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Outline
Part I – Introduction

• History and applications

• Advantages of array processing

• Phased array data model

– Baseband signal

– Narrowband signal

– Single path and single user
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Outline
Part II – Traditional Processing 

• Beamforming

– Matched filter

– Zero forcing

– Minimum mean square error

– Minimum variance distortionless response

• Direction of arrival (DoA) estimation

– Beamforming based methods

– Multiple signal classification (MUSIC)

– Estimation of signal parameters via rotational invariant techniques (ESPRIT)

– Sparse reconstruction
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Outline
Part III – Advanced Methods and Array Design

• Compressive array

– Compressive sensing (CS)

– CS in spatial domain

• Covariance based processing

– Compressive covariance sensing (CCS)

– CCS in spatial domain

– CCS based array design

– Virtual array principle

• Performance based array design
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History and Applications
• “The quintessential goal of sensor array signal 

processing is the estimation of parameters by fusing 
temporal and spatial information, captured via 
sampling a wavefield with a set of judiciously placed 
antenna sensors.”
Two Decades of Array Signal Processing Research; Krim, Hamid & Viberg, Mats

• The sampling of wavefields arises in many applications

Gregory L. Charvat ©

Radioastronomy Ultrasound Imaging MRI Radar Communications
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History and Applications
Signal processing for phased arrays has long history – more than 50 years

• All started during the second world war with spatial filtering

• Classical time delay estimation methods enhanced spatial resolution

• Adaptivity was introduced

• Parametric estimation techniques extended the resolution limits of classical
spatial filtering techniques

• Subspace-based methods exploited the geometry of the data model

• Optimization-based methods allow for reduced measurements and
resolution improvements

• These methods are pervasive in many application domains

[Applebaum, 1976]

[Barlett, 1948]

[Capon, 1969]

[Burg, 1967]
[Roy, 1989]

[MacDonald, 1969]

[Buckley, 1986]

[Schmidt, 1981]

[Ottersten, 1993]

[Malioutov et al, 2005]
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Advantages of Array Processing
[Johnson-Dudgeon, 1993] [Krim-Viberg, 1996]

Interference reduction Source separation

Source localizationImproved performance Diversity
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Phased Array Data Model
• We consider a passive radar / communication model

• Our data model will be based on 

– Baseband representation

– Narrowband signals

• Extensions to wideband models are possible

– Space-time processing

– Multiple frequencies using short-term Fourier transform

[van Veen-Buckley, 1988]
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Baseband Representation
• An antenna receives a real-valued bandpass signal with frequency

• The baseband signal (or complex envelope) is

• The baseband signal can be recovered from by demodulation
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Narrowband Signals
• Effect of small delays in        on the baseband signal

• The baseband version of the delayed signal is

• Let      be the bandwidth of        . If for all , then

For narrowband signals, short time delays amount to phase shifts in baseband
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Data Model
• Far field assumption: planar waves

• is the transmitted signal

• is the direction of arrival

• is the attenuation

• is propagation time to -th element

• Defining

• Then we obtain

• If the delays over the array are small enough, then
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Data Model
• The delay     can be expressed using and (distance in wavelengths)

• As a result we obtain

• Collecting the received signals into a vector leads to

array response vector
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Data Model
• For a uniform linear array (ULA) where , we obtain

• This Vandermonde structure of the ULA can be exploited for DoA estimation

– DoA estimation using ESPRIT (see later on)

• Non-uniform ULAs can be viewed as a compressed ULA

– MUSIC and beamforming based DoA estimation possible (see later on)

– Useful for covariance based array processing (see later on)
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Data Model
• Multipath

• Multiple users
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Part II:
Traditional Processing
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Traditional Processing
• Beamforming

– Matched filter

– Zero forcing

– Minimum mean square error

– Minimum variance distortionless response

• Direction of arrival (DoA) estimation

– Intuition behind direction finding

– Beamforming based methods

– Multiple signal classification (MUSIC)

– Estimation of signal parameters via rotational invariant techniques (ESPRIT)

– Sparse reconstruction
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Beamforming

• Assume narrowband signals impinge on the array through multipath

• After sampling we obtain

• The goal is to design a beamformer (BF)                                         such that

[van Veen-Buckley, 1988]

beamformer
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Array Response Graph
• Consider one user, one path and a fixed BF vector      , e.g., 

• The output of the BF then is

• The response to a unit-amplitude signal, i.e.,                        , from direction is
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Array Response Graph
• With more antennas and same spacing, the resolution improves
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Array Response Graph
Ambiguity in the array response vector

• In a ULA we have

• Since , we have

• Hence,      determines uniquely iff

• For                     there is spatial aliasing and grating lobes occur

• We can then still estimate and do beamforming
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Array Response Graph



25

Array Response Graph
• We can use other beamformers to steer the beam in different directions

• Consider for instance and look again at 
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Matched Filter Beamformer
• Consider a single user in noise:

• The signal to noise ratio (SNR) after beamforming is given by

• This is a generalized Rayleigh quotient which is maximized at

• In case we have multiple users in noise, we then obtain

• This is the matched filter BF, Bartlett BF, or maximum ratio combiner

• It is the beamformer that maximizes SNR

[Bartlett, 1948]
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Zero Forcing Beamformer
• Consider multiple users in noise

• The BF for user   that forces interference to zero and mimizes noise energy is

• Using the technique of Lagrange multipliers, we obtain

• Stacking this for multiple users leads to

• This is the zero forcing (ZF) BF, or maximum likelihood BF

• It is the beamformer that maximizes SIR (and in that class maximizes SNR)
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MMSE Beamformer
• Consider multiple users in noise

• The BF for user   that minimizes the output energy is given by

• Setting the derivative towards to zero, we obtain

• Stacking this for multiple users leads to

• This is the mimimum mean square error (MMSE) BF, or Wiener BF

• It is the beamformer that maximizes SINR
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Discussion
• The ZF BF is equal to a MF BF followed by a decorrelator

• The MMSE BF is equal to a MF BF followed by a regularized decorrelator

• If the noise approaches zero, the Wiener BF approaches the ZF BF
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Discussion
• In case of uncorrelated users,                   , and white noise,                     :

matched filter

decorrelator

regularized decorrelator
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MVDR Beamformer
• Consider again multiple users in noise

• Write the model as a single user system in noise plus interference

• We can then force a fixed response towards user   by the constraint

• We can further minimize the output power, leading to

• Using the technique of Lagrange multipliers, we obtain

• This is the mimimum variance distortionless response (MVDR) BF, or Capon BF

• It is a scaled (unbiased) version of the MMSE BF and maximizes the SINR

[Capon, 1969]
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Beamformer Comparison

𝑹𝑠 = 𝜎𝑠
2𝑰 𝑹𝑛 = 𝜎𝑛

2𝑰𝜎𝑠
2

𝜎𝑛
2 = 10
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Beamformer Comparison
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Traditional Processing
• Beamforming

– Matched filter

– Zero forcing

– Minimum mean square error

– Minimum variance distortionless response

• Direction of arrival (DoA) estimation

– Intuition behind direction finding

– Beamforming based methods

– Multiple signal classification (MUSIC)

– Estimation of signal parameters via rotational invariant techniques (ESPRIT)

– Sparse reconstruction
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Intuition Behind Direction Finding
• The array manifold is the curve that the vector           describes when varies

• The knowledge of     allows for direction finding

– One source

For varying , the vector          is confined to a line

– Two sources

For varying and , the vector          is now confined to a plane

– The intersection of     with the line or plane results in the direction(s)
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Intuition Behind Direction Finding
• Principle of direction finding
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Intuition Behind Direction Finding
• This approach is not possible in case of multipath

• In that case, the array response vectors do not lie on the array manifold

• Although it can be tackled, for now we consider a model without multipath

[Vanderveen et al, 1997]
[van der Veen et al, 1997]
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Maximum likelihood DoA Estimation
• Combining multiple snapshots we obtain

• The simplest way to formulate the DoA estimation problem is as

• This is a maximum likelihood formulation in case of Gaussian noise

• The problem is very hard to tackle

– Alternating minimization that might get stuck in a local minimum

Can be solved by assuming some training symbols

– Complicated multi-dimensional search for
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Beamforming Based Methods
• Design a beamformer for a specific direction , i.e.,   

• Scan all directions and maximize the output energy of the beamformer

– For a single user, this resembles the array response graph of the BF

– For multiple users, choose the largest maxima

deterministic stochastic

beamformer energy
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Matched Filter Based DoA Estimation
• Here it is assumed that the noise color is not known and hence

• The DoA estimation method then becomes

• If needed a normalization can be done with

• For a single user in white noise, the considered matched filter is optimal

• For multiple users, the matched filter is not optimal

– Users need to be well-separated

– Biased estimates are generally obtained
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Matched Filter Based DoA Estimation
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MVDR Based DoA Estimation
• A more accurate beamformer is given by the MVDR BF

• Computing the output power of this BF leads to

• The DoA estimation method then becomes

• Leads to a much better separation of the users
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MVDR Based DoA Estimation

MVDRMF
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MVDR Based DoA Estimation

Result of multiple realizations

#Snapshots: 100
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MUSIC
• This is a singular value (eigenvalue) decomposition-based technique

– Deterministic (noiseless):

– Stochastic (white noise):

• The SVD (EVD) reveals a relation between or         and

• We select                to make            fit or misfit

• This can be done per angle and does not lead to a multi-dimensional search 

[Schmidt, 1981]
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MUSIC
• The DoA estimation method then becomes

• Similar to BF based methods, we can also maximize the (pseudo) spectrum

• If number of sources is smaller than number of sensors,               , then

– Exact DoAs in noiseless deterministic case: 

– Exact DoAs in stochastic case with white noise: 

• Estimates are statistically consistent
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MUSIC

MVDR

MF

MUSIC
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MUSIC

Result of multiple realizations

#Snapshots: 100
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ESPRIT
• Also an SVD (EVD)-based technique yet relying on a ULA

• For a ULA we obtain the shift-invariance property

[Roy-Kailath, 1989]
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ESPRIT
• Using this property, let us combine the first and last              antennas

• We then obtain
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ESPRIT
• Stack         and in a matrix      and compute the economy size SVD

• The main goal of this SVD is to realize a compression of the columns

• Using these expression we can derive

• Thus and are given by the eigenvectors and eigenvalues of 

• From we can derive and hence

is an invertible matrix
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ESPRIT versus MUSIC
• Varying SNR

• Varying separation
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Sparse Reconstruction
• The sparse reconstruction idea is based on rewriting the data model using

a grid of    angles spanning the angular space of interest

– Since this grid of angles is known the system matrix      is known

– If then , otherwise is     -sparse

• The goal is to solve for (non-zero entries reveal )

– However,        cannot be solved using least squares because

– Hence, additional constraints are needed such as sparsity

[Malioutov et al, 2005]



55

Sparse Reconstruction
• Using a sparsity constraint the problem becomes

• This problem is NP hard but can be relaxed to a convex problem as

• The theory of compressive sensing has shown that the two above problems can
have the same solution under some conditions related to the structure of

• Typical algorithms that can be employed are 

– Iterative soft tresholding algorithm (ISTA)

– Orthogonal matching pursuit (OMP)

[Daubechies et al, 2004] 
[Beck-Teboulle, 2009]

[Davis et al, 1997] [Tropp, 2004] 
[Donoho et al, 2006]
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Sparse Reconstruction
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Sparse Reconstruction

Result of multiple realizations
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Sparse Reconstruction
• We can extend this framework to multiple snapshots by defining

• The optimization problem then becomes

• Similar algorithms as in the single snapshot case can be employed

• The problem can be simplified by using the l1-SVD idea

– Use the SVD to reduce the rank of     to :

– Then we solve the reduced problem

[Malioutov et al, 2005]
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Part III:
Advanced Methods and

Array Design 
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Advanced Methods and Array Design
• Compressive array

– Compressive sensing (CS)

– CS in spatial domain

• Covariance based processing

– Compressive covariance sensing (CCS)

– CCS in spatial domain

– CCS based array design

– Virtual array principle

• Performance based array design

– Sparse sensing

– Convex and submodular optimization
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Compressive Sensing
• Due to the required high sampling rates, compression is useful

• Compression after acquisistion does not simplify sensing

• A popular alternative is compressive sensing (CS) = joint acquisition and sensing

cognitive radio massive MIMO

– Random linear projections of 
Nyquist rate sampled signal

– Multiple sparse reconstruction
techniques exist to solve this

[Tropp, 2004] [Donoho, 2006] [Candès et al, 2006]
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high angular resolution

large aperture

many antennas

many RX chains

high power consumption

CS in Spatial Domain

Goal: Decrease the number of RX chains without loosing too much performance

each RX chain:

N RX chains

RX array, N antennas
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CS in Spatial Domain

Compression matrix      :

• Dense matrix: analog
beamforming, beamspace
[Wang-Leus-Pandharipande, 2009]                     
[Wang-Leus, 2010]                                
[Venkateswaran-van der Veen, 2010]

• Sparse matrix: subarrays
[Moffet, 1968] [Hoctor-Kassam, 1990]

compression
from N to M<N RX chains

Solution: Compressive array
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DoA Estimation

• Based on        and traditional DoA methods can be used (see earlier)

– Beamforming-based methods

– MUSIC

– Sparse reconstruction

– ESPRIT is not possible since we don’t have a ULA

• They require (only work well for) more outputs than sources,

compression
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Simulations Results
• ULA (uniform linear array), 

• sources, uncorrelated, BPSK, DoAs

• Conventional array:                 and antenna elements

• Compressive array: from                 we compress to                RX chains

• Scanning resolution: 

• Compression matrix:

- random Gaussian matrix: entries zero mean and variance

- random selection matrix: randomly selecting       from elements

- Sparse reconstruction: M-FOCUSS
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Random Gaussian
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Random Selection
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Advanced Methods and Array Design
• Compressive array

– Compressive sensing (CS)

– CS in spatial domain

• Covariance based processing

– Compressive covariance sensing (CCS)

– CCS in spatial domain

– CCS based array design

– Virtual array principle

• Performance based array design

– Sparse sensing

– Convex and submodular optimization
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Compressive Covariance Sensing
• CS methods estimate the signal itself (or its spectrum)

– Leads to an underdetermined problem that requires a sparsity constraint

– High computational complexity

– Difficult performance analysis

Observation:

• Many applications just require second-order statistics (or the power spectrum)

– Cognitive radio: temporal power spectrum

– Radio astronomy: spatial power spectrum

• This paves the way for methods that are less complex and easier to analyze

Compressive covariance sensing (CCS)
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CCS in Spatial Domain

• Problem statement:

• Once is estimated we can use any ULA-based DoA estimation technique

– Beamforming based methods

– MUSIC

– Sparse reconstruction

– ESPRIT becomes also possible now because of the ULA property

compression

uncompressed
signal

compressed
signal

Estimate         from             or         exploiting structure in   
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Covariance Structure
• All covariance matrices are Hermitian and positive semi-definite

• Typical structures for

– Toeplitz

• Stationarity over space

• Sum of exponentials

– Circulant

• Rows/colums are circularly shifted

• Sum of exponentials on uniform grid

– -banded

• Toeplitz with info only in    subdiagonals

• Spatial MA/AR processes (not related to our model)
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Covariance Structure
• Encompassing model: basis expansion model (BEM)

Toeplitz -bandedcirculant

real unknowns real unknownsreal unknowns
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Covariance Estimation
• We vectorize the involved covariance matrices

• We can then establish a relation between and

• The same can be done for and

• Based on an estimated we can recover using least squares

• Finally we can obtain an estimate for as

[Leus-Ariananda, 2011]
[Ariananda-Leus, 2012]
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Covariance Estimation
• When we have an overdetermined system

• This can happen even under compression,

• Thus also under less outputs than sources, 

• Unique reconstruction if full column rank

• Estimation can include additional constraints

design of      is critical! 

PSD non-negative

PSD sparse

Covariance PSD 



76

CCS Based Array Design
• Compressive array

– Dense matrix

– Sparse matrix 

• Goals of sampler design:

– Conditions on     to allow for estimation of

– Maximize the compression ratio

• An admissable covariance sampler allows the recovery of     from

– The matrix                        has full column rank                 

– The linear indepence in                 is preserved in   
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Sparse Compression
• In sparse array design, the matrix     selects a subset of antennas

• Toeplitz subspace: covariance sampler             sparse ruler

– Optimal sparse array:     minimal sparse ruler

• Circulant subspace: covariance sampler             circular sparse ruler

– Optimal sparse array:     minimal circular sparse ruler

• -banded subspace: covariance sampler             incomplete sparse ruler

[Romero-LópezValcarce-Leus, 2015]

[Rédei-Rényi, 1949] [Leech, 1956] [Pearson et al, 1990] [Romero-LópezValcarce-Leus, 2015]

[Ariananda-Leus, 2012] [Romero-LópezValcarce-Leus, 2015]
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Sparse Rulers
• Difference set:

• Sparse ruler:

• Minimal sparse ruler

• Suboptimal designs: nested, co-prime

is a length- sparse ruler  

[Rédei-Rényi, 1949] [Leech, 1956] [Wichmann, 1963] [Moffet, 1968] [Miller, 1971] 
[Wild, 1987] [Pearson et al, 1990] [Linebarger et al, 1993] [Ariananda-Leus, 2012] 

[Wichmann, 1963] [Pearson et al, 1990] [Linebarger et al, 1993] 
[Pumphrey, 1993] [Pal-Vaidyanathan, 2010] [Pal-Vaidyanathan, 2011]  
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Circular Sparse Rulers
• Modular difference set:

• Circular sparse ruler:

• Minimal circular sparse ruler

is a length- circular sparse ruler  

[Singer, 1938] [Miller, 1971] [Ariananda-Leus, 2012] [Romero-Leus, 2013] 
[Krieger-Kochman-Wornell, 2013] [Romero-LópezValcarce-Leus, 2015] 
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Dense Compression
• Design: Similar to CS we use random designs

covariance sampler             drawn from continuous distribution and

– Toeplitz subspace:

– Circulant subspace:

– -banded subspace:

[Romero-LópezValcarce-Leus, 2015]
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Virtual Array Principle
• Exploiting uncorrelated sources, i.e.,        is diagonal, we can obtain

• represents a virtual array:       observations versus     sources

• Problem: virtual sources are constant or fully coherent

– Gridding and sparse recovery

– Smoothing by taking subarrays

[Pillai et al, 1985] [Abramovich et al, 1998, 1999]
[Pal-Vaidyanathan, 2010, 2011] [Shakeri-Ariananda-Leus, 2012]

[Yen-Tsai-Wang, 2013] [Krieger-Kochman-Wornell, 2013]
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Virtual Array Principle

• Gridding

: least squares                             : add sparsity/positivity

• Smoothing by stacking subarrays followed by standard methods

– Virtual array should be uniform (leading to a Vandermonde matrix)  

Only antenna selection is possible

Sparse ruler based antenna selection

[Shakeri-Ariananda-Leus, 2012]
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Simulations
• Least squares and MUSIC reconstruction

• We consider the space of Toeplitz matrices 

• ULA of                available antenna positions

– Minimal sparse ruler array                → Virtual ULA of  2x36-1antennas

– Two-level nested array

• Inner array of 5 and outer array of 6 antennas

• Virtual ULA of 2x36-1 antennas

– Co-prime array

• 9 antennas spacing 2 and 3 antennas spacing 9

• Virtual ULA of only 2x20-1 antennas

• 1600 time samples

• SNR of 0 dB
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Simulations
• Minimal sparse ruler array
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Simulations
• Comparison of different array structures

21 sources with 7 degrees of separation
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Advanced Methods and Array Design
• Compressive array

– Compressive sensing (CS)

– CS in spatial domain

• Covariance based processing

– Compressive covariance sensing (CCS)

– CCS in spatial domain

– CCS based array design

– Virtual array principle

• Performance based array design

– Sparse sensing

– Convex and submodular optimization
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Performance Based Array Design
• From a full array of     antennas (e.g., Nyquist sampled array)

– Design the optimal subarray of                 antennas

– Define an appropriate optimality criterion

sparse sensing/sampling, sensor/antenna selection/placement 

• Why sparse sensing?

– Economical constraints

– Limited physical space

– Limited storage space

– Reduce communications/processing overhead

[Blu et al, 2008] [Vaidyanathan-Pal, 2011]
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Sparse Sensing
Compressive sensing

• Sparse signal needed

• Random, dense sampler

• Robust compression

• Task is sparse signal reconstruction

Sparse sensing

• Signal does not need to be sparse

• Deterministic, sparse sampler

• Practical, controlable compression

• Any desired inference task
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Design Problem
Select the “best” subarray of antennas out of the candidate antennas that

guarantee a certain desired statistical inference performance

• This is a nonconvex Boolean problem

• Exact solutions: exhaustive search or branch-and-bound methods

• Suboptimal solutions:

– Convex optimization (polynomial time)

– Submodular optimization (linear time)

[Lawler-Wood, 1966]
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Suboptimal Solutions
• Convex optimization

– Convex relaxation for

– Thresholding or randomization to obtain a Boolean solution

– Typically a semidefinite program

• Submodular optimization for maximization

– A greedy search is performed

– For a submodular monotone function

the greedy solution is                 optimal

[Joshi-Boyd, 2009] [Chepuri-Leus, 2015]

[Krause et al, 2008] [Ranieri et al, 2014]

[Nemhauser et al, 1978]
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Application to Estimation

• Suppose depends on an unknown parameter vector      (e.g., DoAs)

• Then the selection can be written as

• This means the original pdf                becomes after selection

• We could then optimize for the “best” MSE matrix

• Here         is some scalar performance measure and an estimator of 

[Chepuri-Leus, 2015] [Liu et al, 2016]
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Application to Estimation
• Since the exact MSE is hard to express the CRB (inverse FIM) is used

• The CRB (inverse FIM) is a lower bound on any unbiased estimator

• The CRB/FIM has a number of advantages over using the MSE directly

– Well-suited for offline design

– Reveals local identifiability

– Is invariant to the adopted algorithm

– Exact error covariance matrix in the linear additive Gaussian case

Fisher information matrix (FIM)Cramer Rao bound (CRB)
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Application to Estimation
• The CRB/FIM can be written in closed form as a function of  

• For a multivariate complex Gaussian we obtain

• In case the observations are conditionally independent, the FIM is additive

• This additive property even holds for dependent Gaussian observations!

• For nonlinear models and/or specific distributions, the FIM depends on

– Optimize over a grid of     values

– Use the Bayesian CRB, i.e., average the CRB over the prior pdf of 
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Application to Estimation

• We need a scalar measure based on the FIM

– E-optimality (worst case error):

– A-optimality (average error):

– D-optimality (error volume): 

convex (SDP)

submodular
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Target Localization
Application: target localization based on received signal strength (RSS)

Independent observations
Dependent Gaussian observations

(horizontal sensors correlated)
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Target Localization
Application: localization using multi-static FMCW radar

[Ivashko-Leus-Yarovoy, 2017]
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Application to Array Design
• The CRB focuses on local identifiability, i.e., main lobe width is optimized

– Good if we have a single target

– Not good if we want to focus on multiple targets

• Solutions

– Add constraints to the sidelobes

– Use a multi-target CRB

• We focus on a two-target CRB where the two targets can be anywhere

– This CRB is manageable

– The only unknown is the difference in the direction cosines

– We grid this unknown or average the two-target CRB over it

– As before, different optimality criteria and algorithms can be used

[Tohidi et al, 2019]
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Colocated MIMO Radar
• Goals are to optimize the number of antennas as well as pulses

• Unknowns are angle of arrival and radial velocity

Tx

Rx

Pulses

[Tohidi et al, 2019]
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Colocated MIMO Radar
• We optimize the two-target CRB

– Unknowns are differences in direction cosines and radial velocities

– We consider a grid for both of them

• We consider E-optimality but other criteria can be used as well

• We consider the following cases

– Single antenna – multiple pulses (velocity estimation)

– Multiple antennas – single pulse (DoA estimation)

– Combination of both

– We use E-optimality

– We use exhaustive search or convex optimization

– Larger scenarios need to use greedy search
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Colocated MIMO Radar
• Single antenna – multiple pulses
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Colocated MIMO Radar
• Multiple antennas – single pulse
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Colocated MIMO Radar
• Multiple antennas – multiple pulses
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Extensions and Open Issues
• Can be extended for active radar

• Mutual coupling

• Calibration and robustness

• Machine learning for array design

• Data-driven parameter estimation

• Vector array processing

• Complexity and implementation aspects

[Nehorai-Paldi, 1994] [Ramamohan et al, 2017, 2018]

[Paulraj-Kailath, 1985] [Weiss-Friedlander, 1990]

[Aittomäki, 2017]
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Conclusions
• Compressive array can reduce “complexity” without much performance loss

• Standard DoA methods can be used with a price in the number of sources

• Covariance-based methods make up for this price

• Array design for compressive arrays 

– Generally based on compression rate and identifiability

– Can be done for standard as well as covariance-based methods

• Performance-based sparse array design

– Fits within the sparse sensing framework

– Focus is mostly on one-target CRB or any other performance measure

– Improvements can be obtained considering two-target CRB
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