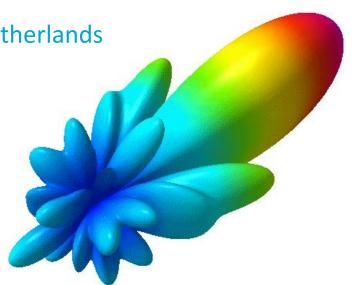


Geert Leus

Delft University of Technology, Delft, The Netherlands g.j.t.leus@tudelft.nl

Mario Coutiño
TNO, The Hague, The Netherlands
mario.coutinominguez@tno.nl



Outline

Part I – Introduction

- History and applications
- Advantages of array processing
- Phased array data model
 - Baseband signal
 - Narrowband signal
 - Single path and single user
 - Multipath and multiple users

Outline

Part II – Traditional Processing

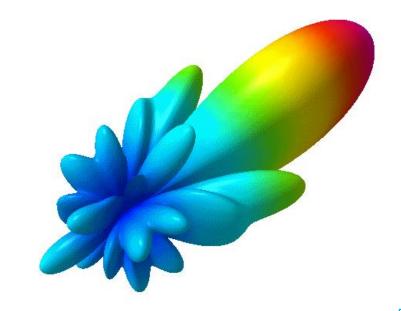
- Beamforming
 - Matched filter
 - Zero forcing
 - Minimum mean square error
 - Minimum variance distortionless response
- Direction of arrival (DoA) estimation
 - Beamforming based methods
 - Multiple signal classification (MUSIC)
 - Estimation of signal parameters via rotational invariant techniques (ESPRIT)
 - Sparse reconstruction

Outline

Part III – Advanced Methods and Array Design

- Compressive array
 - Compressive sensing (CS)
 - CS in spatial domain
- Covariance based processing
 - Compressive covariance sensing (CCS)
 - CCS in spatial domain
 - CCS based array design
 - Virtual array principle
- Performance based array design

Part I: Introduction



Introduction

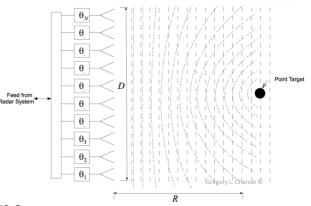
- History and applications
- Advantages of array processing
- Phased array data model
 - Baseband signal
 - Narrowband signal
 - Single path and single user
 - Multipath and multiple users

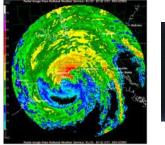
History and Applications

 "The quintessential goal of sensor array signal processing is the estimation of parameters by fusing temporal and spatial information, captured via sampling a wavefield with a set of judiciously placed antenna sensors."

Two Decades of Array Signal Processing Research; Krim, Hamid & Viberg, Mats

The sampling of wavefields arises in many applications





Radioastronomy

Ultrasound Imaging

MRI

Radar

History and Applications

Signal processing for phased arrays has long history – more than 50 years

- All started during the second world war with spatial filtering [Barlett, 1948]
- Classical time delay estimation methods enhanced spatial resolution
- Adaptivity was introduced [Capon, 1969] [Applebaum, 1976] [Buckley, 1986]
- Parametric estimation techniques extended the resolution limits of classical spatial filtering techniques [Burg, 1967] [MacDonald, 1969] [Ottersten, 1993]
- Subspace-based methods exploited the geometry of the data model

[Roy, 1989] [Schmidt, 1981]

- Optimization-based methods allow for reduced measurements and resolution improvements [Malioutov et al, 2005]
- These methods are pervasive in many application domains

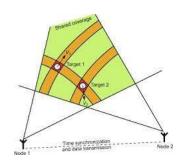
Advantages of Array Processing

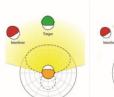
[Johnson-Dudgeon, 1993] [Krim-Viberg, 1996]

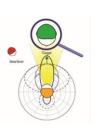
Improved performance

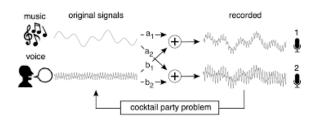
Diversity

Source localization









Interference reduction

Source separation

Phased Array Data Model

- We consider a passive radar / communication model
- Our data model will be based on
 - Baseband representation
 - Narrowband signals
- Extensions to wideband models are possible [van Veen-Buckley, 1988]
 - Space-time processing
 - Multiple frequencies using short-term Fourier transform

Baseband Representation

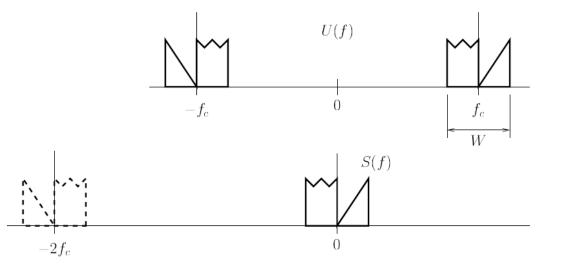
ullet An antenna receives a real-valued bandpass signal with frequency f_c

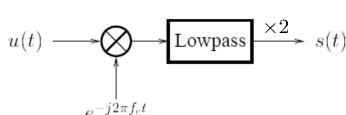
$$u(t) = \text{real}\{s(t)e^{j2\pi f_c t}\} = x(t)\cos(2\pi f_c t) + y(t)\sin(2\pi f_c t)$$

The baseband signal (or complex envelope) is

$$s(t) = x(t) + jy(t)$$

• The baseband signal s(t) can be recovered from u(t) by demodulation





Narrowband Signals

• Effect of small delays in u(t) on the baseband signal s(t)

$$u_{\tau}(t) := u(t - \tau) = \text{real}\{s(t - \tau)e^{-j2\pi f_c \tau}e^{j2\pi f_c t}\}$$

The baseband version of the delayed signal is

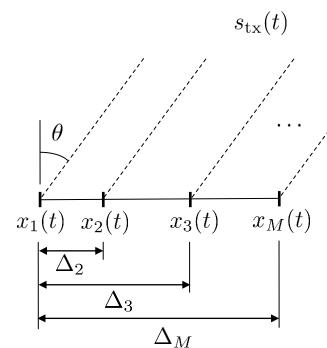
$$s_{\tau}(t) = s(t - \tau)e^{-j2\pi f_c \tau}$$

Let W be the bandwidth of s(t) . If $e^{j2\pi f au} pprox 1$ for all $|f| \leq W/2$, then

$$s(t-\tau) = \int_{-W/2}^{W/2} S(f)e^{j2\pi f(t-\tau)} df \approx \int_{-W/2}^{W/2} S(f)e^{j2\pi ft} df = s(t)$$

$$\Rightarrow s_{\tau}(t) \approx s(t)e^{-j2\pi f_c \tau}$$

For narrowband signals, short time delays amount to phase shifts in baseband



- Far field assumption: planar waves
- $s_{
 m tx}(t)$ is the transmitted signal
- $m{ heta}$ is the direction of arrival
- A is the attenuation
- T_i is propagation time to i-th element

$$x_i(t) = As_{tx}(t - T_i)e^{-j2\pi f_c T_i}$$

- Defining $s(t)=s_{\mathrm{tx}}(t-T_1),\; au_i=T_i-T_1,\; eta=Ae^{-j2\pi f_cT_1}$
- Then we obtain $x_i(t) = \beta s(t- au_i)e^{-j2\pi f_c au_i}$
- If the delays over the array are small enough, then

$$x_i(t) = \beta s(t)e^{-j2\pi f_c \tau_i}$$

ullet The delay au_i can be expressed using heta and Δ_i (distance in wavelengths)

$$2\pi f_c \tau_i = -2\pi f_c \frac{\delta_i \sin \theta}{c} = -2\pi \frac{\delta_i}{\lambda} \sin \theta = -2\pi \Delta_i \sin \theta$$

As a result we obtain

$$x_i(t) = \beta s(t)e^{j2\pi\Delta_i\sin\theta}$$

Collecting the received signals into a vector leads to

$$\boldsymbol{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_M(t) \end{bmatrix} = \begin{bmatrix} 1 \\ e^{j2\pi\Delta_2\sin\theta} \\ \vdots \\ e^{j2\pi\Delta_M\sin\theta} \end{bmatrix} \beta s(t) = \boldsymbol{a}(\theta)\beta s(t)$$

array response vector

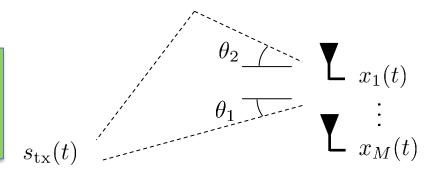
• For a uniform linear array (ULA) where $\Delta_i = (i-1)\Delta$, we obtain

$$\boldsymbol{a}(\theta) = \begin{bmatrix} 1 \\ e^{j2\pi\Delta\sin\theta} \\ \vdots \\ e^{j2\pi(M-1)\Delta\sin\theta} \end{bmatrix} = \begin{bmatrix} 1 \\ \psi \\ \vdots \\ \psi^{M-1} \end{bmatrix} \qquad \psi = e^{j2\pi\Delta\sin\theta}$$

- This Vandermonde structure of the ULA can be exploited for DoA estimation
 - DoA estimation using ESPRIT (see later on)
- Non-uniform ULAs can be viewed as a compressed ULA
 - MUSIC and beamforming based DoA estimation possible (see later on)
 - Useful for covariance based array processing (see later on)

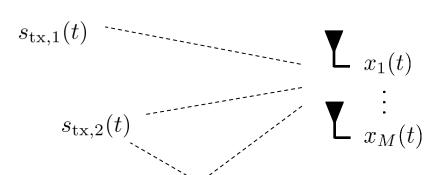
Multipath

$$\mathbf{x}(t) = \mathbf{a}(\theta_1)\beta_1 s(t) + \mathbf{a}(\theta_2)\beta_2 s(t)$$
$$= [\mathbf{a}(\theta_1)\beta_1 + \mathbf{a}(\theta_2)\beta_2]s(t) = \mathbf{a}s(t)$$

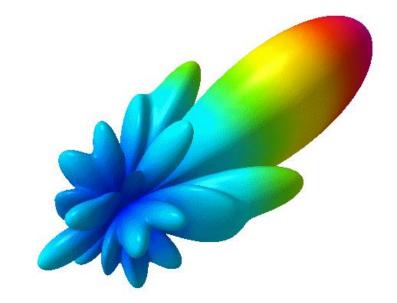


Multiple users

$$egin{aligned} oldsymbol{x}(t) &= oldsymbol{a}_1 s_1(t) + oldsymbol{a}_2 s_2(t) \ &= egin{bmatrix} oldsymbol{a}_1 & oldsymbol{a}_2 \end{bmatrix} egin{bmatrix} s_1(t) \ s_2(t) \end{bmatrix} = oldsymbol{A} oldsymbol{s}(t) \end{aligned}$$



Part II: Traditional Processing



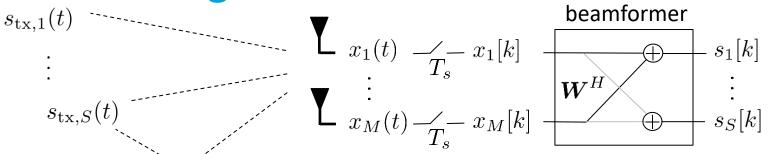
Traditional Processing

- Beamforming
 - Matched filter
 - Zero forcing
 - Minimum mean square error
 - Minimum variance distortionless response
- Direction of arrival (DoA) estimation
 - Intuition behind direction finding
 - Beamforming based methods
 - Multiple signal classification (MUSIC)
 - Estimation of signal parameters via rotational invariant techniques (ESPRIT)
 - Sparse reconstruction

Traditional Processing

- Beamforming
 - Matched filter
 - Zero forcing
 - Minimum mean square error
 - Minimum variance distortionless response
- Direction of arrival (DoA) estimation
 - Intuition behind direction finding
 - Beamforming based methods
 - Multiple signal classification (MUSIC)
 - Estimation of signal parameters via rotational invariant techniques (ESPRIT)
 - Sparse reconstruction

Beamforming [van Veen-Buckley, 1988]



- ullet Assume S narrowband signals impinge on the array through multipath
- After sampling we obtain

$$x[k] := x(kT_s) = \sum_{i=1}^{S} a_i s_i(kT_s) + n(kT_s) := \sum_{i=1}^{S} a_i s_i[k] + n[k] = As[k] + n[k]$$

• The goal is to design a beamformer (BF) $oldsymbol{W} = [oldsymbol{w}_1, \dots, oldsymbol{w}_S]$ such that

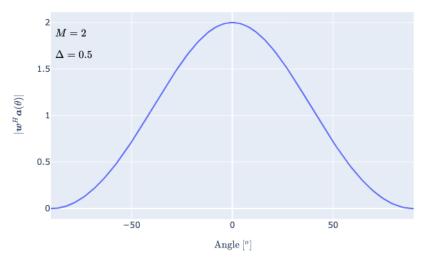
$$\boldsymbol{w}_i^H \boldsymbol{x}[k] = \hat{s}_i[k]$$

$$\boldsymbol{W}^H \boldsymbol{x}[k] = \hat{\boldsymbol{s}}[k]$$

- ullet Consider one user, one path and a fixed BF vector $oldsymbol{w}$, e.g., $oldsymbol{w}=oldsymbol{1}$
- The output of the BF then is $y[k] = m{w}^H m{x}[k] = m{w}^H m{a}(\theta) eta s[k]$
- The response to a unit-amplitude signal, i.e., |eta s[k]|=1 , from direction heta is

$$|y[k]| = |\boldsymbol{w}^H \boldsymbol{a}(\theta)|$$

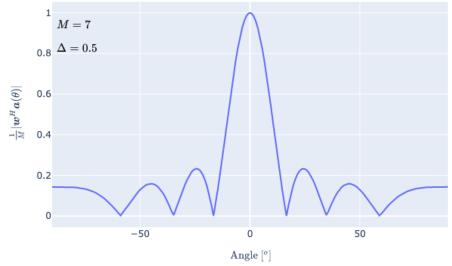
Spatial Response for Fixed \boldsymbol{w}



With more antennas and same spacing, the resolution improves

Spatial Response for Fixed wM = 3 $_{0.8}$ $\Delta=0.5$ $rac{1}{M}|oldsymbol{w}^Holdsymbol{a}(heta)|$ 0.6 0.2 -5050

Angle [o]



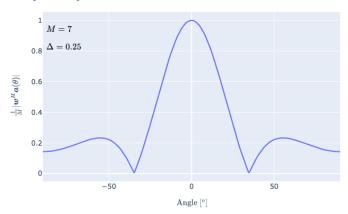
Ambiguity in the array response vector

In a ULA we have

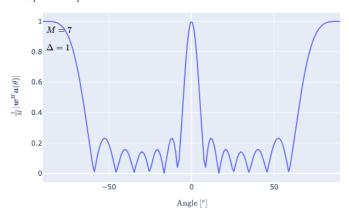
$$\boldsymbol{a}(\theta) = \begin{bmatrix} 1 \\ \psi \\ \vdots \\ \psi^{M-1} \end{bmatrix} \qquad \psi = e^{j2\pi\Delta\sin\theta}$$

- Since $\sin heta \in [-1,1]$, we have $2\pi \Delta \sin heta \in [-2\pi \Delta, 2\pi \Delta]$
- Hence, ψ determines θ uniquely iff $\Delta \leq 1/2$
- For $\Delta>1/2$ there is spatial aliasing and grating lobes occur
- We can then still estimate A and do beamforming

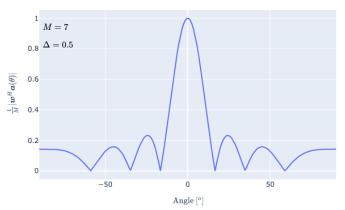
Spatial Response for Fixed w



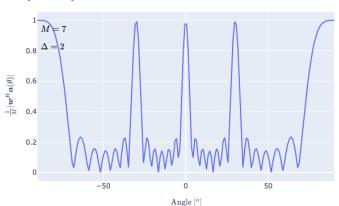
Spatial Response for Fixed \boldsymbol{w}



Spatial Response for Fixed \boldsymbol{w}

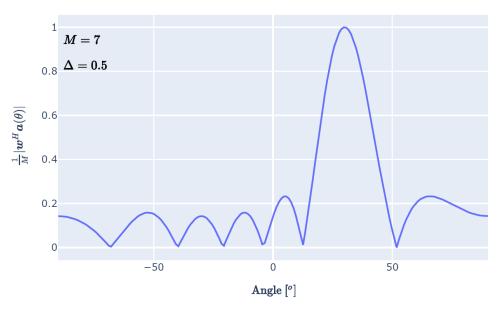


Spatial Response for Fixed \boldsymbol{w}



- We can use other beamformers to steer the beam in different directions
- $m{\cdot}$ Consider for instance $m{w}=m{a}(30^\circ)$ and look again at $|y[k]|=|m{w}^Hm{a}(heta)|$

Spatial Response for Fixed \boldsymbol{w}



Matched Filter Beamformer [Bartlett, 1948]

Consider a single user in noise:

$$\boldsymbol{x}[k] = \boldsymbol{a}s[k] + \boldsymbol{n}[k], \quad \boldsymbol{R_n} = \mathrm{E}\{\boldsymbol{n}[k]\boldsymbol{n}[k]^H\} \quad \sigma_s^2 = \mathrm{E}\{|s[k]|^2\}$$

The signal to noise ratio (SNR) after beamforming is given by

$$SNR = \frac{|\boldsymbol{w}^H \boldsymbol{a}|^2 \sigma_s^2}{\boldsymbol{w}^H \boldsymbol{R}_n \boldsymbol{w}} = \frac{\boldsymbol{w}^H (\sigma_s^2 \boldsymbol{a} \boldsymbol{a}^H) \boldsymbol{w}}{\boldsymbol{w}^H \boldsymbol{R}_n \boldsymbol{w}}$$

This is a generalized Rayleigh quotient which is maximized at

$$oldsymbol{w} = oldsymbol{R_n}^{-1} oldsymbol{a}$$

In case we have multiple users in noise, we then obtain

$$oldsymbol{W} = oldsymbol{R}_n^{-1} oldsymbol{A}$$

- This is the matched filter BF, Bartlett BF, or maximum ratio combiner
- It is the beamformer that maximizes SNR

Zero Forcing Beamformer

Consider multiple users in noise

$$\boldsymbol{x}[k] = \boldsymbol{A}\boldsymbol{s}[k] + \boldsymbol{n}[k], \quad \boldsymbol{R_n} = \mathrm{E}\{\boldsymbol{n}[k]\boldsymbol{n}[k]^H\} \quad \boldsymbol{R_s} = \mathrm{E}\{\boldsymbol{s}[k]\boldsymbol{s}[k]^H\}$$

• The BF for user i that forces interference to zero and mimizes noise energy is

$$\min_{\boldsymbol{w}_i} \boldsymbol{w}_i^H \boldsymbol{R}_{\boldsymbol{n}} \boldsymbol{w}_i$$
 s.t. $\boldsymbol{w}_i^H \boldsymbol{A} = \boldsymbol{e}_i^H := [0, \dots, 1, \dots, 0]$

Using the technique of Lagrange multipliers, we obtain

$$m{w}_i = m{R}_{m{n}}^{-1} m{A} (m{A}^H m{R}_{m{n}}^{-1} m{A})^{-1} m{e}_i$$

Stacking this for multiple users leads to

$$W = R_n^{-1} A (A^H R_n^{-1} A)^{-1}$$

- This is the zero forcing (ZF) BF, or maximum likelihood BF
- It is the beamformer that maximizes SIR (and in that class maximizes SNR)

MMSE Beamformer

Consider multiple users in noise

$$\boldsymbol{x}[k] = \boldsymbol{A}\boldsymbol{s}[k] + \boldsymbol{n}[k], \quad \boldsymbol{R_n} = \mathrm{E}\{\boldsymbol{n}[k]\boldsymbol{n}[k]^H\} \quad \boldsymbol{R_s} = \mathrm{E}\{\boldsymbol{s}[k]\boldsymbol{s}[k]^H\}$$

• The BF for user i that minimizes the output energy is given by

$$\min_{\boldsymbol{w}_i} \mathrm{E}\{|\boldsymbol{w}_i^H \boldsymbol{x}[k] - s_i[k]|^2\} = \min_{\boldsymbol{w}_i} \mathrm{E}\{|\boldsymbol{w}_i^H \boldsymbol{x}[k] - \boldsymbol{e}_i^H \boldsymbol{s}[k]|^2\}$$

• Setting the derivative towards $oldsymbol{w}_i$ to zero, we obtain

$$\boldsymbol{w}_i = \boldsymbol{R}_{\boldsymbol{x}}^{-1} \boldsymbol{R}_{\boldsymbol{x} \boldsymbol{s}} \boldsymbol{e}_i \quad \boldsymbol{R}_{\boldsymbol{x}} = \mathrm{E}\{\boldsymbol{x}[k] \boldsymbol{x}[k]^H\} \quad \boldsymbol{R}_{\boldsymbol{x} \boldsymbol{s}} = \mathrm{E}\{\boldsymbol{x}[k] \boldsymbol{s}[k]^H\}$$

Stacking this for multiple users leads to

$$W = R_x^{-1} R_{xs} = (A R_s A^H + R_n)^{-1} A R_s \stackrel{\text{MIL}}{=} R_n^{-1} A (A^H R_n^{-1} A + R_s^{-1})^{-1}$$

- This is the mimimum mean square error (MMSE) BF, or Wiener BF
- It is the beamformer that maximizes SINR

Discussion

The ZF BF is equal to a MF BF followed by a decorrelator

$$oldsymbol{W}_{ ext{ZF}} = oldsymbol{\mathcal{R}}_{oldsymbol{n}}^{-1} oldsymbol{A} \quad oldsymbol{\underbrace{(A^H R_n^{-1} A)^{-1}}_{ ext{decorrelator}}}$$

The MMSE BF is equal to a MF BF followed by a regularized decorrelator

$$oldsymbol{W}_{ ext{MMSE}} = oldsymbol{\mathcal{R}}_{oldsymbol{n}}^{-1} oldsymbol{A} \quad \underbrace{(oldsymbol{A}^H oldsymbol{R}_{oldsymbol{n}}^{-1} oldsymbol{A} + oldsymbol{R}_{oldsymbol{s}}^{-1})^{-1}}_{ ext{regularized decorrelator}}$$

If the noise approaches zero, the Wiener BF approaches the ZF BF

$$m{W}_{ ext{MMSE}} = m{R}_{m{n}}^{-1} m{A} (m{A}^H m{R}_{m{n}}^{-1} m{A} + m{R}_{m{s}}^{-1})^{-1} \ \
ightarrow \ \ m{W}_{ ext{ZF}} = m{R}_{m{n}}^{-1} m{A} (m{A}^H m{R}_{m{n}}^{-1} m{A})^{-1}$$

Discussion

• In case of uncorrelated users, $m{R_s} = \sigma_s^2 m{I}$, and white noise, $m{R_n} = \sigma_n^2 m{I}$:

$$egin{aligned} oldsymbol{W}_{ ext{MF}} &= oldsymbol{A} \ oldsymbol{W}_{ ext{ZF}} &= oldsymbol{A} (oldsymbol{A}^H oldsymbol{A})^{-1} \ oldsymbol{W}_{ ext{MMSE}} &= (oldsymbol{A} oldsymbol{A}^H + \sigma_n^2/\sigma_s^2 oldsymbol{I})^{-1} oldsymbol{A} \overset{ ext{MIL}}{=} oldsymbol{A} (oldsymbol{A}^H oldsymbol{A} + \sigma_n^2/\sigma_s^2 oldsymbol{I})^{-1} \end{aligned}$$

 $x[k] \xrightarrow{\text{matched filter}} \hat{s}_{\text{MF}}[k] \xrightarrow{\hat{s}_{\text{MF}}[k]} \hat{s}_{\text{MF}}[k]$ $(A^{H}A + \sigma_{n}^{2}/\sigma_{s}^{2}I)^{-1} \xrightarrow{\hat{s}_{\text{MMSE}}[k]} \hat{s}_{\text{MMSE}}[k]$ regularized decorrelator

MVDR Beamformer [Capon, 1969]

- Consider again multiple users in noise
- Write the model as a single user system in noise plus interference

$$x[k] = a_i s_i[k] + \{\sum_{j=1, j \neq i}^{S} a_j s_j[k] + n[k]\}$$

• We can then force a fixed response towards user i by the constraint

$$\boldsymbol{w}_i^H \boldsymbol{a}_i = 1$$

We can further minimize the output power, leading to

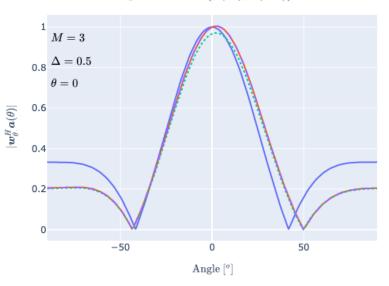
$$\min_{\boldsymbol{w}_i} \boldsymbol{w}_i^H \boldsymbol{R}_{\boldsymbol{x}} \boldsymbol{w}_i$$
 s.t. $\boldsymbol{w}_i^H \boldsymbol{a}_i = 1$

Using the technique of Lagrange multipliers, we obtain

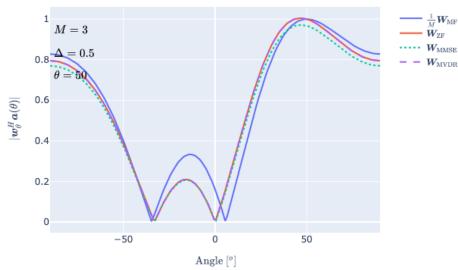
$$m{w}_i = m{R}_{m{x}}^{-1} m{a}_i (m{a}_i^H m{R}_{m{x}}^{-1} m{a}_i)^{-1}$$

- This is the mimimum variance distortionless response (MVDR) BF, or Capon BF
- It is a scaled (unbiased) version of the MMSE BF and maximizes the SINR

Beamformer Comparison



Beamformer Comparison $\mathbf{A} := [\mathbf{a}(0^{\circ}), \mathbf{a}(50^{\circ})]$



$$R_{s} = \sigma_{s}^{2} I$$

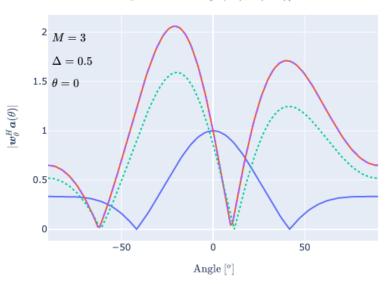
$$\mathbf{R}_{s} = \sigma_{s}^{2} \mathbf{I}$$
 $\frac{\sigma_{s}^{2}}{\sigma_{n}^{2}} = 10$ $\mathbf{R}_{n} = \sigma_{n}^{2} \mathbf{I}$

 $- - W_{\text{MVDR}}$

$$\mathbf{R}_n = \sigma_n^2 \mathbf{R}$$

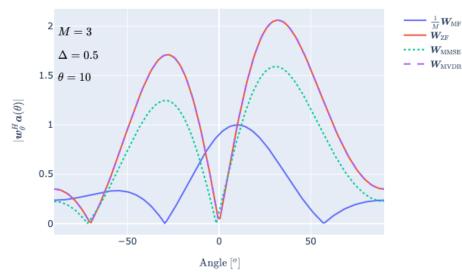
Beamformer Comparison

Beamformer Comparison $\mathbf{A} := [\mathbf{a}(0^o), \mathbf{a}(10^o)]$



 $- - W_{MVDR}$

Beamformer Comparison $\mathbf{A} := [\mathbf{a}(0^o), \mathbf{a}(10^o)]$



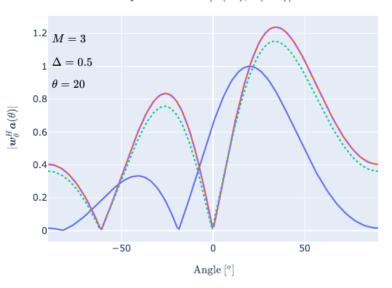
$$\mathbf{R}_{\scriptscriptstyle S}=\sigma_{\scriptscriptstyle S}^2\mathbf{I}$$

$$\mathbf{R}_{S} = \sigma_{S}^{2} \mathbf{I}$$
 $\frac{\sigma_{S}^{2}}{\sigma_{n}^{2}} = 10$ $\mathbf{R}_{n} = \sigma_{n}^{2} \mathbf{I}$

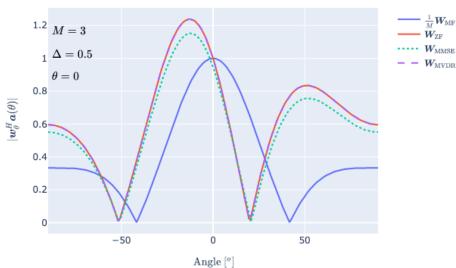
$$\mathbf{R}_n = \sigma_n^2 \mathbf{R}$$

Beamformer Comparison

Beamformer Comparison $\mathbf{A} := [\mathbf{a}(0^o), \mathbf{a}(20^o)]$



Beamformer Comparison $\mathbf{A} := [\mathbf{a}(0^o), \mathbf{a}(20^o)]$



$$\mathbf{R}_{s} = \sigma_{s}^{2} \mathbf{I}$$
 $\frac{\sigma_{s}^{2}}{\sigma_{n}^{2}} = 10$ $\mathbf{R}_{n} = \sigma_{n}^{2} \mathbf{I}$

 $- - W_{\text{MVDR}}$

Traditional Processing

- Beamforming
 - Matched filter
 - Zero forcing
 - Minimum mean square error
 - Minimum variance distortionless response
- Direction of arrival (DoA) estimation
 - Intuition behind direction finding
 - Beamforming based methods
 - Multiple signal classification (MUSIC)
 - Estimation of signal parameters via rotational invariant techniques (ESPRIT)
 - Sparse reconstruction

Intuition Behind Direction Finding

• The array manifold is the curve that the vector $m{a}(heta)$ describes when heta varies

$$\mathcal{A} = \{ \boldsymbol{a}(\theta) : 0 \le \theta \le 2\pi \}$$

- The knowledge of ${\cal A}$ allows for direction finding
 - One source

$$\boldsymbol{x}(t) = \boldsymbol{a}(\theta)\beta s(t)$$

For varying s(t), the vector $\boldsymbol{x}(t)$ is confined to a line

Two sources

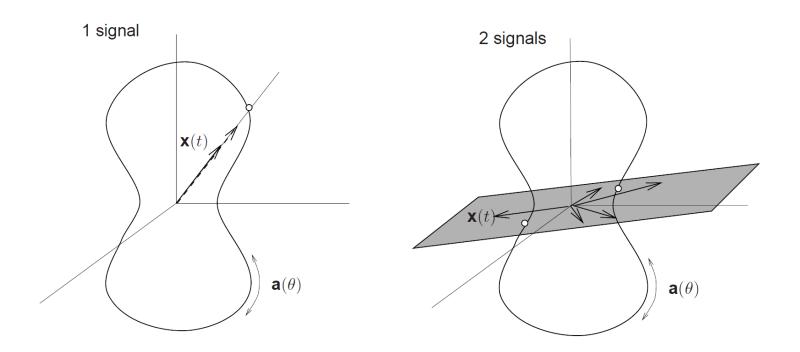
$$\boldsymbol{x}(t) = \boldsymbol{a}(\theta_1)\beta_1 s_1(t) + \boldsymbol{a}(\theta_2)\beta_2 s_2(t)$$

For varying $s_1(t)$ and $s_2(t)$, the vector $oldsymbol{x}(t)$ is now confined to a plane

- The intersection of A with the line or plane results in the direction(s)

Intuition Behind Direction Finding

Principle of direction finding



Intuition Behind Direction Finding

- This approach is not possible in case of multipath
- In that case, the array response vectors do not lie on the array manifold

$$m{a} = \sum_i m{a}(heta_i)eta_i$$

Although it can be tackled, for now we consider a model without multipath

[Vanderveen et al, 1997] [van der Veen et al, 1997]

$$egin{aligned} oldsymbol{x}[k] &= \sum_{i=1}^{S} oldsymbol{a}(heta_i)eta_i s_i[k] &= \underbrace{oldsymbol{[a(heta_1), \dots, a(heta_S)]}}_{oldsymbol{A(heta)}} & \underbrace{egin{aligned} eta_1 & & & \\ & \ddots & & \\ & & A(heta) \end{aligned}}_{oldsymbol{A(heta)}} & \underbrace{oldsymbol{b}_1[k]}_{oldsymbol{A(heta)}} & \underbrace{oldsymbol{b}_1[k]}$$

Maximum likelihood DoA Estimation

Combining multiple snapshots we obtain

$$X = [x[1], \dots, x[K]] = A(\theta)B(\beta)[s[1], \dots, s[K]] = A(\theta)B(\beta)S$$

The simplest way to formulate the DoA estimation problem is as

$$\min_{oldsymbol{ heta},oldsymbol{eta},oldsymbol{S},oldsymbol{S}} \|oldsymbol{X} - oldsymbol{A}(oldsymbol{ heta})oldsymbol{B}(oldsymbol{eta})oldsymbol{S}\|_F^2$$

- This is a maximum likelihood formulation in case of Gaussian noise
- The problem is very hard to tackle
 - Alternating minimization that might get stuck in a local minimum
 - Can be solved by assuming some training symbols
 - Complicated multi-dimensional search for $oldsymbol{ heta}$

Beamforming Based Methods

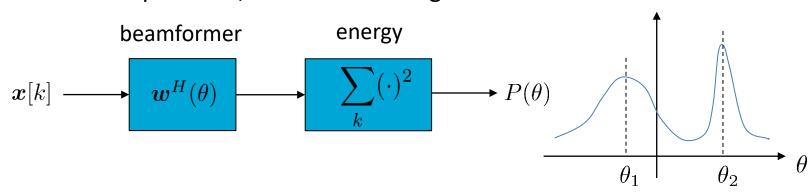
- Design a beamformer $oldsymbol{w}$ for a specific direction heta , i.e., $oldsymbol{w}(heta)$
- Scan all directions and maximize the output energy of the beamformer

deterministic stochastic

$$\max_{ heta} \|oldsymbol{w}^H(heta)oldsymbol{X}\|_2^2$$

$$\max_{\theta} \boldsymbol{w}^{H}(\theta) \boldsymbol{R}_{\boldsymbol{x}} \boldsymbol{w}(\theta)$$

- For a single user, this resembles the array response graph of the BF
- For multiple users, choose the S largest maxima



Matched Filter Based DoA Estimation

Here it is assumed that the noise color is not known and hence

$$\boldsymbol{w}(\theta) = \boldsymbol{a}(\theta)$$

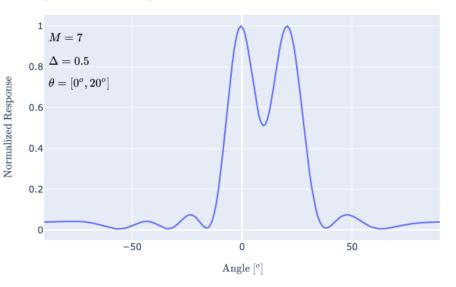
The DoA estimation method then becomes

$$\max_{\theta} \boldsymbol{a}^{H}(\theta) \boldsymbol{R}_{\boldsymbol{x}} \boldsymbol{a}(\theta)$$

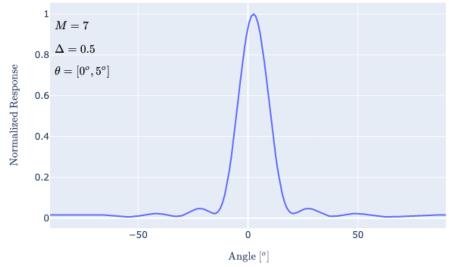
- If needed a normalization can be done with $\|oldsymbol{a}(heta)\|^2$
- For a single user in white noise, the considered matched filter is optimal
- For multiple users, the matched filter is not optimal
 - Users need to be well-separated
 - Biased estimates are generally obtained

Matched Filter Based DoA Estimation

Response for Scanning W_{MF}



Response for Scanning $\boldsymbol{W}_{\mathrm{MF}}$



MVDR Based DoA Estimation

A more accurate beamformer is given by the MVDR BF

$$\boldsymbol{w}(\theta) = \boldsymbol{R}_{\boldsymbol{x}}^{-1} \boldsymbol{a}(\theta) (\boldsymbol{a}^H(\theta) \boldsymbol{R}_{\boldsymbol{x}}^{-1} \boldsymbol{a}(\theta))^{-1}$$

Computing the output power of this BF leads to

$$\boldsymbol{w}^{H}(\theta)\boldsymbol{R}_{\boldsymbol{x}}\boldsymbol{w}(\theta) = \{(\boldsymbol{a}^{H}(\theta)\boldsymbol{R}_{\boldsymbol{x}}^{-1}\boldsymbol{a}(\theta))^{-1}\boldsymbol{a}^{H}(\theta)\boldsymbol{R}_{\boldsymbol{x}}^{-1}\}\boldsymbol{R}_{\boldsymbol{x}}\{\boldsymbol{R}_{\boldsymbol{x}}^{-1}\boldsymbol{a}(\theta)(\boldsymbol{a}^{H}(\theta)\boldsymbol{R}_{\boldsymbol{x}}^{-1}\boldsymbol{a}(\theta))^{-1}\}$$
$$= (\boldsymbol{a}^{H}(\theta)\boldsymbol{R}_{\boldsymbol{x}}^{-1}\boldsymbol{a}(\theta))^{-1}$$

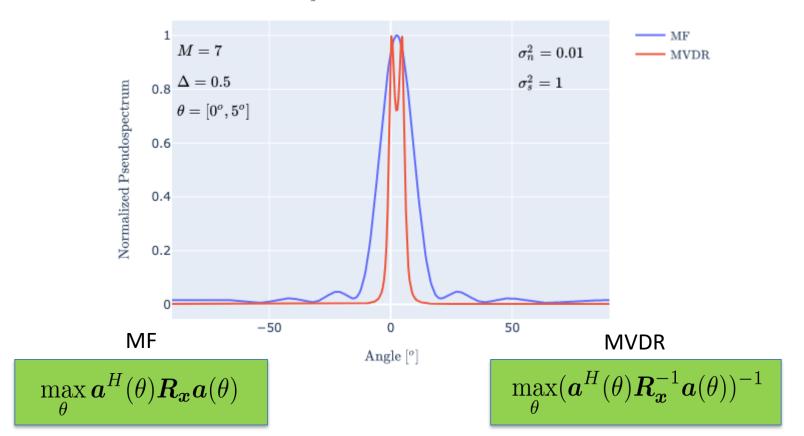
The DoA estimation method then becomes

$$\max_{\theta} (\boldsymbol{a}^{H}(\theta)\boldsymbol{R}_{\boldsymbol{x}}^{-1}\boldsymbol{a}(\theta))^{-1}$$

Leads to a much better separation of the users

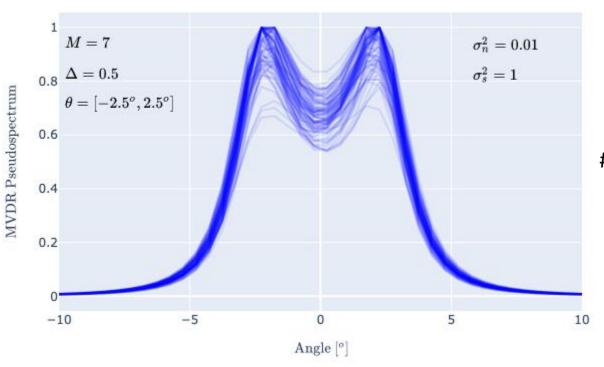
MVDR Based DoA Estimation

DoA Estimation Comparison



MVDR Based DoA Estimation

DoA Estimation: MVDR



#Snapshots: 100

MUSIC [Schmidt, 1981]

- This is a singular value (eigenvalue) decomposition-based technique
 - Deterministic (noiseless): $m{X} = m{A} m{B} m{S} = m{U}_s m{\Sigma}_s m{V}_s^H + m{U}_n m{0} m{V}_n^H$
 - Stochastic (white noise): $R_{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{B}\boldsymbol{R}_{\boldsymbol{s}}\boldsymbol{B}^{H}\boldsymbol{A}^{H} + \sigma_{n}^{2}\boldsymbol{I} \\ = \boldsymbol{U}_{\boldsymbol{s}}(\boldsymbol{\Lambda}_{\boldsymbol{s}} + \sigma_{n}^{2}\boldsymbol{I})\boldsymbol{U}_{\boldsymbol{s}}^{H} + \boldsymbol{U}_{\boldsymbol{n}}(\sigma_{n}^{2}\boldsymbol{I})\boldsymbol{U}_{\boldsymbol{n}}^{H}$
- The SVD (EVD) reveals a relation between U_s or U_n and $A(\theta)$ span $\{U_s\} = \operatorname{span}\{A(\theta)\}, \quad \operatorname{span}\{U_n\} \perp \operatorname{span}\{A(\theta)\}, \quad A(\theta) = [a(\theta_1), \dots, a(\theta_S)]$
- We select $\{ heta_i\}_{i=1}^S$ to make $m{A}(m{ heta})$ fit $\mathrm{span}\{m{U}_s\}$ or misfit $\mathrm{span}\{m{U}_n\}$
- This can be done per angle and does not lead to a multi-dimensional search

$$\boldsymbol{U}_n^H \boldsymbol{a}(\theta_i) = \boldsymbol{0}, \quad i = 1, 2, \dots, S$$

MUSIC

The DoA estimation method then becomes

$$\min_{\theta} \|\boldsymbol{a}^{H}(\theta)\boldsymbol{U}_{n}\|^{2} = \min_{\theta} \boldsymbol{a}^{H}(\theta)\boldsymbol{U}_{n}\boldsymbol{U}_{n}^{H}\boldsymbol{a}(\theta)$$

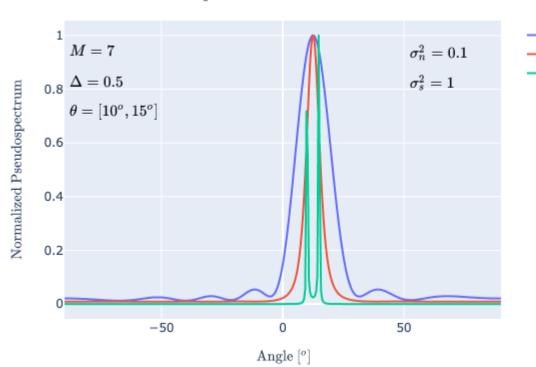
Similar to BF based methods, we can also maximize the (pseudo) spectrum

$$\max_{\theta} (\boldsymbol{a}^{H}(\theta)\boldsymbol{U}_{n}\boldsymbol{U}_{n}^{H}\boldsymbol{a}(\theta))^{-1}$$

- ullet If number of sources is smaller than number of sensors, S < M , then
 - Exact DoAs in noiseless deterministic case: $SNR \rightarrow \infty$
 - Exact DoAs in stochastic case with white noise: $K \to \infty$
- Estimates are statistically consistent

MUSIC

DoA Estimation Comparison



$$\max_{\theta} \boldsymbol{a}^{H}(\theta) \boldsymbol{R}_{\boldsymbol{x}} \boldsymbol{a}(\theta)$$

MVDR

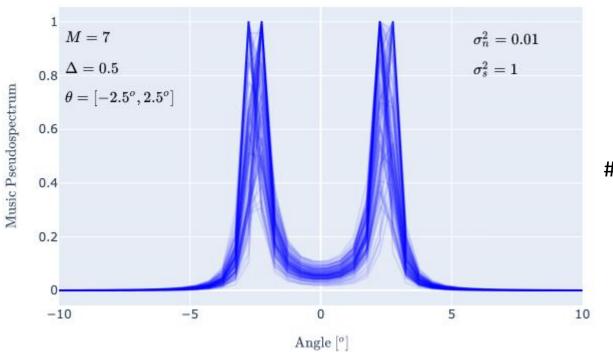
$$\max_{\theta} (\boldsymbol{a}^{H}(\theta) \boldsymbol{R}_{\boldsymbol{x}}^{-1} \boldsymbol{a}(\theta))^{-1}$$

MUSIC

$$\max_{\theta} (\boldsymbol{a}^{H}(\theta)\boldsymbol{U}_{n}\boldsymbol{U}_{n}^{H}\boldsymbol{a}(\theta))^{-1}$$

MUSIC

DoA Estimation: MUSIC



#Snapshots: 100

ESPRIT [Roy-Kailath, 1989]

- Also an SVD (EVD)-based technique yet relying on a ULA
- For a ULA we obtain the shift-invariance property

$$\boldsymbol{a}(\theta) = \begin{bmatrix} 1 \\ e^{j2\pi\Delta\sin\theta} \\ \vdots \\ e^{j2\pi(M-1)\Delta\sin\theta} \end{bmatrix} = \begin{bmatrix} 1 \\ \psi \\ \vdots \\ \psi^{M-1} \end{bmatrix} \right] \boldsymbol{a}_{\mathrm{t}}(\theta)$$
 $\psi = e^{j2\pi\Delta\sin\theta}$

$$m{a}_{\mathrm{t}}(heta) = egin{bmatrix} 1 \ \psi \ dots \ \psi^{M-2} \end{bmatrix}, \quad m{a}_{\mathrm{b}}(heta) = egin{bmatrix} \psi \ \psi^2 \ dots \ \psi^{M-1} \end{bmatrix} \qquad m{a}_{\mathrm{b}}(heta) = m{a}_{\mathrm{t}}(heta)\psi$$

ESPRIT

• Using this property, let us combine the first and last M-1 antennas

$$egin{aligned} oldsymbol{x}_{ ext{t}}[k] &= egin{bmatrix} x_1[k] \ dots \ x_{ ext{t}}[k] \end{bmatrix}, & oldsymbol{x}_{ ext{b}}[k] &= egin{bmatrix} x_2[k] \ dots \ x_{ ext{t}}[k] \end{bmatrix}, & oldsymbol{X}_{ ext{t}} &= [oldsymbol{x}_{ ext{t}}[1], \dots, oldsymbol{x}_{ ext{t}}[K]] \ oldsymbol{X}_{ ext{b}} &= [oldsymbol{x}_{ ext{b}}[1], \dots, oldsymbol{x}_{ ext{b}}[K]] \end{aligned}$$

We then obtain

$$\begin{aligned} \boldsymbol{x}_{\mathrm{t}}[k] &= \sum_{i=1}^{S} \boldsymbol{a}_{\mathrm{t}}(\theta_{i}) \beta_{i} s_{i}[k] & \Rightarrow & \boldsymbol{X}_{\mathrm{t}} = \boldsymbol{A}_{\mathrm{t}} \boldsymbol{B} \boldsymbol{S} \\ \boldsymbol{x}_{\mathrm{b}}[k] &= \sum_{i=1}^{S} \boldsymbol{a}_{\mathrm{b}}(\theta_{i}) \beta_{i} s_{i}[k] & \Rightarrow & \boldsymbol{X}_{\mathrm{b}} = \boldsymbol{A}_{\mathrm{t}} \boldsymbol{\Psi} \boldsymbol{B} \boldsymbol{S} \end{aligned}$$

ESPRIT

• Stack $oldsymbol{X}_{
m t}$ and $oldsymbol{X}_{
m b}$ in a matrix $oldsymbol{Y}$ and compute the economy size SVD

$$m{Y} = egin{bmatrix} m{X}_{
m t} \ m{X}_{
m b} \end{bmatrix} = egin{bmatrix} m{A}_{
m t} \ m{A}_{
m t} m{\Psi} \end{bmatrix} m{B} m{S} = m{U}_y m{\Sigma}_y m{V}_y^H$$

The main goal of this SVD is to realize a compression of the columns

$$m{U}_y = egin{bmatrix} m{U}_{
m t} \ m{U}_{
m b} \end{bmatrix} = egin{bmatrix} m{A}_{
m t} \ m{A}_{
m t} m{\Psi} \end{bmatrix} m{T}, \qquad m{T} ext{ is an } S imes S ext{ invertible matrix}$$

Using these expression we can derive

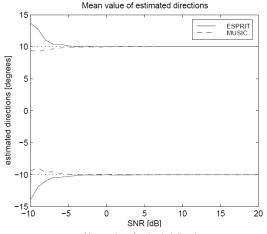
$$oldsymbol{U}_{
m t}^\dagger = oldsymbol{T}^{-1} oldsymbol{A}_{
m t}^\dagger \hspace{1.5cm} oldsymbol{oldsymbol{U}}_{
m t}^\dagger oldsymbol{U}_{
m b} = oldsymbol{T}^{-1} oldsymbol{\Psi} oldsymbol{T}$$

- Thus $m{T}^{-1}$ and $m{\Psi}$ are given by the eigenvectors and eigenvalues of $m{U}_{
 m t}^\dagger m{U}_{
 m b}$
- From $oldsymbol{\Psi}$ we can derive $\{\psi_i\}_{i=1}^S$ and hence $\{ heta_i\}_{i=1}^S$

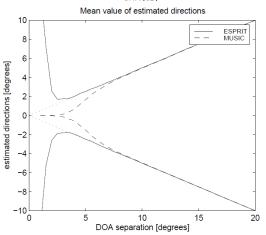
ESPRIT versus MUSIC

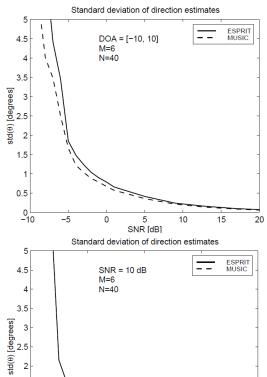
TUDelft

Varying SNR



Varying separation





15

DOA separation [degrees]

20

0.5

Sparse Reconstruction [Malioutov et al, 2005]

• The sparse reconstruction idea is based on rewriting the data model using a grid of \tilde{S} angles $\{\tilde{\theta}_j\}_{j=1}^{\tilde{S}}$ spanning the angular space of interest

$$\boldsymbol{x}[k] = \sum_{i=1}^{S} \boldsymbol{a}(\theta_i) \beta_i s_i[k] = \sum_{j=1}^{\tilde{S}} \boldsymbol{a}(\tilde{\theta}_j) \tilde{s}_j[k] = \underbrace{[\boldsymbol{a}(\tilde{\theta}_1), \dots, \boldsymbol{a}(\tilde{\theta}_{\tilde{S}})]}_{\tilde{\boldsymbol{A}}} \underbrace{\begin{bmatrix} \tilde{s}_1[k] \\ \vdots \\ \tilde{s}_{\tilde{S}}[k] \end{bmatrix}}_{\tilde{\boldsymbol{s}}[k]}$$

- Since this grid of angles is known \implies the system matrix $\stackrel{\circ}{A}$ is known
- If $\tilde{\theta}_j=\theta_i$ then $\tilde{s}_j[k]=\beta_i s_i[k]$, otherwise $\tilde{s}_j[k]=0$ \Longrightarrow $\tilde{s}[k]$ is S-sparse
- The goal is to solve $m{x}[k] = ilde{m{A}} ilde{m{s}}[k]$ for $ilde{m{s}}[k]$ (non-zero entries reveal $\{ heta_i\}_{i=1}^S$)
 - However, $\tilde{s}[k]$ cannot be solved using least squares because $M \ll \tilde{S}$
 - Hence, additional constraints are needed such as sparsity

Using a sparsity constraint the problem becomes

$$\min_{\tilde{\boldsymbol{s}}[k]} \|\boldsymbol{x}[k] - \tilde{\boldsymbol{A}}\tilde{\boldsymbol{s}}[k]\|^2 \quad \text{s.t.} \quad \|\tilde{\boldsymbol{s}}[k]\|_0 = S$$

This problem is NP hard but can be relaxed to a convex problem as

$$\min_{\tilde{\boldsymbol{s}}[k]} \|\boldsymbol{x}[k] - \tilde{\boldsymbol{A}}\tilde{\boldsymbol{s}}[k]\|^2 + \lambda \|\tilde{\boldsymbol{s}}[k]\|_1 \qquad \|\tilde{\boldsymbol{s}}[k]\|_1 = \sum_{i=1}^{\tilde{S}} |\tilde{s}_i[k]|$$

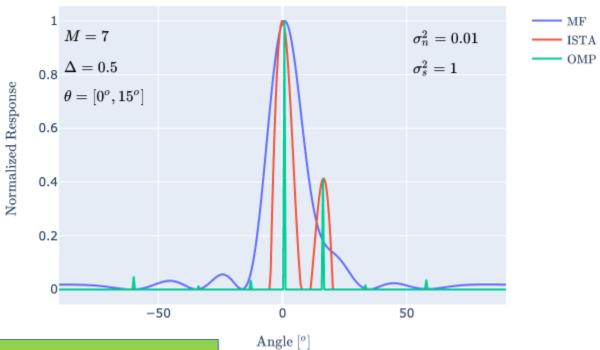
$$\|\tilde{s}[k]\|_1 = \sum_{i=1}^{\tilde{S}} |\tilde{s}_i[k]|$$

- The theory of compressive sensing has shown that the two above problems can have the same solution under some conditions related to the structure of $ilde{m{A}}$
- Typical algorithms that can be employed are
 - Iterative soft tresholding algorithm (ISTA)
 - Orthogonal matching pursuit (OMP)

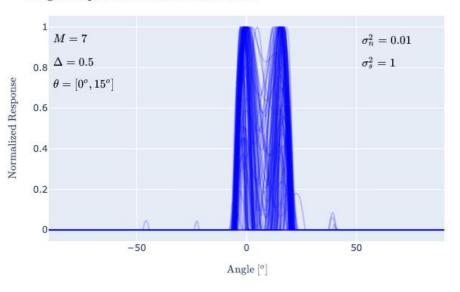
[Daubechies et al, 2004] [Beck-Teboulle, 2009]

[Davis et al, 1997] [Tropp, 2004] [Donoho et al, 2006]

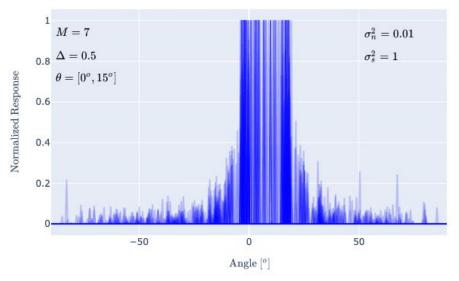
Single Snapshot DoA Estimation Comparison



$$\min_{\tilde{\boldsymbol{s}}[k]} \|\boldsymbol{x}[k] - \tilde{\boldsymbol{A}}\tilde{\boldsymbol{s}}[k]\|^2 + \lambda \|\tilde{\boldsymbol{s}}[k]\|_1$$



Single Snapshot DoA Estimation: OMP



We can extend this framework to multiple snapshots by defining

$$oldsymbol{X} = [oldsymbol{x}[1], \dots, oldsymbol{x}[K]], \qquad ilde{oldsymbol{S}} = [ilde{oldsymbol{s}}[1], \dots, ilde{oldsymbol{s}}[K]]$$

The optimization problem then becomes

$$\min_{\tilde{oldsymbol{S}}} \|oldsymbol{X} - ilde{oldsymbol{A}} ilde{oldsymbol{S}}\|^2 + \lambda \| ilde{oldsymbol{S}}\|_{2,1}$$

$$\min_{\tilde{S}} \|X - \tilde{A}\tilde{S}\|^2 + \lambda \|\tilde{S}\|_{2,1} \qquad \|\tilde{S}\|_{2,1} = \sum_{i=1}^{\tilde{S}} \sqrt{\sum_{k=1}^{K} |\tilde{s}_i[k]|^2}$$

- Similar algorithms as in the single snapshot case can be employed
- The problem can be simplified by using the I1-SVD idea [Malioutov et al, 2005]
 - Use the SVD to reduce the rank of $m{X}$ to $S:m{X}pproxm{U}_xm{\Sigma}_xm{V}_x^H$
 - Then we solve the reduced problem

$$\begin{array}{cccc}
 & \downarrow & \searrow \\
 & M \times S & S \times S & S \times K
\end{array}$$

$$\min_{ ilde{oldsymbol{S}}} \|oldsymbol{U}_x oldsymbol{\Sigma}_x - ilde{oldsymbol{A}} ilde{oldsymbol{S}} \|^2 + \lambda \| ilde{oldsymbol{S}}\|_{2,1}$$

Part III: Advanced Methods and Array Design

Advanced Methods and Array Design

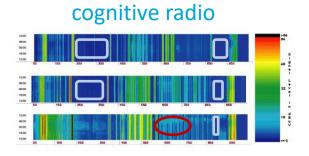
- Compressive array
 - Compressive sensing (CS)
 - CS in spatial domain
- Covariance based processing
 - Compressive covariance sensing (CCS)
 - CCS in spatial domain
 - CCS based array design
 - Virtual array principle
- Performance based array design
 - Sparse sensing
 - Convex and submodular optimization

Advanced Methods and Array Design

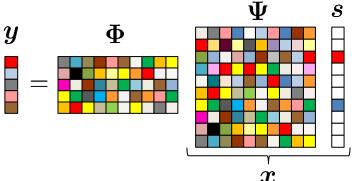
- Compressive array
 - Compressive sensing (CS)
 - CS in spatial domain
- Covariance based processing
 - Compressive covariance sensing (CCS)
 - CCS in spatial domain
 - CCS based array design
 - Virtual array principle
- Performance based array design
 - Sparse sensing
 - Convex and submodular optimization

Compressive Sensing

Due to the required high sampling rates, compression is useful



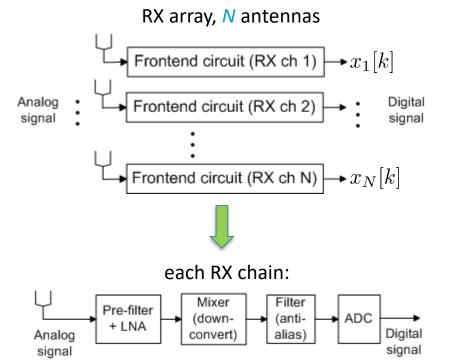
- Compression after acquisistion does not simplify sensing
- A popular alternative is compressive sensing (CS) = joint acquisition and sensing

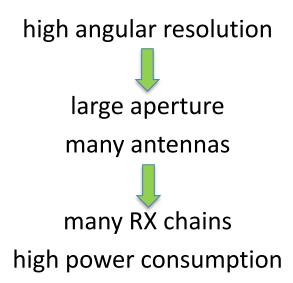


[Tropp, 2004] [Donoho, 2006] [Candès et al, 2006]

- Random linear projections of Nyquist rate sampled signal
- Multiple sparse reconstruction techniques exist to solve this

CS in Spatial Domain



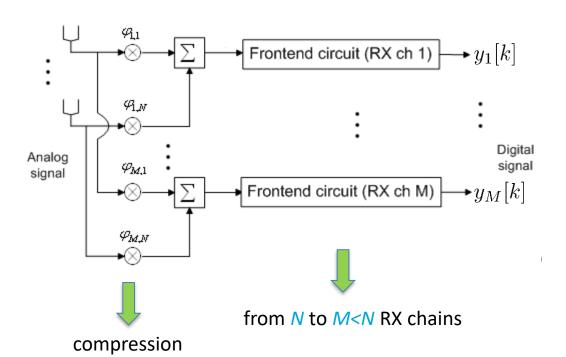


Goal: Decrease the number of RX chains without loosing too much performance

CS in Spatial Domain

Solution: Compressive array

$$m{y}[k] = m{\Phi}m{x}[k]$$



Compression matrix Φ :

- Dense matrix: analog beamforming, beamspace [Wang-Leus-Pandharipande, 2009] [Wang-Leus, 2010]
 [Venkateswaran-van der Veen, 2010]
- Sparse matrix: subarrays [Moffet, 1968] [Hoctor-Kassam, 1990]

DoA Estimation

$$oldsymbol{x}[k] = oldsymbol{A} oldsymbol{s}[k] + oldsymbol{n}_t \ \Rightarrow \ oldsymbol{R}_{oldsymbol{x}} = oldsymbol{A} oldsymbol{R}_{oldsymbol{s}} oldsymbol{A}^H + oldsymbol{R}_{oldsymbol{n}}$$

$$oldsymbol{y}[k] = oldsymbol{\Phi} oldsymbol{x}[k]$$
 compression

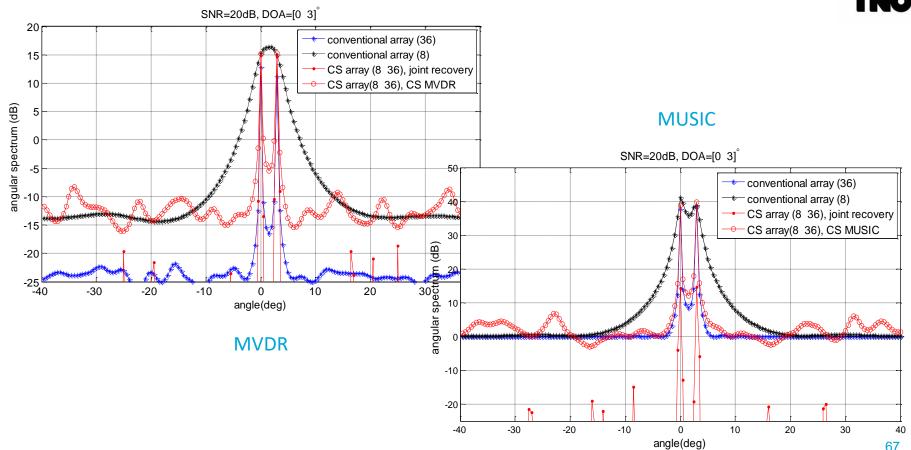
$$egin{aligned} m{y}[k] &= m{B}m{s}[k] + m{m}[k] & \Rightarrow m{R}_{m{y}} &= m{B}m{R}_{m{s}}m{B}^H + m{R}_{m{m}} \ m{B} &= m{\Phi}m{A} = [m{b}(heta_1), \dots, m{b}(heta_S)], \quad m{m}[k] = m{\Phi}m{n}[k] \end{aligned}$$

- Based on $m{R_y}$ and $m{b}(heta)$ traditional DoA methods can be used (see earlier)
 - Beamforming-based methods
 - MUSIC
 - Sparse reconstruction
 - ESPRIT is not possible since we don't have a ULA
- ullet They require (only work well for) more outputs than sources, M>S

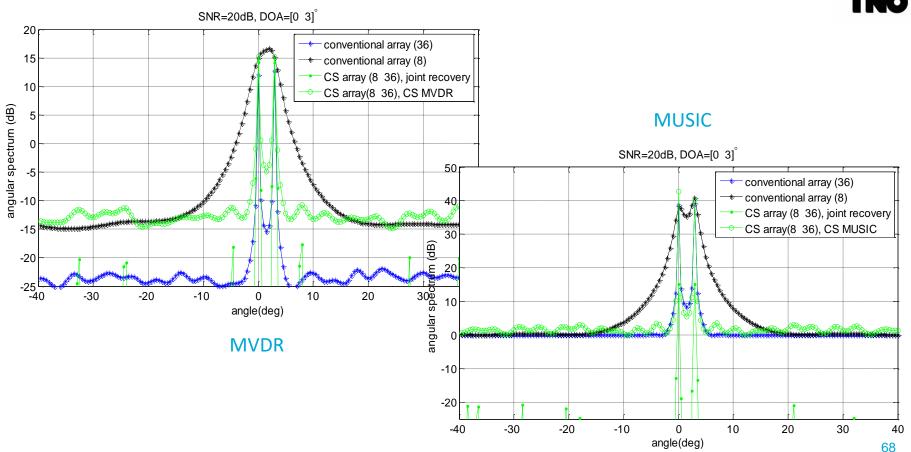
Simulations Results

- ULA (uniform linear array), $\Delta = 1/2$
- S=2 sources, uncorrelated, BPSK, DoAs $\theta_1=0^\circ,~\theta_2=30^\circ$
- Conventional array: N=36 and N=8 antenna elements
- Compressive array: from N=36 we compress to $M=8\,$ RX chains
- Scanning resolution: $\tilde{S}=360$
- Compression matrix:
 - random Gaussian matrix: entries zero mean and variance 1/M
 - random selection matrix: randomly selecting M from N elements
- Sparse reconstruction: M-FOCUSS

Random Gaussian



Random Selection



Advanced Methods and Array Design

- Compressive array
 - Compressive sensing (CS)
 - CS in spatial domain
- Covariance based processing
 - Compressive covariance sensing (CCS)
 - CCS in spatial domain
 - CCS based array design
 - Virtual array principle
- Performance based array design
 - Sparse sensing
 - Convex and submodular optimization

Compressive Covariance Sensing

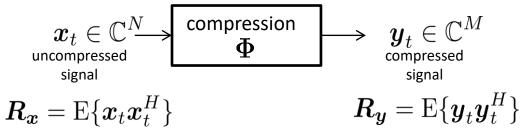
- CS methods estimate the signal itself (or its spectrum)
 - Leads to an underdetermined problem that requires a sparsity constraint
 - High computational complexity
 - Difficult performance analysis

Observation:

- Many applications just require second-order statistics (or the power spectrum)
 - Cognitive radio: temporal power spectrum
 - Radio astronomy: spatial power spectrum
- This paves the way for methods that are less complex and easier to analyze

Compressive covariance sensing (CCS)

CCS in Spatial Domain



Problem statement:

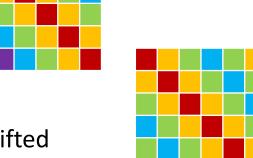
Estimate $m{R}_{m{x}}$ from $\{m{y}_t\}_t$ or $\hat{m{R}}_{m{y}}$ exploiting structure in $m{R}_{m{x}}$

- Once $oldsymbol{R_x}$ is estimated we can use any ULA-based DoA estimation technique
 - Beamforming based methods
 - MUSIC
 - Sparse reconstruction
 - ESPRIT becomes also possible now because of the ULA property

Covariance Structure

- All covariance matrices are Hermitian and positive semi-definite
- ullet Typical structures for $oldsymbol{R_x}$
 - Toeplitz
 - Stationarity over space
 - Sum of exponentials

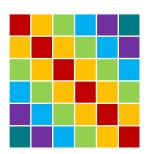
- Rows/colums are circularly shifted
- Sum of exponentials on uniform grid
- d-banded
 - ullet Toeplitz with info only in d subdiagonals
 - Spatial MA/AR processes (not related to our model)



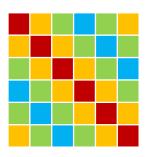
Covariance Structure

Encompassing model: basis expansion model (BEM)

$$\mathcal{S} = \left\{ oldsymbol{R_x} = \sum_{i=1}^{S} lpha_i oldsymbol{R}_i, \quad lpha_i \in \mathbb{R}
ight\}$$



$$S = 2N - 1$$
 real unknowns



 $\begin{array}{c} \text{circulant} \\ S = N \\ \text{real unknowns} \end{array}$



d-banded S=2d+1 real unknowns

Covariance Estimation

[Leus-Ariananda, 2011] [Ariananda-Leus, 2012]

We vectorize the involved covariance matrices

$$oldsymbol{r_x} = ext{vec} \, oldsymbol{R_x}, \quad oldsymbol{r_y} = ext{vec} \, oldsymbol{R_y}, \quad oldsymbol{r_i} = ext{vec} \, oldsymbol{R_i}$$

• We can then establish a relation between $m{r_x}$ and $m{lpha} = [lpha_1, \dots, lpha_S]^T$

$$\mathbf{R}_{x} = \sum_{i=1}^{S} \alpha_{i} \mathbf{R}_{i} \quad \Rightarrow \quad \mathbf{r}_{x} = \mathbf{T} \boldsymbol{\alpha}, \quad \mathbf{T} = [\mathbf{r}_{1}, \dots, \mathbf{r}_{S}]$$

• The same can be done for $oldsymbol{r_x}$ and $oldsymbol{r_y}$

$$oldsymbol{R_y} = oldsymbol{\Phi} oldsymbol{R_x} oldsymbol{\Phi}^H \qquad \Rightarrow \qquad oldsymbol{r_y} = (oldsymbol{\Phi}^* \otimes oldsymbol{\Phi}) oldsymbol{r_x}$$

• Based on an estimated r_y we can recover lpha using least squares

$$oldsymbol{r_y} = (oldsymbol{\Phi}^* \otimes oldsymbol{\Phi}) oldsymbol{T} lpha \qquad \Rightarrow \qquad \hat{oldsymbol{lpha}} = [(oldsymbol{\Phi}^* \otimes oldsymbol{\Phi}) oldsymbol{T}]^\dagger \hat{oldsymbol{r}}_{oldsymbol{y}}$$

Finally we can obtain an estimate for r_x as

$$\hat{m{r}}_{m{x}} = m{T}[(m{\Phi}^* \otimes m{\Phi})m{T}]^\dagger \hat{m{r}}_{m{y}}$$

Covariance Estimation

$$oldsymbol{r_y} = (oldsymbol{\Phi}^* \otimes oldsymbol{\Phi}) oldsymbol{T} oldsymbol{lpha} \ M^2 imes N^2 \ M^2 imes S$$

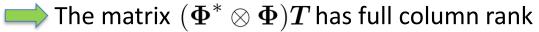
$$\hat{oldsymbol{lpha}} = [(oldsymbol{\Phi}^* \otimes oldsymbol{\Phi}) oldsymbol{T}]^\dagger \hat{oldsymbol{r}}_{oldsymbol{y}}$$

- When $M^2>S$ we have an overdetermined system
- ullet This can happen even under compression, M < N
- ullet Thus also under less outputs than sources, M < S
- Unique reconstruction if $(oldsymbol{\Phi}^* \otimes oldsymbol{\Phi}) oldsymbol{T}$ full column rank
 - \Longrightarrow design of Φ is critical!
- Estimation can include additional constraints

$$\min_{m{lpha}} \|\hat{m{r}}_{m{y}} - (m{\Phi}^* \otimes m{\Phi}) m{T} m{lpha}\|^2$$
 s.t. $egin{cases} m{F} m{T} m{lpha} \succeq m{0} & ext{PSD non-negative} \ \|m{F} m{T} m{lpha}\|_0 \leq \mu & ext{PSD sparse} \ m{R}_{m{x}} \succeq m{0} & ext{Covariance PSD} \end{cases}$

CCS Based Array Design

- Compressive array
 - Dense matrix Φ
 - Sparse matrix Φ
- Goals of sampler design:
 - Conditions on Φ to allow for estimation of R_x
 - Maximize the compression ratio $\rho=N/M$



$$\mathbf{R}_{x} = \sum_{i=1}^{S} \alpha_{i} \mathbf{R}_{i} \quad \Rightarrow \quad \mathbf{R}_{y} = \sum_{i=1}^{S} \alpha_{i} \mathbf{\Phi} \mathbf{R}_{i} \mathbf{\Phi}^{H}$$

The linear indepence in $\{m{R}_i\}_{i=1}^S$ is preserved in $\{m{\Phi}m{R}_im{\Phi}^H\}_{i=1}^S$

Sparse Compression

• In sparse array design, the matrix $oldsymbol{\Phi}$ selects a subset of antennas ${\mathcal I}$

$$\mathcal{I} \subset \{0, \dots, N-1\}$$

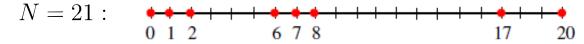
- Toeplitz subspace: Φ covariance sampler $\iff \mathcal{I}$ sparse ruler
 - Optimal sparse array: minimal sparse ruler
 [Rédei-Rényi, 1949] [Leech, 1956] [Pearson et al, 1990] [Romero-López Valcarce-Leus, 2015]
- Circulant subspace: Φ covariance sampler $\iff \mathcal{I}$ circular sparse ruler
 - Optimal sparse array: \mathcal{I} minimal circular sparse ruler
 [Romero-LópezValcarce-Leus, 2015]
- d-banded subspace: Φ covariance sampler $\iff \mathcal{I}$ incomplete sparse ruler

[Ariananda-Leus, 2012] [Romero-LópezValcarce-Leus, 2015]

Sparse Rulers

- Difference set: $\Delta(\mathcal{I}) = \{|i_1 i_2|, \ \forall i_1, i_2 \in \mathcal{I}\}$
- Sparse ruler:

$${\mathcal I}$$
 is a length- $(N-1)$ sparse ruler $\begin{cases} \Delta({\mathcal I}) = \{0,\dots,N-1\} \end{cases}$



$$\frac{N}{\lceil \sqrt{3(N-1)} \rceil} \le \rho_{\text{max}} \le \frac{N}{\sqrt{2.435(N-1)}}$$

Minimal sparse ruler

[Rédei-Rényi, 1949] [Leech, 1956] [Wichmann, 1963] [Moffet, 1968] [Miller, 1971] [Wild, 1987] [Pearson et al, 1990] [Linebarger et al, 1993] [Ariananda-Leus, 2012]

Suboptimal designs: nested, co-prime

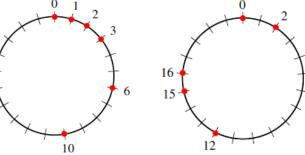
[Wichmann, 1963] [Pearson et al, 1990] [Linebarger et al, 1993] [Pumphrey, 1993] [Pal-Vaidyanathan, 2010] [Pal-Vaidyanathan, 2011]

Circular Sparse Rulers

- Modular difference set: $\Delta_N(\mathcal{I}) = \{(i_1 i_2) \mod N, \ \forall i_1, i_2 \in \mathcal{I}\}$
- Circular sparse ruler:

$${\mathcal I}$$
 is a length- $(N-1)$ circular sparse ruler $\begin{cases} \Delta_N({\mathcal I}) = \{0,\dots,N-1\} \end{cases}$

N = 21:



Minimal circular sparse ruler

$$\frac{N}{\lceil \sqrt{3\lfloor N/2 \rfloor} \rceil} \le \rho_{\max} \le \frac{2N}{2 + \sqrt{4N - 3}}$$

[Singer, 1938] [Miller, 1971] [Ariananda-Leus, 2012] [Romero-Leus, 2013] [Krieger-Kochman-Wornell, 2013] [Romero-LópezValcarce-Leus, 2015]

Dense Compression

Design: Similar to CS we use random designs

 $oldsymbol{\Phi}$ covariance sampler $\Longleftrightarrow oldsymbol{\Phi}$ drawn from continuous distribution and $M^2 \geq S$

- Toeplitz subspace:
$$ho_{
m max} pprox \sqrt{rac{N^2}{2N-1}}$$

$$\rho_{\rm max} \approx \sqrt{N}$$

$$- d$$
-banded subspace:

-
$$d$$
 -banded subspace: $ho_{
m max} pprox \sqrt{rac{N^2}{2d-1}}$

[Romero-LópezValcarce-Leus, 2015]

Virtual Array Principle

ullet Exploiting uncorrelated sources, i.e., R_s is diagonal, we can obtain

[Pillai et al, 1985] [Abramovich et al, 1998, 1999] [Pal-Vaidyanathan, 2010, 2011] [Shakeri-Ariananda-Leus, 2012] [Yen-Tsai-Wang, 2013] [Krieger-Kochman-Wornell, 2013]

$$M \times S$$
 $M^2 \times S$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
 $r_y = \text{vec}(BR_sB^H) = (B^* \odot B) \text{ diag } \{R_s\}$

- $oldsymbol{eta}^*\odot oldsymbol{B}$ represents a virtual array: M^2 observations versus S sources
- Problem: virtual sources are constant or fully coherent
 - Gridding and sparse recovery
 - Smoothing by taking subarrays

Virtual Array Principle

Gridding [Shakeri-Ariananda-Leus, 2012]

hakeri-Ariananda-Leus, 2012]
$$M^2 imes ilde{S}$$
 \uparrow \uparrow $r_{m{y}}= ext{vec}(ilde{m{B}}m{R}_{ ilde{m{s}}} ilde{m{B}}^H)=(ilde{m{B}}^*\odot ilde{m{B}})\operatorname{diag}\left\{m{R}_{ ilde{m{s}}}
ight\}$

$$M^2 \geq \tilde{S}$$
 : least squares

$$M^2 < \tilde{S}$$
 : add sparsity/positivity

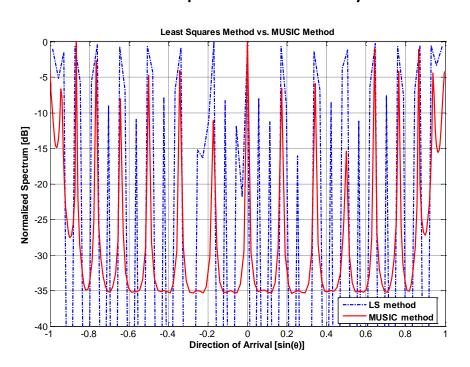
- Smoothing by stacking subarrays followed by standard methods
 - Virtual array should be uniform (leading to a Vandermonde matrix)
 - Only antenna selection is possible
 - Sparse ruler based antenna selection

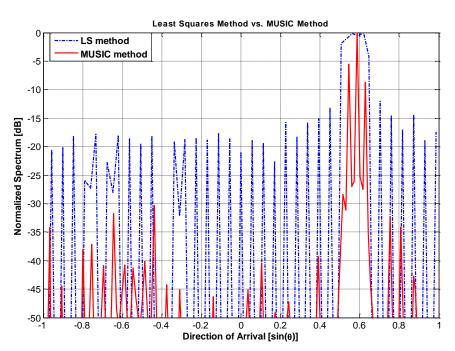
Simulations

- Least squares and MUSIC reconstruction
- We consider the space of Toeplitz matrices
- ULA of N=36 available antenna positions
 - Minimal sparse ruler array M=10 Virtual ULA of 2x36-1antennas
 - Two-level nested array M=11
 - Inner array of 5 and outer array of 6 antennas
 - Virtual ULA of 2x36-1 antennas
 - Co-prime array
 - 9 antennas spacing 2 and 3 antennas spacing 9
 - Virtual ULA of only 2x20-1 antennas
- 1600 time samples
- SNR of 0 dB

Simulations

Minimal sparse ruler array



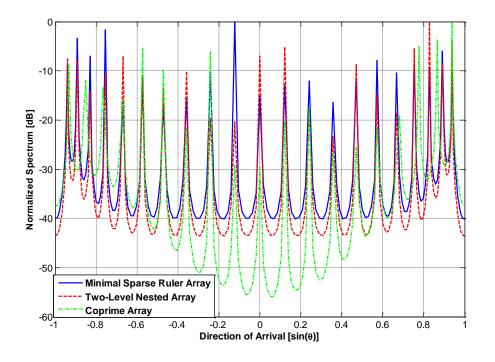


17 sources with 10 degrees of separation

continuous source from 30 to 40 degrees

Simulations

Comparison of different array structures



Advanced Methods and Array Design

- Compressive array
 - Compressive sensing (CS)
 - CS in spatial domain
- Covariance based processing
 - Compressive covariance sensing (CCS)
 - CCS in spatial domain
 - CCS based array design
 - Virtual array principle
- Performance based array design
 - Sparse sensing
 - Convex and submodular optimization

Performance Based Array Design

- From a full array of N antennas (e.g., Nyquist sampled array)
 - Design the optimal subarray of M < N antennas
 - Define an appropriate optimality criterion

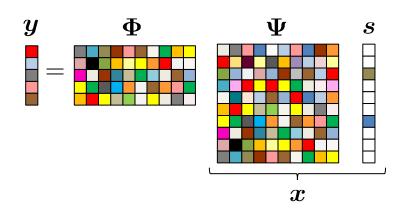
sparse sensing/sampling, sensor/antenna selection/placement

[Blu et al, 2008] [Vaidyanathan-Pal, 2011]

- Why sparse sensing?
 - Economical constraints
 - Limited physical space
 - Limited storage space
 - Reduce communications/processing overhead

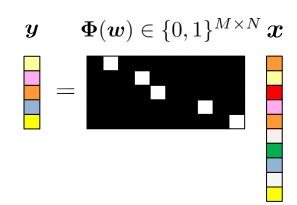
Sparse Sensing

Compressive sensing



- Sparse signal needed
- Random, dense sampler
- Robust compression
- Task is sparse signal reconstruction

Sparse sensing



- Signal does not need to be sparse
- Deterministic, sparse sampler
- Practical, controlable compression
- Any desired inference task

Design Problem

Select the "best" subarray of antennas out of the candidate antennas that guarantee a certain desired statistical inference performance

f(w): inference metric λ : prescribed performance

N: # candidate samples

M: # selected samples

This is a nonconvex Boolean problem

[Lawler-Wood, 1966]

- Exact solutions: exhaustive search or branch-and-bound methods
- Suboptimal solutions:
 - Convex optimization (polynomial time)
 - Submodular optimization (linear time)

Suboptimal Solutions

- Convex optimization [Joshi-Boyd, 2009] [Chepuri-Leus, 2015]
 - Convex relaxation for $\{0,1\}, f(\boldsymbol{w})$
 - Thresholding or randomization to obtain a Boolean solution
 - Typically a semidefinite program
- Submodular optimization for maximization [Krause et al, 2008] [Ranieri et al, 2014]
 - A greedy search is performed
 - For a submodular monotone function

$$\forall \mathcal{Y} \subseteq \mathcal{X} \subset \{1, \dots, N\}, s \in \{1, \dots, N\} \setminus \mathcal{X}$$
 and
$$f(\mathcal{Y} \cup s) - f(\mathcal{Y}) \ge f(\mathcal{X} \cup s) - f(\mathcal{X})$$

the greedy solution is 1-1/e optimal [Nemhauser et al, 1978]

[Chepuri-Leus, 2015] [Liu et al, 2016]

- ullet Suppose x depends on an unknown parameter vector $oldsymbol{ heta}$ (e.g., DoAs)
- Then the selection can be written as

$$y = \text{diag}(w)x, \quad w = [w_1, w_2, \dots, w_N]^T, w_n \in \{0, 1\}$$

- This means the original pdf $p(m{x};m{ heta})$ becomes $p(m{y};m{w},m{ heta})$ after selection
- We could then optimize $oldsymbol{w}$ for the "best" MSE matrix

$$\min_{\boldsymbol{w} \in \{0,1\}^N} f(\mathrm{E}\{(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta})(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta})^T\}), \quad \hat{\boldsymbol{\theta}} = g(\boldsymbol{y})$$

• Here $f(\cdot)$ is some scalar performance measure and $g(\cdot)$ an estimator of $oldsymbol{ heta}$

- Since the exact MSE is hard to express the CRB (inverse FIM) is used
- The CRB (inverse FIM) is a lower bound on any unbiased estimator

$$E\{(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta})(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta})^T\} \succeq \mathbf{C} = \mathbf{F}^{-1}$$
Cramer Rao bound (CRB) Fisher information matrix (FIM)

- The CRB/FIM has a number of advantages over using the MSE directly
 - Well-suited for offline design
 - Reveals local identifiability
 - Is invariant to the adopted algorithm
 - Exact error covariance matrix in the linear additive Gaussian case

• The CRB/FIM can be written in closed form as a function of $p(m{y};m{w},m{ heta})$

$$[\mathbf{F}(\boldsymbol{w}, \boldsymbol{\theta})]_{k,l} = \mathrm{E}\left\{ \frac{\partial p(\boldsymbol{y}; \boldsymbol{w}, \boldsymbol{\theta})}{\partial \theta_k} \frac{\partial p(\boldsymbol{y}; \boldsymbol{w}, \boldsymbol{\theta})}{\partial \theta_l} \right\}$$

• For a multivariate complex Gaussian $\mathcal{N}(m{\mu}(m{w},m{ heta}),m{C}(m{w},m{ heta}))$ we obtain

$$[\mathbf{F}(\boldsymbol{w},\boldsymbol{\theta})]_{k,l} = 2\operatorname{Re}\left\{\frac{\partial \boldsymbol{\mu}^{H}(\boldsymbol{w},\boldsymbol{\theta})}{\partial \theta_{k}}\boldsymbol{C}^{-1}(\boldsymbol{w},\boldsymbol{\theta})\frac{\partial \boldsymbol{\mu}^{H}(\boldsymbol{w},\boldsymbol{\theta})}{\partial \theta_{k}}\right\} + \operatorname{Tr}\left\{\boldsymbol{C}^{-1}(\boldsymbol{w},\boldsymbol{\theta})\frac{\partial \boldsymbol{C}(\boldsymbol{w},\boldsymbol{\theta})}{\partial \theta_{k}}\boldsymbol{C}^{-1}(\boldsymbol{w},\boldsymbol{\theta})\frac{\partial \boldsymbol{C}(\boldsymbol{w},\boldsymbol{\theta})}{\partial \theta_{l}}\right\}$$

In case the observations are conditionally independent, the FIM is additive

$$m{F}(m{w},m{ heta}) = \sum_{n=1}^N w_n m{F}_n(m{ heta})$$

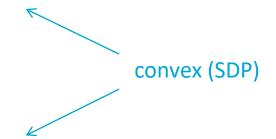
- This additive property even holds for dependent Gaussian observations!
- For nonlinear models and/or specific distributions, the FIM depends on $oldsymbol{ heta}$
 - Optimize over a grid of heta values
 - $-\:$ Use the Bayesian CRB, i.e., average the CRB over the prior pdf of $oldsymbol{ heta}$

- We need a scalar measure based on the FIM
 - E-optimality (worst case error):

$$f(oldsymbol{w}) := \lambda_{\mathsf{max}} \{ oldsymbol{F}^{-1}(oldsymbol{w}, oldsymbol{ heta}) \}.$$

— A-optimality (average error):

$$f(oldsymbol{w}) := \mathsf{tr}\{oldsymbol{F}^{-1}(oldsymbol{w},oldsymbol{ heta})\}$$



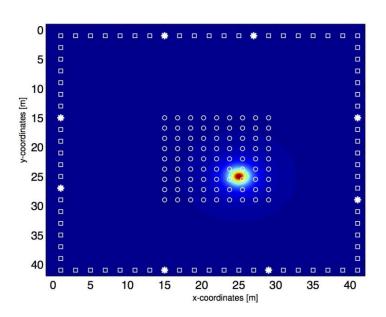
– D-optimality (error volume):

$$f(\boldsymbol{w}) := \ln \det \{ \boldsymbol{F}^{-1}(\boldsymbol{w}, \boldsymbol{\theta}) \} \leftarrow \text{submodular}$$

Target Localization

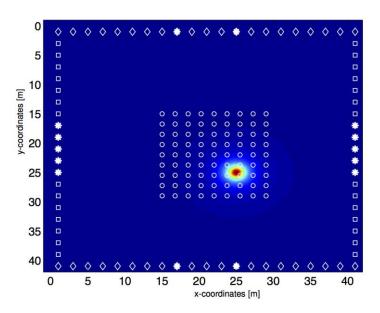
Application: target localization based on received signal strength (RSS)

Independent observations



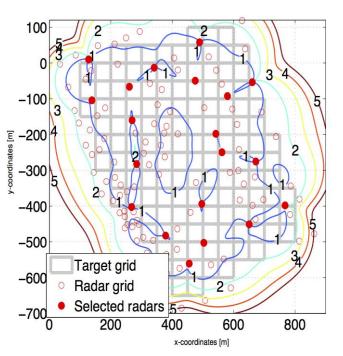
Dependent Gaussian observations

(horizontal sensors correlated)



Target Localization

Application: localization using multi-static FMCW radar

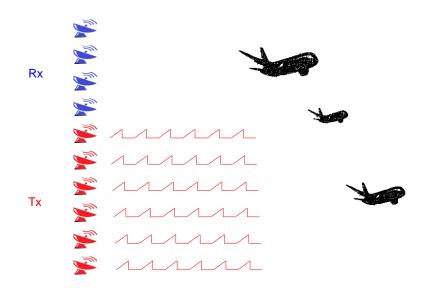


Application to Array Design [Tohidi et al, 2019]

- The CRB focuses on local identifiability, i.e., main lobe width is optimized
 - Good if we have a single target
 - Not good if we want to focus on multiple targets
- Solutions
 - Add constraints to the sidelobes
 - Use a multi-target CRB
- We focus on a two-target CRB where the two targets can be anywhere
 - This CRB is manageable
 - The only unknown is the difference in the direction cosines $\cos heta_1 \cos heta_2$
 - We grid this unknown or average the two-target CRB over it
 - As before, different optimality criteria and algorithms can be used

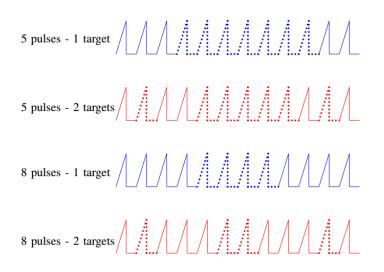
Colocated MIMO Radar [Tohidi et al, 2019]

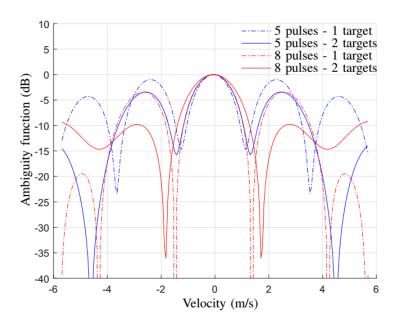
- Goals are to optimize the number of antennas as well as pulses
- Unknowns are angle of arrival and radial velocity



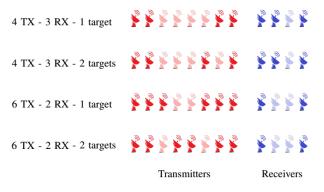
- We optimize the two-target CRB
 - Unknowns are differences in direction cosines and radial velocities
 - We consider a grid for both of them
- We consider E-optimality but other criteria can be used as well
- We consider the following cases
 - Single antenna multiple pulses (velocity estimation)
 - Multiple antennas single pulse (DoA estimation)
 - Combination of both
 - We use E-optimality
 - We use exhaustive search or convex optimization
 - Larger scenarios need to use greedy search

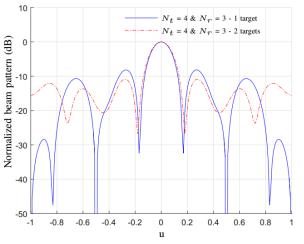
Single antenna – multiple pulses

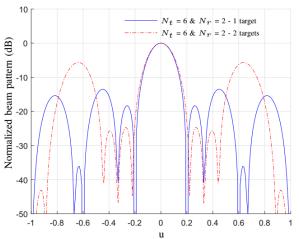




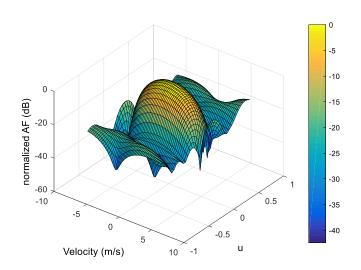
Multiple antennas – single pulse

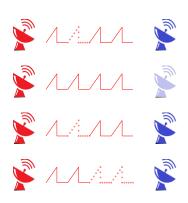






Multiple antennas – multiple pulses





Extensions and Open Issues

- Can be extended for active radar [Aittomäki, 2017]
- Mutual coupling
- Calibration and robustness [Paulraj-Kailath, 1985] [Weiss-Friedlander, 1990]
- Machine learning for array design
- Data-driven parameter estimation
- Vector array processing [Nehorai-Paldi, 1994] [Ramamohan et al, 2017, 2018]
- Complexity and implementation aspects

Conclusions

- Compressive array can reduce "complexity" without much performance loss
- Standard DoA methods can be used with a price in the number of sources
- Covariance-based methods make up for this price
- Array design for compressive arrays
 - Generally based on compression rate and identifiability
 - Can be done for standard as well as covariance-based methods
- Performance-based sparse array design
 - Fits within the sparse sensing framework
 - Focus is mostly on one-target CRB or any other performance measure
 - Improvements can be obtained considering two-target CRB

- D. Johnson and D. Dudgeon, Array Signal Processing: Concepts and Techniques, Prentice-Hall, 1993.
- H. Krim and M. Viberg, "Two decades of array signal processing research: The parametric approach," IEEE Signal Processing Magazine, vol. 13, pp. 67–94, July 1996.
- B. van Veen and K. Buckley, "Beamforming: A versatile approach to spatial filtering," IEEE ASSP Magazine, vol. 5, pp. 4–24, Apr. 1988.
- M.S. Bartlett, "Smoothing Periodograms from Time Series with Continuous Spectra," Nature, 161:686-687, 1948.
- J. Capon. "High-Resolution Frequency-Wavenumber Spectrum Analysis," Proc. IEEE, 57(8):2408-1418, Aug. 1969.
- M. C. Vanderveen, C. B. Papadias and A. Paulraj, "Joint angle and delay estimation (JADE) for multipath signals arriving at an antenna array," IEEE Communications Letters, vol. 1, no. 1, pp. 12-14, Jan. 1997.
- A.-J. van der Veen, M. C. Vanderveen and A. J. Paulraj, "Joint angle and delay estimation using shift-invariance properties," IEEE Signal Processing Letters, vol. 4, no. 5, pp. 142-145, May 1997.
- R.O. Schmidt, A Signal Subspace Approach to Multiple Emitter Location and Spectral Estimation., Ph.D. thesis, Stanford Univ., Stanford, CA, Nov. 1981.

- R. Roy and T. Kailath, "ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques," IEEE Trans. Acoust., Speech, Signal Proc., vol. 37, pp. 984–995, July 1989.
- D. Malioutov, M. Cetin and A. S. Willsky, "A sparse signal reconstruction perspective for source localization with sensor arrays," in IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 3010-3022, Aug. 2005.
- I. Daubechies, M. Defrise, and C. De Mol, "An iterative thresholding algorithm for linear inverse problems with a sparsity constraint," Commun. Pure Appl. Math., vol. 57, no. 11, pp. 1413–1457, 2004.
- A. Beck and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," SIAM J. Imag. Sci., vol. 2, no. 1, pp. 183–202, 2009.
- G. Davis, S. Mallat, and M. Avellaneda, "Greedy adaptive approximation," J. Construct. Approx., vol. 12, pp. 57–98, 1997.
- J. Tropp, "Greed is good: Algorithmic results for sparse approximation," IEEE Trans. Inform. Theory, vol. 50, pp. 2231–2242, Oct. 2004.
- D. Donoho, M. Elad, and V. Temlyakov, "Stable recovery of sparse overcomplete representations in the presence of noise," IEEE Trans. Inform. Theory, vol. 52, pp. 6–18, Jan. 2006.

- D. L. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006.
- E. J. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, feb. 2006.
- Y. Wang, G. Leus, and A. Pandharipande, "Direction estimation using compressive sampling array processing," in IEEE/SP 15th Workshop on Statistical Signal Process., 2009, pp. 626–629.
- Y. Wang and G. Leus, "Space-time compressive sampling array," in Sensor Array and Multichannel Signal Process. Workshop (SAM), 2010, pp. 33–36.
- V. Venkateswaran and A. J. van der Veen, "Analog beamforming in MIMO communications with phase shift networks and online channel estimation," IEEE Trans. Signal Process., vol. 58, no. 8, pp. 4131–4143, 2010.
- A. Moffet, "Minimum-redundancy linear arrays," IEEE Trans. Antennas Propag., vol. 16, no. 2, pp. 172–175, Mar. 1968.
- R. T. Hoctor and S. A. Kassam, "The unifying role of the coarray in aperture synthesis for coherent and incoherent imaging," Proc. IEEE, vol. 78, no. 4, pp. 735–752, Apr. 1990.

- G. Leus and D. D. Ariananda, "Power spectrum blind sampling," IEEE Signal Process. Lett., vol. 18, no. 8, pp. 443–446, 2011.
- D. D. Ariananda and G. Leus, "Compressive wideband power spectrum estimation," IEEE Trans. Signal Process., vol. 60, no. 9, pp. 4775–4789, 2012.
- L. Redei and A. Renyi, "On the representation of the numbers 1,2,. . . ,n by means of differences (Russian)," Matematicheskii sbornik, vol. 66, no. 3, pp. 385–389, 1949.
- J. Leech, "On the representation of 1, 2,..., n by differences," J. London Mathematical Society, vol. 1, no. 2, pp. 160–169, 1956.
- D. Pearson, S. U. Pillai, and Y. Lee, "An algorithm for near-optimal placement ofsensor elements," IEEE Trans. Inf. Theory, vol. 36, no. 6, pp. 1280–1284, 1990.
- D. Romero, R. Lopez-Valcarce, and G. Leus, "Compression limits for random vectors with linearly parameterized second-order statistics," IEEE Trans. Inf. Theory, vol.61, no. 24, pp.6232-6246, Mar. 2015.
- B. Wichmann, "A note on restricted difference bases," J. London Mathematical Society, vol. 1, no. 1, pp. 465–466, 1963.
- J. C. P. Miller, "Difference bases, three problems in additive number theory," Comput. in Number Theory, pp. 299–322, 1971.
- P. Wild, "Difference basis systems," Discrete mathematics, vol. 63, no. 1, pp. 81–90, 1987.

- D. A. Linebarger, I. H. Sudborough, and I. G. Tollis, "Difference bases and sparse sensor arrays," IEEE Trans. Inf. Theory, vol. 39, no. 2, pp. 716–721, 1993.
- H. C. Pumphrey, "Design of sparse arrays in one, two, and three dimensions," J. Acoust. Society America, vol. 93, p. 1620, 1993.
- P. Pal and P. P. Vaidyanathan, "Nested arrays: A novel approach to array processing with enhanced degrees of freedom," IEEE Trans. Signal Process., vol. 58, no. 8, pp. 4167–4181, Aug. 2010.
- P. Pal and P. P. Vaidyanathan, "Coprime sampling and the MUSIC algorithm," in Digital Signal Process. Workshop and Signal Process. Educ. Workshop (DSP/SPE), 2011 IEEE, Jan. 2011, pp. 289–294.
- J. Singer, "A theorem in finite projective geometry and some applications to number theory," Trans. American Math. Soc., vol. 43, no. 3, pp. 377–385, 1938.
- D. Romero and G. Leus, "Compressive covariance sampling," in Inform. Theory Appl. Workshop, San Diego, CA, Feb. 2013, pp. 1–8.
- J. D. Krieger, Y. Kochman, and G. W. Wornell, "Design and analysis of multi-coset arrays," in Inf. Theory Appl. Workshop, 2013.

- S. U. Pillai, Y. Bar-Ness, and F. Haber, "A new approach to array geometry for improved spatial spectrum estimation," Proc. IEEE, vol. 73, no. 10, pp. 1522–1524, 1985.
- Y. I. Abramovich, D. A. Gray, A. Y. Gorokhov, and N. K. Spencer, "Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays. I. Fully augmentable arrays," IEEE Trans. Signal Process., vol. 46, no. 9, pp. 2458–2471, 1998.
- Y. I. Abramovich, N. K. Spencer, and A. Y. Gorokhov, "Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays. II. Partially augmentable arrays," IEEE Trans. Signal Process., vol. 47, no. 6, pp. 1502–1521, 1999.
- S. Shakeri, D. D. Ariananda, and G. Leus, "Direction of arrival estimation using sparse ruler array design," in IEEE Int. Workshop Signal Process. Advances Wireless Commun. (SPAWC), Jun. 2012, pp. 525–529.
- C. P. Yen, Y. Tsai, and X. Wang, "Wideband spectrum sensing based on sub-Nyquist sampling," IEEE Trans. Signal Process., vol. 61, no. 12, pp. 3028–3040, 2013.
- T. Blu, P.L. Dragotti, M.Vetterli, P. Marziliano, and L. Coulot. "Sparse sampling of signal innovations," IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 31-40, Mar. 2008.
- P.P. Vaidyanathan and P. Pal. "Sparse sensing with co-prime samplers and arrays." IEEE Transactions on Signal Processing, vol. 59, no. 2, pp. 573-586, Feb. 2011.

- E. L. Lawler and D. E. Wood, "Branch-and-bound methods: A survey," Oper. Res., vol. 14, pp. 699–719, 1966.
- S. Joshi and S. Boyd, "Sensor selection via convex optimization," IEEE Trans. Signal Process., vol. 57, no. 2, pp. 451–462, Feb. 2009
- S. P. Chepuri and G. Leus. "Sparsity-Promoting Sensor Selection for Non-linear Measurement Models," IEEE Trans. on Signal Processing, vol. 63, no. 3, pp. 684-698, Feb. 2015.
- A. Krause, A. Singh, and C. Guestrin, "Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies," J. Machine Learn. Res., vol. 9, pp. 235–284, Feb. 2008.
- J. Ranieri, A. Chebira, and M. Vetterli, "Near-optimal sensor placement for linear inverse problems," IEEE Trans. Signal Process., vol. 62, no. 5, pp. 1135–1146, Mar. 2014.
- G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, "An analysis of approximations for maximizing submodular set functions— I," Mathematical Programming, vol. 14, no. 1, pp. 265–294, 1978.
- S. Liu, S. P. Chepuri, M. Fardad, E. Masazade, G. Leus, and P. K. Varshney, "Sensor Selection for Estimation with Correlated Measurement Noise," IEEE Transactions on Signal Processing, Mar. 2016.

- I. Ivashko, G. Leus, and A. Yarovoy. "Radar network topology optimization for joint target position and velocity estimation," Elsevier Signal Processing, Vol. 130, Jan. 2017, pp. 279-288.
- E. Tohidi, M. Coutino, S. P. Chepuri, H. Behroozi, M. M. Nayebi and G. Leus, "Sparse Antenna and Pulse Placement for Colocated MIMO Radar," IEEE Transactions on Signal Processing, vol. 67, no. 3, pp. 579-593, Feb. 2019.
- T. Aittomäki, Transmitter and Receiver Optimization for Agile MIMO Radars, PhD Thesis, Aalto University, 2017.
- A. Paulraj and T. Kailath, "Direction of arrival estimation by eigenstructure methods with unknown sensor gain and phase," in Intl. Conf. on Acoustics, Speech, and Signal Processing, (ICASSP 1985), vol. 10. IEEE, 1985, pp. 640–643.
- A. J. Weiss and B. Friedlander, "Eigenstructure methods for direction finding with sensor gain and phase uncertainties," Circuits, Systems and Signal Processing, vol. 9, no. 3, pp. 271–300, 1990.
- A. Nehorai and E. Paldi, "Acoustic vector-sensor array processing," IEEE Transactions on Signal Processing, 1994.
- K. Nambur Ramamohan, M.C. Coutino, S.P. Chepuri, D.F. Comesana and G. Leus, "DOA Estimation and Beamforming using Spatially under-sampled AVS arrays," in IEEE Workshop on Comp. Adv. in Multi-Sensor Adaptive Proc. (CAMSAP 2017), Curacao, Dec. 2017.
- K. Nambur Ramamohan, D.F. Comesana and G. Leus, "Uniaxial acoustic vector sensors for direction-of-arrival estimation," Journal of Sound and Vibration, vol. 437, pp. 276-291, Dec 2018.

