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Part Il — Traditional Processing
*  Beamforming
— Matched filter
— Zero forcing
— Minimum mean square error
— Minimum variance distortionless response
* Direction of arrival (DoA) estimation
— Beamforming based methods
— Multiple signal classification (MUSIC)
— Estimation of signal parameters via rotational invariant techniques (ESPRIT)
— Sparse reconstruction
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Part Il — Advanced Methods and Array Design
* Compressive array
— Compressive sensing (CS)
— CSin spatial domain
* Covariance based processing
— Compressive covariance sensing (CCS)
— CCS in spatial domain
— CCS based array design
— Virtual array principle
* Performance based array design
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* History and applications
* Advantages of array processing
* Phased array data model
— Baseband signal
— Narrowband signal
— Single path and single user
— Multipath and multiple users
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TNO
- “The quintessential goal of sensor array signal (<
processing is the estimation of parameters by fusing = LF
temporal and spatial information, captured via e | [ <P e
sampling a wavefield with a set of judiciously placed B
antenna sensors.” o

Two Decades of Array Signal Processing Research; Krim, Hamid & Viberg, Mats

*  The sampling of wavefields arises in many applications

Communications
5

Radioastronomy Ultrasound Imaging MRI
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Signal processing for phased arrays has long history — more than 50 years

* All started during the second world war with spatial filtering [Barlett, 1948]
* Classical time delay estimation methods enhanced spatial resolution
* Adaptivity was introduced [Capon, 1969] [Applebaum, 1976] [Buckley, 1986]

* Parametric estimation techniques extended the resolution limits of classical

spatial filtering techniques [Burg, 1967] [MacDonald, 1969] [Ottersten, 1993]
Roy, 1989]

* Subspace-based methods exploited the geometry of the data model {Schmidt, 1981]

* Optimization-based methods allow for reduced measurements and
resolution improvements [Malioutov et al, 2005]

*  These methods are pervasive in many application domains
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[Johnson-Dudgeon, 1993] [Krim-Viberg, 1996]

Improved performance Diversity Source localization

music onginal signals recordad
n; Ay W s Vi 1
éx‘ “a &-}_h ! lJ""IMJ-‘.--_"'.""ll-'- L ,','.J"' .',ll-'n ‘!J

voice 2
J

,h" Ml LT 2
Q-Ossomostonion @ Mty §
T—{ cocktail party problem }—‘

Interference reduction Source separation 9




Phased Array Data Model FuDelf
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* We consider a passive radar / communication model
° QOur data model will be based on

— Baseband representation

— Narrowband signals
* Extensions to wideband models are possible [van Veen-Buckley, 1988]

— Space-time processing
— Multiple frequencies using short-term Fourier transform

10



Baseband Representation
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* An antenna receives a real-valued bandpass signal with frequency f.
u(t) = real{s(t)e’?™ et} = x(t) cos(2m f.t) + y(t) sin(27 f.t)

* The baseband signal (or complex envelope) is
s(t) = x(t) + jy(t)

The baseband signal s(¢) can be recovered from u(t) by demodulation

‘“'i/
[

w(t) #%—

Lowpass

¢ il

><2_

11
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 Effect of small delays inu(t)on the baseband signal s(t)

ur(t) :=u(t — 1) = real{s(t — 7)e 12" /cTei2n [t}
* The baseband version of the delayed signal is

sr(t) = s(t — 7)e I2mfeT

* Let W be the bandwidth of s(¢). If €/2™/7 ~ 1 for all| f| < W/2, then

W/2
s(t—7) =/ S(f)eﬂ”f(t T df / ejz’rftdf = s(t)

12



Data

Model

Stx(t)
A a r
z1(t) xo(t)  a3(t) zm
Ao |
« y—
>
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 Far field assumption: planar waves 'TINO@
¢ Six(?) is the transmitted signal

* @ is the direction of arrival

* A is the attenuation

* T, is propagation time to ¢-th element

Ti(t) = Asy(t — T;)e 727 ST

e Defining s(t) = six(t = T1), 7, =T; — T1, B = Ae 7?27 fh
* Then we obtain z;(t) = Bs(t — 7;)e I2mfeTi
* |If the delays over the array are small enough, then

xz(t) — ﬁs(t)e_ﬂ?ffcﬁ

13
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* The delay 7; can be expressed using § and AA; (distance in wavelengths)

0; sin 6 )

2n for; = =27 fe = —27Tf sinf) = —27w/A; sinf

° As aresult we obtain
mz(t) — ﬁs(t)ej%m sin 6

* Collecting the received signals into a vector leads to

array response vector

14
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* Forauniform linear array (ULA) where A; = (i — 1)A, we obtain
_ 1 i} -
j2mwAsinf
a(@) — € — ZD /d) — ejQTl'ASing
ejZTr(M—.l)Asinﬂ wM—l

*  This Vandermonde structure of the ULA can be exploited for DoA estimation
— DoA estimation using ESPRIT (see later on)

*  Non-uniform ULAs can be viewed as a compressed ULA
— MUSIC and beamforming based DoA estimation possible (see later on)

— Useful for covariance based array processing (see later on)
15



Data Model

 Multipath

* Multiple users

]
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Traditional Processing TUDelft

*  Beamforming
— Matched filter
— Zero forcing
— Minimum mean square error
— Minimum variance distortionless response
* Direction of arrival (DoA) estimation
— Intuition behind direction finding
— Beamforming based methods
— Multiple signal classification (MUSIC)
— Estimation of signal parameters via rotational invariant techniques (ESPRIT)

— Sparse reconstruction
18
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Traditional Processing TUDelft

*  Beamforming
— Matched filter
— Zero forcing
— Minimum mean square error
— Minimum variance distortionless response

19
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Stx,1(t) T beamformer TNO
""""""""""" v #1(t) — = xalh] D s1[k]
____________________ S WH /\/
Stx,S(t)\ [ :I:M(t) _%_ .’L‘M[k] __/ PD—+ Sg[k]

* Assume S narrowband signals impinge on the array through multipath
* After sampling we obtam

xlk] =x Zazs (kTs) + n(kTs) z:a@sZ k| + n|k] = Aslk] + n|k]|

1=1
»  The goal is to design a beamformer (BF)W = [fwl, ..., wg] such that

wi (k] = 5;[k] W[k = 5[k]

(2

20
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* Consider one user, one path and a fixed BF vector w, e.g., w = 1
*  The output of the BF then is y[k] = w z[k] = w" a(0)Bs[k]

- The response to a unit-amplitude signal, i.e., | 3s|k]| = 1, from direction f is

Spatial Response for Fixed w

2

M=2
A =05

1.5

[ylk]| = [w" a(6)

1

wa(f)

0.5

0

-50 o 50

Angle |*]

21
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* With more antennas and same spacing, the resolution improves

Spatial Response for Fixed w Spatial Response for Fixed w

1 1

og A=05 0.8 A=05

[wa(f)|

0.6 = 06
~]
o
i)
0.4 -z 04
0.2

0.2

50

=50 1]
Angle [?]

0 50

=50
Angle [?]
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Ambiguity in the array response vector
* Ina ULA we have

a(f) = _ W = I2mAsing

* Since sinf € [—1,1], we have 2rAsinf € [—27A, 2w A]
* Hence, ¢ determines 6 uniquelyiff A < 1/2

* For A > 1/2 there s spatial aliasing and grating lobes occur
* We can then still estimate A and do beamforming

23
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Array Response Graph

TNO
*  We can use other beamformers to steer the beam in different directions
» Consider for instance w = a(30°) and look again at |y[k]| = |w a(0)|

Spatial Response for Fixed w

1
M=7

0 A=05

0.6

0.4

L (gl
2w a(d)]

0.2

0

0 50

=50
Angle [°]
25
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* Consider a single user in noise:
z[k] = as[k] + n[k], R, =E{n[kn[k]"} of =E{|s[k]*}

The signal to noise ratio (SNR) after beamforming is given by

SNR — lwH al?0? _ w (o2aa )w
wH R, w wi R, w

* Thisis a generalized Rayleigh quotient which is maximized at
w=R,"a
* In case we have multiple users in noise, we then obtain

W=R,'A

* This is the matched filter BF, Bartlett BF, or maximum ratio combiner

* Jtis the beamformer that maximizes SNR 26
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* Consider multiple users in noise
z[k] = As[k] + n[k], Rn=E{n[kn[k]"} Rs=E{s[k|sk]"}
* The BF for user? that forces interference to zero and mimizes noise energy is

minw; Rpw; st. wiA=e :=10,...,1,...,0]
w;

* Using the technique of Lagrange multipliers, we obtain

w; = R.TA(A" R T A) e,
* Stacking this for multiple users leads to

W =R,'AA"R'A)"!

* Thisis the zero forcing (ZF) BF, or maximum likelihood BF

* |tis the beamformer that maximizes SIR (and in that class maximizes SNR)
27
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* Consider multiple users in noise
zlk] = As[k] + nlk], R, =E{nkn[k]"} R, =E{s[k]s[k]"}
* The BF for user? that minimizes the output energy is given by
min E{|w;’ @[k] — s;[k]|*} = min E{jw;" z[k] - e; s[k]|*}

)

* Setting the aerivative towards w; to zero, we obtain
w; = R 'Ryse; Ry = E{x[k]z[k]”} Ry, = E{x[k]s[k]"}

* Stacking this for multiple users leads to

W =R.'Rys = (AR, A" + R,) 'AR,'&" R,"A(A"R'A + R_1)™!

* This is the mimimum mean square error (MMSE) BF, or Wiener BF

* ltis the beamformer that maximizes SINR
28
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* The ZF BF is equal to a MF BF followed by a decorrelator

Wiu=R'A (A"R'A)™!
V A ~ _J/
MF BF decorrelator

*  The MMSE BF is equal to a MF BF followed by a regularized decorrelator

-1 Hp-1 —1\—1
Wwuvsg =R, A (A"R,"A+R,")
~—— N ~ 4
MF BF regularized decorrelator

* |If the noise approaches zero, the Wiener BF approaches the ZF BF

Wunse = RPAARPA+ R - W =R, 'A(AYRTA)!

29
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p . : p
* In case of uncorrelated users, Rs = 0,1, and white noise, R, = 0., :

decorrelator

matched filter (AHA)—l _, Syp|k]

o 1 sual <

(A" A + 02 /o°T) ™t —— 3musl]

regularized decorrelator 30
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Consider again multiple users in noise
Write the model as a single user system in noise plus interference

k] = aisilk] + {7, 2 ajs;k] + nlk]}

We can then force a fixed response towards user 7 by the constraint
fw,flai =1

We can further minimize the output power, leading to

. H H., _
min w; R,w; st. w;a;=1
1

Using the technique of Lagrange multipliers, we obtain

w; = R, a;(a;' Ry a;) !

This is the mimimum variance distortionless response (MVDR) BF, or Capon BF
It is a scaled (unbiased) version of the MMSE BF and maximizes the SINR -
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Beamformer Comparison

Beamformer Comparison A := [a(0”),a(507)] Beamformer Comparison A := [a(0”), a(50")]

%WMI"
War
""" WMM:‘{E
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S
-]
T
=
Angle 7]
o 2
S 2
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Beamformer Comparison

Beamformer Comparison A := [a(0”),a(107)]

— L
I wl\ll*'

]
TUDelft
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Beamformer Comparison A := [a(0”), a(10%))

— L
W Wl'lll-'

2
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Beamformer Comparison

Beamformer Comparison A := [a(0”), a(207)] Beamformer Comparison A := [a(0”), a(20%))
1.2 ar o ME a7 1 ME
M=3 Wor W
----- Wianse: seeer Wanse
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=20
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* Direction of arrival (DoA) estimation
— Intuition behind direction finding
— Beamforming based methods
— Multiple signal classification (MUSIC)
— Estimation of signal parameters via rotational invariant techniques (ESPRIT)

— Sparse reconstruction
35
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*  The array manifold is the curve that the vector a(f) describes when 6 varies
A={a(0):0<0<2n}
*  The knowledge of A allows for direction finding
— One source

For varying s(t), the vector x(t) is confined to a line

— Two sources
x(t) = a(01)B151(t) + a(f2)Ba282(1)

For varying 51 (t) and s2(%), the vector x(¢) is now confined to a plane
— The intersection of A with the line or plane results in the direction(s)

36



Intuition Behind Direction Finding

Principle of direction finding

1 signal

2 signals

]
TUDelft
TNO
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* This approach is not possible in case of multipath
* In that case, the array response vectors do not lie on the array manifold

a —= Z G(Q@)ﬁz

* Although it can be tackled, for now we consider a model without multipath

[Vanderveen et al, 1997]

[van der Veen et al, 1997] ) o )
g o} s1[k]
z[k] = ) al(6:)isilk] = [a(61), ..., a(fs)]
=1 A?’é) L Bs A_Ss[k]_J
B(B) s|k]

38




Maximum likelihood DoA Estimation

Combining multiple snapshots we obtain
X = [2[l],...,2[K]] = A(8)B(B)[s[],...,s|K]] = A(6)B(B)S

The simplest way to formulate the DoA estimation problem is as

: » 2
i | X — A(6)B(8)S|}

This is a maximum likelihood formulation in case of Gaussian noise

The problem is very hard to tackle
— Alternating minimization that might get stuck in a local minimum
m==) Can be solved by assuming some training symbols
— Complicated multi-dimensional search for 8

39



Beamforming Based Methods *‘Ugﬂg

+ Design a beamformer w for a specific direction 6, i.e., w(@)

* Scan all directions and maximize the output energy of the beamformer
deterministic stochastic

max |w™(0) X3 max w" (6) Ryw(0)

— For a single user, this resembles the array response graph of the BF
— For multiple users, choose the S largest maxima

beamformer energy
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* Here it is assumed that the noise color is not known and hence
fw(Q) = a(@)
*  The DoA estimation method then becomes

max a” (9)Rya(h)

* If needed a normalization can be done with ||a(6)||?
* For asingle user in white noise, the considered matched filter is optimal
* For multiple users, the matched filter is not optimal

— Users need to be well-separated

— Biased estimates are generally obtained

41



Normalized Response

Matched Filter Based DoA Estimation

Response for Scanning Wy Response for Scanning Wyr

1

1

M= M=
g A=05 g A=05
6= [0°,20°] z 6= [0°,5°
0.6 E’ 0.6
E
0.4 T 04
;
0.2 0.2

0

-50 0 50 -50 0

Angle [?] Angle [?]

]
TUDelft

50
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MVDR Based DoA Estimation FuDelft

* A more accurate beamformer is given by the MVDR BF
w(f) = R, a(6)(a” ()R, a(6)) ™"
*  Computing the output power of this BF leads to
w” () Rzw(9) = {(a" ()R, a(0)) 'a" ()R, '} Re{ R, a(0)(a” ()R, a
= (a"(6)R, a()) ™

* The DoA estimation method then becomes

m@ax(a,H(Q)R;la(Q))_l

* Leads to a much better separation of the users

(0)""}



MVDR Based DoA Estimation FuDelft

DoA Estimation Comparison
1 —— MF
M=T —— MVDR
g ggd=05
E &= [0°,5°]
5]
[=H
2 o6
=
4
&
g 0.4
E
> 0.2




MVDR Based DoA Estimation FuDelft

DoA Estimation: MVDR

1
M=T

0.a =05
6 = [-2.5°,2.5°]

b W
[

0.6

#Snapshots: 100

0.4

MVDR Pseudospectrum

0.2

Result of multiple realizations e
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* Thisis a singular value (eigenvalue) decomposition-based technique
— Deterministic (noiseless): X = ABS = USESVf + UHOVTI;[

R, = ABR,B" A" + oI

— Stochastic (white noise):
=U. A+ DU +U, (D)UY

The SVD (EVD) reveals a relation between [J . or U ,, and A(0)

span{U} = span{A(0)}, span{U,} L span{A(0)}, A(0)=[a(b,),...,a(0s)]
- Weselect{f;}>_, to make A(0)fit span{U s} or misfit span{U,, }

* This can be done per angle and does not lead to a multi-dimensional search

Ua(;)=0, i=1,2,...,8

46
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* The DoA estimation method then becomes

min e (YU ,||* = min a (U, U a(h)

* Similar to BF based methods, we can also maximize the (pseudo) spectrum

mgax(aH(Q)UnUfa(e))_l

* If number of sources is smaller than number of sensors, S < M, then
— Exact DoAs in noiseless deterministic case; SNR — oo
— Exact DoAs in stochastic case with white noise: K — oo

* Estimates are statistically consistent

a7



MUSIC

DoA Estimation Comparison
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MUSIC

DoA Estimation: MUSIC
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* Also an SVD (EVD)-based technique yet relying on a ULA :
* For a ULA we obtain the shift-invariance property
[ 1 | 1 ] )
ej27rAsin9 w a (9) 9 A sin 0
B B S w — 6‘7 A sIn
a(@) = = o ab(g)
pd2m(M—1)Asin 6 d)M—l - |
1] [ Y]
0 P
— a;(6) = , . ap(0) = . | ap(0) = ay(0)y
¢J\/:f—2 ,j)M—l

50



ESPRIT fuDelft
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* Using this property, let us combine the first and last M — 1 antennas

xi k] = xli[k] xplk] = x2:[k] | X = [ze]l],. .., 2 [K]]
_.’IJM_.Q[}C]_ _xM—.l[k']_ Xy = [xp[l],. .., 2p[K]]

*  We then obtain
(k] = 27 an(6)Bisilk] N -

oplk] = 20, ap(0:)Bisilk] = Y., au(0)vifisilk] = | Xy = AWBS

U1
At = [at(ﬂl),.. .,at(é’g)], U = : wz — €j27rAsin9i

Vs |
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« Stack X and X}, in a matrix Y and compute the economy size SVD

X | A B H
Y = [XJ — [At\I!] BS=U,%,V!

* The main goal of this SVD is to realize a compression of the columns

_ U _ | A . N .
U, = [UJ = [At\Il] T, T isan S x Sinvertible matrix

* Using these expression we can derive

Ul=T7'Al =) |UU,=T 9T

+ ThusT land W are given by the eigenvectors and eigenvalues of U;r U,
*  From W we can derive{d)i};;g:l and hence {Qi}le

52



ESPRIT versus MUSIC

Varying SNR

Varying separation
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* The sparse reconstruction idea is based on rewriting the data model using
a grid of Sangles {9 } _1 spanning the angular space of interest

S g ) ) s1(k]
zk] =) a(0:)Bisik] =) a(6;)3;[k] = la(0y),...,a(03)] |

=1 J=1 1 |55lk].

z[k] = A3[K] 5[k]

— Since this grid of angles is known m=) the system matrix A is known

— If §; = 0; then 3;[k] = Bisi[k] , otherwise 5;[k] = 0 =) 5[k]is S-sparse
- The goal is to solve x[k] = A3[k] for 3[k] (non-zero entries reveal {0;}5_,)

— However, 8[k]cannot be solved using least squares because M < S

— Hence, additional constraints are needed such as sparsity )
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Sparse Reconstruction TUDelft

* Using a sparsity constraint the problem becomes

wmin (k] — AS[K]|* s.t. [|3[K]llo =S

* This problem is NP hard but can be relaxed to a convex problem as

min [l {f] - AB[RIIP + Al8[EIl 13Kl = >0, 15i(K]

* The theory of compressive sensing has shown that the two above problems can
have the same solution under some conditions related to the structure of A

* Typical algorithms that can be employed are [Daubechies et al, 2004]

— lterative soft tresholding algorithm (ISTA) [Beck-Teboulle, 2003]

— Orthogonal matching pursuit (OMP) [Davis et al, 1997] [Tropp, 2004]

[Donoho et al, 2006] -



Sparse Reconstruction

Single Snapshot DoA Estimation Comparison
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Sparse Reconstruction

Single Snapshot DoA Estimation: ISTA
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Single Snapshot DoA Estimation: OMP
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* We can extend this framework to multiple snapshots by defining
X =[z[l],...,x[K]], S =[35]1],...,8]K]||

* The optimization problem then becomes

1= XSS [alK?

* Similar algorithms as in the single snapshot case can be employed

min | X - AP+ My S

* The problem can be simplified by using the 11-SVD idea [Malioutov et al, 2005]

— Use the SVD to reduce the rank of Xto S : X ~ U, X,V

— Then we solve the reduced problem M X/3 g i g }X K

min |U, X, — AS|* + A1S]2,1
S
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Advanced Methods and Array Design 1’!”5;'2

* Compressive array
— Compressive sensing (CS)
— CSin spatial domain
* Covariance based processing
— Compressive covariance sensing (CCS)
— CCS in spatial domain
— CCS based array design
— Virtual array principle
* Performance based array design
— Sparse sensing

— Convex and submodular optimization
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Compressive array
— Compressive sensing (CS)
— CSin spatial domain
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Compressive Sensin

'i';U Delft
g e

* Due to the required high sampling rates, compression is useful

cognitive radio massive MIMO

Il-lllll-lllll

* Compression after acquisistion does not simplify sensing

* A popular alternative is compressive sensing (CS) = joint acquisition and sensing

(T TTT] ®

[Tropp, 2004] [Donoho, 2006] [Candes et al, 2006]

— Random linear projections of
Nyquist rate sampled signal

— Multiple sparse reconstruction
; techniques exist to solve this
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CS in Spatial Domain

RX array, NV antennas

L[J_' Frontend circuit (RX ch 1)

Analog L\’l,

Frontend circuit (RX ch 2) — *

signal

—Pﬂil[l-ﬁ]

Digital
signal

Frontend circuit (RX ch N) |—» 5 [k]

|

each RX chain:

Pre-filter Mixer Filter
£ LNA {down- |—» (anti- ADC
Analog convert) alias)

signal

Digital
signal

high angular resolution
large aperture
many antennas
many RX chains
high power consumption

]
TUDelft
TNO
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CS in Spatial Domain TUDelft

_ -
LIJ_ ¥
. ——a Y » Frontend circuit (RX ch 1) —» 47 [K]
: Compression matrix ® :
A . . i
LIJ—Q-.@) : : * Dense matrix: analog
Analog : Digital beamforming, beamspace
signal ey e signal
. Wang-Leus-Pandharipande, 2009]
() — —-l Frontend circuit (RX ch M) |—» k [ ’
= yaulH] [Wang-Leus, 2010]
o7 [Venkateswaran-van der Veen, 2010]
: l e Sparse matrix: subarrays
l [Moffet, 1968] [Hoctor-Kassam, 1990]
from N to M<N RX chains

compression
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DoA Estimation TUDelft

ylk| = Pa[k]
—>

compression

* Based on R, and b(#) traditional DoA methods can be used (see earlier)
— Beamforming-based methods
— MUSIC
— Sparse reconstruction
— ESPRIT is not possible since we don’t have a ULA

*  They require (only work well for) more outputs than sources, M > S .
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Simulations Results TUDelft

* ULA (uniform linear array), A = 1/2
* S = 2 sources, uncorrelated, BPSK, DoAs (; = 0°, 0, = 30°
* Conventional array: V = 36 and V = 8 antenna elements
* Compressive array: from /N = 36 we compress to // = 8 RX chains
* Scanning resolution: S = 360
* Compression matrix:
- random Gaussian matrix: entries zero mean and variance 1 //\/
- random selection matrix: randomly selecting '/ from /V elements

- Sparse reconstruction: M-FOCUSS
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Random Gaussian

SNR=20dB, DOA=[0 3]’

angular spectrum (dB)

]
TUDelft

20 r : r
—+— conventional array (36)
15 - —#— conventional array (8) H
i ——CS array (8 36), joint recovery

10 ;% —&—CS array(8 36), CS MVDR M

5

MUSIC
0
SNR=20dB, DOA=[0 3]

-5

T T L
—+&— conventional array (36)

—¢—conventional array (8) 1
—*—CS array (8 36), joint recovery

—© CS array(8 36), CS MUSIC

4

¢

¢ |
.y

-20
g M N, i3
-40 -30 -20 -10 0 10 20 30‘5:-;
angle(deg) S
8
>
MVDR 2
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Random Selection

SNR=20dB, DOA=[0 3]’

angular spectrum (dB)

20

r T r

15

—&— conventional array (36)
—+— conventional array (8)

——CS array (8 36), joint recovery
—<—CS array(8 36),CS MVDR

]
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MUSIC

SNR=20dB, DOA=[0 3]

r I T

—+— conventional array (36)

* —+— conventional array (8) i

%Efﬁgi ——CS array (8 36), joint recovery
~© CSarray(8 36),CSMUSIC ||

o

o]

02

angle(deg) o

3

(2]

MVDR &
-10
-20

-10

0 10 20 30 40
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* Covariance based processing
— Compressive covariance sensing (CCS)
— CCS in spatial domain
— CCS based array design
— Virtual array principle

69



Compressive Covariance Sensing

CS methods estimate the signal itself (or its spectrum)

]
TUDelft
TNO

— Leads to an underdetermined problem that requires a sparsity constraint

— High computational complexity

— Difficult performance analysis

Observation:

Many applications just require second-order statistics (or the power spectrum)

— Cognitive radio: temporal power spectrum

— Radio astronomy: spatial power spectrum

This paves the way for methods that are less complex and easier to analyze

=

Compressive covariance sensing (CCS)
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CCS in Spatial Domain TUDelft

T € (CN compression Y, c (CM

uncompressed (I) compressed
signal signal

R, = E{iﬂtﬁl?f{} Ry = E{ytyf}
°*  Problem statement:

Estimate R, from{y, }; or R, exploiting structure in R,

* Once R_is estimated we can use any ULA-based DoA estimation technique
— Beamforming based methods
— MUSIC
— Sparse reconstruction

— ESPRIT becomes also possible now because of the ULA property
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Covariance Structure TUDelft

TNO
* All covariance matrices are Hermitian and positive semi-definite
» Typical structures for R, H "EEN
: H TER
— Toeplitz ]

* Stationarity over space =. ..
¢ Sum of exponentials HER B I. ]

— Circulant | | ..

* Rows/colums are circularly shifted .. =

* Sum of exponentials on uniform grid L .. O
— d-banded [ ]

* Toeplitz with info only in d subdiagonals .. —

* Spatial MA/AR processes (not related to our model) .
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Covariance Structure TUDelft

* Encompassing model: basis expansion model (BEM)

S
S = {Rm =Y R, a; € R}
=1

]
H B H B
I. ] H B
BN N
LB LB
Toeplitz circulant d-banded
S=2N -1 S=N S=2d+1

real unknowns real unknowns real unknowns
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Covariance Estimation  {rsie 00 TuDelft
We vectorize the involved covariance matrices

re =vecR,, 1r,=vecR, 71, =vecR,
We can then establish a relation between 7, anda = [, . .., ag|?

R, = Zle a; R; = re=Ta, T=Iry...,rg]
The same can be done forr;andr,,

R, =®R,®" = r,=(®"R®)r,
Based on an estimated 7, we can recover «x using least squares
ry=(®*®)Ta = a=][®" T+,

Finally we can obtain an estimate forr, as

iy = T[(®* @ ®)T]'1,
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Covariance Estimation TUDelft

TNO
*  WhenM? > S we have an overdetermined system
Ty = (2" @ @)Ta * This can happen even under compression, M < N
\Mg l( e ' » Thus also under less outputs than sources, M < S
| T ; ’ *Unique reconstruction if (®* @ ®)T full column rank

mm) design of ® is critical!
@ * Estimation can include additional constraints

Py — (®* @ ®)Ta?

min
(8

a = [(®* ® )T, " FTa =0 PSD non-negative

s.t. 4 |FTal|o <p  PSDsparse

R, >0 Covariance PSD
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CCS Based Array Design Fupeitt

*  Compressive array /
— Dense matrix ®

— Sparse matrix ® \

* Goals of sampler design:

4

— Conditions on & to allow for estimation of R, >

— Maximize the compression ratio p = N/M
* An admissable covariance sampler allows the recovery of & from R,,
ry=(®" @ ®)Ta
=) The matrix (®* ® ®)T has full column rank
R,=Y" R = Ry,=Y7 a®R®"
==) The linear indepence in {R;}7_,is preserved in {®R;®" 15,
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Sparse Compression

In sparse array design, the matrix & selects a subset of antennas 7
Zc{0,...,N—1}

Toeplitz subspace: ® covariance sampler ¢=> 7 sparse ruler

— Optimal sparse array: Z minimal sparse ruler
[Rédei-Rényi, 1949] [Leech, 1956] [Pearson et al, 1990] [Romero-LépezValcarce-Leus, 2015]

Circulant subspace: ®covariance sampler <= 7 circular sparse ruler
— Optimal sparse array: Z minimal circular sparse ruler

[Romero-LépezValcarce-Leus, 2015]

d-banded subspace: ® covariance sampler ¢= 7 incomplete sparse ruler

[Ariananda-Leus, 2012] [Romero-LopezValcarce-Leus, 2015]
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Sparse Rulers TUDelft

Difference set: A(Z) = {|iy — ia|, Viy, 1o € T}
Sparse ruler:

T isalength-(N — 1) sparse ruler ¢=)> A(Z) ={0,...,N —1}

N =21: ———— e
012 6 7 8 17 20
N N
Spmaxg
. [V/3(N —1)] \/2.435(N — 1)

Minimal sparse ruler

[Rédei-Rényi, 1949] [Leech, 1956] [Wichmann, 1963] [Moffet, 1968] [Miller, 1971]
[Wild, 1987] [Pearson et al, 1990] [Linebarger et al, 1993] [Ariananda-Leus, 2012]

Suboptimal designs: nested, co-prime

[Wichmann, 1963] [Pearson et al, 1990] [Linebarger et al, 1993]
[Pumphrey, 1993] [Pal-Vaidyanathan, 2010] [Pal-Vaidyanathan, 2011]
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Circular Sparse Rulers TUDelft

*  Modular difference set: An(Z) = {(iy — i) mod N, Viy,is € T}

e Circular sparse ruler:

7 is alength-(N — 1) circular sparse ruler ¢==) An(Z) ={0,..., N — 1}

012
3
6
Il(] N

* Minimal circular sparse ruler N/z S Pmas = 5T IN

[Singer, 1938] [Miller, 1971] [Ariananda-Leus, 2012] [Romero-Leus, 2013]
[Krieger-Kochman-Wornell, 2013] [Romero-LépezValcarce-Leus, 2015]
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Dense Compression TU Delft

* Design: Similar to CS we use random designs

® covariance sampler ¢= ® drawn from continuous distribution and M? > S

N2
2N —1

— Toeplitz subspace: Pmax ~

— Circulant subspace: pmax = VN

N2
2d — 1

— d-banded subspace:  Pmax

[Romero-LépezValcarce-Leus, 2015]
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Virtual Array Principle e

* Exploiting uncorrelated sources, i.e., Fisis diagonal, we can obtain

[Pillai et al, 1985] [Abramovich et al, 1998, 1999]
[Pal-Vaidyanathan, 2010, 2011] [Shakeri-Ariananda-Leus, 2012]
[Yen-Tsai-Wang, 2013] [Krieger-Kochman-Wornell, 2013]

M xS M? xS

- B™* ® Brepresents a virtual array: M “observations versus S sources

*  Problem: virtual sources are constant or fully coherent
— @Gridding and sparse recovery
— Smoothing by taking subarrays
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Virtual Array Principle TUDelft

* Gridding [Shakeri-Ariananda-Leus, 2012] M2 x 3§
A

r, = vec R, = vec(BRsB") = (B* o B)diag {R;}

M? > S : least squares M? < S :add sparsity/positivity

*  Smoothing by stacking subarrays followed by standard methods
— Virtual array should be uniform (leading to a Vandermonde matrix)
m=)> Only antenna selection is possible
m=) Sparse ruler based antenna selection
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Simulations

Least squares and MUSIC reconstruction
We consider the space of Toeplitz matrices
ULA of N = 36 available antenna positions
— Minimal sparse ruler array M = 10-> Virtual ULA of 2x36-1antennas
— Two-level nested array M =11
* Inner array of 5 and outer array of 6 antennas
* Virtual ULA of 2x36-1 antennas
— Co-prime array
* 9 antennas spacing 2 and 3 antennas spacing 9
* Virtual ULA of only 2x20-1 antennas
1600 time samples
SNR of 0 dB
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Normalized Spectrum [dB]

. . e
Simulations TUDelft

* Minimal sparse ruler array

Least Squares Method vs. MUSIC Method Least Squares Method vs. MUSIC Method

0 ) ; 0 ~T
| H 3 ! A ¥ —rmiee LS method A
L ‘, ,'|: i 1 i b i ,'i ‘Ij v —— MUSIC method !
SN i B b - o N
i : 10
'_l n -15
; e
¥ ’ g -20 i i
3 Byl
201 2 25 i ¥
3 N i
25 | T;ts -30 i
(=]
Zz -35 i
30 i
IR , 1) 0 \ 1 1T
H : ————— LS method i i
E | L music method | } SHE b |
4 08 06 04 02 0 02 04 06 08 1 B0 e 06 04 02 PR 06 os 1
Direction of Arrival [sin(8)] Direction of Arrival [sin(e)]
17 sources with 10 degrees of separation continuous source from 30 to 40 degrees
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Simulations TUDelft

* Comparison of different array structures

0
1y
N
g
-10 i
ip
II n
II ]

B i A

—
o
5 -
E
>
= g
3 B
g i
n - i
o 3 q
(] 1
N |
® ] i i
E A ! Iil ] \ "'
2 o by N AYRYRY
) ! \
[ AV AN MY \
1 il
i I
B [ Y
. i
-50 i 1 ! i
. A N I R B T R W)
Minimal Sparse Ruler Array |/ % 7 i i
ot A7 ad
----- Two-Level Nested Array
"""" Coprime Arra
60 p y

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 04 0.6 0.8 1
Direction of Arrival [sin(9)]

21 sources with 7 degrees of separation
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Performance based array design
— Sparse sensing

— Convex and submodular optimization
86
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Performance Based Array Design TUDelft

*  From a full array of N antennas (e.g., Nyquist sampled array)
— Design the optimal subarray of M < N antennas
— Define an appropriate optimality criterion

~

[Blu et al, 2008] [Vaidyanathan-Pal, 2011]

*  Why sparse sensing?
— Economical constraints
— Limited physical space
— Limited storage space

— Reduce communications/processing overhead
87



Sparse Sensing

Compressive sensing

(T TTHET] ™

* Sparse signal needed

* Random, dense sampler

* Robust compression

* Task is sparse signal reconstruction

|

]
TUDelft

Sparse sensing

®(w) € {0,1}M*N

[T T T 8

Signal does not need to be sparse
Deterministic, sparse sampler
Practical, controlable compression

Any desired inference task
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Design Problem L2
esign Proble

arg H{}}PH“’”O arg H’}},Ilf (’U)) f(w) : inference metric
A : prescribed performance
8.1 f(’lU) < A “ 8.1 ||'lU||0 =M N : # candidate samples
w € {O’ 1’ }N w E {07 1’ }N M . # selected samples

* This is a nonconvex Boolean problem [Lawler-Wood, 1966]

e Exact solutions: exhaustive search or branch-and-bound methods
*  Suboptimal solutions:

— Convex optimization (polynomial time)
— Submodular optimization (linear time)
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Suboptimal Solutions TUDelft

* Convex optimization [Joshi-Boyd, 2009] [Chepuri-Leus, 2015]
— Convex relaxation for {0, 1}, f(w)
— Thresholding or randomization to obtain a Boolean solution
— Typically a semidefinite program
*  Submodular optimization for maximization [Krause et al, 2008] [Ranieri et al, 2014]
— A greedy search is performed
— For a submodular monotone function

VX c{l,...,N},se{l,..., N\X

and XUs)> f(X
FYUs) = f) 2 (X Us) - f(X) f(xUs) > f(2)

the greedy solutionis 1 — 1/e optimal [Nemhauser et al, 1978]
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Application to Estimation TU Delft

[Chepuri-Leus, 2015] [Liu et al, 2016] TNO

* Suppose x depends on an unknown parameter vector @ (e.g., DoAs)
* Then the selection can be written as

y = diag(w)z, w = [wi,w,,...,wy]",w, €{0,1}

*  This means the original pdf p(x; @) becomes p(y; w, ) after selection
*  We could then optimize w for the “best” MSE matrix

A

Lmin J(E(6-0)0-07)). b=g(y)

* Here f(-) is some scalar performance measure and g(-) an estimator of 6
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Application to Estimation e

* Since the exact MSE is hard to express the CRB (inverse FIM) is used
* The CRB (inverse FIM) is a lower bound on any unbiased estimator

E{(6—-6)6—-0)"} ~-[C=F!

Y. N

Cramer Rao bound (CRB) Fisher information matrix (FIM)

* The CRB/FIM has a number of advantages over using the MSE directly
— Well-suited for offline design
— Reveals local identifiability
— Isinvariant to the adopted algorithm
— Exact error covariance matrix in the linear additive Gaussian case
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Application to Estimation TUDelft
* The CRB/FIM can be written in closed form as a function of p(y; w, 0) TNO

F(w,0)]i =B { 31?(%591? 6) ap(gg;;,? 0) }

*  For a multivariate complex Gaussian N (u(w, ), C(w, 6)) we obtain

H w H w w w
[F(‘wag)]k,z=QRG{aﬂ8(%’9)0_1(10?9)8”a%k’a)}+Tr{C_l(w,9)8C§9k’9)0_1(w,9)80( ’9)}

* In case the observations are conditionally independent, the FIM is additive

F(wa 9) — Zi,vzl wnFn(e)

* This additive property even holds for dependent Gaussian observations!
* For nonlinear models and/or specific distributions, the FIM depends on 8
— Optimize over a grid of 8 values
— Use the Bayesian CRB, i.e., average the CRB over the prior pdf of 6 o3
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Application to Estimation TU Delft

We need a scalar measure based on the FIM
— E-optimality (worst case error):

f(w) == Amax{F H(w, 6)} \

— A-optimality (average error): convex (SDP)
f(w) := tr{F_l(w, 0)} /

— D-optimality (error volume):

f(w) :==Indet{ F ' (w,0)} <——— submodular
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y-coordinates [m]

]
L Z l TU Delft
Target Localization

Application: target localization based on received signal strength (RSS)

Dependent Gaussian observations

Independent observations (horizontal sensors correlated)
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Target Localization

Application: localization using multi-static FMICW radar
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Application to Array Design onidieta, 2019) TUDelft

*  The CRB focuses on local identifiability, i.e., main lobe width is optimized
— Good if we have a single target
— Not good if we want to focus on multiple targets
* Solutions
— Add constraints to the sidelobes
— Use a multi-target CRB
*  We focus on a two-target CRB where the two targets can be anywhere
— This CRB is manageable
— The only unknown is the difference in the direction cosines cosf; — cos 65
— We grid this unknown or average the two-target CRB over it

— As before, different optimality criteria and algorithms can be used
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Colocated MIMO Radar [Tohidi et al, 2019]

Goals are to optimize the number of antennas as well as pulses
Unknowns are angle of arrival and radial velocity

Rx

Tx

CRORCRCR AR AR N/

Pulses

]
TUDelft
TNO
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Colocated MIMO Radar elft

*  We optimize the two-target CRB
— Unknowns are differences in direction cosines and radial velocities
— We consider a grid for both of them
* We consider E-optimality but other criteria can be used as well
*  We consider the following cases
— Single antenna — multiple pulses (velocity estimation)
— Multiple antennas — single pulse (DoA estimation)
— Combination of both
— We use E-optimality
— We use exhaustive search or convex optimization

— Larger scenarios need to use greedy search
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* Single antenna — multiple pulses

--=-=-5 pulses - 1 target
il —— 5 pulses - 2 targets

5 pulses - 1 target ———-8 pulses - 1 target

ol 8 pulses - 2 targets

M
/ .

5 pulses - 2 targets

8 pulses - 1 target / #j S

Ambiguity function (dB)

8 pulses - 2 targets

Velocity (m/s)

100



Colocated MIMO Radar fuDelft

* Multiple antennas — single pulse
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Colocated MIMO Radar

* Multiple antennas — multiple pulses
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Extensions and Open Issues TUDelft

* (Can be extended for active radar [Aittomaki, 2017]

* Mutual coupling

* Calibration and robustness [Paulraj-Kailath, 1985] [Weiss-Friedlander, 1990]
* Machine learning for array design

* Data-driven parameter estimation

* Vector array processing [Nehorai-Paldi, 1994] [Ramamohan et al, 2017, 2018]
*  Complexity and implementation aspects
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Conclusions

* Compressive array can reduce “complexity” without much performance loss
* Standard DoA methods can be used with a price in the number of sources
* Covariance-based methods make up for this price
* Array design for compressive arrays
— Generally based on compression rate and identifiability
— Can be done for standard as well as covariance-based methods
* Performance-based sparse array design
— Fits within the sparse sensing framework
— Focus is mostly on one-target CRB or any other performance measure
— Improvements can be obtained considering two-target CRB
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