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Abstract

In most medical research, the average treatment effect is used to

evaluate a treatment’s performance. However, precision medicine re-

quires knowledge of individual treatment effects: What is the differ-

ence between a unit’s measurement under treatment and control con-

ditions? In most treatment effect studies, such answers are not possi-

ble, because the outcomes under both experimental conditions are not

jointly observed. This makes the problem of causal inference a missing

data problem. We propose to solve this problem by imputing the indi-

vidual potential outcomes under a specified partial correlation (SPC),

thereby allowing for heterogeneous treatment effects. We demonstrate

in simulation that our proposed methodology yields valid inference for

the marginal distribution of potential outcomes. We highlight that

the posterior distribution of individual treatment effects varies with

different specified partial correlations. This property can be used to
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study the sensitivity of optimal treatment outcomes under different

correlation specifications. In a practical example on HIV-1 treatment

data, we demonstrate that the proposed methodology generalises to

real-world data. Imputing under the SPC therefore opens up a wealth

of possibilities for studying heterogeneous treatment effects on incom-

plete data and the further adaptation of individual treatment effects.

Keywords: Multiple imputation, joint modeling imputation, iterative

imputation, multivariate data analysis

1 Introduction

Heterogeneity of treatment effects across individuals is a significant complica-

tion in precision treatment assignment to different persons. The difficulty of

evaluating individual treatment effects (ITE) from the observed data is that

only one of the potential outcomes is observed for each individual (Rubin,

1974; Hernan & Robins, 2010). This fundamental problem of causal inference

implies that causal inference is essentially a missing data problem (Rubin,

2005; Peng Ding, 2018). Simply ignoring the missingness in the potential out-

comes would only allow for average or homogeneous treatment effects. To

allow for the estimation of unobserved heterogeneous treatment effects, we

need to solve for the individual missing potential outcomes through multiple

imputation.

Multiple imputation is a popular approach for analysing incomplete datasets

but is not yet widely used in causal inference. In multiple imputation the

missingness is solved before the data is analysed as if it were completely
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observed. Imputations for missing values are therein drawn from the corre-

sponding posterior predictive distributions in parallel, resulting in multiple

imputed datasets. Then, the statistical inference is obtained for each im-

puted dataset separately by complete-data analyses. Finally, the multiple

analyses are aggregated into a single inference using Rubin’s rules (Rubin,

1987, pp. 76), which account for within, and across imputation uncertainty.

Because multiple imputation imputes the individual potential outcomes, we

can evaluate both the difference between outcomes and the individual treat-

ment effects.

Studying individual treatment effects receives increasing attention. For

example, Lamont et al. (2018), and Westreich et al. (2015) discussed the

performance of multiple imputation for potential outcomes. Lamont et al.

(2018) applied multiple imputation to evaluate the effectiveness of various

programs designed to prevent depression among sampled women and provide

program recommendations for women out of the sample. However, Lamont et

al. (2018) and Westreich et al. (2015) fitted separate imputation models for

potential outcomes based on observed covariates, thereby implicitly assum-

ing conditional independence between potential outcomes. This conditional

independence assumption is not always valid and cannot be verified from the

observed data (Rässler, 2012). Imbens and Rubin (2015) and Gadbury et al.

(2001) studied the sensitivity of the average treatment effect estimates under

violations of the assumption of conditional independence between potential

outcomes. They found that distributions of average causal effect under vari-

ous partial correlations are different. An alternative imputation strategy fits

a fully conditional model for the incomplete outcome. However, Van Buuren
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(2018) demonstrated that without the specification of the partial correlation,

the derived imputations for such models are unstable and can be implausible.

Specification of the partial correlation in applications of multiple impu-

tation for potential outcomes has received little attention to date. We know

that the partial correlation could be an arbitrary value between -1 and 1

in each imputed dataset. However, the imputations become poor when the

partial correlation in the imputed dataset is negative (Van Buuren, 2018, sec-

tion 8.4.1). We therefore assume that this correlation is non-negative. Smink

(2016) proposed a data augmentation approach, where rows are added to the

data that hold prior information for the partial correlation. This procedure

is also outlined in Van Buuren (2018, section 8.4.2). In Smink’s scenario, the

imputations are guided by the specified correlation in the augmented cases,

but the data does not hold any covariates. One could imagine that augment-

ing the data with a joint prior set becomes increasingly challenging when the

number of covariates increases.

We propose a new hybrid imputation approach for imputing potential

outcomes under a given partial correlation that allows for the collection of

incomplete covariates. The procedure is hybrid in the sense that it combines

properties from joint modeling imputation (the potential outcomes form a

joint and are imputed as such) and fully conditional specification, wherein

the covariates are imputed on a fully conditional variable-by-variable ba-

sis. In this manuscript we first outline the role of the partial correlation in

causal inference, then give a brief overview of multiple imputation and in-

troduce our new hybrid imputation approach. We evaluate the validity of

the methodology in simulation and demonstrate the real-world applicability
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on a clinical trial aimed to evaluate the individual treatment effects of two

different therapies on slowing the progression of HIV disease.

2 The role of partial correlation

2.1 Notation

Let Y (j), j = 1, . . . , p denote one of p incomplete variables and Y (−j) =

(Y (1), . . . , Y (j − 1), Y (j + 1), . . . , Y (p)) denote the collection of the p − 1

variables in Y except Y (j). In this paper, Y (j) ususally represents the po-

tential outcomes. Let X = (X(1), . . . , X(k)) be a set of k completely ob-

served variables. Let ρ(Y (0), Y (1)) be the correlation between two potential

outcomes and ρY (0),Y (1) | X be the partial correlation between two potential

outcomes.

2.2 Setup

We focus on the case of a binary treatment Wi and a continuous outcome

Yi and assume the data come from a random sample of individuals, indexed

by i ∈ 1, . . . , N . Each individual i has a nonzero probability to be assigned

to both treatments, with Wi = 1 for the active treatment and Wi = 0 for

the control treatment. The number of units under treatment and control are

N1 and N0 respectively. We assume that the treatment assignment mech-

anism is unconfounded by the unobserved outcomes Ymis, i.e., an ignorable

assignment mechanism. We also assume that the potential outcomes for

any individual are independent of the treatments assigned to others, which
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is known as the stable unit treatment value assumption (Imbens & Rubin,

2015). Here the ignorable or unconfounded assignment mechanism implies

that P (W |Y (0), Y (1), X) = P (W |Yobs, X), where X are observed covariates

not influenced by treatment assignment. The individual treatment effect is

defined as τi = Yi(1)−Yi(0). We assume a joint distribution for the potential

outcomes Y1 and Y0 and that the correlation between the potential outcomes

ρ(Y1, Y0) can be quantified by one or more parameters. The imputation mod-

els for missing outcomes Y (1) and Y (0) are:

Ẏ (1) ∼ P (Y mis(1)|Y obs(1), Y (0), X, φ̇1) (1)

Ẏ (0) ∼ P (Y mis(0)|Y obs(0), Y (1), X, φ̇0), (2)

where parameters of the imputation model φ̇1 and φ̇0 are draws from their

respective posterior distribution.

2.3 Partial correlation between potential outcomes

The necessity of specifying the partial correlation in the process of multiple

imputation has been discussed hereinbefore. This section would further il-

lustrate the causality meaning of the partial correlation. We decompose the

individual treatment effect τi ∈ T, i = 1, . . . , N via

τi = Yi(1)− Yi(0) = XT
i β + εi, (3)

where Xi are observed pre-treatment covariates for individual i. Under ran-

dom treatment assignment, the regression weight β could be the ordinary
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least-square (OLS) estimation of τi on Xi. The quantity XT
i β is known as

systematic treatment effect variation and the residual εi is the idiosyncratic

treatment effect variation not explained by Xi (Ding et al., 2019; Heckman

et al., 1997; Djebbari & Smith, 2008). The idiosyncratic variation accounts

for treatment effect variation not attributable to differences in observed co-

variates. Based on the formula of OLS estimation, the coefficient

β = (XTX)−1XTT

= (XTX)−1XTY (1)− (XTX)−1XTY (0)

= β1 − β0,

(4)

where β1 and β0 are the corresponding regression weights of the potential

outcomes Y1 and Y0 on the observed covariates X. Similarly, the idiosyncratic

treatment effect variation εi

εi = τi −XT
i β

= (Yi(1)−XT
i β1)− (Yi(0)−XT

i β0)

= εi(1)− εi(0),

(5)

where ε(1) and ε(0) are the residuals from the regression of the potential

outcomes Y1 and Y0 on the observed covariates X. Applying the theory of

variance decomposition for linear regression, we could decompose the vari-

ance of individual treatment effect into two components:

Var(τi) = Var(XT
i β) + Var(εi). (6)
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Based on the idiosyncratic treatment effect variation formula (5), the id-

iosyncratic components of individual treatment variance becomes

Var(εi) = Var[εi(1)− εi(0)]

= Var[εi(1)] + Var[εi(0)]− 2Cov[εi(1), εi(0)],
(7)

which demonstrate that partial correlation ρY (0)Y (1) | X between the potential

outcomes does impact the idiosyncratic variation, which is unidentifiable

from the observed data.

Although the relation between potential outcomes cannot be determined

solely from the observed data, there are still some approaches to identifying

the partial correlation, such as the model-based approach, the experiment-

based approach, and sensitivity analysis. The model-based approach ex-

plicitly models the relationship between the idiosyncratic variation and the

assignment mechanisms such that the partial correlation would be close or

equal to zero (Heckman, 2005). Economists usually deal with ex-post causal

inference. The agents select the treatment according to their ex-ante eval-

uation. In this case, economists could infer the information only available

to agents from the assignment mechanism. For instance, Heckman (2010)

investigated the causal effect of educational decisions on the labour market

and health outcomes. He modelled latent cognitive and social-emotional en-

dowments and included these latent variables into the outcome equations. As

indicated earlier, the partial correlation between potential outcomes is the

only unknown parameter in the formula of idiosyncratic variation. There-

fore, the model for idiosyncratic variation could be tailored to the model for
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the partial correlation between potential outcomes. Generally, the model-

based approach attempts to figure out latent variables affecting the partial

correlation between potential outcomes.

The experiment-based approach intends to design sophisticated experi-

ments to collect additional data where analysts could evaluate the partial

correlation between potential outcomes. For instance, the experiment-based

approach collects repeated measurements under more than one treatment

level for the same individual from which some relevant information about

the partial correlation between potential outcomes is available. The experi-

ment designed for repeat measurements is known as N-1 trails(Shamseer et

al., 2015; Araujo et al., 2016). Researchers could also design an auxiliary

treatment (Wi = 2) and assign the extensive treatment to all individuals

in the sample. Then the individual treatment effect Yi(1) − Yi(0) can be

evaluated by [Yi(2)− Yi(0)− (Yi(2)− Yi(1))].

Both model-based and experiment-based approaches search for extra in-

formation to determine the partial correlation between potential outcomes.

If such additional information is not available, the alternative is sensitivity

analysis. After imputing the missing potential outcomes, one could evaluate

individual treatment effects with various valid partial correlations and study

the effect of partial correlations on the conclusions (Gadbury, Iyer & Allison,

2001).
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3 Multiple imputation of multivariate incom-

plete variables

Datasets used for evaluating individual treatment effects by multiple impu-

tation often have incomplete covariates and potential outcomes. We impute

potential outcomes with joint modeling (JM) and covariates with fully con-

ditional specification (FCS). Usually, one framework is used to generate all

imputations, but Van Buuren (2018) highlighted that a blocked approach

could be adopted to accommodate for hybrid versions of JM within FCS. We

will now briefly introduce joint modelling, fully conditional specification and

so-called hybrid imputation.

3.1 Joint modeling imputation (JM)

Joint modeling imputation assumes a model p(Y mis, Y obs | θ) for the com-

plete data and a prior distribution p(θ) for the parameter θ. Joint modelling

partitions the observed data into groups based on the missing pattern and

imputes the missing data within each missing pattern according to corre-

sponding predictive distribution. Under the assumption of ignorability, the

parameters of the predictive distribution for different missing patterns are

generated from the posterior joint distribution. Schafer (1997) proposed

joint modelling methods for multivariate normal data, categorical data and

mixed normal-categorical data. The joint modelling approach has solid theo-

retical properties (i.e., compatibility between the imputation and substantive

models) while it lacks the flexibility of model specification.
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3.2 Fully Conditional Specification (FCS)

In Fully Conditional Specification, we specify the distribution for each par-

tially observed variable conditional on all other variables P (Y (j)|Y (−j), X, θj)

and impute each missing variable iteratively. The FCS starts with naive im-

putations such as a random draw from the observed values. The tth iteration

for the incomplete variable Y (j) consists of the following draws:

θtj ∼ f(θj)f(Y obs(j)|Y t−1(−j), X, θj)

Y mis(t)(j) ∼ f(Y mis(j)|Y t(−j), X, θtj),

where f(θj) is generally specified as a noninformative prior. After a sufficient

number of iteration, typically with 5 to 10 iterations (van Buuren, 2018), the

stationary distribution is achieved. The final iteration generates a single

imputed dataset and the multiple imputations are created by applying FCS

in parallel m times. Since FCS provides tremendous flexibility in specifying

imputation models for multivariate partially observed data, FCS is now a

widely accepted and popular MI approach (Van Buuren, 2007). Even while,

FCS lacks a satisfactory theory and has a potential risk in incompatibility.

3.3 Block imputation

Block imputation combines the flexibility of FCS with the attractive theoret-

ical properties of JM. A block consists of one or more variables. If the block

has multiple variables, then we use multivariate imputation methods to im-

pute those variables jointly. A simple example would be multiple imputation
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of missing variables with quadratic effects Y = α+β1X+β2X
2+ε. In such a

case, grouping the missing variable X and its corresponding square term X2

within one block is of benefit to preserve the quadratic relationship (Vink,

2019). The joint modelling approach is the special case where all variables

form one block, while the FCS approach treats each variable as a separate

block.

When the imputation model of one variable is potentially incompatible,

or its theoretical properties are not fully studied (i.e., whether the imputa-

tions based on the FCS correspond to drawing from a joint distribution),

block imputation would merge that variable with other variables and apply

the joint modeling imputation approach to that block. On the other hand,

when the joint distribution of several missing variables is ambiguous, block

imputation could use the FCS approach to impute each variable. In gen-

eral, the apparent advantage of block imputation is the flexibility of model

specification. However, block methods are hardly known or studied. While

available in the mice software, the properties of block imputation have yet

to be studied.

4 Specified partial correlation imputation

In this section we detail how blocked imputation can be used to impute miss-

ing outcomes with a given partial correlation between potential outcomes.

We term the algorithm the imputation algorithm with specified partial cor-

relation (SPC). Since the missing pattern of potential outcomes is somehow

restrictive (see Figure 1) that is, no cases with completely observed potential

12



Figure 1: Missingness mechanism of potential outcomes. The write repre-
sents observed value and the grey represents missing value. Without loss of
generality, we assume covariates are completely observed.

outcomes, the imputation procedure follows three steps:

1. Estimating the marginal distribution of potential outcomes condition-

ing on pre-treatment variables.

2. Derive the multivariate density of potential outcomes by combining the

marginal distribution of potential outcomes and the specified correla-

tion between potential outcomes.

3. Impute the missing outcomes with the corresponding submodel ob-

tained from the multivariate distribution.
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Based on Rubin causal model (Imbens & Rubin 2015, Ch 8), it is plau-

sible to assume a multivariate normal distribution for continuous potential

outcomes. However, it is usually not valid to assume a joint distribution for

the incomplete dataset. Applying fully conditional specification to impute

covariates allows flexibility of imputation model specification. It is notice-

able that SPC could also predict the posterior distribution of the individual

treatment effect for units not in the experiment.

Our approach shares some similarities with statistical matching discussed

by Moriarity & Scheuren (2003). For example, suppose there are two sample

files, A and B. File A collects variables X and Y and file B collects variables

X and Z. The purpose of statistical matching is to combine two files, A and

B, into one file containing variables X, Y and Z. Rubin (1986) proposed a

procedure of statistical matching with three steps: regression step, matching

step and concatenation step. In the regression step, Rubin specified the

correlation between variable X and Y to derive the joint distribution of (X,

Y , Z) in two sample files. We develop this idea to evaluate the individual

treatment effects and extend to multiple treatments condition.

Without loss of generality, let us assume that potential outcomes follow a

multivariate normal distribution. We specify Bayesian linear models for two

potential outcomes based on observed covariates.

Y (0) = β0X + ε0, ε0 ∼ N (0, σ2
0) (8)

Y (1) = β1X + ε1, ε1 ∼ N (0, σ2
1). (9)

Bayesian sampling draws β∗0 , β∗1 , σ∗20 , σ∗21 from their respective posterior
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distribution. The Jeffrey’s prior used and hence, the posterior distributions

of σ∗20 and σ∗21 would be inverse χ2 distribution:

σ∗20 ∼
N0∑
i=1

(Yi(0)− β̂0Xi)
2χ−2N0−k (10)

σ∗21 ∼
N1∑
i=1

(Yi(1)− β̂1Xi)
2χ−2N1−k, (11)

where β̂0 = (X ′0X0)
−1X ′0Y (0), β̂1 = (X ′1X1)

−1X ′1Y (1) and k is the number

of covariates. The conditional distributions of β∗0 and β∗1 are multivariate

normal:

β∗0 |σ∗20 ∼ N (β̂0, σ
∗2
0 ((X ′0X0)

−1)) (12)

β∗1 |σ∗21 ∼ N (β̂1, σ
∗2
1 ((X ′1X1)

−1)). (13)

Since there is no information relevant to the partial correlation between po-

tential outcomes in the observed data, the posterior distribution of the partial

correlation ρY (0)Y (1)|X equals the prior distribution specified by the user, who

can select several numbers in the interval [−1, 1] to investigate the sensitiv-

ity to ρY (0)Y (1)|X . Finally, combined the marginal distribution of Y (0) and

Y (1) with the specification of ρY (0)Y (1)|X , the joint distribution of Y mis(0)

and Y mis(1) is:

 Y mis(0)

Y mis(1)

 ∼ N


 β∗0x

β∗1x

 ,

 σ∗20 ρY (0)Y (1)|Xσ
∗
0σ
∗
1

ρY (0)Y (1)|Xσ
∗
0σ
∗
1 σ∗21


 ,(14)
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and the distributions of Y mis(0) and Y mis(1) are:

Y mis(0) ∼ N (β∗0x+ (Y (1)− β∗1x)ρY (0)Y (1)|Xσ0/σ1, (1− ρ2Y (0)Y (1)|X)σ∗20 )

(15)

Y mis(1) ∼ N (β∗1x+ (Y (0)− β∗0x)ρY (0)Y (1)|Xσ1/σ0, (1− ρ2Y (0)Y (1)|X)σ∗21 ).

(16)

Comparing equations (15) and (16) to equations (8) and (9), it is evident

that inclusion of the observed outcome may change the location of missing

outcomes shifts slightly and the uncertainty is reduced when imputing miss-

ing outcomes under the specified correlation between potential outcomes.

For the prediction of units out of trials, the reasonable values for outcomes

under two treatments could be drawn from the joint distribution (14).

When generalizing to the multiple treatments condition W = 0, 1, . . . , w,

the marginal posterior distribution for potential outcomes would be:

Y (0)∗ = β∗0X + ε∗0, ε
∗
0 ∼ N (0, σ∗20 )

Y (1)∗ = β∗1X + ε∗1, ε
∗
1 ∼ N (0, σ∗21 )

. . .

Y (w)∗ = β∗wX + ε∗w, ε
∗
w ∼ N (0, σ∗2w ),

where the values of β∗0 , β∗1 , . . . , β∗w, σ∗20 , σ∗21 , . . . , σ∗2w draw from their respec-

tive Bayesian posterior distribution. If σ∗20 , . . . , σ
∗2
w are unrestricted, with

pairwise specification of partial correlation between potential outcomes, the
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joint distribution of Y mis(0), Y mis(1), . . . , Y mis(w) is:



Y mis(0)

Y mis(1)

. . .

Y mis(w).


∼ N (M,Σ), (17)

whereM = (β∗0x, β
∗
1x, . . . , β

∗
wx)T. The covariance matrix Σ must be positive

semi-definite:

Σ =



σ∗20 ρY (0)Y (1)|Xσ
∗
0σ
∗
1 . . . ρY (0)Y (w)|Xσ

∗
0σ
∗
w

ρY (1)Y (0)|Xσ
∗
1σ
∗
0 σ∗21 . . . ρY (1)Y (w)|Xσ

∗
1σ
∗
w

...
...

. . .
...

ρY (w)Y (0)|Xσ
∗
wσ
∗
0 ρY (w)Y (1)|Xσ

∗
wσ
∗
1 . . . σ∗2w


. (18)

Draws of missing outcomes for units under different treatments could be de-

rived from the joint distribution based on the property of conditional distribu-

tion for the multivariate normal distribution. For instance, with units under

control treatment W = 0, the distribution of missing outcomes Y mis(−0) =

(Y mis(1), . . . , Y mis(w)) would be Y mis(−0) ∼ N ((β∗1x, . . . , β
∗
wx)T+Σ0−0Σ

−1
−0−0(Y0−

β∗0x),Σ00 − Σ0−0Σ
−1
−0−0Σ−00), where

 Σ00 Σ0−0

Σ−00 Σ−0−0

 , (19)

is the partition of Σ: Σ00 = σ∗20 , Σ0−0 = ΣT
−00 = (ρY (0)Y (1)|Xσ

∗
0σ
∗
1, . . . , ρY (0)Y (w)|Xσ

∗
0σ
∗
w)
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and

Σ−0−0 =


σ∗21 . . . ρY (1)Y (w)|Xσ

∗
1σ
∗
w

...
...

. . .
...

ρY (w)Y (1)|Xσ
∗
wσ
∗
1 . . . σ∗2w

 . (20)

One could use the sweep operator for rapid calculation of the parameters for

imputation models of missing outcomes (Goodnight, 1979).

5 Simulation study

We evaluate the performance of SPC at both the individual level (i.e. the in-

dividual treatment effect) and the aggregate level (i.e. the average treatment

effect). For individual causal inference, we study the mean and mean abso-

lute differences between the ‘true’ and imputed individual treatment effects,

together with posterior distributions of individual treatment effects. For av-

erage causal inference, we analyse biases and confidence interval coverages

of the estimated parameters in the distribution of the potential outcomes.

We perform a sensitivity analysis to the multiple imputation approach with

three different values for the partial correlation between potential outcomes:

ρ = 0, 0.73 or 0.99, which correspond to, respectively, a conditional indepen-

dent correlation assumption, the correct partial correlation and a constant

treatment effect condition.

We compare the performance of SPC to the targeted learning approach

by Van der Laan & Rose (2011). Targeted learning is an alternative for

estimating individual treatment effects. The idea is to estimate the data-
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generating distribution P0 and then update the initial estimation to make an

optimal bias-variance tradeoff for the scientific interest Ψ(P0). To estimate

individual treatment effects, we define the average treatment effect as the

scientific interest:

Ψ(P0) = E[E(Yi(1) |X)− E(Yi(0) |X)]. (21)

The targeted learning consists of three steps of analysis: 1) definition of the

data-generating model and the scientific interest Ψ(P0), 2) super learning for

initial prediction of Ψ(P0) and 3) targeted maximum likelihood estimation

for Ψ(P0) (Van der Laan & Rose, 2011). Specifically, before estimation, it

is necessary to define a set of possible probability distributions of observed

data and identify a collection of causal assumptions (i.e., the ignorable as-

signment mechanism and the stable unit treatment value assumption) to the

identification of the correct model. With the definition of the model, one

could apply the super learner to derive an initial estimation for the distri-

bution of potential outcomes P̂0. The super learner first selects a library

of candidate algorithms and a risk function and then applies the validation

set approach to calculate the average risk for each algorithm. The optimal

algorithm with the smallest average risk is used to produce the initial pre-

dicted distribution of potential outcomes. The candidate algorithms could be

parametric(i.e., general linear model), non-parametric (i.e., random forest),

or even a weighted combination of statistical algorithms.

After the initial estimation of predicted potential outcomes, one could

define the targeted maximum likelihood estimation (TMLE) for scientific in-
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terest Ψ(P0). The TMLE step reduces the bias in the estimation of Ψ(P0) if

the initial estimation Ψ(P̂0) is inconsistent. This is accomplished by exploit-

ing information in the treatment assignment mechanisms to adjust the initial

estimations. Generally, the adjustment is an iterative procedure. However,

when the scientific interest is the average treatment effect, convergence is

achieved in one step. More details are provided in Gruber & van der Laan

(2011).

While targeted learning is a machine learning approach aimed at estimat-

ing the average treatment effect, it involves calculating the missing potential

outcomes and can therefore also be used to identify individual treatment ef-

fects. However, unlike SPC, the targeted learning fits the distribution of the

missing outcome only based on the covariates, which assumes conditional in-

dependence between potential outcomes. In the simulation study, we aim to

show the relevance of specifying the correlation between potential outcomes

when specifying the analysis model of potential outcomes.

5.1 Simulation conditions

We design the two potential outcomes Y (0) and Y (1) as well as one baseline

covariate X. The data is generated with a multivariate normal distribution:


Y0

Y1

X

 ∼ N




0

1

2

 ,


1 0.8 0.5

0.8 1 0.5

0.5 0.5 1
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Because the marginal correlation between potential outcomes is 0.8, the cor-

responding partial correlation is 0.73.

ρy0y1|x =
ρy0y1−ρy0xρy1x√
1−ρ2y0x

√
1−ρ2y1x

= 0.8−0.25
0.75

≈ 0.73,

(22)

A total of N = 5000 independent and identically distributed cases are gen-

erated. The first 2500 cases have only information for Y0 and the remaining

cases have only information on Y1. One thousand repetitions of the simula-

tion are produced for average causal inference. While, for individual causal

inference, we derive the posterior distributions of imputed outcomes from

twenty imputed datasets. For reasons of brevity, we only include one pre-

treatment covariate. However, it is straightforward to extend the methodol-

ogy to situations with more covariates and even mixtures of continuous and

categorical predictors.

5.2 Results

5.2.1 Individual causal inference

We define bias as the mean difference between true and estimated values

over twenty imputed datasets. Figure 2 shows the distribution of the bias for

all four strategies, and the corresponding location and scale are displayed in

Table 1.

Overall, SPC with three different partial correlations and the targeted

learning all yield unbiased estimates of the average treatment effect. How-
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(a) SPC ρpartial = 0 (b) SPC ρpartial = 0.73

(c) SPC ρpartial = 0.99 (d) The targeted learning

Figure 2: Histrogram plots of the bias of estimate the individual treatment
effects for all four strategies.

ρY (0)Y (1) | X Mean bias Variance of bias
SPC ρpartial = 0 -0.012 0.791

SPC ρpartial = 0.73 -0.007 0.363
SPC ρpartial = 0.99 -0.013 0.398

The targeted learning -0.006 0.401

Table 1: The location and the scale for the bias of estimate the individual
treatment effects for all four strategies.

ever, in terms of the scale, The SPC with the correct partial correlation has

a minor variance. The closer the specified partial correlation is to the partial

correlation in the true data generating model, the smaller bias and variance
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Figure 3: The plot shows mean individual treatment effects (Y (1)−Y (0)) in
both treatment and control group when partial correlation is defined as 0.73.
The oucome Y (0) is observed in the control group and the oucome Y (1) is
observed in the treatment group. The dashed line represents the average
treatment effect.

can be expected. Although it is difficult to produce accurate estimates of

the individual treatment effect for units at the tail in Fig 3, we still have

a large proportion of the estimated individual treatment effect with negligi-

ble biases. Since the variance of the bias equals the partial variance of the

potential outcomes, we could include more explanatory variables to increase

the accuracy of the imputation of missing outcomes and hence the predic-

tion of individual treatment effect. On the other hand, when the specified

partial correlation deviates from the true value, more variance would appear
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because of the differences between the true distribution and the estimated

distribution for each missing outcome.

(a) SPC ρpartial = 0 (b) SPC ρpartial = 0.73

(c) SPC ρpartial = 0.99 (d) The targeted learning

Figure 4: Stripplot of m = 5 of observed (blue) and imputed (red) data for
individual treatment effects with selected cases.

Figure 4 shows posterior distributions of individual treatment effects

for selected cases(i = 100, 200, . . . , 5000). When the partial correlation

is specified correctly, the imputations look plausible: imputed ITE covers

the true ITE for almost every case, and the variance of ITE for each in-

dividual is smaller than the case under the independent conditional cor-

relation assumption. With homogeneous treatment effect assumption, i.e.,
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ρY (0)Y (1) | X = 0.99, the imputed individual treatment effects are biased to-

wards the average treatment effect. For targeted learning, uncertainty about

the missing outcomes is not estimated.

Furthermore, we evaluate the imputations with all possible positive par-

tial correlation (range from 0 to 1) by mean distance between the true and

the mean estimated individual treatment effects and the rate of the pos-

terior distribution of imputed outcome cover the true value. Fig 5 shows

that the violation of the homogeneous treatment effect assumption leads to

extremely poor coverage. If we specified the partial correlation closed to

the true value, the imputed outcomes would be more accurate (see Fig 6).

Fig 6 also highlight the mean distance calculated by the targeted learning,

which implies the implicit assumption of conditional independence between

potential outcomes.

The SPC approach derives the distribution of individual treatment ef-

fects, which provides more information on treatment recommendations. For

instance, with a small individual treatment effect, it is possible to estimate

the probability of a positive treatment effect from the distribution of indi-

vidual treatment effects.

5.2.2 Average causal inference

In this section, we investigate whether we could provide valid inferences for

the distribution of the potential outcomes. In addition, we are interested

in the biases and the coverage of nominal 95% confidence intervals of all

parameters related to the potential outcomes. Table 2 shows all statistics

relevant to the potential outcomes. Statistics involving only one potential
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Figure 5: Coverage rate of the posterior distribution of estimated individual
treatment effects

outcome are unbiased and have valid coverage rates, which means that even

with incorrect specified partial correlation, we could derive plausible marginal

distribution of potential outcomes. Since the partial correlation is set before

imputation and there is no information about the correlation between poten-

tial outcomes in the data, we get valid inference for the marginal correlation

between potential outcomes only when we specified the partial correlation

correctly.
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Figure 6: Mean distance between the true and the mean estimated indi-
vidual treatment effects. The red dashed line represents the mean distance
calculated by the targeted learning approach.

6 Application

We apply the SPC algorithm to evaluate the effects of two different ther-

apies on slowing the progression of HIV disease. The data comes from

a study comparing the effects of four therapies (zidovudine alone, didano-

sine alone, zidovudine plus didanosine and zidovudine and zalcitabine) on

preventing the deterioration of disease in adults with HIV-1 infected pa-
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Method Truth Est Cover
SPC ρpartial = 0
E(y0) 0.0 0.00 0.95
E(y1) 1.0 1.00 0.94
Var(y0) 1.0 1.00 0.94
Var(y1) 1.0 1.00 0.94
Cov(y0, y1) 0.8 0.25 0.00
Cov(y0, x) 0.5 0.50 0.94
Cov(y1, x) 0.5 0.50 0.95
SPC ρpartial = 0.73
E(y0) 0.0 0.00 0.97
E(y1) 1.0 1.00 0.95
Var(y0) 1.0 1.00 0.94
Var(y1) 1.0 1.00 0.95
Cov(y0, y1) 0.8 0.80 1.00
Cov(y0, x) 0.5 0.50 0.95
Cov(y1, x) 0.5 0.50 0.94
SPC ρpartial = 0.99
E(y0) 0.0 0.00 0.95
E(y1) 1.0 1.00 0.95
Var(y0) 1.0 1.00 0.95
Var(y1) 1.0 1.00 0.94
Cov(y0, y1) 0.8 0.99 0.00
Cov(y0, x) 0.5 0.50 0.95
Cov(y1, x) 0.5 0.50 0.95

Table 2: Parameter estimates for SPC with different partial correlations

tients (Hammer et al., 1996). For simplicity, we name them treatment

A(zidovudine alone), B(didanosine alone), C(zidovudine plus didanosine) and

D(zidovudine and zalcitabine). The data named ACTG175 is accessible in

package speff2trial in R. We restrict our analyses to treatments A and B

and perform out-of-sample prediction of hypothetical effect of treatments A

and B for the remaining patients that were allocated to treatments C and

D. Hammer et al. concluded that treatment with didanosine is superior to

treatment with zidovudine. However, the overall treatment effect was found
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to be insufficient to recommend the therapy to a patient, a situation that is

common in many medical interventions.

A total of 693 HIV-1 infected adults with CD4 cell counts in the range

of 200 to 500 per cubic millimetre were randomised into the control (N =

316) and treatment (N = 377) group, while 670 patients were treated as

out-of-sample. Fifteen baseline covariates are included which assess gender,

age, weight, Karnofsky score, risk factors, prior antiretroviral therapy, CD4

cell count, and CD8 T cell count. We are interested in the number of days

until the first occurrence of: 1) a decline in CD4 cell count of at least 50

2) an event indicating progression to AIDS, or 3) death. The larger number

of days yields a more beneficial treatment effect. The individual treatment

effect is defined as the number of days under treatment B minus the number

of days under treatment A. We select the value of partial correlation as 0

and 0.7 to perform the sensitivity analysis so that the result yields distinct

differences.

(a) SPC ρpartial = 0 (b) SPC ρpartial = 0.7

Figure 7: Means of individual treatment effects for patients under treatment
A and treatment B, which are arranged into ascending order.
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(a) SPC ρpartial = 0 (b) SPC ρpartial = 0.7

Figure 8: Means of individual treatment effects for out-of-sample patients
under treatment C and D, which are arranged into ascending order.

Figure 7 shows the results of individual treatment effects under treatment

A and treatment B group with partial correlation specification 0 and 0.7. As

expected, this approach could detect the heterogeneity of treatment effects. A

large proportion of patients in the sample, whose individual treatment effects

are larger than 0, are recommended to receive a treatment regimen with

didanosine. However, treatment with zidovudine still yields greater clinical

benefit for a fraction of units, whose individual treatment effects are smaller

than 0. Since all covariates are balanced under two groups, the distributions

of expected individual treatment effects under two treatments (A and B)

are more similar when specifying a 0.7 partial correlation. Furthermore,

the range of expected value of individual treatment effects is smaller, with

a partial correlation of 0.7. The larger the partial correlation we set, the

more convinced that all effect modifiers are included, and effects are identical

across persons. Figure 8 shows variability in individual effects in out-of-

sample patients, which implies that our method could also be applied to a
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prediction scenario.

(a) (b) (c) (d) (e) (f) (g)

Figure 9: Fan plot of Observed and imputed (m = 20) outcomes under
treatment A (0) and B (0). The partial correlation is 0.

(a) (b) (c) (d) (e) (f) (g)

Figure 10: Fan plot of Observed and imputed (m = 20) outcomes under
treatment A (0) and B (0). The partial correlation is 0.7.

Figure 9 and 10 display imputations by selected patients for two differ-

ent values of partial correlation, 0 and 0.7. Each panel contains the observed

outcome for the patient and m = 20 imputed values for the missing outcome.

The imputed outcomes are sensitive to different values of partial correlation.
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Patient 5 benefits from treatment A when the partial correlation equals 0,

while we derive the opposite conclusion when specifying the partial corre-

lation as 0.7. The location of imputed outcomes is different under various

partial correlations, and the scale shrinks when the partial correlation tends

to 1.

7 Discussion

We propose a multiple imputation approach to replace missing outcomes with

plausible values to estimate the individual treatment effect. Treatment as-

signment is currently steered by the average treatment effect. This may lead

to suboptimal individual treatment decisions because the treatment effects

are assumed to be homogeneous. We have demonstrated that the proposed

SPC algorithm allows for the imputation of heterogeneous treatment effects

under a given partial correlation.

The sensitivity analysis of the partial correlation between potential out-

comes in section 5.2 demonstrates that different values of the partial cor-

relation yield similar results in terms of marginal distributions of potential

outcomes and the average treatment effect. However, the closer the specified

partial correlation is to the true value, the less biased the estimated individ-

ual treatment effect will be. Since one cannot obtain information about the

partial correlation from the observed data, the determination of the partial

correlation should be set to a plausible range based on previous investigations

or expert knowledge. In addition, it may be useful to perform a sensitivity

analysis to see how imputed outcomes differ with different partial correla-
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tions.

An advantage of our multiple imputation approach to individual treat-

ment effects is that it provides an estimate of the uncertainty of the imputed

outcomes and hence, of the individual treatment effects. One could obtain

the posterior distribution of the individual treatment effects for a unit from

multiply imputed datasets, from which we can learn the probability of benefit

from the treatment at the individual level. Since we incorporate the partial

correlation when imputing, researchers could apply complete-data analyses

to explore potential variables. This accounts for residual heterogeneity of

treatment effects or additional effect modifiers.

In our illustration of the SPC algorithm, we applied Bayesian imputation

under the normal linear model. It is possible to use other imputation tech-

niques (parametric or non-parametric imputation methods). The behaviour

of such methods has not yet been studied. Since SPC is a hybrid of FCS

and JM, it will provide valid inferences on data that are missing at random.

Another useful property of SPC is that under the assumption of ignorable

treatment assignment, researchers can skip explicit modelling of the proba-

bility of assignment.

In the application study, we focus on the comparison of treatments A and

B. It is possible to generalise the multiple treatment comparison (treatment

A, B, C, and D). By imputing unobserved outcomes, we could then recom-

mend the optimal treatment to each unit among four treatments. One could

benefit from our method when performing an experiment that has been in-

vestigated on a different population. Some proven effect modifiers may be

difficult to collect when performing the same experiment in other regions
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or countries. In such a case, the inference would include the heterogene-

ity of treatment effects explained by the uncollected factors by specifying a

reasonable partial correlation.

This is an initial study on MI to the individual treatment effect. The

simulation study used a basic randomised trial with a correctly specified im-

putation model. Further work should be done to extend discrete and semi-

continuous outcomes. Another challenge is to develop imputation techniques

for studies that collect post-treatment variables. All in all, we believe that

our methodology for incorporating the partial correlation represents an im-

portant advance in estimating individual treatment effects. We hope that our

method may attribute to the growing body of work on personalised statistics

and individual treatment effects.
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Rässler, S. (2012). Statistical matching: A frequentist theory, practical ap-

plications, and alternative bayesian approaches (Vol. 168). Springer

Science & Business Media.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized

and nonrandomized studies. Journal of educational Psychology , 66 (5),

688.

Rubin, D. B. (1986). Statistical matching using file concatenation with

adjusted weights and multiple imputations. Journal of Business &

Economic Statistics , 4 (1), 87–94.

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New

York: John Wiley and Sons.

36



Rubin, D. B. (2005). Causal inference using potential outcomes: Design,

modeling, decisions. Journal of the American Statistical Association,

100 (469), 322–331.

Shamseer, L., Sampson, M., Bukutu, C., Schmid, C. H., Nikles, J., Tate, R.,

. . . others (2015). Consort extension for reporting n-of-1 trials (cent)

2015: Explanation and elaboration. Bmj , 350 , h1793.

Smink, W. (2016). Towards estimation of individual causal effects: The use

of a prior for the correlation between potential outcomes (Unpublished

master’s thesis).

Van Buuren, S. (2007). Multiple imputation of discrete and continuous

data by fully conditional specification. Statistical methods in medical

research, 16 (3), 219–242.

van Buuren, S. (2018). Flexible imputation of missing data, second edition.

Chapman and Hall/CRC. doi: 10.1201/9780429492259

Van der Laan, M. J., & Rose, S. (2011). Targeted learning: causal inference

for observational and experimental data. Springer Science & Business

Media.

Vink, G., & van Buuren, S. (2019, December). Hybrid imputation. Retrieved

22.01.2020, from https://www.gerkovink.com/London2019/

Westreich, D., Edwards, J. K., Cole, S. R., Platt, R. W., Mumford, S. L.,

& Schisterman, E. F. (2015). Imputation approaches for potential

outcomes in causal inference. International journal of epidemiology ,

44 (5), 1731–1737.

37


