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ABSTRACT

Curve matching is a prediction technique that relies on predictive mean matching, which matches
donors that are most similar to a target based on the predictive distance. Even though this approach
leads to high prediction accuracy, the predictive distance may make matches look unconvincing,
as the profiles of the matched donors can substantially differ from the profile of the target. To
counterbalance this, similarity between the curves of the donors and the target can be taken into
account by combining the predictive distance with the Mahalanobis distance into a ‘blended distance’
measure. The properties of this measure are evaluated in two simulation studies. Simulation study I
evaluates the performance of the blended distance under different data-generating conditions. The
results show that blending towards the Mahalanobis distance leads to worse performance in terms of
bias, coverage, and predictive power. Simulation study II evaluates the blended metric in a setting
where a single value is imputed. The results show that a property of blending is the bias-variance
trade off. Giving more weight to the Mahalanobis distance leads to less variance in the imputations,
but less accuracy as well. The main conclusion is that the high prediction accuracy achieved with the
predictive distance necessitates the variability in the profiles of donors.

Keywords Curve matching, predictive mean matching, donor selection, multiple imputation, distance measures,
metrics

1 Introduction

The first three years of childhood form a crucial stage in determining children’s subsequent development and health
outcomes.[ ] For this reason, growth monitoring is considered to be an integral part of paediatrics. It can aid in the
identification of problems in development such as growth stunting, and ensure timely treatment or intervention to
improve the child’s health.[2] However, growth monitoring solely provides insights in the past and current developmental
stages of the child. Growth curve modeling, on the other hand, can be used to predict future development. It could
therefore provide more specific answers to questions health professionals, parents, and insurance companies may have,
such as: ‘Given what I know of the child, how will it develop in the future?” and ‘Does this child get the most effective
treatment available?’[3]

1.1 Curve matching

An approach currently used for growth curve modeling is curve matching. Curve matching[3] is a nearest neighbour
technique for individual prediction that constructs a prediction by aggregating the histories of “people-like-me”. It aims
to predict the growth of a target child by using the data of other children that are most similar to the target child.

In order to select these donors, some form of similarity needs to be defined to match the donors to the target child.
Therefore, the key question is: How are good matches obtained? The current approach uses predictive mean matching
(PMM). PMM is a multiple imputation technique that makes use of an existing donor database, containing the growth
data of children who are older than the target child. Therefore, the information of these children at a later age is available.
The first step is to fit a linear regression model on the donor database. Then, this model is used to predict the values for
all donors and for the target at a certain point in the future, for example at 14 months. Finally, the distance between
the predicted value of each of the donors and the predicted value of the target is calculated, which is referred to as the



predictive distance. A number of donors — usually five - with the smallest predictive distance are selected as the best
matches. Their growth curves are then plotted and point estimates can be calculated by averaging the measurements.
The growth patterns of the matched children thus suggest how the target child might develop in the future.

1.2 Alternative approach

PMM has proven to be promising in growth curve matching and the advantage of this technique is its high prediction
accuracy.[3] However, there are two reasons to move beyond the predictive distance used in PMM and investigate an
alternative metric. Firstly, PMM requires users of curve matching to select a particular future time point to base the
matches on (e.g. 14 months of age). In some cases, it may be difficult to choose this time point, especially when the
“future’ is more vaguely defined as a time interval.[4] Secondly, the predictive distance may make the matches look
unconvincing. The trajectories of the selected donors may all be close to the prediction for the target child at 14 months,
but this does not imply that the histories are identical. After all, different profiles may lead to the same predicted value.
Consequently, the curves of some of the matches may be quite far from the curve of the target child. Some users of
curve matching feel that such discrepancies are undesirable, as these matches do not appear to be people-like-me.[4] It
is useful to investigate these shortcomings not only for improving growth prediction but also for other applications of
multiple imputation, such as patient recovery after an operation, prediction of longevity, and decision-making when
more than one treatment is available. [3]

For the aforementioned reasons, the practical implementation and use of curve matching can in theory be improved by
combining the predictive distance with another distance measure, thus creating a “blended distance” measure. Such a
blended metric would take into account historical similarity between the donors and the target. For example, when
blending the predictive distance with the Mahalanobis distance, more weight is given to similarities between units in the
full predictor space. This would theoretically lead to the selection of donors with profiles more similar to the target, and
therefore to the selection of true people-like-me. The objective of this study is to implement such a blended distance
measure and to investigate its properties, blend ratio, and the validity of its resulting inferences.

2 Methods

2.1 Blended metric

The blended distance measure in this manuscript is a weighted version of the predictive distance (PD) and the
Mahalanobis distance (MD). The PD is the distance between the predicted value of a donor and the predicted value of
the target at a particular future time point. The MD is defined as the distance between two /N dimensional points scaled
by the variation in each component of the point. For example, if & and ¢ are two points from the same distribution with
covariance matrix C, then the MD is given by

(& —§)/C(@ - )*. (1
Two potential versions of the blended metric will be compared: one that uses ranking and one that uses scaling. In
theory, these two versions of the blended distance should yield similar results. However, the scaled version would be
computationally more convenient as no rank-orders need to be computed. Both versions are evaluated to study their
performance. For the ranked blended distance (RBD), the PD and the MD are first calculated for each donor. Then, the
k donors with the lowest values for both the PD and the MD are selected. In order to do so, the rank is calculated for the
PD and the MD, where ties are randomly broken. The RBD is given by:

RBD = p - rankpp + (1 — p) - rankyp, 2)

where rank pp is the rank for the PD, rank,,p is the rank for the MD, p is the blending factor (or weight) assigned to
rankpp, and 0 < p < 1. The k donors with the lowest values on the RBD are selected as the best matches.

The scaled blended distance (SBD) is created similarly, but both the PD and the MD are scaled before combining them.
The SBD is given by:
PD—Zz MD — ¥
SBsz.ipD_|_(1_p).7MD7 (3)
OpPD OMD
where Zpp is the mean of the PDs, opp their standard deviation, Zp is the mean of the MDs, and op their standard
deviation.

As an example, the blended distance is illustrated in Figure 1. Here, the data of 200 children from the Sociaal Medisch
Onderzoek Consultatiebureau Kinderen (SMOCK) study are used.[5] The first subject is taken as the target, the 199
other subjects as the donors. For all donors, the MD for the measurements during the first six months of growth is
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Figure 1: MD plotted against PD for each of the 199 donors. The donors in red are the five matches with the smallest
PD, the triangular donors those with the smallest MD, and the donors circled in green those with the smallest blended
distance.

calculated. In addition, the PD between each donor and the target is calculated. In the figure, the MD and PD are plotted
against each other. The red donors are the five matches with the smallest PD, where especially subject 10051 has a
large MD. The triangular donors are the five matches with the smallest MD, where especially subject 10041 has a large
PD. A weighted blended metric would balance the two distance measures, such that the donors with a low value for
both distance measures are chosen. These are circled in green.

2.2 Simulations

In order to investigate the properties of the blended distance measure, two simulation studies are conducted. Each study
is described in accordance with the ADEMP-structure for reporting simulation research.[6] The aims of each study,
the different versions of the blended metric (i.e. the methods), the data-generating mechanisms, and the estimand and
performance measures are discussed.

2.3 Software

R version 4.2.0 (2022-04-01)[7] is used to simulate the data and perform the analyses. The mice.impute.pmm()
function in the mice[8] package is used to perform PMM and an adaptation of this function is used to calculate the
blended distance. Instructions and scripts to reproduce the simulation results are available in the research archive of this
project.

3 Simulation study I

3.1 Aims

The main objective of this simulation study is to investigate what the properties of the blended metric are. More
specifically, I want to answer the following questions:

1. Does performance differ when donors are selected with a ranked as opposed to a scaled blended distance?

2. Does a blending factor of 1 yield results identical to those obtained by PMM (i.e. based on the PD only)?

3. How is the performance of the blended metric related to the missingness mechanism, the proportion of
missingness in the data, and the distribution of the data?

4. Do the conclusions under 3. differ for varying levels of correlation in the predictor space?

5. Is there a penalty from blending in terms of reduced predictability?


https://github.com/anaisfopma/mice/tree/development
https://github.com/anaisfopma/Blended-Distance-Thesis

I expect that the ranked and scaled versions of the blended metric yield similar results, as donors with a high ranking
will likely have a small value on the scaled corresponding distance, and vice versa. Furthermore, I expect that blending
with a factor of 1 does indeed give the same results as PMM does, as this entails that full weight is given to the PD. As
pointed out before, PMM has been shown to result in high prediction accuracy. Therefore, I expect that the predictability
of the blended distance will decrease as the blending factor favours the MD. When the correlation in the data is low, the
prediction model will fit poorly and I expect the blended metric to perform worse when more weight is given to the PD.
When the correlation in the data is high, the prediction model will fit better, and the prediction model will explain more
variance in the outcome. In this case, I expect the blended metric to perform better when more weight is given to the
PD. Finally, I expect that the blended metric will perform worse in skewed data when more weight is given to the MD.

3.2 Metrics

For the blended metric, blending factors of respectively 1, 0.5, and 0 are evaluated. A blending factor of 1 implies that
the blended distance is equal to the PD, whereas a weight of 0 implies that it is equal to the MD. Therefore, a blending
factor of 0.5 gives equal weight to both distance measures. PMM will be used as a reference in order to evaluate whether
it does indeed obtain the same results as the blended metric with a blending factor of 1. Using PMM, both the ranking
and scaling methods with three different blending factors each, this results in seven different versions of the blended
metric that are evaluated.

3.3 Data-generating mechanisms

In order to answer the previous questions, the blended distance measures are evaluated in simulated data that meet
different conditions. All data are generated from one of 24 data-generating mechanisms, with equal means, but with
varying missingness proportions, missingness mechanisms, distributions, and variance-covariance matrices. I explain
the process of obtaining these data-generating mechanisms below.

Three continuous predictor variables X7, X5, and X3 are defined and one continuous outcome Y is defined: ¥ =
X1 + X5 + X3 + €, where € is random noise drawn from a normal distribution with ¢ = 0 and o = 7. The distribution
of the data is varied over two conditions. For the first conditions, the data-generating mechanism of the predictor space
is a multivariate normal distribution, X = A (u, 3), with mean vector . = [10, 10, 10]. For the second condition, it is a
strongly skewed multivariate distribution, which is obtained by transforming the predictors[9]: X = X2 /maz{X*'}.

The correlation in the data is varied over three conditions. The covariance matrix 3 for the populations is given by:

1 o?p o?p
Y= 1 o?p|,
1

where the off-diagonal elements are O for the first simulation condition, 0.1 for the second condition, and 0.7 for the
third condition.

The proportion of missingess in the outcome variable is varied over two conditions. The first condition simulates a
setting with 25% missingness, the second a setting with 50% missingness.

Finally, the missingness mechanism is varied over two conditions. The first concerns a missing completely at random
(MCAR) mechanism, where missingness does not depend on the values of the data, missing or observed. [10] The
second concerns a missing at random (MAR) right mechanism. This means that missingness does depend on the data,
but only through observed components of the data. [10] The MAR right mechanism deletes higher values for positively
correlated data, so the distribution of the observed data shifts to the left.[ | |] The MAR right mechanism is considered
to be one of the more extreme missingness mechanisms, as it is asymmetrical and causes common statistics such as the
mean to be biased.[! 1] It is unlikely to see such a mechanism in practice, but it is helpful in simulation studies to test
the limits of a method. If the distance measure performs well under this mechanism, it will also do so in less extreme
situations that are more likely to be encountered in practice.[! 1]

I consider a full-factorial simulation study design, where each of the possible combinations of weighting and data-
generating mechanisms are evaluated. As there are seven different methods and 24 different data-generating mechanisms,
the simulation will yield 168 results. From each data-generating mechanism, a single complete sample of size 500 is
drawn. The 1000 simulated incomplete versions of these data (with missingess proportion of 25% or 50%) are then
imputed. The finite population pooling rules by Vink & Van Buuren[12] are used to obtain inferences over the simulated
results.
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Figure 2: Bias results per condition, where each individual plot shows the results for the seven methods. A reference
line is given at bias = 0. Above the plots, the condition combinations of missingness mechanism (MCAR, MAR right)
and missingness proportion (25%, 50%) are given. On the right, the condition combinations of distribution (normal,
skewed) and correlation (p = 0,p = 0.1, p = 0.7) are given.

3.4 Estimand and performance measures

The estimands of interest in this study are the predicted (i.e. imputed) values. I assess the statistical validity of each
metric under each combination of conditions by means of the bias, coverage, and proportion of explained variance.

3.5 Results

Table 2 through Table 8 in Appendix A display the simulation results for each of the seven methods. Each table specifies
the data-generating mechanisms in the left columns by indicating the missingness mechanism, missingness proportion,
skewness of the distribution, and correlation in the data. Figure 2 visualises the results for the coverage, Figure 3 those
for the bias, and Figure 4 those for the explained variance. I discuss the results below on the basis of the research
questions.

3.5.1 Comparison of ranked and scaled blended distance

The ranked and scaled versions of the blended distance measure yield similar simulation results. When comparing the
results for blending factor = 1 (full PD) in Table 3 and Table 6, they show that the SBD yields slightly higher coverages
but larger biases overall. When comparing the results for blending factor = 0.5 in Table 4 and Table 7, they show that
the SBD outperforms the RBD. The results for blending factor = 0 (full MD) in Table 5 and Table 8 show that the RBD
outperforms the SBD. Overall, the RBD performs slightly better, except when the blending factor is set to 0.5. As most
of the results are similar, however, the SBD might be preferable, as it is computationally more efficient to use.

3.5.2 Comparison of PMM and blending factor = 1

In both blended metrics, a blending factor of 1 indicates that full weight is given to the PD. Therefore, using a blending
factor of 1 should yield results identical to those obtained by PMM. Even though the results in Table 2, Table 3 and
Table 6 are similar, they are not identical. This is likely due to the fact that a matching function written in C is used in the
original mice. impute.pmm() function but not in the mice.impute.blended () function. Therefore any differences
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Figure 3: Coverage results per condition, where each individual plot shows the results for the seven methods. A
reference line is given at coverage = 0.95. Above the plots, the condition combinations of missingness mechanism
(MCAR, MAR right) and missingness proportion (25%, 50%) are given. On the right, the condition combinations of
distribution (normal, skewed) and correlation (p = 0, p = 0.1, p = 0.7) are given.

are likely due to the different underlying code. In some cases, particularly in the MCAR conditions, the both the RBD
and SBD with a blending factor of 1 perform slightly better than the PD.

3.5.3 Effect of data generation conditions on performance

In the data-generating models, the missingness mechanisms, proportions, skewness of the data, and correlation in the
data were varied, resulting in 24 different simulation conditions. The plots displayed in Figure 2, 3 and 4 illustrate
the impact of each of these conditions on the performance of the distance measures in terms of coverage, bias, and
proportion of explained variance. The MCAR conditions show higher performance when compared to the MAR right
conditions, and a higher proportion of missingness in the data leads to lower performance, as would be expected. The
skewness of the data does not always impact the performance negatively. Under the MCAR conditions, a skewed
distribution of the data results in higher coverage rates for some cases when compared to a normal distribution. Under
the MAR right conditions, however, the opposite is true. As MAR right creates more missingness in the right tail of the
data, and the data are positively skewed, the distribution of the data that are left disproportionately shifts to the left.
This causes lower coverage rates and thus less valid inference. The proportion of explained variance (R squared) is
relatively stable under the normal conditions but shows more variation under the skewed conditions. Finally, a higher
correlation in the data under MCAR conditions does not lead to decreased performance, and in some cases to increased
performance. It does lead to lower performance under the MAR right conditions. The proportion of explained variance
increases with the correlation in the data, and is the largest under the MCAR condition with 25% missingness, skewed
distribution and a correlation of 0.7.

3.5.4 Effect of blending on performance

The bias results in Figure 2 show that under the conditions of MCAR, 50% missingness and a normal distribution,
the SBD with factor 0 and RBD with factors 0.5 and O slightly overestimate the predictions, whereas the PD and the
blended metrics with higher blending factors slightly underestimate the predictions. In general, but especially in the
more extreme simulation conditions, the predictions are underestimated by all metrics.
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Figure 4: R squared results per condition, where each individual plot shows the results for the seven methods. A
reference line is given at 0. Above the plots, the condition combinations of missingness mechanism (MCAR, MAR
right) and missingness proportion (25%, 50%) are given. On the right, the condition combinations of distribution
(normal, skewed) and correlation (p = 0, p = 0.1, p = 0.7) are given.

Figure 3 shows that the trend for the coverage is similar across all conditions: the coverage rates become lower when
the blended metrics are weighted more towards the MD. Under the conditions of MCAR, however, the results are
similar for blending factors of 1 and 0.5, where a factor of 0.5 sometimes outperforms a factor of 1. The MD always
leads to lower coverage rates. The downwards trend is especially pronounced under the conditions with a MAR right
missingness mechanism, with coverage rates near only 40% in the worst performing scenarios.

Finally, the results for R squared in Figure 4 show that the proportion of explained variance is relatively stable across the
different metrics. Performance in terms of the explained variance is more dependent on the correlation in the data than
on the distance measure used, as would be expected. Overall, however, it decreases as the blending factor decreases.
Again, this trend is more strongly pronounced in the more extreme conditions.

There are a few exceptions where a blended distance measure with a blending factor of 0.5 or 0 outperforms either
the PD, the blended distance measure with a blending factor of 1, or both. This is mostly the case under the MCAR
conditions. It is important to note, however, that these differences are small and likely due to chance. The overall trend
is that blending towards the MD leads to worse performance in bias, coverage and predictive power.

4 Simulation study II

4.1 Aims

The objective of the second simulation study is to provide a more detailed explanation of the results found in Simulation
study 1. In order to do so, I evaluate the version of the blended metric that performed best overall in Simulation study I,
which is the ranked version. I simulate a setting where a single value is imputed, and evaluate the blended metric with
blending factors ranging from O to 1, with intervals of 0.1.



4.2 Data-generating mechanisms

I expect that the distinction between the performance of the different blending factors will become more apparent under
a more extreme data-generating mechanism. Therefore, the data are simulated from a single data-generating mechanism
with the conditions under which the blended metric performed the worst in Simulation study I. The same variables are
defined as in the first simulation study, where the data is skewed and the off-diagonal elements in the covariance are set
to 0.7. A sample of size 500 is drawn. To simulate the prediction of the height measurement for a single target child, a
random case in the data is made incomplete for the outcome.

4.3 Estimand and performance measures

The number of simulations is set to 10000. In every simulation, the outcome for a single random case is made incomplete
and thereafter imputed 50 times. To assess the statistical properties of the PD and the RBD with different blending
factors, I evaluate their accuracy, validity, and precision. For each simulation iteration, accuracy is evaluated by means
of the (absolute) bias. This is done by evaluating the mean of the 50 imputations (the estimate) against the true value.
In addition, accuracy is evaluated by the root mean square error (RMSE). Validity is evaluated by the coverage rate.
Precision is evaluated in terms of the variance of the 50 imputations.

4.4 Results

Table 1 displays the average of the performance results over the 10000 simulations. The results show that as the
blending factor decreases (which implies weighting in the direction of the MD), the bias increases. The RMSE also
shows a decreasing trend, however, there is a small increase in the RMSE from a blending factor of 0.1 to 0. There is no
clear trend in the absolute bias. Figure 5 shows that a higher blending factor leads to a larger standard error (SE) and a
higher coverage rate. The performance measures show that a property of blending is the bias-variance trade off. That is,
weighting towards the MD results in more precise, but less accurate estimates. The PD results in less precise, but more
accurate estimates. Figure 6 further illustrates this, which shows the density of the estimates obtained by the RBD with
blending factor of 0 and a blending factor of 1, plotted against the density of the true data. A reference line is given at
the expected true value, which is the point of evaluation. The PD has a higher density surrounding this point, indicating
more certainty around the estimate. Figure 7 shows the density of the absolute bias results for the same blending factors.
Again, the high density in the plot shows that the PD causes estimates to be more certain.

Table 1: Performance results for Simulation study II. The table shows the average of the simulations for the estimate
(mean of the 50 imputations), the true value of the missing outcome, (absolute) bias, sum of squared deviations (SSD),
standard error (SE), lower and upper confidence limits, coverage, and root mean square error (RMSE).

method estimate true  bias absbias ssd se Iwr upr cov rmse
PMM 410 429 -0.18 8.13 5133.00 7.12 -10.21 1842 0.94 9.68
Blending factor = 1 410 429 -0.19 8.12 5126.81 7.12 -10.22 1841 095 9.67
Blending factor = 0.9 398 429 -0.31 8.15 5182.68 7.15 -10.38 1834 094 9.70
Blending factor = 0.8 395 429 -0.33 8.13 515359 7.06 -10.24 18.15 0.94 9.65
Blending factor = 0.7 399 429 -0.30 8.10 511694 6.97 -10.01 1799 094 9.60
Blending factor = 0.6 4.00 429 -0.29 8.08 510743 690 -9.87 17.87 093 9.57
Blending factor = 0.5 399 429 -0.30 8.10 511892 6.85 -9.77 17.75 093 9.57
Blending factor = 0.4 396 429 -0.32 8.05 508251 6.77 -9.64 1757 092 9.51
Blending factor = 0.3 394 429 -035 8.00 502593 6.66 -943 1732 091 943
Blending factor = 0.2 386 429 -042 7.99 5014.08 6.52 -924 1697 090 9.38
Blending factor = 0.1 374 429 -0.55 7.93 494825 629 -891 1638 0.87 9.25
Blending factor = 0 374 429 -0.54 8.09 5121.67 6.04 -840 1589 0.82 9.32

5 Discussion

This study investigated the properties of a blended distance measure through two simulation studies. The purpose of
Simulation study I was to evaluate the performance of the blended metric under different data-generating conditions.
This simulation demonstrated that the blended metric performs worse when weighted more towards the MD, especially
under extreme conditions like MAR right. The purpose of Simulation study II was to provide a further explanation of
this result. The ranked version of the blended metric was evaluated under the condition of a skewed distribution and
correlation of 0.7. The results show that a property of blending is the bias-variance trade off: weighting towards the
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Figure 5: Average SE (green) and coverage (orange) simulation results for Simulation study II. The values on the x-axis
indicate the blending factor used for the RBD. The left vertical axis indicates the values for the SE, the right vertical
axis indicates the values for the coverage.

PD results in less precise, but more accurate estimates. Furthermore, the coverage rates drop as the blended metric is
weighted more towards the MD, which entails a decrease in statistical validity.

It is more likely to select donors who are not people-like-me when using the PD. This can be counteracted by using
the MD as a similarity measure, which causes there to be less variance among the selected donors, and thus leads to
selection of people-like-me. However, this results in lower coverage rates, and therefore in less valid estimates. In
practice, there is no need for concern about whether or not we select people-like-me, as the uncertainty is necessary for
making valid inferences.

The overall conclusion is that the blended metric can be implemented in situations where the missingness proportion
is small and is MCAR. This is generally the case in the context of height prediction, as only a single value is to be
imputed. It may be attractive for users of growth curve matching to use the blended metric when they have difficulty
selecting a particular future time point to base matches on, or when they have more interest in the similarity between
donors and the target in the predictor space. However, it is important to keep in mind the severe underperformance of
the blended metric under more extreme conditions, and the reliable performance of the PD under any conditions. PMM
should therefore always be the preferred method, and the results of this study may minimize doubts about discrepancies
between the trajectories of the matched donors and the target. After all, our past does not always define our future, and
selecting appropriate matches may not so much be a matter of finding people-like-me in terms of historic growth, as it
is one of future similarity.

The current study investigated the influence of missingness proportion, missingness mechanisms, skewness of the data,
and correlation in the data for the use of the blended metric. A limitation is that the blended metric might perform better
in practice, and therefore it would be useful to evaluate the metric in empirical data as well. Additionally, alternative
combinations of similarity measures and the PD could lead to different results, and these combinations were not studied.
Examples of other similarity measures would be the Fréchet distance, [ 3] and the locally supervised metric learning
(LSML) measure.[ 14] Finally, further research could investigate the impact of more variations in simulation conditions
such as the sample size and the number of £ matched donors, and could determine what the optimal blending factor is
to predict outcomes.
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The true estimate (expected value) is marked by the dashed line.
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Figure 7: Density of the absolute bias results for the RBD with blending factor = 0 (MD) and of those obtained with the
RBD with blending factor = 1 (PD). The dashed line marks an absolute bias of zero.
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Instructions and scripts to reproduce the simulation results are available in the research archive of this project. The study
was approved by the Ethical Review Board of the Faculty of Social and Behavioural Sciences of Utrecht University.

The approval is based on the documents sent by the researchers as requested in the form of the Ethics committee and
filed under number 21-1906.
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