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Abstract
The emergence of wearable sensor technology may provide opportunities for automated measurement of psychophysiologi-
cal markers of mental and physical fitness, which can be used for personalized feedback. This study explores to what extent 
within-subject changes in resting heart rate variability (HRV) during sleep predict the perceived mental and physical fitness of 
military personnel on the subsequent morning. Participants wore a Garmin wrist-worn wearable and filled in a short morning 
questionnaire on their perceived mental and physical fitness during a period of up to 46 days. A custom-built smartphone app 
was used to directly retrieve heart rate and accelerometer data from the wearable, on which open-source algorithms for sleep 
detection and artefact filtering were applied. A sample of 571 complete observations in 63 participants were analyzed using 
linear mixed models. Resting HRV during sleep was a small predictor of perceived physical fitness (marginal R2 = .031), 
but not of mental fitness. The items on perceived mental and physical fitness were strongly correlated (r = .77). Based on the 
current findings, resting HRV during sleep appears to be more related to the physical component of perceived fitness than 
its mental component. Recommendations for future studies include improvements in the measurement of sleep and resting 
HRV, as well as further investigation of the potential impact of resting HRV as a buffer on stress-related outcomes.
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Introduction

Occupational stress can lead to physical (Kivimäki & 
Kawachi, 2015; Yang et al., 2019) and mental (Chirico, 
2016) health problems, decrease quality of life (Bhattacha-
rya & Ray, 2021) and imposes a financial burden on society 
via absenteeism and productivity loss (Hassard et al., 2018). 
Early recognition of the potential development of stress-
related problems can be useful for personalized just-in-time 
interventions that may help alleviate or prevent these per-
sonal and societal burdens of stress (Wang & Miller, 2020). 
Due to recent developments in wearable sensor technology, 
continuous and unobtrusive measurement of physiological 
and behavioral data that may be related to stress resilience, is 
becoming increasingly feasible (De Vries et al., 2019; Drury 
et al., 2019). One of the challenges for current research on 
this topic is to explore and verify to what extent these novel 
sources of personal data can indeed be related to one’s abil-
ity to resiliently cope with stress.

Before hypothesizing how wearable-measured data may 
be related to resilience, it is important to understand how 
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stress itself emerges. Stress is the outcome of a psychologi-
cal process that is known as appraisal (Lazarus & Folkman, 
1987). When a person is faced with demands, the brain sub-
consciously assesses the perceived availability of resources 
to cope with the situation. When sufficient resources appear 
to be available, the demand is appraised as a challenge. 
When this is not the case, the demand is appraised as a 
threat—causing a stress response. Therefore, the subjective 
assessment of the availability of resources is what deter-
mines the stress response. This can be measured as the per-
ceived fitness, which is defined as “the modifiable capacity 
to utilize resources and skills to flexibly adapt to challenges 
or advantages” (Robinson et al., 2015). Since appraisal is 
a psychological process, it is not the person’s objective fit-
ness-related characteristics that are directly assessed during 
appraisal, but the person’s perceived fitness. For instance, 
an objectively fit but insecure person may experience stress 
when confronted with a minor challenge that the person 
should easily be able to handle. Unfortunately, it is currently 
not possible to directly measure mental states like perceived 
fitness in an automated and unobtrusive way. However, if 
relevant physiological or behavioral data from wearables can 
be linked to it, it may be possible to use these measures as a 
proxy for perceived fitness in future studies and applications.

One metric that may be related to perceived fitness is 
Heart Rate Variability (HRV). HRV is a measure for the 
variation in the inter-beat-intervals (IBIs) between heart-
beats that functions as a proxy for autonomous nervous sys-
tem functioning (Thayer et al., 2012). Throughout the day, 
HRV is continuously influenced by factors such as stress 
(Kim et al., 2018) and emotions (McCraty et al., 1995), 
body posture (Buchheit et al., 2009), exercise (Michael et al., 
2017) and intake of caffeine (Koenig et al., 2013) or alcohol 
(Romanowicz et al., 2011). HRV measurements are there-
fore context-dependent and fluctuate throughout the day, but 
when measured in a similar resting state where confound-
ers are minimized (e.g., during sleep or upon awakening), 
accurate measurement of resting HRV is possible, even with 
consumer-available wearables or the camera of a smartphone 
(Plews et al., 2017; Stone et al., 2021).

Resting HRV has been consistently linked to diverse 
aspects of mental functioning. For instance, prior studies 
found that on a between-subject level, resting HRV is posi-
tively associated with cognitive flexibility (Colzato et al., 
2018), affective flexibility (Grol & De Raedt, 2020), emotion 
regulation (Holzman & Bridgett, 2017; Mather & Thayer, 
2018) and resilience (An et al., 2020). Two recent studies 
also found that on a within-subject level, resting HRV buff-
ered the positive associations between stress and negative 
affect (da Estrela et al., 2021), as well as between stress 
and both demands and mental exhaustion (de Vries et al., 
2021). These findings indicate that having a high resting 
HRV generally reflects more optimal mental functioning and 

adaptability to environmental demands, which makes it a 
potential proxy for perceived fitness.

Besides being linked to these mental aspects that may be 
related to perceived fitness, resting HRV has shown to be 
associated with physical components of fitness as well. On 
a between-subject level, resting HRV is positively associated 
with cardiovascular fitness (Souza et al., 2021; Tomes et al., 
2020), and negatively associated with overuse injuries (Gis-
selman et al., 2016; Lima-Borges et al., 2018; Williams et al., 
2017) and pain perception (Forte et al., 2022). Finally, rest-
ing HRV has also been linked to viral infections on a within-
subject level (Conroy et al., 2022). These associations are the 
basis for HRV guided training, in which daily resting HRV is 
being used in comparison to the personal baselines of athletes 
to determine their physiological recovery from prior physi-
cal or mental stress and adjust training plans when necessary 
(Düking et al., 2021; Manresa-Rocamora et al., 2021). In this 
setting, the objective resting HRV data are often combined 
with subjective questionnaire data in order to get a more com-
plete view of the athlete’s current status. Since resting HRV 
has been linked to both mental and physical aspects of fitness, 
it is possible that its potential association with perceived fitness 
may also differ for the perceived mental and physical fitness.

Wearable-measured resting HRV has been linked to 
diverse aspects of mental and physical functioning. As 
such, it may also be linked to a person’s overall perception 
of fitness. From the perspective of appraisal theory, this 
is relevant, since a person’s overall perception of fitness 
can be considered a resource to deal with demands. When 
this resource is perceived to be lacking, the person may be 
more susceptible to experience demands as stressors, and 
develop more stress-related complaints as a results. Explo-
ration of the degree in which within-subject differences in 
resting HRV are indeed associated with perceived fitness 
will benefit the current state of knowledge on how HRV 
relates to subjective mental and physical functioning. Fur-
thermore, insights in this association may be useful for the 
development of tools that provide automated and personal-
ized feedback on its users’ readiness to handle demands and 
cope with stress. Such tools may be useful in intervention 
programs that aim to prevent stress-related problems. These 
insights are therefore particularly relevant for high-risk pro-
fessions such as military personnel, in which resting HRV 
has already been related to objective fitness and occupational 
performance (Tomes et al., 2020). Therefore, this study aims 
to explore to what extent wearable-measured resting HRV 
during sleep predicts the perceived mental and physical fit-
ness of military personnel on the subsequent morning. We 
hypothesize that wearable-measured resting HRV during 
sleep predicts both the mental and physical aspects of per-
ceived fitness on the subsequent morning.
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Methods

An observational study was performed based on within-
subject nested daily observations. The study protocol was 
approved (case 2019-038) by the internal Research Ethics 
Committee of TNO (TC-nWMO) in the Netherlands. The 
Strengthening the Reporting of Observational Studies in 
Epidemiology (STROBE) statement was used as a guideline 
for reporting (Von Elm et al., 2007).

Participants

A convenience sample of 73 employees of the Dutch military 
were recruited to participate and collect data for a period of 
up to 8 weeks. This group consisted of 43 marines in train-
ing and 30 staff members of the Dutch Defense Healthcare 
Organization. Both the recruitment and data collection of 
this study was performed in the summer of 2019 at peace-
time, in the Netherlands. Recruitment was facilitated by the 
Dutch military, but participation occurred on a voluntary 
basis and participants were free to stop at any time without 
adverse consequences. All participants gave explicit consent 
for the use of their (health) data.

Data Collection

Descriptive data such as the age, gender and function of the 
participants were not collected out of privacy and security 
concerns related to the sensitive profession of the partici-
pants. Out of privacy and security concerns related to the 
military context of this study, it was not deemed acceptable 
to store the participants’ data on servers outside the jurisdic-
tion of the Dutch government, which would have been the 
case during regular use of the Garmin wearables. As such, 
descriptive statistics could only be provided based on the 
daily measurements of the independent and dependent vari-
ables, and no subgroup analyses were performed.

Independent Variable: Heart Rate Variability During Sleep

All participants wore a Garmin Tactix Charlie smartwatch 
which is described as a multisport GPS watch with addi-
tional tactical functionality (Garmin & subsidiaries, n.d.). 
Therefore, a custom-built smartphone application was used 
that utilized the Garmin Health Standard Software Develop-
ment Kit (SDK), which allows the application to collect data 
directly from the wearable device and process and store it 
on a self-hosted server (Garmin, 2022). Using this approach, 
data on accelerometry and green-light photoplethysmogra-
phy-based IBIs between heartbeats were available, based on 
which sleep episodes and the related resting HRV can be 
detected and calculated.

Sleep detection was performed based on an open-source 
algorithm that detects sleep based on wrist movements (Hees 
et al., 2015), with three adjustments. First, the parameter that 
describes how long the user must lie still before that period 
is classified as ‘in bed’ was lowered from 30 to 10 min. 
This was done because pilot tests of the applied algorithm 
showed that the original algorithm sometimes classified a 
full night sleep as separate sleep episodes when a participant 
was awake at night, which can be prevented by lowering 
this threshold. The second adjustment was done with the 
same goal, by adding a parameter that allowed participants 
to have a period of up to 10 min of small movements during 
(restless) sleep, without being classified as awake and thus 
potentially splitting the sleep episode. Finally, an adjustment 
was made in how the start of the sleep episode was detected. 
Initially, the start of a sleep episode was estimated based on 
accelerometer data, as per the original algorithm. The start 
of the sleep episode was then adjusted to use the timestamp 
of the peak in the HRV during the first 30 min of that epi-
sode (based on the 90 s time window with the highest HRV) 
was then attributed as the actual start of the sleep episode. 
This was done because pilot tests showed that the original 
algorithm sometimes classified a period during which par-
ticipants were lying still but not sleeping (e.g., reading on 
smartphone) as sleep, and prior research showed that HRV 
briefly peaks around the start of the sleep episode (Boudreau 
et al., 2013). Since this study compares the perceived mental 
and physical fitness of the participants during the morning 
to their resting physiology, the nocturnal HRV data was then 
related to the subsequent morning’s Ecological Momentary 
Assessment (EMA) questionnaire during statistical analysis. 
Finally, the Total Sleep Time (TST; the total duration of the 
sleep episode spent asleep) in hours and Resting Heart Rate 
(RHR; the average heart rate during sleep) were included as 
control variables.

The HRV was then calculated for each sleep episode. 
Since motion artefacts are common in real-life wearable-
based measurements and can influence the accuracy of the 
HRV estimation, an artefact detection algorithm that has 
been used in prior research was used (Plews et al., 2017). 
This method consists of two steps. First, intervals are 
removed when they differ more than 75% from the previ-
ous one. Second, outliers are removed by including only 
intervals that are within less than 25% of the first quartile 
and within more than 25% of the third quartile. Additionally, 
sleep episodes where valid IBIs were available for less than 
64% of the duration of the sleep episodes were discarded. 
This was done because prior research has shown that the 
rMSSD can be validly determined without clinically sig-
nificant change (a 5% change in mean absolute percent dif-
ference) when up to 36% of the IBIs are removed (Sheridan 
et al., 2020). This study also showed that frequency domain 
HRV parameters are much more impacted by missing data 
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and thus less robust in this context than time domain param-
eters. Another study confirmed that of all time and frequency 
domain HRV measures, rMSSD is one of the two (alongside 
mean NN) most robust features (Baek & Shin, 2017). There-
fore, the root Mean Square of the Successive Differences 
(rMSSD) in milliseconds was used as the primary HRV vari-
able and calculated based on the valid IBIs of the respective 
sleep episodes.1 This metric was then logarithmically trans-
formed (lnrMSSD) to improve its distribution for statistical 
modeling, which is a common procedure in HRV research 
(Shaffer & Ginsberg, 2017).

Dependent Variables: Perceived Mental and Physical Fitness

Participants filled in a brief EMA questionnaire in the morn-
ing that included two items on their perceived mental and 
physical fitness, each of which scored on a 11-point Numeric 
Rating Scale (NRS) ranging from 0 to 10. Perceived physi-
cal fitness was assessed based on the item “I feel physically 
fit”, whereas perceived mental fitness was inquired via the 
item “I feel mentally fit”. These items were originally self-
composed, but align well with items of the Acute Readiness 
Monitoring Scale (items 5 and 13) that has since then been 
validated for the use in military personnel (Keegan et al., 
2021). Finally, the participants already were used to distin-
guish between mental and physical fitness based on their 
professional training and functioning. For these participants, 
perceived physical fitness is about feeling physically ready 
to perform (e.g., strength, endurance, mobility), whereas 
perceived mental fitness is related to feeling mentally (e.g., 
cognitively and emotionally) ready to perform.

Data Analyses

All data-management and analyses were performed in RStu-
dio (RStudio Team, 2020) and R (R Core Team, 2020). 
Descriptive statistics on the HRV, TST, as well as the per-
ceived mental and physical fitness of the participants were 
calculated. Due to the difference in scales between HRV, 
TST and the EMA items, standardizing the data was neces-
sary to optimize the comparability of the coefficients of the 
independent variables. Standardization based on the within-
subject values was considered since the level 1 association 
between HRV and the EMA items is of primary interest 
(Enders & Tofighi, 2007), but standardization at the grand 

mean was finally preferred, as some participants collected a 
relatively low number of complete observations.

Two two-step hierarchical linear mixed-effects models for 
each of the EMA outcomes were created using the “lme4” 
package in R (Bates et al., 2015) to account for repeated 
measures within participants. All models were based on 
fixed effects (level 1 association between HRV and the EMA 
outcomes) and random slopes (the participants themselves 
were allowed to differ from each other in level 2). For each 
model, a control model was first created using only TST and 
RHR, followed by the full model that also included HRV. 
The marginal and conditional R2 of each model were then 
computed, which respectively represent the proportion of 
the variance that can be explained solely by the fixed effects 
(HRV, TST and RHR) and by the combination of the fixed 
and random effects (the participant). Differences in the mar-
ginal and conditional R2 between the control and full models 
were also calculated to assess (changes in) the goodness-of-
fit of the models.

During statistical analysis, relatively large differences 
were found in the marginal and conditional R2 in each of the 
created models. To facilitate interpretation of these relatively 
large differences in the variance that was explained by the 
fixed and the combination of fixed random effects, three ver-
sions of the Coefficient of Variation (CV) of each variable 
were calculated to explore how the within-subject variance, 
the between-subject variance and the overall variance in the 
dataset compared to each other. The first version describes 
the average within-subject CV for each variable, and was 
determined by first calculating the within-subject CV based 
on the values of each participant (standard deviation divided 
by the mean) and then calculating the mean of those values. 
A CV of 0 was imputed for the (7) participants that had 
collected only one complete observation. The second ver-
sion describes the between-subject CV for each variable, and 
was calculated by first determining the mean value for each 
participant and then calculating the CV of those values. The 
third version describes the overall CV for each variable, and 
consisted of the CV of the full dataset without accounting 
for within- or between-subject differences.

Results

Of the 73 recruited participants, 63 collected at least one 
complete observation that included valid sleep, HRV and 
morning EMA data. The participation period per analyzed 
participant ranged from 1 to 57 days, with a median of 
44 days. During these periods, the analyzed participants 
collected complete data on 1 to 46 days, with a median of 
15 days. A total of 571 complete observations were ana-
lyzed. Due to training-related circumstances, the marines 
in training could temporarily not use their smartphones and 

1  Upon request during peer-review, the Standard Deviation of the NN 
intervals (SDNN) time domain HRV metric was also calculated and 
analyzed as an alternative to the rMSSD. SDNN during sleep was not 
found to be significantly associated with morning mental and physical 
fitness. For transparency, the findings of these additional alternative 
analyses are available in Online Appendix 1.
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thus collect data. The descriptive statistics for and intercor-
relations between the independent (HRV, TST and RHR) 
and dependent (EMA) items of the analyzed dataset are 
presented in Table 1. A strong (r = .77; p < .001) correlation 
between perceived mental and physical fitness was found.

Analysis 1: Perceived Physical Fitness

A two-step hierarchical linear mixed model for perceived 
physical fitness was created (Table 2). After controlling 
for TST and RHR, resting HRV during sleep was a statisti-
cally significant (p = .005) predictor of perceived physical 
fitness on the subsequent morning. Based on this find-
ing, participants reported a higher perceived physical fit-
ness on mornings after a sleep episode during which they 
also had a relatively high resting HRV. RHR significantly 
(p = .03) predicted perceived physical fitness in the control 
model (step 1), but not in the final model that also included 
HRV (step 2). Participants also tended (p = .10) to report 

a higher perceived physical fitness on mornings that fol-
lowed a sleep episode with a relatively high TST. The 
explained variance of the fixed effects in the full model 
that included HRV (step 2) increased with 1.2% to a total 
of 3.1% in comparison to the control only model that was 
based on TST and RHR (step 1). The combination of the 
fixed and random effects explained 57.7% of the variance 
in the control model and 58.9% of the full model.

Analysis 2: Perceived Mental Fitness

Another two-step hierarchical linear mixed model on per-
ceived mental fitness was created (Table 3). After con-
trolling for TST and RHR, resting HRV during sleep was 
not a statistically significant predictor of perceived mental 
fitness on the subsequent morning. TST was positively 
associated with perceived mental fitness (p = .04), as par-
ticipants reported a higher perceived mental fitness on 

Table 1   Descriptive statistics 
for and intercorrelations 
between the daily measurements 

N = 63, n = 571
TST total sleep time, RHR resting heart rate, lnrMSSD logarithmically transformed root mean square of the 
successive differences, a measure for heart rate variability (HRV)
***p < .001, **p < .01, *p < .05, ●p < .1

Variable Mean (SD) Correlation

1 2 3 4

1. TST (hours) 6.22 (1.90) –
2. RHR (beats per minute) 61.80 (8.88) − .09* –
3. lnrMSSD (milliseconds) 3.83 (0.40) − .03 − 64*** –
4. Perceived physical fitness (0–10) 7.84 (1.37) .04 .03 .01 –
5. Perceived mental fitness (0–10) 8.11 (1.27) .05 .10* − .08● .77***

Table 2   Hierarchical linear mixed model for perceived physical fit-
ness

N = 63, n = 571
TST total sleep time, RHR resting heart rate, HRV heart rate variability
*p < .05,  ●p < .1

Independent variable Perceived physical fitness

Step 1 Step 2

β β

Intercept − 0.053 − 0.087
TST 0.051 0.052●
RHR − 0.101* − 0.066
HRV 0.124*
Marginal R2 0.013 0.031
∆ Marginal R2 0.018
Conditional R2 0.577 0.589
∆ Conditional R2 0.012

Table 3   Hierarchical linear mixed model for perceived mental fitness

N = 63, n = 571
TST total sleep time, RHR resting heart rate, HRV heart rate variability
*p < .05

Independent variable Perceived mental fitness

Step 1 Step 2

β β

Intercept − 0.052 − 0.059
TST 0.057* 0.058*
RHR − 0.009 − 0.002
HRV 0.025
Marginal R2 0.004 0.004
∆ Marginal R2 0.000
Conditional R2 0.633 0.634
∆ Conditional R2 0.001
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mornings that followed a sleep episode with a relatively 
high TST. Only 0.4% of the variance could be explained 
by the fixed effects in the full model, whereas 63.4% of 
the variance was explained by the combination of the fixed 
and random effects.

Within‑Subject, Between‑Subject and Overall Coefficients 
of Variation

The within-subject, between-subject and overall CV for each 
predictor and outcome variable are visualized in Fig. 1. Two 
relevant observations can be made based on this data. First, 
participants reported consistently high scores on perceived 
mental and physical fitness (mean 7.84–8.11) with a limited 
tendency to also report low scores from time to time (SD 
1.27–1.37). A second observation is that for perceived men-
tal and physical fitness and particularly resting HRV, a rela-
tively low amount of within-subject variance was available 
in the data in comparison to the between-subject and overall 
variance. This combination of findings indicates that there 
was a relatively modest amount of within-subject variance 
available for both outcome measures as well as the central 
predictor, which may have contributed to the relatively low 
explained variance of the fixed effects (marginal R2) in rela-
tion to the explained variance of the combination of the fixed 
and random effects (conditional R2).

Discussion

This study aimed to explore to what extent wearable-meas-
ured resting heart rate variability (HRV) during sleep pre-
dicts the perceived mental and physical fitness of military 
personnel on the subsequent morning. After controlling 
for total sleep time (TST), resting HRV during sleep was 

a small but statistically significant predictor of perceived 
physical fitness, but not of perceived mental fitness. The 
current study yielded several insights that are relevant for 
future research on this topic. We will first provide a more 
in-depth interpretation of the findings and how they relate 
to prior research, then address strengths and limitations of 
this study, and finally provide recommendations for practice 
and future research.

Interpretation of the Results

Wearable-measured resting HRV during sleep was a statis-
tically significant positive predictor of perceived physical 
fitness on the subsequent morning. Although no prior studies 
utilizing a within-subject design to assess these relationships 
were identified, these results are in line with prior research 
that showed that between-subject differences in resting HRV 
are positively associated with cardiovascular fitness (Souza 
et al., 2021; Tomes et al., 2020) and negatively associated 
with overuse injuries (Gisselman et al., 2016; Lima-Borges 
et al., 2018; Williams et al., 2017) and pain perception (Forte 
et al., 2022). However, resting HRV explained only a small 
portion of the variance in perceived physical fitness (3.1% 
after controlling for TST and RHR).

Unlike hypothesized, wearable-measured resting HRV 
during sleep did not predict perceived mental fitness on the 
subsequent morning. To our knowledge, no prior studies 
have assessed the direct association between within-subject 
differences in resting HRV during sleep and perceived men-
tal fitness on the subsequent morning, but between-subject 
differences in resting HRV have been positively associated 
with emotion regulation (Holzman & Bridgett, 2017; Mather 
& Thayer, 2018) and resilience (An et al., 2020; Hourani 
et al., 2020). However, within-subject differences in resting 

Fig. 1   The coefficient of varia-
tion (CV) for the within-subject 
(left bar), between-subject (mid-
dle bar) and grand mean (right 
bar) version of each variable of 
the daily measurements
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HRV were recently found to buffer against the associations 
between stress and negative affect (da Estrela et al., 2021), 
as well as between demands and stress or stress and mental 
exhaustion (de Vries et al., 2021). It is therefore possible that 
despite not being directly associated to perceived mental fit-
ness in the current study, resting HRV could play a relevant 
role as a (psycho)physiological resource during appraisal 
and/or emotion regulation regardless.

In the current study, perceived mental and physical fitness 
were assessed via two items in a short EMA questionnaire 
and therefore represent the participant’s subjectively expe-
rienced mental and physical fitness rather than the underly-
ing objective capacities. This, combined with the finding 
that the items on perceived mental and physical fitness were 
strongly correlated (r = .77), means that the found associa-
tion between resting HRV and perceived physical fitness is 
reflective of a psychological state. Since psychological states 
can influence the perception of bodily sensations such as 
pain and vice versa (Loggia et al., 2008), the potential influ-
ence of the items on perceived mental and physical fitness 
may be bidirectional. Although both items can therefore be 
seen as different components of the perceived overall fitness 
that is assessed as a psychophysiological resource during 
appraisal, the current results suggest that resting HRV during 
sleep may be more related to the physical component of per-
ceived fitness rather than the perceived mental component.

The comparison of the CVs (Fig. 1) showed that there 
was a relatively low amount of within-subject variance in 
the two perceived fitness measures as well as the central 
predictor HRV in comparison to the between-subject and 
overall variance. Several possible explanations for this can 
be given. For instance, the participants collected data during 
a relatively short period (1–57 days: median 44 days). As a 
result, there were a relatively modest number of complete 
observations per participant that could be analyzed (1–46 
observations: median 15 observations). Since a lack of rel-
evant variance (e.g., floor or ceiling effects) can contribute 
to false negative conclusions (Šimkovic & Träuble, 2019), 
it is possible that this may have contributed to a potential 
underestimation of the strength of the associations and thus 
the low explained within-subject variance (marginal R2).

Finally, the results showed that RHR had a negative corre-
lation (r = -0.64; Table 1) with resting HRV and similar asso-
ciations with mental and physical fitness. Neither RHR were 
related to mental fitness, but both RHR (Table 3, step 1) and 
resting HRV (Table 3, step 2) were linked to physical fitness. 
However, physical fitness was less strongly associated with 
RHR than with resting HRV, which was the only significant 
predictor in the full model where both were included. This 
observation aligns with that of a recent large-scale study 
which showed that RHR and resting HRV have similar asso-
ciations to stress-related measures and concluded that resting 

HRV is a more sensitive but not specific marker of stress 
(Altini & Plews, 2021).

Strengths and Limitations

A strength of this study is that it was based on data that 
was collected in a real-life setting, optimizing the general-
izability of the findings. Furthermore, by utilizing an open-
source sleep detection algorithm and a publicly available 
IBI artefact filtering method, the methods were transpar-
ent and reproducible. For instance, the used sleep detec-
tion algorithm and IBI artefact filtering method could in 
future research or applications be combined with hardware 
of another manufacturer.

Despite these advantages, a potential downside of using a 
novel open-source sleep detection algorithm is that it may be 
less accurate than algorithms of commercial wearable manu-
facturers that have more resources available for research and 
development. In the current study, the measurement of rest-
ing HRV during sleep directly depends on the respective 
sleep detection algorithm to ensure that the collected inter-
beat-interval data is measured within the desired context. 
Potential inaccuracies in the sleep detection algorithm may 
therefore result in heart rate data of awake periods being 
included in the calculation of the resting HRV. Since motion 
artefacts are more likely to be present during awake periods, 
the accuracy of the HRV measurement may be indirectly 
affected by it. Potential inaccuracy in the detection of sleep 
and measurement of the related resting HRV may therefore 
have added error variance to the data, potentially leading to 
an underestimation of the strength of the associations that 
were tested. Another limitation of the current study was that 
a convenience sample was used where no data on the par-
ticipants’ age, gender, function or reasons for missing data 
or drop-outs could be logged due to privacy and security 
concerns related to the profession of this military personnel. 
Since this study primarily focused on short-term, within-
subject associations, this limitation did not impact the accu-
racy or relevance of the current results. However, as a result, 
no subgroup analyses could be performed to assess potential 
differences in the investigated associations among partici-
pants of different ages, gender of function groups. This also 
impacts the generalizability of the current findings, as it lim-
its potential extrapolation to similar populations.

Recommendations for Practice

This study presented relatively modest findings on associa-
tions between sleep, resting HRV and perceived mental and 
physical fitness. Although the found associations where 
relatively modest, the insights gained from this explora-
tion using novel methods can be used to guide future use 
in future research and practice and thus provide a relevant 
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contribution to the broader purpose of this body of knowl-
edge; to eventually provide individuals with relevant and 
timely feedback on their readiness to handle demands and 
cope with stress. This segment will therefore first reflect on 
how the current findings should be interpreted for practice, 
whereas the next segment will describe more detailed rec-
ommendations for future studies.

Wearable-measured resting HRV during sleep was posi-
tively associated with perceived physical fitness in the cur-
rent study, but explained only a small portion of its variance 
(3.1% after controlling for TST and RHR). Resting HRV 
during sleep should therefore not be seen as a potential 
replacement of perceived physical fitness, but as a comple-
ment to it. Prior studies showed that utilizing resting HRV 
measurements to guide training-related decision making 
can lead to positive outcomes in comparison to predefined 
training (Düking et al., 2021; Manresa-Rocamora et al., 
2021). Therefore, resting HRV during sleep may be useful 
as a complement to the perceived physical fitness to guide 
decision-making on the physical readiness of the respec-
tive individual on the following day. Within this context, a 
resting HRV that is relatively high for the individual’s own 
standards can be seen as a favorable sign of physical fitness, 
whereas a low resting HRV would reflect the opposite.

Based on the current results, resting HRV during sleep 
does not appear to be directly associated to the perceived 
mental fitness. However, recent studies showed that waking 
up with a relatively favorable (within-subject) resting HRV 
appears to buffer against the negative impact of demands 
and stress (da Estrela et al., 2021; de Vries et al., 2021). It is 
therefore possible that resting HRV has no or a limited direct 
association to perceived mental fitness, but does function as 
a psychophysiological resource that allows the individual to 
flexibly adapt to challenges and thus as a component of the 
underlying mental fitness itself. Future research is needed to 
better understand the potential role of resting HRV in this 
process of resilience.

Recommendations for Future Studies

Several recommendations for future studies on improving 
the accuracy of the sleep and related resting HRV meas-
ures, as well as how to assess the potential role of resting 
HRV as a measure of (perceived) fitness. The capacity of 
wearable technology to detect sleep affects the accuracy of 
the resting HRV measurements that are automatically col-
lected within those periods. Three potentially promising 
approaches to measure resting HRV in a daily-life setting 
using consumer wearables can be considered by future stud-
ies. First, contributing to the development of open-source 
sleep detection algorithms and using more recent and opti-
mized iterations of them will result in optimally transparent 
and reproducible methods (van Hees et al., 2018). Another 

approach for studies in which full custody of the collected 
data is required is to utilize the sleep algorithms of the used 
wearable devices itself and load the aggregated data of the 
full sleep episode directly from the wearable. For the present 
study, only accelerometer and inter-beat-interval data were 
available, but the latest versions of the Garmin Health SDK 
now also allow the extraction of the sleep data as classified 
by Garmin’s sleep algorithm (Garmin, 2022), of which the 
validity has been studied (Chinoy et al., 2020; Mouritzen 
et al., 2020; Stone et al., 2020). Finally, studies in domains 
with more lenient data storage requirements can also con-
sider using consumer-available wearables that have been 
directly validated to accurately measure the resting HRV 
during sleep, such as the Oura ring (Cao et al., 2022; Kin-
nunen et al., 2020; Stone et al., 2021).

Besides optimizing the sleep and resting HRV measure-
ment of wearables, future studies can consider taking a dif-
ferent approach in determining how HRV may be associated 
with (perceived) mental or physical fitness. Two recent stud-
ies showed that within-subject differences in resting HRV 
had a moderating effect on the associations between stress 
and negative affect (da Estrela et al., 2021), as well as on 
demands and stress and stress and mental exhaustion (de 
Vries et al., 2021). This is consistent with the neurovisceral 
integration model, which considers (vagally mediated) rest-
ing HRV itself to be an index of relatively optimal nervous 
system functioning to support adaptability to environmental 
demands (Thayer & Lane, 2000; Thayer et al., 2009). There-
fore, it is possible that wearable-measured resting HRV is 
not (strongly) correlated with perceived physical or men-
tal fitness as was found in this study, but does directly act 
as a psychophysiological resource during the processes of 
appraisal or emotion regulation and thus as a relevant but 
perhaps subconscious component of mental fitness. Future 
studies are therefore recommended to further explore this 
potentially direct role of resting HRV as a psychophysiologi-
cal resource on fitness or similar resilience-related outcomes 
on a within-subject level. Furthermore, the present study and 
discussed recent studies primarily assess within-day associa-
tions of resting HRV. Although this approach is important to 
better understand the short-term relationship of differences 
in resting HRV with these outcomes, studies assessing longi-
tudinal relationships are also needed to explore the potential 
impact of within-subject trends in resting HRV on a larger 
timeframe.

Finally, future research could further explore the mech-
anisms that were proposed in this article. For instance, by 
assessing how perceived measures of mental and physical 
fitness relate to objective observations of fitness, as well as 
general health and functioning, and if it can be improved 
through training. Although the short EMA-questionnaires 
that were used in this study are likely preferable for longer 
and more intensive (daily) data collection, future studies 
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with a different design could also consider using more 
detailed questionnaires, for instance (a subscale of) the 
recently introduced and validated Acute Readiness Moni-
toring Scale that also specifically differentiates between 
mental and physical readiness (Keegan et al., 2021). Future 
studies in target populations with less privacy-related limi-
tations should also include the analysis of whether the 
strength of these associations differs between individuals, 
for instance based on personal characteristics (e.g., age, 
gender, function-group).
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