

innovation for life

FROM PHASED ARRAYS,
THROUGH DIGITAL BEAMFORMING,
TO FULLY DIGITAL ARRAYS FOR RADAR

LAURA ANITORI, MARIO COUTINO
RADAR TECHNOLOGY DEPARTMENT
DUTCH ORGANIZATION OF APPLIED RESEARCH (TNO)

MILAN, ITALY, EURAD 2022

OUTLINE

In today's talk

- The Radar Technology Department at TNO
- History Recap
 - Timeline
 - Development Path
- The road to fully digital array systems in radar A TNO's view
 - Digital array processing on receive
 - MIMO Arrays
 - Fully Digital Arrays
 - Distributed Arrays

innovation for life Systems and Signal Waveforms & Concepts Processing Algorithms AESA Information Waveform diversity Airborne Ground extraction • Non-linear and iterative algorithms Surveillance • Real-time data • FMCW processing **MMICs RF Subsystems** • Fabless design Design center Prototyping • GaAs, GaN Manufacturing • SiGe, RF CMOS THE RADAR TECHNOLOGY DEPARTMENT innovation for life

Analogue Domain

Analogue Phased Array

Digital Signal Generation & Digital Processing

Digital Beam Forming on Receive

Spatial Waveform Diversity on Transmit

Digital

Transmitter

Arbitrary Waveforms

Few Years

(Extremely) Narrow band

Improved Detectors

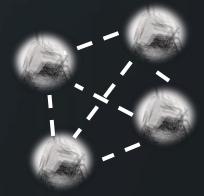
Simultaneous Beams @ Receive

RADAR EVOLUTION

Resolution Improvements

Exploits all DoFs

- Networked Operations
- Enhancement on LPI


Next Generation

1940s

Würzburg-Riese

Single Tx Single Rx

Mechanical Steering

1970s

CAISSA

Single Tx Single Rx

Antenna Array

2000s

APAR

Distributed Tx Power Central Rx

Antenna Array

2010s

NS-Family

Distributed Tx Power Digital, distributed Rx Power

Antenna Array

[???]

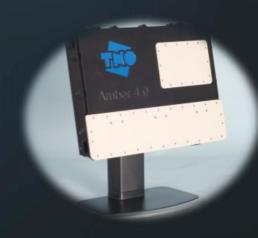
Digital, distributed Tx Power Digital, distributed Rx Power

Antenna Array

FROM THEN TO NOW

DIGITAL ON RECEIVE

Benefits of AESA:


Longer range

Ability to detect smaller targets

Better resistance to jamming

Less likely to experience system failure

Limited field of view

Benefits of Digital on Receive:

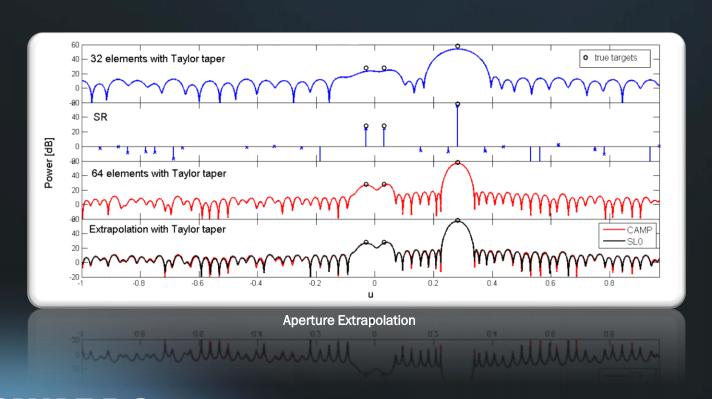
Improved dynamic range

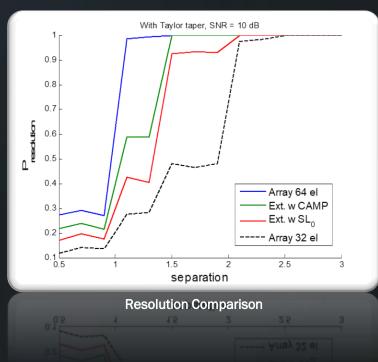
Controlling of multiple beams

Improved adaptivity

Improvement on accuracy/resolution

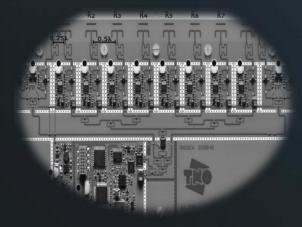
Digitalization costs


Active Phased Array Radar (APAR)


Affordable Multiple Beam Radar (AMBER)

TOWARDS
FULLY DIGITAL ARRAY SYSTEMS
A TNO'S VIEW

DIGITAL ON RECEIVE


Array Aperture Extrapolation using Sparse Reconstruction

TOWARDS FULLY DIGITAL ARRAY SYSTEMS

MIMO

What is MIMO?

Stands for Multiple-input multiple-output

Concept based on transmitting "orthogonal" waveforms

Tx and Rx arrays may have holes (sparse arrays)

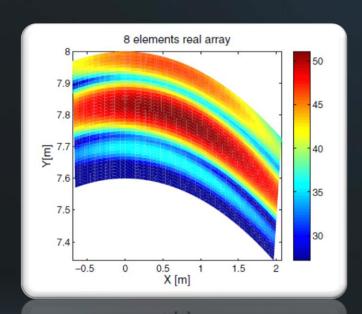
Benefits of MIMO:

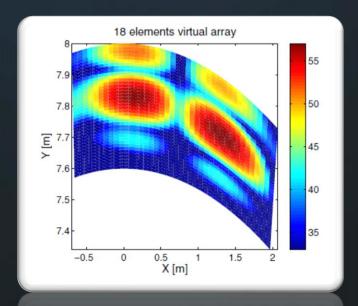
Improvement on angular resolution

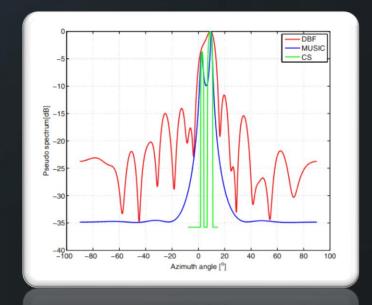
Increase on number of detectable targets

Flexibility on spatial energy distribution

Loss of coherent processing gain

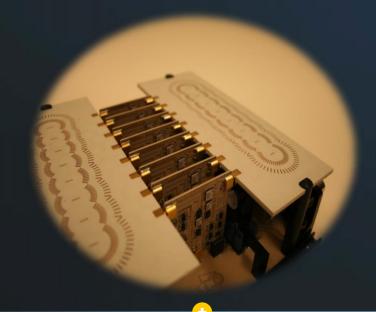

RADAR DOME CAMERA (RADOCA)


Synthetic Aperture Polarimetric Phased Array Interferometer Radar Equipment (SAPPHIRE)


TOWARDS FULLY DIGITAL ARRAY SYSTEMS

MIMO

Digital-Beamforming- and Compressing-Sensing-based DOA Estimation in MIMO Arrays



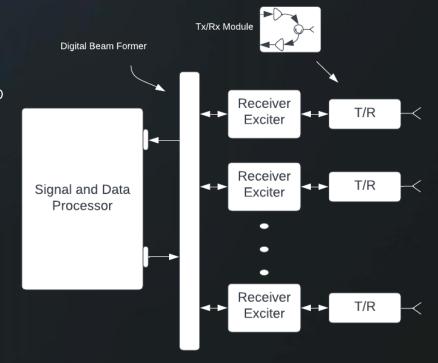
Comparison of MF output using (left) "real" Rx array and (right) MIMO array

Classical and CS Techniques on MIMO Array

TOWARDS FULLY DIGITAL ARRAY SYSTEMS

FULLY DIGITAL

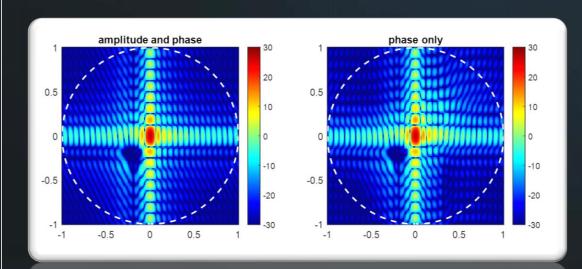
Benefits of Digitalization

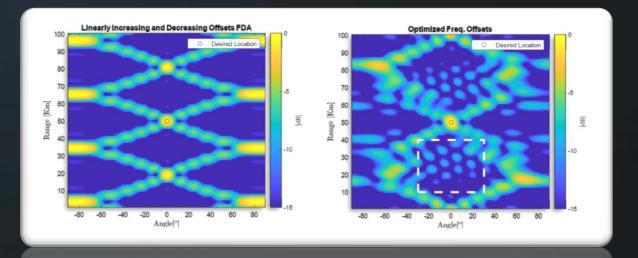

Possibility of using all degrees of freedom

- Improved control on Tx and Rx beampatterns
- Waveform diversity / adaptivity
- -- Software-defined on-the-fly capabilities, e.g., MIMO

Digitalization costs

Technological challenges

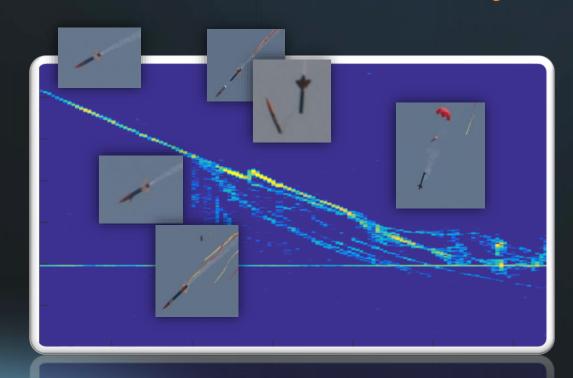

Electronically Scanned Multiple Function Radio Frequency Array for Light-Weight Payloads (EMERALD)


TOWARDS FULLY DIGITAL ARRAY SYSTEMS

FULLY DIGITAL

Optimization of Transmit Waveforms Per Element

Comparison of adaptive Tx beam pattern using (left) amplitude modulation (right) phase only

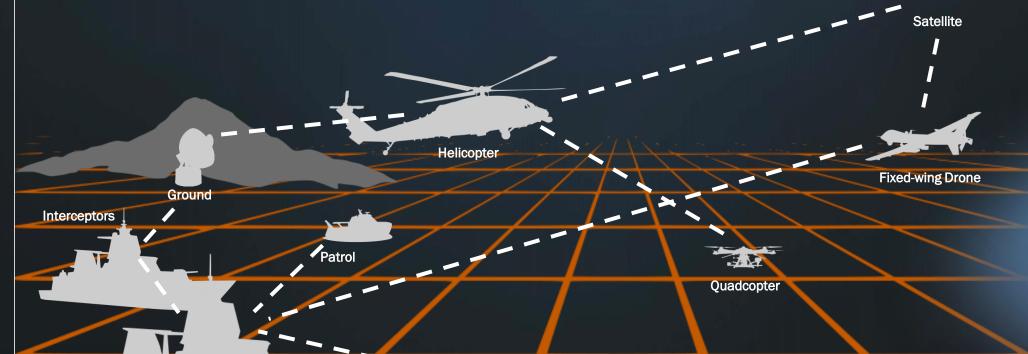


Angle-Range response of Frequency Diverse Array (FDA) using (left) up-down offsets (right) optimized offsets

TOWARDS FULLY DIGITAL ARRAY SYSTEMS A TNO'S VIEW

FULLY DIGITAL

Measurements with Arbitrary Waveform Generator Testbed



TOWARDS
FULLY DIGITAL ARRAY SYSTEMS
A TNO'S VIEW

DISTRIBUTED SENSOR NETWORKS

Mother ship

TOWARDS
FULLY DIGITAL ARRAY SYSTEMS

A TNO'S VIEW

Benefits of Network Operations

Increased accuracy, e.g., multi-domain / multi-view / multi-sensor

Increased coverage

Patrol

Reduced individual requirements

Reduced vulnerability and improved robustness

Interoperability –across vendors/nations

Several new concepts/possibilities yet to explore

THANKSFOR YOUR ATTENTION

Laura Anitori Marc Beekman Dave Bekers Gijs vd Bent Sven Berberich Rob Boekman Lex Boer Bjorn Boer Frank vd Bogaart Roland Bolt Jeroen Boschma Detmer Bosma Justin Bouwmeester **Lennaert Bronts** Miguel Caro **Aodhan Coffey**

Radar Technology Department

Pepijn Cox Michel Deconinck Duije Deurloo Sercan Deve Raymond van Dijk Philip van Dorp Joyke Elbers Jaap Essing Alessandro Garufo Victoria Gomez-Guillamon Marcel vd. Graaf Nadia Haider Marc v. Heijningen Matijs Heiligers Peter de Hek

Yannins Iliopoulos Ines Inacio Bas Jacobs Richard de Jong Keith Klein Rob Knight Martijn de Kok ostas Kokke David Li **Noud Mass** Lilian de Martin Henk Medenblik Stefania Monni Millad Mouri **Evert Nieuwkoop** Matern Otten

Giuseppe Papari Diana van Putten Diogo Ribeiro Marien Rodenburg Wim van Rossum Remko Struiksma Erwin Suijker Arne Theil **Christian Trampuz** Danilo Tromp Faruk Uysal Frank van Vliet Wouter Vlothuizen Jelle Vonk Maurice van Wanum Jacco de Wit

and from everyone that contributed to all this...

