S4). The corresponding calculated
spectral mismatches for the top perovskite cell, the bottom CIS
cell, and a single-junction CIS cell (using the EQE spectra
shown in Figure 2b and Figure S5) are less than 0.5%, 5%, and
3%, respectively, emphasizing the good suitability of our solar
simulator spectrum to measure 2T perovskite/CIS TSCs.
An antireflective coating (ARC) was used to improve the

light in-coupling and increase the overall photocurrent. The
optimization process for the ARC is described in detail in
Figure S6, and the full layer stack and layout for our 2T

Figure 2. (a) Current density−voltage (J−V) curve for the champion tandem device. The PV parameters for this device in the reverse scan
are VOC = 1.57 V, JSC = 21.1 mA cm−2, FF = 75.2% and PCE = 24.9%. (b) EQE of the same champion device. The integrated photocurrents
obtained from EQE for the top and bottom subcells are 20.4 and 20.7 mA cm−2, respectively. (c) MPPT of a 2T TSC under continuous
illumination at 1 sun for 17 h. (d) Current−voltage (I−V) curve of a tandem device certified at CalLab Fraunhofer ISE with a PCE of 23.5%
(see the calibration certificate for Device 1 in the Supporting Information for more details). (e) Cross-sectional image and illustration of the
layer stack of a 2T TSC obtained by SEM.
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perovskite/CIS TSCs are depicted in Figure 2e and Figure S7,
respectively. The hole transport layer of the top cell is formed
by a very thin layer of NiOx (15 nm) and a self-assembled
monolayer of 2PACz.14,34,35 Given that our perovskite contains
methylammonium, the purpose of the NiOx layer is to
effectively isolate the perovskite layer from the intrinsic ZnO
(i-ZnO) buffer layer of the CIS bottom cell to avoid the
degradation of methylammonium by reaction with ZnO.36,37

The high performance of our 2T TSCs is a result of the high
quality of the subcells, as was apparent from independent J−V
curves and EQEs of perovskite and CIS single-junction devices
(Figure S5), as well as an appropriate optical and electrical
coupling. A comparison between semitransparent single-
junction PSCs with areas of 0.1 and 0.5 cm2 is displayed in
Figure S8 to show that increasing the device active area has a
limited effect on the FF. To better assess the optoelectronic
quality of our perovskite top cell, we compare the performance
of our narrow-band-gap PSC (Cs0.05MA0.1FA0.85Pb(I0.9Br0.1)3,
Eg ≈ 1.59 eV) from Figure S5 to that of a wider-band-gap PSC
(Cs0.05MA0.22FA0.73Pb(I0.77Br0.23)3, Eg ≈ 1.68 eV), as shown in
Figure S9. We chose the latter because it is a very popular
composition used in previous reports of high-performing 2T
TSCs.14,32,34 For simplicity, further on we will refer to the
narrow- and wide-band-gap compositions as 10%-Br and 23%-
Br perovskites, respectively, referring to the bromide fraction
relative to iodide. The PV parameters of opaque single-
junction PSCs for both compositions are summarized in Table
1. Even though both compositions yield high-performing PV
cells, the devices with 10%-Br exhibit a slightly higher PCE that
is due to its higher VOC value relative to the radiative limit.33

Typically, a larger bromide fraction has been correlated to the
formation of vacancies and defects in the perovskite bulk (i.e.,
a lower optoelectronic quality) together with an enhanced
interface recombination for wider-band-gap PSCs, both
limiting the performance.38−40 We further analyze the

optoelectronic quality and related voltage losses of our
single-junction and tandem devices by calculating the implied
VOC value with respect to the radiative limit from photo-
luminescence quantum yield (PLQY) measurements at ∼1 sun
for various device stacks (see Figure S10).33,41 For single-
junction half-stacks up to the perovskite layer, both 10%-Br
and 23%-Br show very high implied VOC values that are above
92% of the radiative limit for the respective band gap (Figure
3a). In a tandem half-stack (10%-Br) this value only slightly
decreases to 89.8%, possibly due to a reduction in light out-
coupling.42 Upon completion of the single-junction PSCs with
the top electrodes (C60/BCP/Ag), the implied VOC value is
strongly decreased to 87.6% and 85.4% of the radiative limit
for the 10%-Br and 23%-Br perovskites, respectively. Similarly,
after completion of the 2T TSC (10%-Br), the value decreases
to 85.5%. This shows that the perovskite/electron transport
layer is the performance-limiting interface, as reported
previously.23,43 However, the implied VOC value with respect
to the radiative limit is slightly higher for 10%-Br in
comparison to 23%-Br, in line with the single-junction device
results discussed above. From time-resolved PL measurements
we obtained a longer charge carrier lifetime for 10%-Br, which
also implies a higher optoelectronic quality over 23%-Br
(Figure S11). Additionally, we have determined the expected
VOC losses of our 2T TSCs due to nonradiative recombination,
the filtered spectrum (for the bottom cell), and the aperture,44

while considering a temperature of 25 °C. Thereby, we
calculate a VOC value of ∼1.10 V from the top cell and ∼0.49 V
from the bottom cell, adding up to a VOC value of ∼1.59 V in a
2T TSC (see Figure 3b). This matches very well the VOC value
measured at CalLab Fraunhofer ISE (shown in Figure 2d and
denoted Device 1 in Table S1). We note that for higher
temperatures additional losses must be considered, leading to
expected VOC drops of ∼2.04 and ∼1.32 mV °C−1 for the
CIS45 bottom cell and the perovskite44 top cell, respectively,

Table 1. Photovoltaic Parameters of the Solar Cells Presented in This Worka

VOC (V) FF (%) JSC (mA cm−2) PCE (%)

10%-Br PVK single junction 1.14 (1.14) 80.2 (77.6) 22.6 (22.6) 20.7 (19.9)
23%-Br PVK single junction 1.16 (1.17) 80.0 (77.5) 20.8 (20.7) 19.4 (18.7)
CIS single junction 0.532 71.2 38.8 14.7
PVK(10%-Br)/CIS 2T TSC 1.57 (1.57) 75.2 (73.6) 21.1 (21.0) 24.9 (24.3)
PVK(10%-Br)/CIS 2T TSCb 1.59 (1.59) 75.5 (75.0) 19.4 (19.4) 23.5

aForward scan values are given in parentheses. bCertified at CalLab Fraunhofer ISE.

Figure 3. (a) Fraction of the radiative limit for the implied VOC values of different single-junction (10%-Br and 23%-Br perovskite) and
tandem (10%-Br perovskite) stacks. (b) Expected VOC losses due to nonradiative recombination, the filtered spectrum (for the bottom cell),
and the aperture for the top and bottom cells in a 2T perovskite/CIS TSC.
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which could explain the differences in measured VOC values
observed for the devices presented in Table S1. Details on the
calculation of VOC losses are provided in the Supporting
Information.
In addition to higher PCEs, the 10%-Br perovskite is

expected to also display better phase stability in comparison to
the 23%-Br counterpart.34,38,46 Therefore, we performed
steady-state photoluminescence (PL) measurements on both
10%-Br and 23%-Br perovskites. In order to study the extent of
phase segregation under device-relevant conditions, we first
irradiate samples with the device stack ITO/NiOx/2PACz/
perovskite at ∼1 sun intensity for 10 min, followed by another
10 min at ∼2 suns using an ∼525 nm laser diode. The samples
were placed under a N2 atmosphere during the experiment to
avoid any influence of the environment.47,48 The results are

summarized in Figure 4. The PL spectrum of the 10%-Br
perovskite exhibits only a very slight change at both 1 and 2
suns with the peak position shifting by roughly 5 nm while the
PL spectral shape and full-width at half-maximum (fwhm)
remain very similar (see Figure 4e). This minor peak shift has
been observed before, and it is reversible when the samples are
stored in the dark.49,50 While its origin is not completely clear
at this point, we do not associate it with phase segregation,
considering the small amount of bromide and narrow band gap
of our perovskite. On the other hand, not only does the 23%-
Br perovskite exhibit a similar shift at the high-energy side of
the PL spectrum but it also displays an additional asymmetric
broadening of the peak that is more prominent at the low-
energy side and increases over time. This asymmetric
broadening is already noticeable at 1 sun, characterized by a

Figure 4. Photoluminescence (PL) emission spectra at the irradiation equivalent of 1 sun for (a) 10%-Br and (b) 23%-Br. PL emission
spectra at the irradiation equivalent of 2 suns for (c) 10%-Br and (d) 23%-Br. (e) Representation of the PL peak displacement over time.
The change in FWHM of the PL spectrum is shown normalized to the initial value. The samples were irradiated at 1 sun for 630 s followed
by irradiation at 2 suns on the same spot. The spectra were collected every 30 s. The samples were kept under a N2 atmosphere for the
duration of the experiment.

ACS Energy Letters http://pubs.acs.org/journal/aelccp Letter

https://doi.org/10.1021/acsenergylett.2c00707
ACS Energy Lett. 2022, 7, 2273−2281

2277

https://pubs.acs.org/doi/suppl/10.1021/acsenergylett.2c00707/suppl_file/nz2c00707_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsenergylett.2c00707/suppl_file/nz2c00707_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsenergylett.2c00707/suppl_file/nz2c00707_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.2c00707?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.2c00707?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.2c00707?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.2c00707?fig=fig4&ref=pdf
http://pubs.acs.org/journal/aelccp?ref=pdf
https://doi.org/10.1021/acsenergylett.2c00707?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


slight increase in the fwhm (Figure 4e), while upon
illumination at 2 suns, the deformation becomes even more
pronounced with the appearance of a clear shoulder at the low-
energy side that results in an even stronger increase of the
fwhm. This observation can be attributed to phase segregation,
resulting in the formation of two different photoactive phases,
one of them being an iodide-rich narrow-band-gap
phase.39,40,51,52 To investigate whether the intrinsic phase
stability characteristics revealed by PL have an effect on the
device stability, we performed MPPT of single-junction PSCs
(Figure S12) and 2T TSCs (Figure 2c and Figure S12) under
continuous illumination at 1 sun for periods of 20 and 17 h,
respectively. In all cases the PCE is very stable over the
duration of the experiment. However, both kinds of single-
junction PSCs denote distinctive behavior during the initial
phase of MPPT, with the 10%-Br increasing slightly from
19.5% to 20.0% within the first 60 min, while the PCE of the
23%-Br decreases from 19.0% to 18.3%. The latter findings
could correlate with our observations from PL spectra that
reveal intrinsic phase instability of the 23%-Br perovskite and
are in line with the work of Peña-Camargo et al.,39 where
higher VOC loss and phase instability for higher-Br-containing
triple cation perovskites was demonstrated. Al-Ashouri et al.
have previously investigated phase segregation in wide-band-
gap triple-cation perovskites and found that slow charge
extraction and poor interfacial defect passivation lead to a
more pronounced photoinstability.34 Additionally, Farooq et
al. tested the influence of bias conditions on device
performance under continuous illumination and concluded
that maintaining the devices under open-circuit conditions
accelerates device degradation.53 These two related studies
might explain the rather fast phase segregation revealed by PL
(measured under open-circuit conditions without the top
electrodes) and the stable performance observed under MPPT
(where charges are being constantly extracted) for the 23%-Br
perovskite. Nevertheless, we point out that, even if charge
extraction decelerates phase segregation on the time scales
considered in our experiments, we cannot exclude that it will
not influence device degradation over long-term operation.
Overall, this set of experiments emphasizes that the narrow-
band-gap 10%-Br perovskite displays superior intrinsic phase
stability in comparison to the wider-band-gap 23% perovskite
under device-relevant conditions.
Fabricating 2T TSCs comes with many challenges that are

not restricted to the optical and electrical coupling of the
constituent layers. One of the main challenges is inherent to
the morphology of the substrates and to the employed
deposition techniques. Textured and rough surfaces commonly
found in Si and CI(G)S solar cells have proven difficult to
conformally coat with solution-processed layers.54,55 In this
regard, atomic force microscopy (AFM) reveals that a CI(G)S
sample has a root-mean-square roughness (RRMS) of ∼120 nm
and a peak to valley distance of ∼560 nm (Figure S13). In

comparison, AFM shows that our narrow-band-gap CIS has a
uniform surface profile (Figure 5a,b) with RRMS ≈ 53 nm and a
maximum peak to valley distance of ∼270 nm (Figure S13).
These surface characteristics facilitate the processing of the
perovskite top cell on the as-grown CIS bottom cell and
prevent the presence of defects and shunts due to uneven
coverage of the substrate’s profile (see PL imaging results in
Figure S14) while also avoiding the need for exceptionally
thick perovskite layers.54,55 Indeed, after optimization for
current matching, conformal coverage of the CIS bottom cell
was achieved with a perovskite layer of approximately 600 nm
(see Figure 5c), as can also be seen in the scanning electron
microscope (SEM) cross-sectional image of Figure 2e.
In summary, we present for the first time 2T perovskite/CIS

TSCs with PCEs approaching 25% and a certified PCE of
23.5%. We achieve our remarkable PCEs by appropriately
selecting the absorber band gaps and optimizing the perovskite
thickness using a computational model as a guide. We
demonstrate high performance by using a narrow-band-gap
CIS as the bottom cell and a low-Br-containing perovskite as
the top cell of a 2T tandem PV device. In this way, we
minimize the VOC losses of the perovskite top cell associated
with high Br content and improve the intrinsic phase
photostability of the device by decreasing phase segregation.
We show that the morphological characteristics of the as-
deposited CIS bottom cell permit the full coverage of the CIS
substrate with the perovskite layer by a solution process (i.e.,
spin-coating) and that, together with the optimization of the
subsequent layers, minimal VOC and FF losses are possible.
Our results demonstrate the potential of perovskite/CIS TSCs
as a key energy solution, in particular for applications that
might require flexible and/or lightweight PV devices, and open
the way for future developments that may push the
performances over the 30% threshold.
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Figure 5. a Surface analysis of a CIS thin film performed by AFM. SEM surface image of b CIS, c 10%-Br perovskite layer deposited on CIS.
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