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Summary

Today’s complexity of high-tech systems makes diagnosing system failures a tough
task for service engineers. Increasing product variability and fast market
introduction of new generation systems prohibit the expertise build-up that served
service engineers in the past. Traditionally, system knowledge is transferred to the
service organization through service manuals and training. This turns out to be
inadequate in the complex world with customers expecting high system
availability.

Our goal is to transfer design knowledge to the service organization in the form of
computational models such that the service engineer has an actionable tool to
assist them in their diagnostic task.

Major part of our research is to create these computational models in a
structured, scalable, and maintainable way that fits into the system development
way of working.

The basic idea is to
1. Define input/output behavior every component type used in the system,
both its normal behavior as well as for every failure mode. A prior
probability for every failure mode needs to be established.
2. Compose a system model with the component descriptions as building
blocks following the physical or functional structure of the system.
3. Define a set of tests (observations, measurements, service actions) that can
help in diagnosis.
Based on these description, we automatically create a computational diagnostic
model that can
1. List the most suspected components that have failed, including the
uncertainty associated with these hypotheses.
2. List the best tests that will increase the accuracy of the diagnosis the most,
i.e. reduce the uncertainty the most at the least cost and effort.
Iteratively feeding the test results into the model then iteratively leads to a
improved diagnosis until a service action is appropriate.

Next to the model, we developed a prototype service engineer oriented user
interface to convey the ideas and way of working.

This idea sounds easy and is certainly not new, but to apply this methodology in
practice has many pitfalls. Next to outlining the methodology in detail, in this
report we also describe our solutions to the stumbling blocks we came across
while applying the methodology on an industrial printer use case.
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0 Preamble

0.1 This reportin the grand scheme of things

This report describes the status of the Carefree project on diagnostics. The
Carefree project is a collaboration between Canon Production Printing and TNO-
ESI, as a use case within the Appl.Al research program at TNO.

End 2021 we published a similar report but as that was Canon confidential [1], we
decided to copy large parts of it verbatim, leaving out sensitive information, into
this report and add the 2022 progress where applicable. This way the reader
should be able to understanding the full picture on assisted root cause analysis
without having to refer to earlier work.

Although extensive, this report does not cover all the work done in 2022. The work
on performance degradation and failure prediction, as opposed to root cause
analysis of system failures, is document in two other reports: [2] for Canon internal
use and [3] publicly available. The work on discovering relationships between
printer usage and system errors from available machine data is documented in [4].

0.2 Why to read this document, or why not

This report tries to be self-contained in that it assumes little prior knowledge. It
discusses the technology, the approach, and implementation details. As such it is
quite a lengthy document. For more concise descriptions of the approach we
kindly refer to general publications such as [5] and [6].

0.3 What’s new?

Readers familiar with the 2021 report and interested in the 2022 specific progress
should focus on the following sections:

- Section 5.5.2 Multiple properties, taking advantage of the multiple-
variables-per-node feature of the Bayes Belief Network tool for generating
compact networks.

- Section 5.5.3 Property dependencies / Constraints, an extension to the
specification language that allows to define constraints on properties. This
improves the diagnostics because physically impossible situations are
removed from the hypothesis set.

- Section 5.6 Loops, where we implemented the loop handling approach
following up on earlier solution explorations.

- Section 5.7 Upstream effects, yet another way of dealing with upstream
effects such as a short-to-ground in an electrical circuit. The new approach
is more compositional.

- Section 5.10 and 6.8 Interventions. Following up on earlier investigations,
we implemented a solution that deals with interventions, i.e. actions that
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change the system in order to get more information and ultimately fix the
error.

Section 5.11 Diagnosing wrong inputs. A “failure” to get a desired result is
not necessarily caused by a component failure. It could be that an input is
different from the expected value. In this section we address diagnosing
wrong inputs.

Section 6.5.3 Decision networks, a research line in cooperation with our
academic partners in which we investigate using decision networks to
calculate the optimal test to do.
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1 Setting the stage

1.1 Background

This technical report describes the state as of the end 2022 of the “Carefree”
project, cooperation between Canon CPP and TNO-ESI. The purpose of the project
is to improve the service process so that

1. Service costs are reduced

2. System down time is reduced
The starting point is an existing system and the goal is to improve the service
process. Note that these objectives could also be obtained by increasing the
serviceability and/or diagnosability of the printer at design and manufacturing
time, but that is not the focus of this study.

1.2 Scope
1.2.1 Corrective, preventive, and predictive maintenance

Maintenance can be either corrective or preventive. Corrective maintenance is the
action to repair a broken or badly performing system while preventive
maintenance is taking service actions when the system is still functional.
Preventive maintenance has the big advantage that it can be planned. This is
beneficial for Canon but mostly for the customer because the unexpected system
down time will be lower. In preventive maintenance the maintenance interval is an
important steering parameter. When too small, maintenance costs and system
down time are too large, and for a too large interval the system will still suffer
from unscheduled down times and high repair costs. Typically the maintenance
interval is determined on time or usage indicators such as number of products
produced. When more sophisticated measurements are used, such as vibration
levels on bearings, preventive maintenance is usually called predictive
maintenance.

In this work we start with improving the corrective maintenance and extend
towards predictive maintenance. First we consider hard system down situations in
which the system is not functioning at all. We then extend towards performance
where the system is running but performing sub-par, and then towards prediction
where the system is still functioning according to specification.

This document reports on the first phase only. Work on performance and
prognosis is documented in [2] and [3].

Diagnosing Prognosing

Diagnosing

performance performance Work plan
system down . .
issues issues

) This report contents
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Although we start from diagnosing hard-system down situations, all design choices
are made with extension towards performance and prediction in mind.

1.2.2 Corrective maintenance steps

The time required for corrective maintenance can be broken down into several

Operational / Report Diagnose / Repair ) Startup QOperational

parts.

System down

This document

o  Qustorertrying torestart or repair
o Service desk availability

o  Free up service engineer
o Travel tocustomer

e Dagnosahility (eg unique error codes)
o  Engineer experience
e Supporting material (e.g technical service manual)

Repair

e  Spare part availability

o  Engineer conpetence

e  Serviceahility (eg conponent accessibility)
Sartup

e Reboating

e  Sahilizing (eg heating up to specific tenperature)

e Recalibration

o  Acceptancetest

Phases of corrective maintenance and some impact factors

In this work we focus on the time to diagnose and specifically the supporting
material. The intention is to provide a tool for the service engineer, regardless of
experience, to increase his efficiency.

Diagnosing efficiency is becoming important because of several trends:
- Increasing product variability makes it harder to gain experience on
specific systems
- Increasing product complexity makes diagnosing inherently harder
- Service is delegated to dealer organizations, effectively reducing engineer
experience

TNO PUBLIC
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The proposed approach here also helps in assessing and improving diagnosability
(briefly addressed in chapter 2) and increasing service engineer system
understanding (Explainable Al, briefly addressed in chapter 6) but that is not the
emphasis of the work presented here.

1.2.3  Remote diagnostics and Diagnosability

Remote diagnostics allows for an investigation before an on-site visit. This allows
for sending a prepared service engineer with the right spare parts to the site.

Diagnosability is a property of a system indicating how easy it is to diagnose the
system. Creating a system model as outlined in this report can aid in assessing the
diagnosability and e.g. assess the value of adding a particular sensor to increase
observability.

The techniques discussed in this report can be used for remote diagnostics and
diagnosability but these applications will not be discussed in detail.

1.2.4 Use case

The method described in this report is developed based on the Paper Input
Module (PIM) of professional printers developed by Canon. However, we try to
ensure that the method is applicable to (high tech) systems in general. With few
exceptions, all examples in this report illustrating the method are based on every-
day simple “machines” and can be understood with common understanding, not
requiring specific printer design knowledge.
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2 Method overview

In this chapter we will give an overview of the proposed way of working for
diagnoses. Individual aspects will be address in subsequent chapters.

2.1 Current way of working

In short, the typical current way of working is as follows:

Failure Mode Effect Analysis (FMEA)

Fault Trees

Service manual

Figure 1 Overview of the typical current way of working

1. After the initial system design, the subsystem design team is assembled in
an FMEA-session (Failure Mode Effects Analysis). Its purpose is to identify
potential problems and decide, if considered needed, on a mitigation such
as redesign or a way for the service engineer to detect and repair the
problem. The process is guided by a table (either in Excel or Word) that
also captures the result of the session.

2. Based on the FMEA outcome, a technical service manual is written that
captures the detect-and-repair tactic. This is not an easy task since
multiple failure modes map to the same detection (error code) and it is
not clear how a failure mode can be resolved.
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2.2 Proposed way of working
Component library Structural / functional model
e e

=
A

Computational model

Diagnostic tool

Figure 2 Overview of proposed way of working

The proposed way of working centers around a computational diagnostic model.
With such a model, supporting tools can:

At design time
1. Capture failure modes and effects in a structured way. System designers
are guided to think about the consequences of known component failure
modes.
2. Assess diagnosability, i.e. assess which failure modes are indistinguishable,
or provide a metric indicating the level of diagnosability.
At service time
3. During root cause analysis present the most likely root-causes.
4. Suggest the most cost-effective next test to do for further diagnosis.

Instead of building a fixed step-wise procedure or decision tree upfront, the
diagnostic tool will interactively suggest the best test to do and use the results for
the next step.

The diagnostic model is constructed in 3 step approach:

1. From existing technical information such as design models or technical
drawing, create a first model version. Depending on source of information
this can be partially automated.

2. Manually augment model to a full diagnostic model

3. Assess component prior failure probabilities from operation, reliability
figures, or expert judgement

TNO PUBLIC
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Engineering models and

drawings
N
® >
e 7\
.'h Knowledge capture Orakt (e Doghk et

System designer

Diagnostic model

Operational printer

Figure 3 Three different sources of information are fused into the diagnostic model

To give an idea on how this looks like we will quickly show some of early
prototypes we developed thus far.

Design tool to build a system description:

Hierarchical view

Component with =
] Component
gL connection
outputs =

Figure 4 Hierarchical view that resembles system composition. Shown is a part of a printer paper input
module (PIM) that contains a tray which in turn contains a sensor, a motor, a lift table, and
another sensor. Details in chapter 5.

Service tool for interactive root cause analysis:

Figure 5 shows a screenshot of a prototype of such a tool demonstrating the
principles.

TNO PUBLIC
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Diagnostics

Observation triggering
Clear evidence
the diagnosis B3

Problem

Error Tray 3: Sheet Hypotheses ordered
Suggested testsin order by probability
of relevance to reduce 7

Recommended tests—" uncertainty Suspected components

o o ue dotwn =] v 104350 Lift Motor v

Can move up E ly Motor v
Links to test execution
Can detect tray empty B pper Position communication -
procedure
Can go to down position 8 pr command g
Mator can turn correctly a8 v
Error Tray 3: Sheet not delivered in time x

Known facts

Figure 5 Prototype service interface demonstrating the principles. Details in chapter 6.

TNO PUBLIC
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3 Bayesian Belief Networks

The core reasoning engine of the diagnostic tool is a Bayesian Belief Network
(Pearl, 1988), often referred to as Bayes Net (BN). In this chapter we will describe
the fundamental working of BN’s necessary to understand the rest of the report.
Readers familiar with Bayes Nets can skip this chapter.

3.1 Notation and probabilistic rules

As Bayesian Belief Networks are based on probability theory, we will introduce the
basic concepts and the notation used in the remainder of this chapter.

We denote random variables by capital letters (4, B) and their possible values by
small letters (a4, a,, b1, b,). The probability that variable A has value a; is then
P(A = a,y), or, if the exact value of A does not matter abbreviated to P(4).

The joint probability, i.e. the probability that A = a; and B = b, is then P(A =
aq,B = by) or P(4, B) in short.

If we know the joint probability, i.e. the probability of all possible combinations of

all variables, we can compute the probability of a variable by marginalizing or
summing out:

P(A) =) P(A.B =h)
b

This looks easy enough, but if there are more variables this quicky becomes

intractable:
P(4) = ZZ---EP(A,B —bC=c,,Z=2)
b c z

And typically we need to calculate this for every variable. The Bayes Net tools take
into account the independence between variables to use smart algorithms that
calculate these numbers efficiently.

The conditional probability, i.e. the probability that A=al given that B=b1 is written
as P(A = a, | B = by) or P(A|B) in short. The conditional probability is defined as

P(A,B)

P(A|B) = P(B)

When we reverse the roles of A and B and noting that P(4,B) = P(B,A) we can
derive Bayes Rule:
P(B|A)P(4)

PUIB) = =5
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which gives the Bayes Nets their name.

3.2  Principles

Bayesian Belief Networks (BN) are used to represent the uncertainty of the world
by using probabilities. In general, describing a full joint probability, i.e. define the
probability for every possible value combination for all variables, is very difficult
and computationally intractable. BN’s make this possible by explicitly describing
probabilistic dependencies between the variables and smart algorithms to reason.

In a BN, an edge between two nodes indicates that the two variables are
conditionally dependent, and, more importantly, a missing edge means that the
two variables are conditionally independent. The latter is key to the practical
applicability of probabilistic reasoning.

Formally, if a BN has variables X; ... X;,, then P(Xy, X5, ..., X)) = Xi P(X; | pa(X;)

where pa(X;) is the set of parents of X;. The product of conditional probabilities is
in general much easier to define and calculate than the full joint probability, but it

does require explicit independence assumptions on the domain.

Example:
Suppose we have a fan consisting of a motor with a blade connected with an axle.

We say that correct working of the fan is determined by the correct working of the
motor, the axle, as well as the blades.

Blades
Figure 6 System used in the example is a fan Figure 7 Model of the fan system showing that the
consisting of a motor, blades, and an axle condition, or health of the fan depends on the
connecting the motor to the blades condition of the Motor, the Axle, and the Blades.

These three conditions are independent.

We assume that a component is either working normally, or is completely broken.
So, the component variables have two possible values, typically called states:
“normal” and “broken”.

Failure modes
In this work we typically model a canponent with states“Normral” and “Broken’” if we are nat
interested in different failure modes. Failures modes will be discussed in chapter 5.

TNO PUBLIC
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A typical diagnostic question “if we observe that the fan does not function, what is
the probability that the motor is the culprit” then translates into calculating
P(motor = broken | fan = broken). The Bayesian Network can provide this
answer if we feed it with some numbers.

For the motor, axle and blades we provide prior probabilities. These are
independent of each other (according to this model). The condition of the fan as a
whole depends on motor, axle, and blade as depicted by the arrows, so we have to
provide the conditional probability of the fan, i.e. P(fan | motor, axle, blades).
In our approach, these conditional probability tables (CPT’s) are typically very
simple: typically only containing zeros and ones, effectively encoding a logical
“AND”-

Figure 8 Specification of the prior

probabilities of the component health

relation.
Motor = normal Y lotor = broken Y Y Axle Y Blades Y Fan = normal Y Fan=broken YT
099 0.01 normal norma normal 1 o
normal norma broken 0 1
Axle =normal ¥ |  Axle = broken Y normal broken norma 0 1
0.98 0,02 normal broken broken 0 1
broken norma norma 0 1
Blades = normal Y | Blades = broken Y ° °
broken norma broken 0 1
0,95 0,05
broken broken normal ) 1
broken broken broken o 1

Figure 9 Specification of the conditional probability table of the health of the Fan, given the

health of its constituent components. Here, the relation is deterministic (only 0's and 1's)

states in this example

TNO PUBLIC

Discrete vs Continuous

For ease of explanation we only consider discrete variables In general, continuous variables
can also be modelled in Bayesian Networks: Continuous variables are assumed to be normal
distributed, or a mixture of Gaussian distributions, and cannat be the parent of discrete nodes
Continuous variables can always be discretized, thereby approxinating the probability density
function

To reason with this model we provide it with some evidence, e.g. we observe that
the fan does not function. We illustrate this using a tool called Bayes Server. See
appendix A for a discussion on tools.

Scenario 1: No evidence.

Here we modelled the system as a Bayes Net, and did not provide evidence yet,
that is, we do not have any information of the components or of the working of
the fan as a whole. The node “Fan” shows the probability of the fan system being
broken, calculated based on the prior probabilities of the component failures and
its conditional probability table.
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Motar

normal [ 0v00%

broken 1.00%

Axle Fan

rormal [ =200 _ romal M 27
broken 200% broken | 753%
<) A D V] & O

Blades
normal [ 93 00%

broken 500%

Figure 10  Probability of being broken for every component and the Fan as a whole. Numbers are
specified in the tables as shown in Figure 8 and Figure 9.

Scenario 2: Fan does not function.

Suppose we know that the fan is broken, e.g. we do not feel the air flow. What is
wrong?

We add the observation that the fan is broken as evidence in the network. As a
result, the network will recalculate the probabilities of all other nodes in the
network, the so-called belief update or inference.

Moter

normal [ STz
broken I 1277%
o k.
o
Axle Fan
normal I | Ta4s% _| nomal 0.00%
broken [l 25 54% | broken [N 1vooox v |

< [ ) 5 <) ] [0) ) B
7 o

Blades
romal [l 36.15%
braken - 63.85%

gl

Figure 11  Inserting evidence that the fan is broken (checkmark in the Fan node) changes the
probabilities of the components being broken

From the network we can see that the probability of failure of the motor, axle, and
fan increased. In particular we see that the Blades are the most likely component
to have failed.

Noisy-OR

The scenario sketched here is so conmron that many tools support this by so-called Noisy-0R
nodes This greatly eases specification of the CPT and allows for belief update tricks so that
even nodes with hundreds of parents can be handled with ease
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Scenario 3: Fan does not function but motor spins.

Let us assume that the fan does not move the air but we can clearly hear the
motor spinning. So, we have additional evidence that the motor is working
correctly.

8]
Motor
- romal [ 10000% v
| broken 0003 B
s ® b O
(u}

Axle Fan

roma I | 7101 _ ramal 0.00%

broken l 23.00% broken N 100.00%
< (Alis) 7] o nl 0

Blades

normal M 2754%

broken - T2A6%
ml=lE

Figure 12 When adding evidence that the Motor is fine, probability of failure of the other components
increases

After the belief update, we see that the probability of failure of the other
components increases.

Note that although the failure probability of motor and blades were independent,
by adding evidence they have become dependent: if we now would decrease the
probability that the motor failed, the probability of the blades failing would go up
(intuitively: something must be wrong!)

Explaining away
The scenario described above is conmonly referred to as explaining avey: if one causeis
ruled out, other causes for the observed effect become more likely.
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P(cause, effect) = | P(cause)- P(effect|cause)

TNO PUBLIC

Scenario 4: Motor functions correctly.

Motor
normal [N 100.00% o

broken 0.00%
[«] 6 =] & [

=N
Axle Fan
normal [ o=00% | rorma T 010

broken 2.00% broken | 6.90%
FEMNE ME®BEE

Blades

normal - 95.00%

proken | 5005

Figure 13  When the Motor is fine, the probability that the fan is broken decreases. This is to illustrate
forward reasoning, compared to backward reasoning in previous scenarios. Bayes Nets can
handle evidence at root nodes, leaf nodes, or nodes in the middle.

It is important to understand that the arrows do not indicate the direction in which
information flows. Bayesian Networks can be used to reason in all directions. Any
node can be fed with evidence and all other nodes will be updated accordingly.
The direction does play a role when several nodes are connected, as explained in
the next section.

Soft evidence
One can even provide evidence that is not 100% certain, the so-called soft evidence We will
nat discuss that in this introduction

3.3 Causal Networks

If we have a cause and an effect that we want to model as a Bayes Net, we have
two options, as shown in Figure 14. Probabilistically these models are equivalent,
as we can easily prove using basic probability theory
P(cause,effect) = P(cause | effect) - P(effect)
= P(effect|cause) - P(cause)

=== ——————

I}
1

F—————————

P(causel|effect) - P(effect)

Figure 14 Two equivalent networks
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In practice there is a difference since in general it is easier to estimate prior
probability of a cause and how the effect is related to the cause than the other
way around. But, there is no fundamental difference.

If we expand this network to 3 nodes A,B, and C, then some networks equal (in the
sense that they represent the same joint probability distribution) while others are
not. See Figure 15. The network on the right represents a different world.

Figure 15 Four different ways to build a network of three variables. Three of them are equivalent, the
fourth is not

When networks become larger, it becomes increasingly difficult to model the
world as intended. To verify correctness one would have to add different sets of
evidences throughout the network and verify the effect on the other nodes.
However, as a rule of thumb one can say that if you always add arrows from cause
to effect, then the network will behave as expected. Such a network is a causal
network?.

Causal networks have an additional advantage that we will exploit when we talk
about tests: they can deal with interventions, i.e., they behave correctly when we
actively change something in the system. This could be used to obtain more
information, or to explore what-if scenarios. Refer to section 5.10 where we deal
with interventions.

3.4 Building a model

To build a Bayesian Network the following steps are required:
1. Define variables
2. Define states of all variables (and the discretization if the value is
continuous)
3. Define network structure
4. Define probability tables

In general, all of these steps can be learned from data or done by hand using
domain knowledge.

1 One could also systematically draw arrows from effect to causes. That would lead to a diagnostic
network. But as stated in the text, the probabilities to be specified in such a network are in general hard to
obtain.

TNO PUBLIC
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3.4.1 Learning from data

In the ideal world, one would like to generate a model by just providing it with
data. Unfortunately, there currently are some limitations.

Step 4, learning probability tables, is a common technique but gets more difficult if
more variables are unobserved (latent variables). What is very well achievable is to
learn the prior probabilities of the component failures. Chapter 4 is dedicated to
that.

For step 3, aptly called structure learning, algorithms do exist but require a lot of
data, more than we typically have in diagnostic systems where failures are not
abundant. To find causal networks is even harder.

For steps 1 and 2 the algorithms are basically in a research stage and not readily
applicable.

3.4.2 Building by hand

Building a model by hand requires domain knowledge and good understanding of
the Bayesian modelling principles. A major downside of Bayes Nets and
corresponding tools is that they do not support composition or hierarchy, resulting
in very large flat networks. As we want to model an entire system up to
serviceable component level, and a system has thousands of serviceable
components, such model will have thousands of nodes. A flat model would be very
hard to build and maintain.

To make creating the models easier, we have devised a way of working that allows
system modeling in a compositional way and then to generate the (flat) Bayes Nets
automatically. Chapter 5 is devoted to that.
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4 Estimating component failure probabilities

One of the elements required to build the Bayes Nets is an estimation of the prior
probabilities of its variables, that can either be provided by knowledge experts,
extracted by historical data, if available, or a combination of the two.

In our specific use case the problem translates to calculate the failure probabilities
of different components of the Printer Input Module (PIM).

A first estimation of the prior failure probability can be obtained based on the visit
dataset. This dataset contains the log of all service visits, with reference to the
time of the visit and the serial number of the system, and a list of parts that have
been ordered by the operator concurrently to the visit. We stress the fact that the
dataset is filled in manually, and that it does not contain detailed information
about which component has been repaired or replaced during the service.

Furthermore, it is necessary to take into consideration that some of the parts
mentioned in the visit dataset can be used also for other components outside the
PIM.

The prior probabilities of a part failure are therefore calculated from the service
visit data according to the following steps. For each part:

e Compute the number of visits for which it was ordered;

e Retrieve on how many components in the PIM it is used;

e Retrieve on how many locations inside or outside the PIM it is used;

e Apply the ratio between [3] and [4] to estimate from [1] the number of visits in
which the part is replaced in a PIM component;

e Normalize the result of [4] to express it as a probability.

Other options to enrich the Bayes Net with data driven information have been

investigated:

e Linking the component failure probability to the presence of specific (series of)
errors.

e Linking the component failure probability to the way the system is used (e.g.
how frequently the printer switches between trays).

e Include in the Bayes Net information about media type, and how this impact
on the occurrence of certain errors.

The first direction has been explored mainly in 2020. By using the visit dataset
described above and a dataset containing all the logs of warnings and errors,
different models have been trained to predict which part was ordered given that
specific (pattern) of errors occurred. The success of this analysis has been very
limited, mainly because lot of relevant information is still not captured in any of
the available dataset. More details are presented in [7].

The second and third approach are currently being explored, by exploiting the data
available, describing the physical properties of the media used for each print.
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5 System Modeling

Building a Bayesian Belief Network by hand requires specific expertise and is error
prone. Additionally, BN’s do not have the hierarchy or composition, so
maintenance and reuse is very difficult.

Our approach is to enable a system designer to model the system in a friendly way,
supporting composition and reuse, and generate the BN automatically from that
model.

In this chapter we describe how this approach looks like.

5.1 Governing principles

To build a system model efficiently, we use the following approach:
1. Reuse component and subassembly models
e Theidea is to have a library of component models that can be
used to assemble a system model

2. Build according to the system structure

e Relatively easy

e Typically, structural models are available: think of electrical
diagrams, CAD drawings of mechanical structure, etcetera. These
models could be used to (partially) build the diagnostic models.

3. Use a compositional approach

e By using a compositional approach, the models remain
manageable. At the same time, this enables subassembly model
reuse across system variations and product families.

4. Use a functional description and composition where structural
composition is not applicable. Control loops are a typical example of this:
from the structure of a loop one cannot determine the behavior. As loops,
and especially control loops, are ubiquitous in high tech equipment, we
devote an entire section to them (section 5.6).

To illustrate the approach, and especially the difference between a structural and
a functional approach, we will use the fan example introduced in chapter 3.

5.2  Structural model

Note that the code and graphs in this document and particular in this chapter are used for the
feasibility study and are an inplementation detail. Final representations will be developed by
Canon developrent, fitting in their way-of-warking, e.g. in the MPS-based nodel based system
engineering framework
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For the structural model the steps are as follows:

- For a component we
o define the inputs and outputs
o define the failure modes
o define the relation between inputs and outputs for the normal

behavior and for every failure mode

- For an assembly we define
o the components that are part of the assembly
o how the components are connected (structurally)

For the fan, a model would then look like Figure 16.

Figure 16 Structure of the Fan assembly. The shaft of the Motor (output) is connected to the shaft of the
Blades (input) through an Axle.

The structural graph shows that the shaft of the motor is connected to the shaft of
the blades through an axle. Behavior of components such as the motor, axle, and
blades are defined in a library that is used in the assembly composition. Based on
the individual component behaviors in combination with the structural
description, the behavior of the assembly (fan in this example) is automatically
derived.

5.2.1 Behavior specification

To define the behavior of a component, one has to specify the input-output
relations for the component for its normal behavior and each of its failure modes.

Without a formal definition we introduce some terminology based on the example
above.

A component (Motor) has an input port (power) and an output port (shaft). Every
port has a modality associated with it. In the example the power port is associated
with Power. A modality has properties.

In the example, the motor has a power socket as input and a shaft as output and
transforms modality Power (capital P) into the modality Movement. Here we are
only interested in whether there is Power and Movement or not, so for both
entities we define the property “Present”, that can be Yes or No.

An example of the motor is shown in the tables in Figure 17 and Figure 18.
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Failure mode

NORMAL BROKEN Output port (Modality)
power (Power) shaft (Movement) power (Power) shaft (Movement)
Present Present Present Present —  [RILl
Yes Yes Yes No —

No No No No Property value

Figure 17 Table specifying the normal behavior of a motor. The Figure 18 Table specifying the general failure mode "broken".

shaft moves if and only if there is power supplied to the motor.  The shaft will not rotate, regardless of the power.

TNO PUBLIC

To elaborate on the behavior specification, let’s take a more complicated example.

Suppose we have an electrical heater that heats water flowing through when it
supplied with power.

Figure 19  Structure of a Heater component that increases water temperature when powered.

For the Power, we are only interested whether there is power or not, and for the
water we are interested in its flow rate (Low or High) and its temperature (Cold,
Warm, or Hot). The full specification for the normal behavior would then look like
Table 1 below.
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NORMAL
power (Power) inlet (Water) outlet (Water)
Present FlowRate | Temperature | FlowRate | Temperature
Yes Low Cold Low Warm
Yes Low Warm Low Hot
Yes Low Hot Low Hot
Yes High Cold High Warm
Yes High Warm High Hot
Yes High Hot High Hot
No Low Cold Low Cold
No Low Warm Low Warm
No Low Hot Low Hot
No High Cold High Cold
No High Warm High Warm
No High Hot High Hot
Table 1 Full specification of the heater in normal operating condition. For every input combination

(2x2x3=12 combinations) the corresponding output is specified.

In principle one should define the behavior for every input combination. For
components with many inputs or with input types that have many properties, or
properties that have many states, such a table would get very large and be
cumbersome to specify. In practice, a component will affect a limited number of
properties so the complexity of the specification can be reduced drastically. See
Table 2 for some ideas.

NORMAL
power (Power) inlet (Water) outlet (Water)
Present FlowRate | Temperature | FlowRate | Temperature
Yes * Cold inlet Warm
Yes * Warm Inlet Hot
Yes * Hot inlet Hot
No * * inlet Inlet
Table 2 Shortened specification of the same component. Here, * (star) means "don't care" and inlet

means that the value is identical to the value of the inlet input.

Other abbreviations that we use extensively in our modeling are the ELSE and
ALWAYS keywords.
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NORMAL
In1 (X) In2 (Y) In (2) out (X)
Present Present Present Present
Yes Yes Yes Yes
ELSE No
Table 3 Use of the ELSE keyword. Many times a component only has a successful output if all of its
inputs are present (AND relation). In all other cases the component cannot do its function.
BROKEN
In1 (X) In2 (Y) In (2) | out (X)
Present Present Present Present
ALWAYS | No
Table 4 Use of the ALWAYS keyword. This is often used for failure modes where there is never an

output, regardless of inputs. Note that this could also be expressed by using * (don't care) for
every input.

5.2.2 Specification language

For practical purposes we need tooling that allows to quickly specify a system,
supporting both the structure (graph like) and behavior rules (table like). Most
important, however, is that it fits the systems designers way of working and ideally
merges with the (model-based) development tooling already in use. For our proof
of concept we specify the structure graph and behavior tables in the Python
programming language as an internal domain specific language.

Important aspects of the specification language is that it allows for instantiations
and composition. E.g. we can define a Tray with all its components and then define
a Paper Input Module that has 4 trays by instantiating 4 trays.

5.2.3 Translation to Bayes Net

From a structural model we use an automated process, implemented as Python
scripts for now, to generate a Bayes Net.

For every component we create nodes for the inputs and outputs and create a
node representing the components health.

The health nodes have the states “OK” denoting normal behavior, and an
additional state for each failure mode. As health nodes do not have parent nodes,
we have to specify the prior probabilities. These probabilities can be obtained
from generic reliability information (“Motors of this brand have 0.01% failure
probability”), from historic data (“transport belt motors have 0.02% probability of
failure”), or even user specific data (“This motor in this printer is used in heavy
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load situations and therefore has 0.05% probability of failure”). Chapter 4 is
devoted to this subject.

Health.Motor

OK B oosox
broken 0.50%

<] EH &) O

Figure 20  Health node of the Motor component in the Bayes net. Here, the Motor has one generic
failure state "broken".

The outputs causally depend on the inputs and the health of the component, so
links are added from the input nodes and the health node to all output nodes.

[ Health.Motor

[0].4
braken
T,
) PN
present.power.Motor 1 ] moving.shaft.Motor |
yes o yes
no o
R B T,

Figure 21  Nodes of the Motor component. The output node has the input node and the health node as
parents.

The conditional probability table is created according to the component’s input-
output relation table. Note that because of the deterministic relationship between
the nodes, the conditional probability table only has 0’s and 1’s. In general CPT’s
can have any probability values describing probabilistic behavior.

present.powerMotor Y Health.Motor Y moving.shaftMotor =yes Y moving.shaftMotor=no A Y
yes CK 1 0
yes broken (] 1
na CK (] 1
na broken (] 1

Figure 22 Conditional probability table of the Shaft output node, i.e. P(moving.shaft.Motor |
present.power.Motor, Health.Motor)

The output node of a component is then linked to the input node of another
component representing the connection between them. But as connections can
also fail (a wire can get disconnected, an axle can break), an additional Health
node is introduced representing the failure modes of the connection.

TNO PUBLIC




TNO PUBLIC

TNO PUBLIC

| TNO report | | 1.0 | 10 January 2023 29/ 82

Health.Motor [ Health axle connecting M... [l Health.Blades [
oK B oo oK B o0 oK B oo
broken 0505 braken 0.10% braken 0.20%
<) [ ) (6 7 [ ) B 7 [ ) B
present.power.Motor 1] moving.shaft.Motor | moving.shaft.Blades | present.air outletBlades [l
yes B o000 - yes oo | ves oo _ yes B oo
no C.00% no 0.50% no 0.60% no 0.80%

4 | b O v h D ¥ h O " h O

Figure 23 Bayes net generated from the structural definition of the fan. The shaft of the motor is
connected to the shaft of the Blades but as that connection (an axle) can fail too, a node for
the health of the axle is added.

5.3 Functional model

In contrast to the structural model, the functional model takes a functional
decomposition as starting point. Figure 24 shows a somewhat contrived example.
Instead of following the sequential causal steps of energy transportation, the
functional model has a parallel structure where the function to blow air depends
on three different subfunctions, each realized by a component.

=] Fan
(i &
[ can create rotation ] can transport rotation ] [ can move air ]
\ ‘F /
[ can blow air ]

Figure 24  Functional view of the Fan. Components provide a function, the fan needs all functions to
work correctly.

Functions, here also referred to as capabilities, do not indicate that the function is
actually active. In the example, although the Fan can blow air, it needs power to
actually blow air. This is depicted in Figure 25, where it shows that there is only air
if there is power and the fan is capable of doing its functions. This connects
functions to actual observations.
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[=] Fan
{ can create rotation } { can transport rotation ] [ can move air ]

T

- i

Figure 25 Fan functional model including actuals

Note that it is a design decision to exclude the power from the motor capability.
Here power is considered exogenous to the fan.

5.3.1 Translation to Bayes nets

Translating a functional model to a Bayesian belief network is relatively
straightforward: the required subfunctions are parent nodes to a function node,
typically in a deterministic “and”-function: the function is only active if and only if
all its subfunctions are active.

5.4 Comparison structural versus functional modeling

In the previous sections we presented two different modeling approaches:
structural and functional. Here we will compare the two approaches.

5.4.1 Structural approach

The structural approach has the big advantage that one can take the physical
layout and almost one-on-one model the system by connecting the component
models according to this layout. If the physical layout is available in some sort of
formal description, such as standardized electrical schema or CAD drawing, this
can even be (partly) automated.

Another advantage of the structural modeling is that the inputs and outputs of the
components are directly observable (measurable). Connection to data (such as
logging) is relatively easy because data are measurements on physical entities that
have a one-on-one mapping to the structural model elements.

Major limitation of the structural approach is that it does not work for loops,
including control loops. To solve that we need additional abstraction mechanism
that is explained in the next section.
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Another disadvantage is that is it more difficult (compared to the functional
models) to associate tests with the model as tests typically test a particular
function.

5.4.2  Functional approach

The functional approach has the benefit of large modeling freedom. At the same
time this could be a disadvantage as it requires expertise to construct a model.
Although functional descriptions could help in constructing a model, these are
typically not exact enough to be easily converted in a model for diagnostics.
Human competence is important here. When functions are chosen wisely, the
connection to available tests is straightforward.

Inserting data from sensor readings such as functional logging into the functional
model is not trivial. To be able to use these data requires additional effort. Direct
observation for a functional model could be present in an event log if function
failures are logged. This requires a one-on-one relation between the definition of
functions in the model and the event log, something to consider in the functional
decomposition.

5.4.3 What to choose?

Our proposed strategy is: Use structural approach where possible, use functional
approach when needed. The best balance will emerge when we start modeling
bigger parts of the printer. Important is to understand that there is an option to
choose between them.

5.5 Property dependencies
5.5.1 Problem statement

In our modeling framework we reason about the properties of modalities. The
examples in this document are purposely simple and usually only consider a single
property for a modality but in general there are more.

This leads to the following complications:
1. The Bayes nets get very complicated because for every property we
generate a node.
2. Not all combinations of property values are possible. E.g. if there is no
water, then what is its temperature?

We address these issues in the following subsections.
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Although the Bayesian belief networks are not directly visible to end-users, for
understanding and debugging it is beneficial to have a Bayes net that follows the

system structure. See the straight forward system of Figure 27, consisting of three
components in series.

Figure 27

water inwvalvel
present.water inwalvel
yes [ | 50.00%

ne [ | 50.00%

temperature.water in.valvel

low | | 3333%
high | | 3333%
undefined . 3333%
HEEE
Health.valvel
oK I

stuck closed

stuck cpen

valvel

signal in.valvel [l |
present.signal in.valvel
yes B sooow
ne B soom
I E
water outvalvel 8 ]

present.water outvalvel
yes [ | 24.38%

ne Bl s

temperature.water out.valvel
low [ | 1652%
high [ | 16.58%
undefined - 66.33%

QK
leaking
bad insulation

pipe

water inwvalve2
present.water in.valve2
yes [ | 24.85%

ne | BEEEAEET

temperature.water in.valve2
low | 16.59%
high [ | 16.52%
undefined - 66.20%

A

| Healtn pipe connecting valvel.water o...[ 1 |

99.60%
0.10%
0.30%

H ] [5] [=]

Figure 26 Network with multiple variables per node.

valve2

Health.valve2

oK
stuck closed
stuck cpen

Example system of two valves connected through a pipe transporting water from left to right

signal in.valve2 [l |

presentsignal inwvalve2
yes B oo
ne B oo

= 5 Bl

water out.valve2 L}

present.water outvalve2
yes 1 12.36%

ne Bl e

temperature water out.valve2
low | 525%
high | 8.22%
undefired [ @333

e
A

e

0.50%
] ] [2] [

When interested in both the presence and temperature of water, we can model
both properties of the modality water as variables, but aggregate them in a single
node that represents water as in Figure 26.

5.5.3 Constraints

When “impossible” combinations are still possible in the model, the probabilistic
inference can give erroneous results. Consider the previous example when we
measure Low temperature at the output of Valve 2.
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signal invalvel L}

signal invalve2 [l |
present.signal in.valvel presentsignal invalve2
yes | R yes [ R
no 0.50% ne 050%
1) [ 21 ] 2
water invalvel L | water out.valvel ;| water invalve2 1 | water out.valve2 & |
present.water inwvalvel present.water outvalvel present.water in.valve2 presentwater out.valve2
yes [ | 50.22% yes [ | 5022% yes || 5022% yes [ 50.22%
no [ ] 49.78% no [ | 4972% no [ | 49.78% na [ ] 49.78%
temperature.water in.valvel temperature.water out.valvel ’ temperature.water in.valve2 i temperature.water out.valve2
low B o low I serow low I o000k low B 0000% v
high 0.15% high 015% high 0.00% righ 0.00%
undefined 0.15% undefined 0.15% undefined 0.00% undefined 0.00%
H] o ] [2] [=] (] [EH] =] ] 2] [=] [] [E] B (W] [=] [=] [w] [E] [@] o] [ie] [=] <]
A i ' A
Vs
/
/
/
/- /
Health.valvel O Health pipe connecting valvel.water o..[ 1 [ Healthvalvez 0|
oK I 92.09% oK | ] 09.55% fol's | ] 02.09%
stuck closed 0o0% |ezking 0.00% stuck closed 0.00%
stuck open B _'_C 3“ L bad insulation 0.45% stuck cpen 1.01%
] [H] [ie] [2] [=]) 1 ) (] [2] [=] ] [ W [2] [

Figure 28  Network without constraints. Even though we measure a low temperature at the output, the
network infers that there could be no water.

Clearly, there must be water present throughout the whole system but
everywhere we see the possibility of no water being close to 50%.

To tackle these problems we introduce Constraints that can be applied to
properties. In this case we can specify that having water and an undefined

temperature is impossible, and that no water with Low or High temperature is
impossible.

Technically, in the resulting network the input nodes then get a prior probability
distribution that has zeros at the impossible combinations such as shown in Table

5.
temperature.water 'Y | present.water invalvel = ves W | presentwater invalvel =no YF
low . 0_333333333333333- 0
high . ﬂ,333333333333333- 0
undefined . ﬂ- 0,333333333333333
Table 5 Prior probability distribution of the water input node reflecting the fact that certain

water property combinations are impossible.

In the example, now with the constraints applied, the network correctly concludes
that measuring a low temperature at the output implies that there is water
everywhere in the system. See Figure 29.
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signal inwvalvel m
present.signal inwvalvel signal in.valve2 m
yes - 59.50% present.signal inwvalve2
no 0.50% ves - 99.50%
no 0.50%
] [H] =4 ] (=] =]
L] [F] [ [w] [] [=]
water invalvel m water out.valvel 8 | water in.valve2 8 | water outvalve2 m
presentwater invalvel presentwater outvalvel presentwater in.valve2 present.water outvalve2
ves B o000 yes 100.00% yes 100.00% yes 100.00%
no 0.00% no 0.00% no 0.00% no 0.00%
temperature.water in.valvel temperature.water outvalvel temperature.water in.valve2 temperature.water out.valve2
low o ow | R ow B oo aw BN 10000% (v
high 030% high 0.30% high 0.00% high 0.00%
undefined 0.:00% undefined 0.00% undefined 0.00% undefined 0.00%
A HRE (5] ) -+ i) (5] (=) EEIECIES (2] ] (9] - ] (2] (]
A " A
y. r
Iy
/
// /
s
/ /
Health.valvel (] Health pipe connecting valvelwater o...[ 1 Health.valve2 [l
oK I o oK I oo oK o
stuck closed 0.00% eaking 0.00% stuck closed 0.00%
stuck open 101% bad insulation 0.60% stuck open 1.01%
] [H] ] [=] ] ] [H] [i] [=] =] [] [H] W) 5] [5]
Figure 29  Network with constraints applied correctly infers that low temperature at the
output implies water everywhere.
5.6 Loops
5.6.1 Problem statement

In many situations we have a choice between structural and functional modeling.
Structural modeling has the advantage of strong correspondence with the system
structure, so existing design documentation can be used as starting point for such
model. However, there is one particular area we encountered during our
investigation in which structural models have shortcomings and that is when there

are control loops.

The issue is that the direct translation from a structural model with a loop to a
Bayesian belief network as outlined in Section 5.2 will not work because a
Bayesian belief network cannot have loops, it is a directed acyclic graph.

5.6.2 Example

As an example we take a house heating system consisting of a furnace, a sensor

and a thermostat controlling a valve.
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Temperature
Controller sensor

setpomtw_____;%l}

fuel Furnace

Valve

Figure 30 Schematic of the house heating example

Whenever the furnace is burning, the temperature in the house rises and the
thermostat will close the valve causing the furnace to stop burning and as a
consequence the temperature will drop.

=i house

Figure 31 Structural model of house heating example with the loop clearly visible.
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not a directed acyclic graph and is therefore not a valid Bayes net.

5.6.3 Solution

Healthvalve
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ealth thermestat

Health wire connecting thermostat sig._[1
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Discannectzd

ShortToGrou.

oK
stuck clased £
stuck open

House heating generated "Bayes net" with the loop. The Bayes Server tool warns that this is

Key observation is that the loop only exists because we do not take time into
account. The seemingly obvious solution to model time explicitly will result in very
complex models. See Appendix C for some alternatives to the method described

here.

The solution is to first regard the loop as a single entity that eventually reaches a
stable situation. If diagnosis indicates that the loop has a fault, the components
that are part of the loop are further examined by breaking the loop.

Example

In the house heating example this approach would lead to the following structure:
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Designer

Tool

Designer

Designer

Designer

house heating

Figure 33 House heating loop represented as a single component

Note that the output of this loop component is “controlled temperature”. This
captures the fact that there is time involved. In particular this implies that if we
want to add evidence to this node, we will have to see if the temperature is indeed
“controlled”. This is more complicated than merely measuring a temperature. It
requires to see that if room temperature is below setpoint, then eventually the
temperature is stable. The exact meaning of “eventually” and “stable” depend on
the control loop characteristics.

The previous discussion centered around control loops as they are abundant in
mechatronics systems but the same principles apply to other loops such as coolant

fluid flowing in a loop through the system.

Steps

The approach is then described as follows:

Construct model by connecting primitive components according to system
description.

Check for loops. When a loop is detected, the designer is warned that a loop
description is required.

Introduce a component that represents the loop with a higher level concept
describing the output of the loop.

Add behavior of this new component based on combination of failure modes of

every component in the original loop.

Connect inputs and outputs of the new component to the rest of the system.

Our prototype implementation now supports the infrastructure for these models
by introducing a “Super Component”, which captures the loop behavior as
described above. Validation of the method on real-world cases is still ongoing.

TNO PUBLIC
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5.7

5.7.1
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Upstream effects

Problem statement

The models discussed up to now assume that a failure mode only affects
components “down the chain”. However, this not always true. For example a
water pipe that is blocked at its exit, causes a pressure increase and flow decrease
at its entry. Another example is a short-to-ground failure mode in an electrical

circuit that will drain power from all components attached to the circuit. We will
use the latter example to explain how we handle such situations.

5.7.2 Example
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Figure 34 Example electrical system

In the example of Figure 34 , we have a Power Supply Unit (PSU) that is connected
to three components A, B, and C through the wires a-e. The wires are joined using
wire joints 1 and 2 and together form a cable tree.

If one of the wires, e.g. wire c would have a short to ground, all components,
including A, would stop functioning. This is different from a failure mode such as a
broken wire that would only affect components B and C in case wire c is broken, as
shown in Figure 35.

> < > g ok
TQ - |—>0
>os p——@ Lop o > s s L <
L 5 A > —>> A >
Figure 35 Failure modes of wire c. Left: short to ground that has an effect on components A,B, and C;

Right: broken that only effects components B and C.

To recall, for diagnosis, the structural description is translated into a Bayesian
Belief Network according to the following rules:
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1. Every wire gets its own “Health”-node representing the failure modes of a
wire: ok, broken, short to ground.

2. Every wire joint gets a “Health”-node just as every other system
component. The normal behavior is that when there power in its input,
both outputs have power and if there is no power on the input, neither
output has power.

Such a network, however, would not capture the correct behavior of a short-to-
ground failure of a wire as it would not propagate the error from that wire upward
the chain. In other words, the failure mode does not only causally change the
output of a wire, but also its input.

5.7.3 Solution

Extending the model with a short-to-ground can be done in different ways. Here,
we show the preferred way. For alternative solutions refer to Appendix B.

The basic principle is to introduce a node that captures upstream effects. In the
wire example we introduce an “Upstream short-to-ground” node. This node is
then an input to the node preceding it in the structural flow.

As a consequence, every node that has a Power output must now also specify its
behavior when the output experiences a short-to-ground from the following
component. See Table 6.

NORMAL
power in(Power) Power out Upstream Power out (Power)
(Power)
Present Effect Present
Yes Ok Yes
Yes Short No
No Ok No
No Short No
Table 6 Specification of the output given its inputs, including the input from the following component

Additionally, we now need to define the upstream behavior as a result of the
upstream effect of the following components. In the example of a wirejoint (see
figure below) this means that we need to define the wirejoint upstream effect
based on the upstream effects of its successors. See Table 7 for the Normal
situation.
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NORMAL
Output 1 upstream Output 2 upstream Input Upstream

Effect Effect Effect

Ok Ok Ok

Ok Short Short
Short Ok Short
Short Short Short

Table 7 Specification of the Upstream effect of the wirejoint

The generated Bayes net for a wire joint in its immediate environment then looks

like Figure 36.
wirgjoint Upstream [] wire2 Upstream =
ok I oo ok o
short 199% short 100%
IR [
¥ %000%
200%
100%
TEERE!
wirejoint Power Out 1 | | wire2 Power In n wire2 povlmp out ]
yes M oo > ves W | wor e B s
y no [ no W 5o o ]
Power provided wire1 Power Out [ ] wirejoint Power In -~ 2 B EE ) ) B DEE
yes 5000% | yes 4901 yes 5901%
W soo no W s | he W s
il S Gkl L EEEEASijoimponerons W
yes W oo
e R . ‘wire3 Upstream [
== ok B oo
short 1.00% Health wire3
AEEEBES o« B oo
disconnected | 9.00%
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wire3 power In [ ] wire3 Power Out
w00 s M
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Figure 36 Generated Bayes Net of a wirejoint splitting wirel into wire2 and wire3

The example shows a wire joint, that cannot fail, connected to two wires that can
fail by being disconnected or having a short to ground. It is constructed according
to the following principles:
1. Because a wire has a failure mode that causes an upstream effect, it
generated a node to that effect (see wire2 Upstream).
2. Because the wire joint is connected to something that has upstream
effects, all its output nodes take these upstream effects as parents.
3. And, it defines a node that captures the combination of upstream failures
to propagate this to the components upstream.

Note that although we do see many edges point in the backward direction, this
approach does not introduce cycles in the Bayes Net.

In a scenario when the is no power at the end of wire3 as shown in Figure 37. the
probability of having a short to ground failure of both wire3 and wire 2 increased.
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wirejoint Upstream a wire2 Upstream [ ]
ok ok I
short [ | short ] 81
olE EEEEEE | Health wire2 1
disconnected |
shont
wirjont sousrout1 M| wire2 Power in O N2 Powerowt M|
yes | s | ves | EEY
i no | 18.26% no [ | 2560%
Power provided wire1 Power Out | | wirejoint Power In [ ] 7 4] ] (6] ] | GE B O
yes I 00.00% /] | yes 1,745 o yes =
no 000% no 1 18.26% na 1
I EEREE EEEE Jircjoint poweroutz W
yes 8174%
o 1 1826% wire3 Upstream []
[v] [ & [2] T ok [ | 90.83%
; short 1 917% | Health wire3 ]
VS W B ok | 826%
giscennected [ 257%
short . | a;nﬂ B
YEHWBEE
WI;E) Power In wire3 PG‘WEI out n
yes [ | Ay
Figure 37  Wirejoint scenario where we observe no power at the output of wire 3 (A). This increases the
probability of a short to ground in wire 3 (B) as well as wire 2 (C).
In a scenario where we know wire3 has a short to ground failure, we know for sure
there is no power at the output of wire2 and the short to ground failure is
propagated to the inputs of the wire joint (output of wirel). See Figure 38.
wirejoint Upstream ] wire2 Upstream L)
ok 0.00% ok o0
F short . oo || short 1.00%
FEAND EHE R G e | Health wire2
R ok oo
disconnected || 9.00%
short 100%
':’:lmmwuwéroul!:wa [ I \t\:z Powier In - [ ] »::':2 Power Out . ] E
o [ "o I 100003 ~ e I 100.00%
| Power provided wirel Power Out [ ] wirejoint Power In [ 7 [ Il (8] [ €] [ B YA E D
yes N o000k v | yes 000% L yes x - -
e no I 10000 no
GRECIEIS L EEE A ot Powerou!?‘ []
‘f w.re;upsnéam | |
ok 000% -
short B oo Health wire3
L Gl=l=] [ ok
disconnected
short
wire3 Power In | |
yes 000%
no I 10000k
(1 i (& [
Figure 38  Wirejoint scenario where we know wire3 has a short to ground failure (D). As a result, there can be no

power at the other output (E), and the short-to-ground effect is propagated upstream to earlier

components in the chain (F).

Currently (end 2022), this way of working is not yet supported by our prototype
modelling language and tools. However, we have considered multiple design and
implementation issues that could arise. For one, the upstream nodes in the
previous example look to have a failure mode as state but this is actually incorrect.
What they describe is a property of the modality (in this case Power).

To further illustrate the approach let’s look at a more complicated example of an
electrical driven water valve that has an indicator light output.
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Schematic of a powered water valve with indicator light

Power ir

Figure 39

In this example if power is provided to the valve, it will let the water pass through.
When powered, it can show that state through an LED connected to its power
output. If that light output has a short to ground, the valve closes and therefore
stops the flow of water.

To gently introduce the resulting Bayes Net, we first show how it looks like without
considering upstream behavior in Figure 40.

pipe health

ok B soo00x
blocked | 10.00%
=l
valve water in [ ] valve water out L] pipe water in | pipe water out i
yes W | so00% | yes [ | 22.50% | ves | 2250% | yes i 2025%
o B | soo no B 7rsox no | s no B s
7] 6 ] <] ] [ r M - 5 ) £
| valve health
ok B ook
blocked | 9.00%
short 1.00%
0
valve power In B wvalve power out [ | LED power in [ | LED light |
yes || 50.00% | yes [} 45.00% | ves [ | 45.00% | yes | | 44.55%
ne W | soo0% no W | sso0x no W o no W | s
«| (2] ) < (B ) ] [5] [ied - « e
LED health
ok I 000
short 1.00%
= ] [©
Figure 40  Bayes Net of the electrical valve example without considering upstream behavior
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To model the upstream behavior, we connect the upstream properties of the
component down the line (water pipe and LED in the example) to

1. All outputs of the previous component

2. The node that captures the upstream effect
Although the resulting Bayes Net looks complicated, it is can be generated
automatically according to the rules above. See Figure 41.
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Figure 41  Bayes Net of the electrical valve example including upstream behavior

Note that there is an asymmetry in the upstream effects between water and
power: a short in the power circuit causes an upstream water flow block, but a
water stream block does not cause an upstream power loss. This is not visible in

the picture but is specified in the conditional probability tables. Both scenarios are
shown in the figures below.
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ok | Y
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HEeREE LMl EEEDD EEEEE
// \\
A N
“i ~ > " B LED health ]
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ok 000% ok 0.00% B . A
) € ——— P ooocs
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Figure 42
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Scenario where a short in the LED (A) leads to a no water out situation (B) and a water blockage effect
upstream (C)
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Figure 43  In contrast to the previous scenario, a blocked pipe (D) does not cause the LED to go out (E) nor
cause an upstream power failure (F). Although the figure looks symmetrical, the behavior as
specified in the conditional probability tables is not.

Fuses, interlocks and other safety related components

Fuses, interlocks and other safety related components need special consideration.

Let us take a fuse as an example.

5.8.1 Multi-step diagnosis

When diagnosing a system without power, the cause might be a fuse that is blown.
However, this is probably not the root-cause of the failure: replacing the fuse is
not the solution. Although the fuse explains why several components are without
power, we are looking for an explanation of why the fuse was blown. The fuse is
both a cause and an effect. Root-cause analysis requires a “second why”-step.
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Component 1
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Component 2
no power

Component n
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Second “why” First “why” Observations

Figure 44 Diagnosing root cause where a safety component licked in is a two-step approach.

The general approach to finding the second why in these cases is to detach

components from the circuit and test. This is an intervention (system change, then
observe). Interventions are subject of section 5.10.

5.8.2 Bayesian Belief Network

The Bayesian Belief Network with two identical components connected to a single
fuse looks like Figure 45 (simplified, wires are not modelled).
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biown [ csox outputl
<) & yes 000%
® ~
N ~ |no B oo v
. — = <) [ (o) ) [B
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. 5
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7] [ (o] [l [ . <] [ & B -
\
~
.
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.
N -
™ ~
\
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N e
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\\\ no N cocoos:
\\\ [«] [ (o] ] [=
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Component? o
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Figure 45 Bayes net of two components connected to a single fuse. Depicted is the diagnostic scenario in

which power is provided but neither component produces output. See text for discussion.
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If power is provided but neither component produces output, the most likely
“component” that has failed is the Fuse (the alternative that both Components are
broken at the same time is possible but much less likely).

When the Fuse is verified to have blown, the next diagnostic step is to identify
which component has caused the short in the first place. As stated before, this will
typically require an intervention such as disconnecting one component and trying
to powerup the system with a fresh fuse.

Note the similarity with the upstream effect discussed in the previous section. The
difference is that here we regard the Fuse as a component, be it that its “failure” is
not independent but rather fully dependent on the components it protects?.

5.8.3 Conclusion

We can handle fuses and other safety related components using the approach we
developed so far. In practice this means that:
1. System designers can design their system in a natural way
2. The Bayes Net generating algorithm has to treat these componentsin a
special way

pfp> > Component 1

b U pe——pp  Fue @

- > Component 2

Figure 46  System specification of an electrical system of two components protected by a single fuse.
The specification resembles the system structure.

5.9 Modeling software

The diagnosis task is not to identify a particular bug in the software. We assume
the software is correct and does not deteriorate over time. What we do need is a
model of its (normal) behavior in order to diagnose the hardware components.

Up to now this report used small examples to illustrate the basic concepts. To
illustrate the modeling of software we will use part of the Paper Input Module as
example.

2 If a fuse or other safety device can fail itself then that would introduce another failure mode. The Bayes
net itself would not change.
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The printer behavior is not fully defined by its mechanical or electrical
components. The control software is an important part too. So, to describe system
behavior in order to diagnose when it misbehaves, a model of the software
behavior is required.

An example is shown in Figure 47 where a message if the tray is empty is based on
the status of two sensors, the Position Up sensor and the Tray Empty sensor. The
logic is captured in an Empty Tray Logic-component. When signaled, a message is
generated if the required computing resource is available. This computing resource
is provided by a physical component, in this case the CPU of the PBA Board. This
models the fact that if the PBA board fails, or has no power, there will be no Tray
Empty message.

Error message generated
based on sensor input
when computing resource
is available

Model of “Empty Tray”

notification logic.
Requires two sensor
inputs.

Tray Empty message is
shown when triggered by
the logic and computing
resource is available

Figure 47  Part of the PIM model showing how the sensors in a tray eventually lead to an error or
message on the user interface

5.9.1 Software modeling alternatives

Because a software function does not really have a physical location we have some
design freedom of where to locate it in the model. Taking the Tray Empty logic
example again, we could take
1. The structural view: the function runs on the PBA-board CPU and
therefore belongs to the PBA-board.
2. The functional view: it is part of the Tray (there is one instance for every
tray) so it belongs to the tray. Instantiating a PIM with multiple trays
would then automatically add the necessary functions.
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Although the second view sounds appealing, it has a serious drawback. If the cable
between sensor and PBA-board were broken, the first approach would correctly
deduct that the Tray Empty message cannot be displayed, while the second view
would not capture this.

5.9.2 Software modeling process

Up to now we have modeled the software behavior based on an understanding of
the behavior of actual software implementation. This in a way is inefficient as the
software itself is a formal description of the behavior. Other approaches could be
to either extract the rules from the software code itself (difficult), or tap into the
model based software engineering approach (when possible).

Rules i

Diagnostic model Source code

[ s 53 [ s -

Source code Diagnostic model Source code Diagnestic model

TR

Figure 48  Different ways of capturing software behavior in a diagnostic model. Left: manual analysis;
Middle: automatic extraction; Right: model based software engineering

5.10 Interventions
5.10.1 Do-operations

Interventions change the system or the environment in which it operates.
Examples include trying a different system function to see whether that works,
temporarily disconnecting a connector, and triggering a sensor by hand to see if at
least the sensory circuit works as expected.

Evidence obtained after an intervention cannot be treated the same way as we do
when merely observing additional facts. This is best illustrated with an example.

Re-using the Fan example of sections 3.2 and 5.2, where we diagnose the fact that
there is no wind. The additional observation that the motor shaft is rotating
indicates that the motor is OK and that power must be present. In contrast,
consider the test that we turn the motor shaft by hand (instead of using the
motor). If we now observe that there is no wind blowing, we obviously do not gain
information on the motor health or power status
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Figure 49  Compare the passive observation that the motor shaft is turning (top) versus the active
intervention of turning the motor shaft (bottom, with red checkmark). The probability of
having power and the health of the motor is different.

The intervention on a node does not change the marginal probabilities of its
parents. In the Bayes Server tool, interventions can be entered using the “do(...)"
evidence context menu. The terminology is based on the do-calculus coined by
Pearl (Pearl, 2000).

o o o ) Yy ) |
moving.shaft.Moter | moving.shaft.Blades [ | present.air outiet.Blades |
| yes - 100.00% [o; - — m— 0 L e B i0oo0x
1 ne oo | &= Edit Distribution(s).. oo | no — 1 000% .
¥ ) (o) ) [5)| Edit expression... il (5] <] [ [®] ] (8
5
Delete expression...
Format...
= Evidence... » Clear (moving.shaft.Motor)
= Edit states Softfvirtual (moving.shaft.Motor)...
Add » moving.shaft.Motor = yes
Remove variable moving.shaft.Motor = no
& Reverse link | | Do{moving.shaft Motor = yes)
#A  Find Do{maving.shaft Motor = na)
in
& Properties F4 Window..
& Query 3
K Delete Del

Figure 50  Context menu in Bayes Server to enter interventions

The notation here is P(Health motor | do(motor shaft moving), Air present)

If we do an intervention, or possibly multiple interventions, we need to combine
the information we have for each of these scenarios because a single scenario only
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provides one part of the puzzle. It is important to realize that doing an intervention
might change certain observations but we still need to take into account what we
observed before the intervention. Therefore, we cannot have just a single instance
of node for a certain phenomenon. The solution is to copy large part of the Bayes
Net to accommodate for every scenario.

5.10.2 Example

Suppose we have 3 electrical components C1, C2, C3, in a row. All components
must be OK for power to come out at the end.

Power0 Powerl | Powerz Power3
ves W | sooo%| || yes W | o ves W e || e W | s90%
no W | soo0% no W | sso% no | BBEE]S " no [ R
< [E W B E [ ) (5 (=] < [ il 5] =) 4|5 W (]
a = | [
oK B s000% oK B ssoos oK I czo0%

oroken | 0.00%

S oroken | 500% broken 2.00%

<] [ W (8] =] <) [ W (5]

Figure 51  Model of 3 electrical components in series

We know there is power at the input of C1 but we see no power at the output of

Power( Powerl PowerZ Power3
yes I o000 v | yes [ ] W | yes | 10.55% L wes 0.00%
no 0.00% e W s no | T no B o0k v
L ] (1 ] [ O - " o I (5
Il a c
oK | | 3831 i
oK | IECEES o%
broken - 81.65%
: oroken [l

30.85% broken

Figure 52 Scenario where there is power at the input but no power at the output

How can we diagnose which component is broken?

5.10.3 Extending the network

Suppose we can test what happens if we apply power (intervention!) to the input
of C2 and observe that now we do have power at the output. If we merely insert
the intervention we get the following result:

Power0 Powerl Power2 | Power3
yes I 100005 ves I 100003 [v] yes
no 0.00% no 0.00% Tne

<] [ [#] [ (7] ] [ [+ ] (5] 2] (£ ] [ ] (1] (o] in] 5

Figure 53  Scenario where we insert power in the middle if the network and observe power at the output. Note the
red checkmark indicating a do-operation. The incoming arrows are displayed in light gray color because
the do-operation effectively blocks the upstream information flow.
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We can conclude that C2 and C3 are OK, but the network tells us that the
probability of C1 being broken is only 10%. This is incorrect, because from the
previous scenario we know that at least one component must be broken, so in this
case the only explanation is that C1 is definitively broken.

To have the Bayes Net calculate this correctly we extend the network as shown
below. Because in both scenarios (with and without intervention) we are using the
same physical components and assume the health of these components do not
change between these scenarios, we reuse the health nodes of the components.

Power31

yes I ook v | ves 0% es 2.00% | yes 2.00%
no oo% no I roocox o I oo o00x ra I ook v
- LT L 7 1 )
[s]] {3 1
oK 00% oK I 1co00% o I o000
oroken [ 10000 oroken 0% ||| ooken n.00%
T W
Power011 Powerl1 Power211 Power31
V& B ook v yes I 1o000% [V " 0% § s B oo
no 00 o 0% .00% " 0.00%
K e W
Figure 54  Combing the two scenarios into a single network, with the component healths as connecting nodes

TNO PUBLIC

The top row shows the first scenario, the bottom row the second (with
intervention). Now, the network takes the information of both scenarios into
account and correctly concludes that C1 must be broken.

Note that because we duplicate the nodes we have the possibility to add different
observations for the same phenomenon. In this case we can express that we
observe no power at the output of C3 in scenario 1 while there is power in
scenario 2.

5.10.4 Replacing a component

Another type of intervention is to replace a specific component and then observe
the effect. We model this by (again) extending the network but in this case we also
“duplicate” the replaced component because it is in fact another item with its own
health. In the example we assume that the new component is 100% OK but this is
not required for the method to work.

Building on the previous example, assume that the first intervention of adding
power was not successful:
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We now have a high suspicion that either C2 or C3 is broken.
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happens if we replace C3. See Figure 56.
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Power21

Power21
| yes [ | 2e78%
na B e
Gl
(<1
oK Bl o
oroken [l 2800%
4 [ W
Power21
| yes [ | 7%
no Bl rzasx
]l e (B

Power31

- oooos ||| s

0.00% no

| [ il [5 216 ) (5]
7
@ Le]]
oK I 100005 oK 000%
brokan 0.00% oroken [ 1ov.00%
] () i (8] =) 7] [ [ (5]
Powerlll Power211
[res ol L e oo s
no 0.00% A no 0.00% no
<] [E] [#] [in] [5] ] [H] [ (2]
C31-replaced
oK I cocox v
broken 0.00%
2 [ @) [ B
N
™
N
y y .
Powerl1 Power2111
| ves I o000 yes I 000 | || | ves
no 0.00% no 0.00% no
) (1 ] (2] 2] [ ) @

=
Power31l

Power31

o YES

no

Power3T

J yes

no

52 /82

0.00%

B cooos v
<1 [ (@) & [

0oo%

I oo v

i [# & 5

Alternative scenario compared to Figure 55. Here we observe no power at the output after inserting

Let’s see what

0.00%

B o000 W

]

] (@] (] [5]

0.00%

B 1c000%

4 [

Power3111

o i) (5] =]

I 0000k W

7] [

0.00%

] [i] [5]

Adding information that replacing C3 solved the problem. The network concludes that C3 must have

In this scenario we do have power at the output so the network correctly infers
that C3 must have been broken and that C1 and C2 are OK.

Should we still have no power, as in the next figure, the most likely cause is C2

being broken.
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candidate. For discussion why see text in the next section.

5.10.5 Multiple faults
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Network when replacing C3 still did not solve the problem. Now C2 is by far the most likely

Note that we are not 100% sure because it could be, although less likely, that both
C1 and C3 are broken. This information cannot be understood immediately from
the picture above but can be obtained by looking at the joint probability
distribution P(C1, C2,C3) as shown in Table 8.

Table 8

c11 Y 21 Y| 1=0K Y| C31=broken Y
OK OK 0 0
OK broken 0,84971 0,017341
broken oK 0 0,036609
broken broken 0,094412 0,0019268

Joint probability distribution over the three components after at the end of three scenarios.

Example: the probability that C1 and C3 are broken and C2 is OK, is 0.036609 (last column,
second row from below).

5.10.6 Calculating the best intervention to do

Not only do we need to assess the information after an intervention, we also have
to determine which intervention is the best to do. This topic is addressed in

section 6.8.
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5.10.7 System inputs

In the previous sections we have not discussed if we should duplicate the nodes
that represent system inputs or not. The answer is: it depends.

1)

2)

3)

If we do not observe the inputs they are effectively part of the root cause
analysis (the system does not work because there is no power). In this case
we do not duplicate the input nodes, assuming that the input does not
change between interventions, just as we assume the component healths
do not change.

If we set an input (as an intervention) we duplicate the node, and set the

evidence accordingly using the “do-action”?.

If we observe an input, we do not duplicate the node and set the evidence.
This assumes that the input did not change between interventions. Even if
we observe an input in a later scenario, adding it as evidence then also
influences the beliefs in earlier scenarios.

5.10.8 Alternative: Posteriors as the new priors

Instead of extending the network we also considered an alternative approach: for
a new scenario we insert the posterior probabilities (the new beliefs after the
previous scenarios) as the prior probabilities. Intuitively this makes sense. E.g.
when we concluded in scenario 1 component C1 is OK we fix its state to being OK
in the next scenario. However, we encountered several cases in which this
approach yields the wrong outcome. See for example the next diagnostic scenario.

We have an all-in-one printer that can copy and print. Copying requires a scanner
component, printing requires an image processing component and both functions
require an ink jetter component.

3 Since by definition an input has no parents nodes, using do-action or setting regular observational
evidence is actually computational equivalent.
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Scanner
oK B ss00%
broken [ 5.00%
7] [ [ (B =
¥
Bitmap_copy
yEs . 47.50%
I no [
g .;. ._ h [ 1 ) B
Bitmap_print
7| yes W o5

no B soso%

[ Image Processor

oK I cco0x
broken 1.00%
] [E (5

Suppose we see that copying does not work.
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Figure 59  Scenario where we see that copying does not produce a sheet. Conclusion is that either
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Scanner or Ink jetter are likely failing

Modeling an all-in-one printer that can copy and print
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To further diagnose, we try the printing functionality. Suppose that printing
succeeds. We model that by carrying over the posteriors of the previous scenario
and add evidence that printing succeeds.
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Figure 60  Second scenario where printing succeeds. The Scanner health probability is still at the

TNO PUBLIC

probability from the previous scenario. Apparently, not all information from the previous is
carried over as we know the Scanner must be failing.

The network correctly infers that the image processor and ink jetter are OK but
fails to conclude that the scanner must be the failing component.

This example shows that although using the posteriors as the new priors transfers
knowledge from one scenario to the next, it does not transfer all available
knowledge.

5.10.9 Implementation consequences

Supporting interventions requires a change in the tool chain: instead of pre-
computing a single Bayes Net that is used at diagnostics time, we now have to
generate new Bayes Nets on the fly as interventions are planned and executed.

5.11 Diagnosing wrong inputs
5.11.1 Problem statement

In all examples up to now we assumed that all system inputs were known and are
correct. The only task left is then to diagnose a failing component.

In reality not all inputs are known and the reason for a system failure could be a
wrong input. The most obvious example is that there is simply no power provided
to the system, but in complex systems it is not at all obvious which inputs are
required for a specific system function.
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5.11.2 Solution

As a small example consider a water supply system that can provide hot or cold
water. Opening the valve will give water (if water is supplied) and pressing the
switch will activate the heater (if power is supplied).

0
power in @

Waterin —' Water out

Figure 61  Schematic of a system that can supply water, either hot or cold, depending on user
control settings

For model simplicity we leave out failing components and focus on the inputs.
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closed . 50.00%

GlEI=ITE
Figure 62  Bayesian Belief Network modeling the water supply system

If we observe that there is cold water coming out, the diagnosis depends on our
expectation:

TNO PUBLIC



TNO PUBLIC | TNO report | | 1.0 | 10 January 2023 58 / 82

1. If we expected no water, then we need to check the valve knob position
2. If we expected hot water, then we need to check the switch position as well as
the power input.

Thus, the “correct” diagnosis suggestion depends on our expectation.

To handle this in our diagnostic framework we make the users’ expectation on the
system explicit. First we set the expectation and then we provide the actual
situation. Then a diagnosis corresponds to the comparison between the actual
situation and the expected situation. This comparison can be done in the BN by
first setting the base evidence (expectation) and subsequently calculating for every
node either the difference in probability or the quotient (called /ift) given the
actual evidence.

- —_—

Comparison: [ -
Humg
Mone " i
Baze
Mone evidence (1] =
Difference
Lift

Figure 63  Setting base evidence and calculating deviation from the base by either Difference or
Lift in the Bayes Server tool.

Scenario 1: we expect no water, but we see cold water

Step 1: setting expected situation by indicating no water at the output and
capturing the results as base evidence.
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Figure 64  Setting the expectation "no water" on the output. This is then set as base evidence.
Step 2: setting cold water as observation and calculating the lift.
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Figure 65  Setting the observation "cold water" and calculate the lift (quotient) compared to the

previously set base evidence. Lifts larger than 1 (increase) are indicated with a yellow upward
pointing arrow.

TNO PUBLIC



TNO PUBLIC | TNO report | | 1.0 | 10 January 2023 60/ 82

We see that the lift (indicated by the arrows in Figure 65) is very high on the Valve
handle input. That is the input we should check first.

Scenario 2: we expect hot water, but we see cold water

Step 1: setting the expectation by indicating hot water at the output and capturing
the results as base evidence.

Power

yes I ioo00%
no 0.00%
[H] ] [2]
i
| switcn | wire
open 0.00% no power 0.00%
closed [ 100003 ~| power B cocox
Gl ) o el (8 |
. | output
= no water 0.00%
cold water 0.00%
__=»{ hot water P cooox v
L L] [H] [@] [ie] [©]
[ Water | pipe
yes I <o0.00% | o water 0.00%
no ooow | | | water B ocoox
AL GlEIERIEE
Walve handle
open B 1co00%
closed 0.00%
=1

Figure 66  Setting the expectation "how water" on the output. This is set as base evidence.

Step 2: setting cold water as observation and calculating the lift.
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Figure 67  Setting the observation "cold water" and calculating the lift. In contrast to scenario 1, now we
see that lift is very high in the power section of the model: either the switch is open or the
input power is not available.

Now we see that the lift is very high on the power switch and on the power input.
These are the items we need to check first. Although the evidence (cold water) is
the same in both scenarios, the outcomes are different because the expectation
was different.

5.11.3 Conclusion

By setting the expectation and calculating the difference or lift compared to the
base situation we can diagnose wrong or unknown inputs. This is not much
different from diagnosing component failures except that in that case we have the
implicit expectation that components are working correctly.

For inputs it is not obvious what is the right and what is the wrong input, as that
depends on the expected system function, and therefor has to be set explicitly.
This could be done by either explicitly indicate the correct value for every input, or
as we have shown in this section, to only set the expected outcome, and have the
model calculate the corresponding expected inputs.

This approach is not yet implemented in our diagnostics software.
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6 Service tool

The service tool is created from the model and supports the service engineer in
their diagnostic task.

6.1 Workflow

The workflow would be like this:

1. Optionally, the tool reads all available machine data and adds these
observations as evidence in the model
2. Service engineer selects the problem (observation as evidence, e.g. an
error code)
3. Tool calculates:
a. Which components are most likely to have failed, including
i. Confidence in this outcome
ii. Explains why these components are suspected to have
failed
b. Which inputs are important to know for a good diagnosis
c.  Which tests are the most valuable to do to get a better or more
specific diagnosis
4. Service engineer selects and executes a test and enters the outcome of the
test in the tool
5. Go to step 3, until the engineer decides to do a service action.

To illustrate these steps we developed a web-based prototype. See Figure 68.
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Figure 68  User interface showing the capabilities of the diagnostic tool for the service engineer. Starting
from the error message or at the top, the tool lists suspected components and suggests tests
for further diagnoses. Evidence entered is shown at the bottom

This chapter addresses the steps mentioned above in more detail.

6.2 Connecting to data

Machine data that is available can be automatically entered as evidence in the
Bayesian belief network. This supplies the tool with as much information as
possible that is available “for free”. Data can be sensor data or event data from the
event logs.

When setting up such an automated data pipeline there are two potential pitfalls:
Event processing

To correctly interpret the events logged in an event file it is important to
understand the event generating mechanism. As an example, a system process
might log its starts and ends with a JobStart and JobEnd events. However, if the
last job event in the event log is a JobStart, this does not mean that the system is
running a job. It could be that the system stopped processing the job due to an
error.

Sample frequency

Typically, sensors are sampled with a certain sample frequency. This means that at
any point in time you actually don’t know the current situation, only the situation
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at the last measurement. This can lead to a situation in which an effect can be
observed before the cause is observed. In a naive modeling approach, this will also
lead to inconsistent evidence or wrong diagnosis.

diagnosis

o O !
|
ek |
|
|

O—O

time —»

N 4

* temperature measurement

Figure 69  When doing diagnosis at the time indicated by the dashed line, we would conclude that the
temperature is low while the power is on (last known measurements), indicating a heater
problem. However, it could be that the temperature is low because the power went off and
therefore not a heater failure.

6.3 Observations and inputs

Typically, a diagnosis starts with the observed problem, such as an error message.
This observation is entered into the tool. Other “known” facts are also entered to
get the best possible diagnosis. This includes the model inputs (for systems
typically things like power supply: if the power plug is not connected to the wall
socket or the building electricity supply fails then the system will not work). If not
provided and relevant for the diagnoses, the test recommendation (see below) will
include a request to observe an input (“is the plug connected to the wall socket?”).

6.4 Hypotheses and explanation

At any point in time the service tool will list the most likely hypotheses for the root
cause. Showing multiple hypotheses (especially when their likelihoods are similar)
helps in understanding “what the tool is thinking”, can immediately trigger the
service engineer for either positive or negative conclusions, and helps in
understanding why certain tests are recommended (see next section).

In addition to a list of hypotheses the tool also shows the certainty of these
hypotheses. In the beginning of a diagnosis session the certainty will be low and
then gradually increase as the session progresses. How the uncertainty should be
conveyed to the user is still subject of research.

Providing an explanation with the failure hypotheses will
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1) increase the trust of the engineer in the tool
2) help the engineer in selecting the best next action
3) educate the engineer while doing diagnosis.

This is still subject to research on how to do this effectively. Current prototypes do
not yet have the explainability feature.

6.5 Test recommendation
6.5.1 Types of test

To further pinpoint the root cause, additional diagnosis steps are proposed.

These steps include:
- Add additional observations (probing)
- Make a change in the system and observe the result (intervention)

6.5.2 Value and cost of a test

The tool recommends the best actions to take based on its diagnostic value (how
much will the test result reduce the uncertainty in the diagnosis?) as well as the
amount of effort required to execute a test (checking an indicator light might be
much easier than using measurement equipment, although the latter could
provide more detailed information).

Technically, the reduction of uncertainty is based on some information theoretic
value such as the value of information of potential new evidence or entropy
reduction over a set of hypothesis. The amount of effort is encoded in a cost. The
tool will then determine the tests with high value of information and low cost. An
obvious way to include cost is to simply divide the expected entropy loss by the
cost, which would give us per test candidate the number of bits per Euro to rank
them but there might be better alternatives. This is part of the ongoing research.

FILE METWORK QUERY AMNALYSIS DATA VIEW
ink st disnlay: & oy & Entropy ~
5 ] ﬁ Link strength display: ”,1 % QT“ 4= ') = By
3% 2 e [ R B d 7 &
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information  inzight  analysis -

Optimize Impact Log-likelihood n-zample Retracted Sensitivity to  Parameter

o
@ Llink strength - - - - : - i i
— g analysis anmomalies  analysis evidence ¥ tuning @& Kullback Leibler divergence

Figure 70  Bayesian network tools provide analysis of networks, such as Value of Information (left) and
Entropy (right). Picture from Bayes Server.

As with the hypotheses, the tool recommends multiple actions sorted according to
its effectiveness for diagnoses.
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6.5.3 Decision networks

As an alternative to using entropy or other information-theoretic metric to

calculate the best test to do, we also investigated the use of decision networks for
this purpose.

Decision networks are an extension to Bayesian Belief Networks by adding
decision nodes and utility nodes in addition to the random variable nodes.
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Figure 71  Part of a decision network in the Bayes Server tool. The yellow nodes are utility nodes

representing costs and the dark gray nodes represent decisions. Every decision is associated
with a cost. Example taken from [8]

As we found out, using decision networks quickly runs into practical issues of
memory consumption when scaling up model size. We experimented with
approximations to circumvent these obstructions [8] but have not yet arrived at a
satisfactory solution. Further research on this topic is planned for the near future.

6.6  User Interface

We have described the capabilities of the service tool and built a prototype
showing the principles of the tool but have not designed an actual interface for use

by the service engineer as such a tool should fit in the system manufacturers
service ecosystem.
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6.7 Prototype implementation

In our prototype implementation, we implemented a strategy that shows the
principles but definitively needs refinement towards a real tool.

All the nodes in the Bayesian network that drive the tool are divided into 3
categories:

1. Inputs and observations

2. Capabilities and functions

3. Components, including connections

Given all the evidence we calculate the posterior probability for every state of
every node, assume that the Normal state (or correct behavior) is the first state in
the network, and sort the nodes per category. The probability displayed is the sum
of all abnormal state probabilities, or 1 minus the Normal state probability.

The tests to recommend are calculated as follows:

- All components that have a failure probability larger than 0.2 are
considered potential failures

- For every available capability/function (category 2), we calculate the
entropy of the set of potential failures, given the capability.

- The top N capabilities that have the lowest entropy (intuitively: that gives
the most information among the set of potential failures) are
recommended as tests.

- To show the test when a user clicks the clipboard icon, we have manually
connected the capability to a test description in a csv file.

6.8 Intervention prototype

The prototype described above only implicitly deals with interventions. In
particular, it assumes that a function can be tested without explicitly modeling
what this test entails. This approach does not work when using a more structural

oriented model. There we need to specify what the intervention actually is and
what we then physically observe.

The intervention-aware prototype is depicted in Figure 72.
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Figure 72 User interface prototype supporting interventions. the section "Current observations" refers to
situation in which components C2 and C3 have been replaced as indicated in the Interventions
section.

We augmented the earlier prototype with the following elements:

1) Inthe list of tests we specifically indicate interventions and an associated
intervention.

2) We show in the left columns different icons for interventions (wrench) and
probing tests (clipboard).

3) To calculate the expected information gain after intervention we extend
the network and calculate the entropy decrease given the observation
associated with the intervention.

4) Previous interventions are shown in the new Interventions segment of the
user interface.

5) If there was already an intervention done, the question is, is that
intervention still applicable. Currently (end 2022) we deal with this in the
following way but this is subject to further research:

a. To calculate the expected value of an intervention we calculate
the maximum value over all possible combinations of earlier
interventions.

b. When an intervention is done, the user is asked whether earlier
interventions are still applicable. Previous interventions turn
yellow until the user has either confirmed or rejected them. Only

TNO PUBLIC



TNO PUBLIC | TNO report | | 1.0 | 10 January 2023 69/ 82

then the probability distribution over the health variables is
recalculated.
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7 Conclusion

In this report we have outlined an approach towards faster diagnostics.

It includes
1. A method to systematically describe system normal and abnormal
behavior;
2. A way to rank root-cause hypotheses, using a generated Bayesian Belief
Network;
3. Anoutline to recommended the most efficient next step in a diagnosis
task;

4. A way to methodically reason with interventions, i.e. dealing with multiple
scenario’s;
5. Suggestions for a service engineer facing user interface.

The method mentioned in 1. is not only beneficial for root-cause analysis but also:
e Supports design for diagnosability;
e Streamlines the FMEA process.
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A. Bayesian Belief Network tools

There are several tools available that support Bayesian Belief Networks. They
typically have a computation engine with API to include in custom made software,
as well as a GUI for experimenting and validation. All tools have a trial version with
limitations.

There are slight differences in the capabilities of the different tools, but all support
dynamic networks, continuous variables, and decision networks to some degree.

Tools include

Tool Website Remarks
Hugin www.hugin.com Expensive. Old-fashioned GUI.
Netica WWW.NOrsys.com Old-fashioned GUI. Very good

tutorial section to get started.
Bayes Server www.bayesserver.com | Easy connection to databases.
Examples in this report are created
using this tool.

Bayes Fusion www.bayesfusion.com | Also has web-based query interface.

There are also free libraries available in various programming languages.
Implementing the inference algorithms is not an easy task as dealing with
thousands of small numbers requires attention to efficiency and numeric stability.


http://www.hugin.com/
http://www.norsys.com/
http://www.bayesserver.com/
http://www.bayesfusion.com/
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B. Upstream effect handling alternatives

In section 5.7 we discussed the handling of upstream effects in the Bayes net
generation. There are alternatives and variations to that approach that we
considered during development. These alternatives are listed here for
completeness.

All these alternatives have one characteristic in common: the Bayes Net generating
algorithm needs to accommodate for exceptions based on specific failure modes
and components. In these examples the short to ground failure mode in
combination with wires and other components that handle power there is an
exception to the otherwise general Bayes Net generating rules. As a consequence,
every time a new power related component is added to the library, the Bayes Net
generating algorithms needs to be updated.

The solution described in the main text requires a more elaborate component
definition but does not require changes to the Bayes Net generating algorithm.

For clarity we reduce the size of the example so we can simplify the Bayes nets. In
particular, we leave out the Wireloints and consider a cable of several segments.

TP — > >© —-©

Figure 73 Simplified model of 3 wires in series

Alternative 1 — Top node

Basic idea is to introduce a cable tree node representing the state short-to-ground
of the cable tree We then model that a wire has a short-to-ground if the cable tree
has a short to ground.

CableTree

ok | e

short | 10003
D EME

Wire1 T Wirez wire3

ok B s ok || 81.00% ok | 51.00%

gisconnect... | 2.00% disconnected || a00% discornected | a.00%

short 1 10.00% short (| 10.00% short 1 10.00%
5 GlELNS B ®E

[ | Powerl u Power2 [} Power3
| yes | B - _ yes |
no [ |

0.00% na | 19.00% 27.10% no |
5 7 5 o

Although this encodes the behavior well some disadvantages are:
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1. If a wireis diagnosed as short-to-ground, the cable tree must be short-to-
ground and then all other wires in the cable tree are also short-to-ground.
This is not what one would like to see when looking at the components
individually.

2. If somehow you could assess the state of a single wire as being OK (not
short-to-ground), then in this model no other wire could be shorted. Note
that in general you cannot find individual wires to be OK without
disconnecting them from the system.

3. Inthis model one has to specify the a-priori probability of the cable tree to
short, which would actually be a result of the probability of the individual
wires.

Alternative 2 — Reverse causality

The difference compared to Alternative 1 is that instead of encoding that the cable
tree “causes” the wire to short, we encode that a short in the wire causes the
cable tree to short, which in turn inhibits power to flow.

[ | 27%
n W o
|
Wire31

Wire21 ok [ | 5163%
[ | 5163% disconnected [l 9%
d ted W 12.18% hort [ ] 2020%
5

PSU powerl [] Powerll
yes
I 1010%

This model fixes all disadvantages of option 1, at the expense of more complexity
of the Bayes net, but since this is generated from the structural description
anyway this is not a huge disadvantage.
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Alternative 3 — Reduce complexity

In alternative 2, all arrows from the CableTree node to the individual Power nodes
are superfluous. If there is no power at the beginning of the cable tree, then no
other points on the wire will have power. This is expressed in the following model:

CableTree1!

PSU powertl ‘m Powertit (] Power2i1 [] Power31i
e o s s ves

i
]
¥
g
H

3
]

This works fine but has the slight downside that the PSU output node has to
change when it is connected to a cable tree: it gets an additional parent. Although
technically possible, this feels uneasy as we would like to see the Input-Health-
Output triple as a building block of the PSU component. A similar argument can be
made if we connect the CableTree to the first Wire output (Power111 in the
picture).

Alternative 4 — Add blocking node at the start of the flow

This was previously our proposed solution but has been superseded by the
solution described in the main text.

The general idea is to add a node at the start of the flow that blocks downstream
flow when an upstream component has a specific failure. The CableTree node in
the picture stops the flow whenever one of the wires has a short-to-ground failure.

|

H
-.=
ng
[ 1]

Alternative 5 — Reduce number of links

To reduce the number of links in the solution as described in Section 5.7, we can
move the short-to-ground failure mode from the wires into the new CableTree,
effectively making it a component that sits inside the energy flow.
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Despite the appeal of simplicity this has two disadvantages:

1. A component node in a physical flow is different from the standard model
approach

2. Setting the probability of a short-to-ground must be computed from the
individual short-to-ground probabilities of the constituting wires, while
these wire nodes do not show a short-to-ground failure mode. This feels
messy.
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C. Loop handling alternatives

In section Error! Reference source not found. we described how loops in the
structural model are handled. We investigated some alternatives and these are
described here.

Alternative 1 — Cut the loop

The basic idea of “cutting the loop” is to take a node in the loop, duplicate it, and
have one copy take all incoming arrows and the other copy provide all outgoing
arrows. Then, we instantiate these copies for different observations and for each
observation calculate the health for all components. If we repeat this process by
duplicating another node in the network, we end up with set of equations we can
solve.

Again, this is best illustrated with our house heating example.
The diagnoses scenario is that we know there is fuel available, yet the temperature

is low.
In Figure 74 we duplicated the Thermostat node into an a and b copy.

Health Furnacell Thermostatlla Thermostatlib Health Thermostat!l
normal [l | sese% on P ocoos on B ocoos: v | Noma I 100003
abnermal [l 33445 ot 0.00% oFf 0.00% ) Abnormal 0.00%
<) ] Il [ <) [ &[5 <) i ) 8 [B <) ] W [
1 .
Furnacell
Cn L B
off [ ] 3348%
- o b D
Fueill g

present M 100.00%
Absent 0.00%

TNO PUBLIC

< LN

= Temperaturell
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Medium 0.00%
High 0.00%
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Figure 74  House heating network where the Thermostat node is split into two nodes a and b to break
the loop. In addition to the observations, the evidence added here is Thermostat=0n.
Similarly we compute the marginal probabilities for Thermostat=0ff.

From probability theory we know that*
P(thermostat abnormal) =
P(thermostat abnormal|Thermostat = On) - P(Thermostat = On) +
P(thermostat abnormal|Thermostat = Off) - P(Thermostat = Off)
The Bayes Net provides the numbers marked in yellow if we set the condition on
both copies of the Thermostat node.

4 All probabilities in this example are conditioned on Fuel=Present and Temperature=Low, but these are
left out in the text for readability.
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Similarly we know

P(furnace abnormal) =
P(furnace abnormal|Thermostat = On) - P(Thermostat = On) +
P(furnace abnormal|Thermostat = Off) - P(Thermostat = Off)

Key insight is that we do not have to break the loop by splitting the Thermostat
node, we can do the same exercise splitting the Furnace node as in Figure 75.

Health Furnace12 Thermostatl1 Health Thermostati2

Mormal [ | sess on [ R Norma | s

Apnormal ll | 3340 o B ceses | abnormal Il | sss0%
L & 2 Fa i [0 o (o

Furnacel2a FurnacelZb
on 0.00% on 0.00%
off BN o000 v | O B o000%

<] [ (o] i [0 ] [ (8] i [0

Fueli2 u

Present [N 100.00%

Absent 0.00%

[ [0) ] [
I Temperature12
Low P i0000% o
Medium 0003
High 000%
] [5] (8] ] [5

Figure 75 House heating network with Furnace node split into a and b to break the loop. Shown here is
the case where Furnace=0ff.

This leads to following set of equations:

P(thermostat abnormal) =
P(thermostat abnormal|Furnace = On) - P(Furnace = On) +
P(thermostat abnormal|Furnace = Of f) - P(Furnace = Off)

P(furnace abnormal) =
P(furnace abnormal|Furnace = On) - P(Furnace = On) +
P(furnace abnormal|Furnace = Off) - P(Furnace = Off)

We now have two expressions for P(thermostat abnormal) and
P(furnace abnormal) so we can combine these equations. Let p =
P(Thermostat = On) and q = P(Furnace = On), and replace the known
yellow terms given by the Bayes Net with cj,...,cs. Then combining the four
equations above gives us
{01'P+Cz'(1—1’)=C3"I+C4'(1—CI)
Pt (1—-p)=c;-q+cg-(1—q)

This is a set of two linear equations that we can solve for p and q. Substituting p
and q then gives:

{P(Thermostat abnormal) = 0.403
P(Furnace abnormal) = 0.201
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This is outcome of our diagnosis. The ratio of 2:1 corresponds to the component
prior probability ratio (0.01 and 0.005 respectively).

Note that the sum of the probabilities is not 1.0. This is due to the non-
deterministic conditional probability tables that this approach requires. See point 2
in the discussion below.

If we have evidence for a node that is part of the loop, the calculation is much
simpler because then we can cut the loop at the node with the evidence and the
Bayes Net will give the answer directly, as shown in Figure 76.

Health Furnacel Thermostatl Health Thermostat1

Norma | 7esex on | seoex || Normal Il | sesax

sbnormal 20.16% Off [ ] 4032% Abncrmal [l 4032%
JEEE 715 B 7] ) (B

Furnacel
On | 30725

Off B cozes
3 b O

Fuell
Present [ 100.00%
Absent 0.00%

<) (o] ) B

Temperaturela Temperaturelb

Low BN 10000 || Low B 100.00%

Medium 0.00% Medium 0.00%

High 0.00% High 0.00%
ol 2 ' N

Figure 76  Cutting the loop at the node with evidence. The computed health for Furnace and Thermostat
correspond to the values calculated earlier

This approach has two major drawbacks.

1. The math looks convincing but there we cannot justify the method of
duplicating a node and setting both versions to the same value. This would
need theoretical underpinning.

2. It requires some “fuzziness” in the conditional probability tables. The CPT
of the Temperature node is shown in Figure 79 where we encode the
possibility that the temperature is low when the furnace is on. This is the
moment that the temperature just dropped below the furnace activation
threshold of the thermostat. This (small) probability has an impact on the
diagnoses outcome but is difficult, if not impossible, to assess®.

On a more fundamental level, this actually demands that the conditional
probability table is constructed based on the knowledge of the control
loop of which it is part of. This defeats the purpose of the approach in
which the behavior of the larger system should emerge from its
constituent parts.

5 In fact we considered many variations this CPT and all have their shortcomings.
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Figure 77  Conditional probability table of the Temperature node

On these grounds this alternative was rejected in favor of the approach discussed
in the main text.

Alternative 2 — Model time explicitly

All earlier loop handling methods abstract from time in the loop. A different
approach is to model time explicitly. This technique is known as Dynamic Bayesian
Belief Networks (DBN).

In a DBN, some links have a delay. Nodes that have an incoming delayed link are
temporal nodes (time-dependent) and so are all its descendants. Figure 78 shows
the house heating example with the temporal nodes Furnace, Room Temperature,
and Thermostat. Note the self-loops with delay 1 for the latter two nodes.

The model assumes that the outside temperature is cold, i.e. if the furnace is not
burning the room temperature will decrease because of the heat loss.

The room temperature has 4 states:

e Cold: Temperature is far below setpoint.
Little cold: temperature is a little below the setpoint but still acceptable.
Little hot: temperature is a little above the setpoint but still acceptable.

e Hot: Temperature is far above setpoint.
This encodes the small interval around the setpoint where the actual temperature
fluctuates because of the switching behavior of the system.
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Figure 78  Dynamic Bayesian Network for the house heating example
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The Room Temperature is connected from the Furnace indicating that it takes
some time for the room to heat up if the Furnace is on. The “loop” Furnace ->
Room Temperature -> Thermostat -> Furnace is then not a cycle because it
contains a delay link making all its nodes temporal. The figure shows the
probability distribution of these nodes in the time stamps t=0 to t=5. The
Temperature node is a final node indicating (in this case) the temperature at t=5.

To model the dynamics of the house heating example correctly we also added self-
loops for the Room Temperature and Thermostat. This makes their value
dependent on their previous value, effectively turning them into a stateful node.
For example, the Room Temperature at time=t then depends on both the Furnace
and the Room Temperature at time=(t-1) as shown in Figure 79.
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Furnace[t-1] Y | Room Temperature[t-1] ¥ | Room Temperature[t] = Cold W | Room Temperature[t] = LittleCold W Room Temperature[t] = LitteHot 'Y | Room Temperature[t] = Hot Y
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Figure 79  Conditional Probability Table (CPT) of the Room Temperature node on the Dynamic Bayesian

Belief Network. Note the dependency on the previous time-step denoted by [t-1].
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The time variable t is not absolute time but advances from t-1 to t when a state
change occurs. Consequence is that we cannot just combine multiple loops in one
system model as all loops will have different timings and cannot share the same t.
Instead, we have to connect the final loop result when it reaches a stable state (is
at equilibrium, in this example the final node Temperature ) to the rest of the
system.

In contrast to the alternative presented earlier, all CPT’s in this model are
deterministic. The only “probabilistic numbers” are the priors at t=0 but since all
transitions are deterministic and we wait until the loop reaches an equilibrium,
these priors are irrelevant. This is a major benefit over the alternative presented
earlier. However, we consider building these detailed dynamic loops models too
complicated for our purposes and rejected this alternative in favor of the solution
mentioned in the main text.
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