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 Summary 

Today’s complexity of high-tech systems makes diagnosing system failures a tough 
task for service engineers. Increasing product variability and fast market 
introduction of new generation systems prohibit the expertise build-up that served 
service engineers in the past. Traditionally, system knowledge is transferred to the 
service organization through service manuals and training. This turns out to be 
inadequate in the complex world with customers expecting high system 
availability. 
 
Our goal is to transfer design knowledge to the service organization in the form of 
computational models such that the service engineer has an actionable tool to 
assist them in their diagnostic task. 
 
Major part of our research is to create these computational models in a 
structured, scalable, and maintainable way that fits into the system development 
way of working. 
 
The basic idea is to  

1. Define input/output behavior every component type used in the system, 
both its normal behavior as well as for every failure mode. A prior 
probability for every failure mode needs to be established. 

2. Compose a system model with the component descriptions as building 
blocks following the physical or functional structure of the system. 

3. Define a set of tests (observations, measurements, service actions) that can 
help in diagnosis. 

Based on these description, we automatically create a computational diagnostic 
model that can 

1. List the most suspected components that have failed, including the 
uncertainty associated with these hypotheses. 

2. List the best tests that will increase the accuracy of the diagnosis the most, 
i.e. reduce the uncertainty the most at the least cost and effort. 

Iteratively feeding the test results into the model then iteratively leads to a 
improved diagnosis until a service action is appropriate. 
 
Next to the model, we developed a prototype service engineer oriented user 
interface to convey the ideas and way of working. 
 
This idea sounds easy and is certainly not new, but to apply this methodology in 
practice has many pitfalls. Next to outlining the methodology in detail, in this 
report we also describe our solutions to the stumbling blocks we came across 
while applying the methodology on an industrial printer use case.    
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 0 Preamble 

0.1 This report in the grand scheme of things 

This report describes the status of the Carefree project on diagnostics. The 
Carefree project is a collaboration between Canon Production Printing and TNO-
ESI, as a use case within the Appl.AI research program at TNO. 
 
End 2021 we published a similar report but as that was Canon confidential [1], we 
decided to copy large parts of it verbatim, leaving out sensitive information, into 
this report and add the 2022 progress where applicable. This way the reader 
should be able to understanding the full picture on assisted root cause analysis 
without having to refer to earlier work. 
 
Although extensive, this report does not cover all the work done in 2022. The work 
on performance degradation and failure prediction, as opposed to root cause 
analysis of system failures, is document in two other reports: [2] for Canon internal 
use and [3] publicly available. The work on discovering relationships between 
printer usage and system errors from available machine data is documented in [4]. 
 

0.2 Why to read this document, or why not 

This report tries to be self-contained in that it assumes little prior knowledge. It 
discusses the technology, the approach, and implementation details. As such it is 
quite a lengthy document. For more concise descriptions of the approach we 
kindly refer to general publications such as [5] and [6]. 
 

0.3 What’s new? 

Readers familiar with the 2021 report and interested in the 2022 specific progress 
should focus on the following sections: 
 

- Section 5.5.2 Multiple properties, taking advantage of the multiple-
variables-per-node feature of the Bayes Belief Network tool for generating 
compact networks. 

- Section 5.5.3 Property dependencies / Constraints, an extension to the 
specification language that allows to define constraints on properties. This 
improves the diagnostics because physically impossible situations are 
removed from the hypothesis set. 

- Section 5.6 Loops, where we implemented the loop handling approach 
following up on earlier solution explorations. 

- Section 5.7 Upstream effects, yet another way of dealing with upstream 
effects such as a short-to-ground in an electrical circuit. The new approach 
is more compositional. 

- Section 5.10 and 6.8 Interventions. Following up on earlier investigations, 
we implemented a solution that deals with interventions, i.e. actions that 
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 change the system in order to get more information and ultimately fix the 
error. 

- Section 5.11 Diagnosing wrong inputs. A “failure” to get a desired result is 
not necessarily caused by a component failure. It could be that an input is 
different from the expected value. In this section we address diagnosing 
wrong inputs. 

- Section 6.5.3 Decision networks, a research line in cooperation with our 
academic partners in which we investigate using decision networks to 
calculate the optimal test to do. 
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 1 Setting the stage 

1.1 Background 

This technical report describes the state as of the end 2022 of the “Carefree” 
project, cooperation between Canon CPP and TNO-ESI. The purpose of the project 
is to improve the service process so that  

1. Service costs are reduced 
2. System down time is reduced 

The starting point is an existing system and the goal is to improve the service 
process. Note that these objectives could also be obtained by increasing the 
serviceability and/or diagnosability of the printer at design and manufacturing 
time, but that is not the focus of this study. 

1.2 Scope 

1.2.1 Corrective, preventive, and predictive maintenance 

Maintenance can be either corrective or preventive. Corrective maintenance is the 
action to repair a broken or badly performing system while preventive 
maintenance is taking service actions when the system is still functional. 
Preventive maintenance has the big advantage that it can be planned. This is 
beneficial for Canon but mostly for the customer because the unexpected system 
down time will be lower. In preventive maintenance the maintenance interval is an 
important steering parameter. When too small, maintenance costs and system 
down time are too large, and for a too large interval the system will still suffer 
from unscheduled down times and high repair costs. Typically the maintenance 
interval is determined on time or usage indicators such as number of products 
produced. When more sophisticated measurements are used, such as vibration 
levels on bearings, preventive maintenance is usually called predictive 
maintenance. 
 
In this work we start with improving the corrective maintenance and extend 
towards predictive maintenance. First we consider hard system down situations in 
which the system is not functioning at all. We then extend towards performance 
where the system is running but performing sub-par, and then towards prediction 
where the system is still functioning according to specification. 
 
This document reports on the first phase only. Work on performance and 
prognosis is documented in [2] and [3]. 
 

 

Diagn
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Diagnosing 
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 Although we start from diagnosing hard-system down situations, all design choices 
are made with extension towards performance and prediction in mind. 

1.2.2 Corrective maintenance steps 

The time required for corrective maintenance can be broken down into several 
parts.  

 
Phases of corrective maintenance and some impact factors 

 
 
In this work we focus on the time to diagnose and specifically the supporting 
material. The intention is to provide a tool for the service engineer, regardless of 
experience, to increase his efficiency. 
 
Diagnosing efficiency is becoming important because of several trends: 

- Increasing product variability makes it harder to gain experience on 
specific systems 

- Increasing product complexity makes diagnosing inherently harder  
- Service is delegated to dealer organizations, effectively reducing engineer 

experience 
 

Report 
• Customer trying to restart or repair 
• Service desk availability 

Travel 
• Free up service engineer 
• Travel to customer 

Diagnose 
• Diagnosability (e.g. unique error codes) 
• Engineer experience 
• Supporting material (e.g. technical service manual) 

Repair 
• Spare part availability 
• Engineer competence 
• Serviceability (e.g. component accessibility) 

Startup 
• Rebooting 
• Stabilizing (e.g. heating up to specific temperature) 
• Recalibration 
• Acceptance test 
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 The proposed approach here also helps in assessing and improving diagnosability 
(briefly addressed  in chapter 2) and increasing service engineer system 
understanding (Explainable AI, briefly addressed in chapter 6) but that is not the 
emphasis of the work presented here.  
 

1.2.3 Remote diagnostics and Diagnosability 

Remote diagnostics allows for an investigation before an on-site visit. This allows 
for sending a prepared service engineer with the right spare parts to the site. 
 
Diagnosability is a property of a system indicating how easy it is to diagnose the 
system. Creating a system model as outlined in this report can aid in assessing the 
diagnosability and e.g. assess the value of adding a particular sensor to increase 
observability.  
 
The techniques discussed in this report can be used for remote diagnostics and 
diagnosability but these applications will not be discussed in detail. 
 

1.2.4 Use case 

The method described in this report is developed based on the Paper Input 
Module (PIM) of professional printers developed by Canon. However, we try to 
ensure that the method is applicable to (high tech) systems in general. With few 
exceptions, all examples in this report illustrating the method are based on every-
day simple “machines” and can be understood with common understanding, not 
requiring specific printer design knowledge. 
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 2 Method overview 

In this chapter we will give an overview of the proposed way of working for 
diagnoses. Individual aspects will be address in subsequent chapters. 
 

2.1 Current way of working 

In short, the typical current way of working is as follows: 
 

 

Figure 1 Overview of the typical current way of working 

 
1. After the initial system design, the subsystem design team is assembled in 

an FMEA-session (Failure Mode Effects Analysis). Its purpose is to identify 
potential problems and decide, if considered needed, on a mitigation such 
as redesign or a way for the service engineer to detect and repair the 
problem. The process is guided by a table (either in Excel or Word) that 
also captures the result of the session. 

 
2. Based on the FMEA outcome, a technical service manual is written that 

captures the detect-and-repair tactic. This is not an easy task since 
multiple failure modes map to the same detection (error code) and it is 
not clear how a failure mode can be resolved.  
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 2.2 Proposed way of working 

Figure 2  Overview of proposed way of working 

 
The proposed way of working centers around a computational diagnostic model.  
With such a model, supporting tools can: 
 
At design time 

1. Capture failure modes and effects in a structured way. System designers 
are guided to think about the consequences of known component failure 
modes. 

2. Assess diagnosability, i.e. assess which failure modes are indistinguishable, 
or provide a metric indicating the level of diagnosability. 

At service time 
3. During root cause analysis present the most likely root-causes. 
4. Suggest the most cost-effective next test to do for further diagnosis. 

 
Instead of building a fixed step-wise procedure or decision tree upfront, the 
diagnostic tool will interactively suggest the best test to do and use the results for 
the next step. 
 
The diagnostic model is constructed in 3 step approach: 

1. From existing technical information such as design models or technical 
drawing, create a first model version. Depending on source of information 
this can be partially automated.  

2. Manually augment model to a full diagnostic model 
3. Assess component prior failure probabilities from operation, reliability 

figures, or expert judgement 
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Figure 3  Three different sources of information are fused into the diagnostic model 

 
To give an idea on how this looks like we will quickly show some of early 
prototypes we developed thus far.  
 
Design tool to build a system description: 

 
 

Figure 4 Hierarchical view that resembles system composition. Shown is a part of a printer paper input 
module (PIM) that contains a tray which in turn contains a sensor, a motor, a lift table, and 
another sensor. Details in chapter 5. 

 
Service tool for interactive root cause analysis: 
 
Figure 5 shows a screenshot of a prototype of such a tool demonstrating the 
principles. 
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Figure 5  Prototype service interface demonstrating the principles. Details in chapter 6. 
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 3 Bayesian Belief Networks 

The core reasoning engine of the diagnostic tool is a Bayesian Belief Network 
(Pearl, 1988), often referred to as Bayes Net (BN). In this chapter we will describe 
the fundamental working of BN’s necessary to understand the rest of the report. 
Readers familiar with Bayes Nets can skip this chapter. 
 

3.1 Notation and probabilistic rules 

As Bayesian Belief Networks are based on probability theory, we will introduce the 
basic concepts and the notation used in the remainder of this chapter. 
 
We denote random variables by capital letters (𝐴𝐴, 𝐵𝐵) and their possible values by 
small letters (𝑎𝑎1, 𝑎𝑎2,𝑏𝑏1,𝑏𝑏2). The probability that variable A has value a1 is then 
𝑃𝑃(𝐴𝐴 = 𝑎𝑎1), or, if the exact value of A does not matter abbreviated to 𝑃𝑃(𝐴𝐴). 
 
The joint probability, i.e. the probability that 𝐴𝐴 = 𝑎𝑎1 and 𝐵𝐵 = 𝑏𝑏1 is then 𝑃𝑃(𝐴𝐴 =
𝑎𝑎1,𝐵𝐵 = 𝑏𝑏1) or 𝑃𝑃(𝐴𝐴,𝐵𝐵) in short. 
 
If we know the joint probability, i.e. the probability of all possible combinations of 
all variables, we can compute the probability of a variable by marginalizing or 
summing out: 
 

𝑃𝑃(𝐴𝐴) = �𝑃𝑃(𝐴𝐴,𝐵𝐵 = 𝑏𝑏)
𝑏𝑏

 

 
This looks easy enough, but if there are more variables this quicky becomes 
intractable: 
 

𝑃𝑃(𝐴𝐴) = ��⋯�𝑃𝑃(𝐴𝐴,𝐵𝐵 = 𝑏𝑏,𝐶𝐶 = 𝑐𝑐,⋯ ,𝑍𝑍 = 𝑧𝑧 )
𝑧𝑧𝑐𝑐𝑏𝑏

 

 
And typically we need to calculate this for every variable. The Bayes Net tools take 
into account the independence between variables to use smart algorithms that 
calculate these numbers efficiently. 
 
The conditional probability, i.e. the probability that A=a1 given that B=b1 is written 
as 𝑃𝑃(𝐴𝐴 = 𝑎𝑎1 | 𝐵𝐵 = 𝑏𝑏1) or 𝑃𝑃(𝐴𝐴|𝐵𝐵) in short. The conditional probability is defined as 
 

𝑃𝑃(𝐴𝐴|𝐵𝐵) =  
𝑃𝑃(𝐴𝐴,𝐵𝐵)
𝑃𝑃(𝐵𝐵)  

 
When we reverse the roles of 𝐴𝐴 and 𝐵𝐵 and noting that 𝑃𝑃(𝐴𝐴,𝐵𝐵)  =  𝑃𝑃(𝐵𝐵,𝐴𝐴) we can 
derive Bayes Rule: 

𝑃𝑃(𝐴𝐴|𝐵𝐵) =
𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐵𝐵)  
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 which gives the Bayes Nets their name. 
 

3.2 Principles 

Bayesian Belief Networks (BN) are used to represent the uncertainty of the world 
by using probabilities. In general, describing a full joint probability, i.e. define the 
probability for every possible value combination for all variables, is very difficult 
and computationally intractable. BN’s make this possible by explicitly describing 
probabilistic dependencies between the variables and smart algorithms to reason. 
 
In a BN, an edge between two nodes indicates that the two variables are 
conditionally dependent, and, more importantly, a missing edge means that the 
two variables are conditionally independent. The latter is key to the practical 
applicability of probabilistic reasoning. 
 
Formally, if a BN has variables 𝑋𝑋1 …𝑋𝑋𝑛𝑛, then 𝑃𝑃(𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛) =  ∑ 𝑃𝑃(𝑋𝑋𝑖𝑖 | 𝑝𝑝𝑝𝑝(𝑋𝑋𝑖𝑖)𝑖𝑖  
where 𝑝𝑝𝑝𝑝(𝑋𝑋𝑖𝑖) is the set of parents of 𝑋𝑋𝑖𝑖. The product of conditional probabilities is 
in general much easier to define and calculate than the full joint probability, but it 
does require explicit independence assumptions on the domain. 
 
Example: 
 
Suppose we have a fan consisting of a motor with a blade connected with an axle. 
We say that correct working of the fan is determined by the correct working of the 
motor, the axle, as well as the blades.  
 

 

 
Figure 6 System used in the example is a fan 
consisting of a motor, blades, and an axle 
connecting the motor to the blades 

 
Figure 7 Model of the fan system showing that the 
condition, or health of the fan depends on the 
condition of the Motor, the Axle, and the Blades. 
These three conditions are independent. 
 

 
We assume that a component is either working normally, or is completely broken. 
So, the component variables have two possible values, typically called states: 
“normal” and “broken”. 
 

Failure modes 
In this work we typically model a component with states “Normal” and “Broken” if we are not 
interested in different failure modes. Failures modes will be discussed in chapter 5. 
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 A typical diagnostic question “if we observe that the fan does not function, what is 
the probability that the motor is the culprit” then translates into calculating 
𝑃𝑃(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 | 𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏). The Bayesian Network can provide this 
answer if we feed it with some numbers. 
 
For the motor, axle and blades we provide prior probabilities. These are 
independent of each other (according to this model). The condition of the fan as a 
whole depends on motor, axle, and blade as depicted by the arrows, so we have to 
provide the conditional probability of the fan, i.e. 𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓 | 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏). 
In our approach, these conditional probability tables (CPT’s) are typically very 
simple: typically only containing zeros and ones, effectively encoding a logical 
“AND”- 
relation. 
 

 

Discrete vs Continuous 
For ease of explanation we only consider discrete variables. In general, continuous variables 
can also be modelled in Bayesian Networks. Continuous variables are assumed to be normal 
distributed, or a mixture of Gaussian distributions, and cannot be the parent of discrete nodes. 
Continuous variables can always be discretized, thereby approximating the probability density 
function. 

 
 
To reason with this model we provide it with some evidence, e.g. we observe that 
the fan does not function. We illustrate this using a tool called Bayes Server. See 
appendix A for a discussion on tools.  
 
Scenario 1: No evidence. 
 
Here we modelled the system as a Bayes Net, and did not provide evidence yet, 
that is, we do not have any information of the components or of the working of 
the fan as a whole. The node “Fan” shows the probability of the fan system being 
broken, calculated based on the prior probabilities of the component failures and 
its conditional probability table.  

 

 
Figure 8 Specification of the prior 
probabilities of the component health 
states in this example 
 

Figure 9 Specification of the conditional probability table of the health of the Fan, given the 
health of its constituent components. Here, the relation is deterministic (only 0's and 1's) 
 



 

TNO PUBLIC 

TNO PUBLIC | TNO report |  | 1.0 | 10 January 2023  17 / 82  

 

 

Figure 10 Probability of being broken for every component and the Fan as a whole. Numbers are 
specified in the tables as shown in Figure 8 and Figure 9. 

 
Scenario 2: Fan does not function. 
 
Suppose we know that the fan is broken, e.g. we do not feel the air flow. What is 
wrong? 
 
We add the observation that the fan is broken as evidence in the network. As a 
result, the network will recalculate the probabilities of all other nodes in the 
network, the so-called belief update or inference. 
 

 

Figure 11 Inserting evidence that the fan is broken (checkmark in the Fan node) changes the 
probabilities of the components being broken 

 
 
From the network we can see that the probability of failure of the motor, axle, and 
fan increased. In particular we see that the Blades are the most likely component 
to have failed. 
 

Noisy-OR 
The scenario sketched here is so common that many tools support this by so-called Noisy-OR 
nodes. This greatly eases specification of the CPT and allows for belief update tricks so that 
even nodes with hundreds of parents can be handled with ease. 
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 Scenario 3: Fan does not function but motor spins. 
 
Let us assume that the fan does not move the air but we can clearly hear the 
motor spinning. So, we have additional evidence that the motor is working 
correctly. 
 

 

Figure 12 When adding evidence that the Motor is fine, probability of failure of the other components 
increases 

 
 
After the belief update, we see that the probability of failure of the other 
components increases. 
 
Note that although the failure probability of motor and blades were independent, 
by adding evidence they have become dependent: if we now would decrease the 
probability that the motor failed, the probability of the blades failing would go up 
(intuitively: something must be wrong!) 
 

Explaining away 
The scenario described above is commonly referred to as explaining away:  if one cause is 
ruled out, other causes for the observed effect become more likely. 
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 Scenario 4: Motor functions correctly. 
 

 

Figure 13 When the Motor is fine, the probability that the fan is broken decreases. This is to illustrate 
forward reasoning, compared to backward reasoning in previous scenarios. Bayes Nets can 
handle evidence at root nodes, leaf nodes, or nodes in the middle. 

 
It is important to understand that the arrows do not indicate the direction in which 
information flows. Bayesian Networks can be used to reason in all directions. Any 
node can be fed with evidence and all other nodes will be updated accordingly. 
The direction does play a role when several nodes are connected, as explained in 
the next section. 
 

Soft evidence 
One can even provide evidence that is not 100% certain, the so-called soft evidence. We will 
not discuss that in this introduction. 

 

3.3 Causal Networks 

If we have a cause and an effect that we want to model as a Bayes Net, we have 
two options, as shown in Figure 14. Probabilistically these models are equivalent, 
as we can easily prove using basic probability theory 

𝑷𝑷(𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄, 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆)  =  𝑷𝑷(𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 | 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆)  ∙ 𝑷𝑷(𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆)  
=  𝑷𝑷(𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 | 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄)  ∙  𝑷𝑷(𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄) 

 
 

 

Figure 14 Two equivalent networks 
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 In practice there is a difference since in general it is easier to estimate prior 
probability of a cause and how the effect is related to the cause than the other 
way around. But, there is no fundamental difference. 
 
If we expand this network to 3 nodes A,B, and C, then some networks equal (in the 
sense that they represent the same joint probability distribution) while others are 
not. See Figure 15. The network  on the right represents a different world.  
 

 

Figure 15 Four different ways to build a network of three variables. Three of them are equivalent, the 
fourth is not 

 
When networks become larger, it becomes increasingly difficult to model the 
world as intended. To verify correctness one would have to add different sets of 
evidences throughout the network and verify the effect on the other nodes. 
However, as a rule of thumb one can say that if you always add arrows from cause 
to effect, then the network will behave as expected. Such a network is a causal 
network1.  
 
Causal networks have an additional advantage that we will exploit when we talk 
about tests: they can deal with interventions, i.e., they behave correctly when we 
actively change something in the system. This could be used to obtain more 
information, or to explore what-if scenarios. Refer to section 5.10 where we deal 
with interventions. 
 

3.4 Building a model 

To build a Bayesian Network the following steps are required: 
1. Define variables 
2. Define states of all variables (and the discretization if the value is 

continuous) 
3. Define network structure 
4. Define probability tables 

 
In general, all of these steps can be learned from data or done by hand using 
domain knowledge. 
 

 
1 One could also systematically draw arrows from effect to causes. That would lead to a diagnostic 
network. But as stated in the text, the probabilities to be specified in such a network are in general hard to 
obtain. 
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 3.4.1 Learning from data 

In the ideal world, one would like to generate a model by just providing it with 
data. Unfortunately, there currently are some limitations. 
 
Step 4, learning probability tables, is a common technique but gets more difficult if 
more variables are unobserved (latent variables). What is very well achievable is to 
learn the prior probabilities of the component failures. Chapter 4 is dedicated to 
that. 
 
For step 3, aptly called structure learning, algorithms do exist but require a lot of 
data, more than we typically have in diagnostic systems where failures are not 
abundant. To find causal networks is even harder.  
 
For steps 1 and 2 the algorithms are basically in a research stage and not readily 
applicable. 
 

3.4.2 Building by hand 

Building a model by hand requires domain knowledge and good understanding of 
the Bayesian modelling principles. A major downside of Bayes Nets and 
corresponding tools is that they do not support composition or hierarchy, resulting 
in very large flat networks. As we want to model an entire system up to 
serviceable component level, and a system has thousands of serviceable 
components, such model will have thousands of nodes. A flat model would be very 
hard to build and maintain. 
 
To make creating the models easier, we have devised a way of working that allows 
system modeling in a compositional way and then to generate the (flat) Bayes Nets 
automatically. Chapter 5 is devoted to that. 
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 4 Estimating component failure probabilities 

One of the elements required to build the Bayes Nets is an estimation of the prior 
probabilities of its variables, that can either be provided by knowledge experts, 
extracted by historical data, if available, or a combination of the two.  
 
In our specific use case the problem translates to calculate the failure probabilities 
of different components of the Printer Input Module (PIM). 
 
A first estimation of the prior failure probability can be obtained based on the visit 
dataset. This dataset contains the log of all service visits, with reference to the 
time of the visit and the serial number of the system, and a list of parts that have 
been ordered by the operator concurrently to the visit. We stress the fact that the 
dataset is filled in manually, and that it does not contain detailed information 
about which component has been repaired or replaced during the service. 
 
Furthermore, it is necessary to take into consideration that some of the parts 
mentioned in the visit dataset can be used also for other components outside the 
PIM.  
 
The prior probabilities of a part failure are therefore calculated from the service 
visit data according to the following steps. For each part: 
 
• Compute the number of visits for which it was ordered; 
• Retrieve on how many components in the PIM it is used; 
• Retrieve on how many locations inside or outside the PIM it is used; 
• Apply the ratio between [3] and [4] to estimate from [1] the number of visits in 

which the part is replaced in a PIM component; 
• Normalize the result of [4] to express it as a probability. 
 
Other options to enrich the Bayes Net with data driven information have been 
investigated: 
• Linking the component failure probability to the presence of specific (series of) 

errors. 
• Linking the component failure probability to the way the system is used (e.g. 

how frequently the printer switches between trays). 
• Include in the Bayes Net information about media type, and how this impact 

on the occurrence of certain errors.  
 
The first direction has been explored mainly in 2020. By using the visit dataset 
described above and a dataset containing all the logs of warnings and errors, 
different models have been trained to predict which part was ordered given that 
specific (pattern) of errors occurred. The success of this analysis has been very 
limited, mainly because lot of relevant information is still not captured in any of 
the available dataset. More details are presented in [7]. 
 
The second and third approach are currently being explored, by exploiting the data 
available, describing the physical properties of the media used for each print. 



 

TNO PUBLIC 

TNO PUBLIC | TNO report |  | 1.0 | 10 January 2023  23 / 82  

 5 System Modeling 

Building a Bayesian Belief Network by hand requires specific expertise and is error 
prone. Additionally, BN’s do not have the hierarchy or composition, so 
maintenance and reuse is very difficult. 
 
Our approach is to enable a system designer to model the system in a friendly way, 
supporting composition and reuse, and generate the BN automatically from that 
model. 
 
In this chapter we describe how this approach looks like. 
 

5.1 Governing principles 

To build a system model efficiently, we use the following approach: 
1. Reuse component and subassembly models 

• The idea is to have a library of component models that can be 
used to assemble a system model 

2. Build according to the system structure 
• Relatively easy 
• Typically, structural models are available: think of electrical 

diagrams, CAD drawings of mechanical structure, etcetera. These 
models could be used to (partially) build the diagnostic models. 

3. Use a compositional approach 
• By using a compositional approach, the models remain 

manageable. At the same time, this enables subassembly model 
reuse across system variations and product families. 

4. Use a functional description and composition where structural 
composition is not applicable. Control loops are a typical example of this: 
from the structure of a loop one cannot determine the behavior. As loops, 
and especially control loops, are ubiquitous in high tech equipment, we 
devote an entire section to them (section 5.6).  

 
To illustrate the approach, and especially the difference between a structural and 
a functional approach, we will use the fan example introduced in chapter 3.  
 

5.2 Structural model 

 
Note that the code and graphs in this document and particular in this chapter are used for the 
feasibility study and are an implementation detail. Final representations will be developed by 
Canon development, fitting in their way-of-working, e.g. in the MPS-based model based system 
engineering framework. 
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 For the structural model the steps are as follows: 
- For a component we  

o define the inputs and outputs 
o define the failure modes 
o define the relation between inputs and outputs for the normal 

behavior and for every failure mode 
- For an assembly we define 

o the components that are part of the assembly 
o how the components are connected (structurally) 

 
For the fan, a model would then look like Figure 16. 
 

 

Figure 16 Structure of the Fan assembly. The shaft of the Motor (output) is connected to the shaft of the 
Blades (input) through an Axle. 

 
The structural graph shows that the shaft of the motor is connected to the shaft of 
the blades through an axle. Behavior of components such as the motor, axle, and 
blades are defined in a library that is used in the assembly composition. Based on 
the individual component behaviors in combination with the structural 
description, the behavior of the assembly (fan in this example) is automatically 
derived. 
 

5.2.1 Behavior specification 

To define the behavior of a component, one has to specify the input-output 
relations for the component for its normal behavior and each of its failure modes.  
 
Without a formal definition we introduce some terminology based on the example 
above. 
A component (Motor) has an input port (power) and an output port (shaft). Every 
port has a modality associated with it. In the example the power port is associated 
with Power. A modality has properties.  
 
In the example, the motor has a power socket as input and a shaft as output and 
transforms modality Power (capital P) into the modality Movement. Here we are 
only interested in whether there is Power and Movement or not, so for both 
entities we define the property “Present”, that can be Yes or No. 
 
An example of the motor is shown in the tables in Figure 17 and Figure 18. 
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 NORMAL 
power (Power) shaft (Movement) 
Present Present 
Yes Yes 
No No 

Figure 17 Table specifying the normal behavior of a motor. The 
shaft moves if and only if there is power supplied to the motor. 
 

BROKEN 
power (Power) shaft (Movement) 
Present Present 
Yes No 
No No 

Figure 18 Table specifying the general failure mode "broken". 
The shaft will not rotate, regardless of the power. 

To elaborate on the behavior specification, let’s take a more complicated example. 
 
Suppose we have an electrical heater that heats water flowing through when it 
supplied with power. 
 

 

Figure 19 Structure of a Heater component that increases water temperature when powered. 

 
For the Power, we are only interested whether there is power or not, and for the 
water we are interested in its flow rate (Low or High) and its temperature (Cold, 
Warm, or Hot). The full specification for the normal behavior would then look like 
Table 1 below. 

Failure mode 

Output port (Modality) 

Property 

Property value 
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NORMAL 
power (Power) inlet (Water) outlet (Water) 

Present FlowRate Temperature FlowRate Temperature 

Yes Low Cold Low Warm 
Yes Low Warm Low Hot 
Yes Low Hot Low Hot 
Yes High Cold High Warm 
Yes High Warm High Hot 
Yes High Hot High Hot 
No Low Cold Low Cold 
No Low Warm Low Warm 
No Low Hot Low Hot 
No High Cold High Cold 
No High Warm High Warm 
No High Hot High Hot 

     

Table 1 Full specification of the heater in normal operating condition. For every input combination 
(2x2x3=12 combinations) the corresponding output is specified. 

 
In principle one should define the behavior for every input combination. For 
components with many inputs or with input types that have many properties, or 
properties that have many states, such a table would get very large and be 
cumbersome to specify. In practice, a component will affect a limited number of 
properties so the complexity of the specification can be reduced drastically. See 
Table 2 for some ideas. 
 

NORMAL 
power (Power) inlet (Water) outlet (Water) 

Present FlowRate Temperature FlowRate Temperature 

Yes * Cold inlet Warm 
Yes * Warm Inlet Hot 
Yes * Hot inlet Hot 
No * * inlet Inlet 

Table 2 Shortened specification of the same component. Here, * (star) means "don't care" and inlet 
means that the value is identical to the value of the inlet input. 

 
Other abbreviations that we use extensively in our modeling are the ELSE and 
ALWAYS keywords. 
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 NORMAL 
In1 (X) In2 (Y) In (Z) out (X) 

Present Present Present Present 
Yes Yes Yes Yes 

ELSE No 

Table 3 Use of the ELSE keyword. Many times a component only has a successful output if all of its 
inputs are present (AND relation). In all other cases the component cannot do its function. 

 
BROKEN 

In1 (X) In2 (Y) In (Z) out (X) 
Present Present Present Present 

ALWAYS No 

Table 4 Use of the ALWAYS keyword. This is often used for failure modes where there is never an 
output, regardless of inputs. Note that this could also be expressed by using * (don't care) for 
every input. 

 

5.2.2 Specification language 

For practical purposes we need tooling that allows to quickly specify a system, 
supporting both the structure (graph like) and behavior rules (table like). Most 
important, however, is that it fits the systems designers way of working and ideally 
merges with the (model-based) development tooling already in use. For our proof 
of concept we specify the structure graph and behavior tables in the Python 
programming language as an internal domain specific language. 
 
Important aspects of the specification language is that it allows for instantiations 
and composition. E.g. we can define a Tray with all its components and then define 
a Paper Input Module that has 4 trays by instantiating 4 trays. 
 

5.2.3 Translation to Bayes Net 

From a structural model we use an automated process, implemented as Python 
scripts for now, to generate a Bayes Net.  
 
For every component we create nodes for the inputs and outputs and create a 
node representing the components health. 
 
The health nodes have the states “OK” denoting normal behavior, and an 
additional state for each failure mode. As health nodes do not have parent nodes, 
we have to specify the prior probabilities. These probabilities can be obtained 
from generic reliability information (“Motors of this brand have 0.01% failure 
probability”), from historic data (“transport belt motors have 0.02% probability of 
failure”), or even user specific data (“This motor in this printer is used in heavy 
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 load situations and therefore has 0.05% probability of failure”). Chapter 4 is 
devoted to this subject. 
 
 

 

Figure 20 Health node of the Motor component in the Bayes net. Here, the Motor has one generic 
failure state "broken". 

 
The outputs causally depend on the inputs and the health of the component, so 
links are added from the input nodes and the health node to all output nodes.  
 

 

Figure 21 Nodes of the Motor component. The output node has the input node and the health node as 
parents. 

 
The conditional probability table is created according to the component’s input-
output relation table. Note that because of the deterministic relationship between 
the nodes, the conditional probability table only has 0’s and 1’s. In general CPT’s 
can have any probability values describing probabilistic behavior.  

Figure 22 Conditional probability table of the Shaft output node, i.e. P(moving.shaft.Motor | 
present.power.Motor, Health.Motor) 

 
The output node of a component is then linked to the input node of another 
component representing the connection between them. But as connections can 
also fail (a wire can get disconnected, an axle can break), an additional Health 
node is introduced representing the failure modes of the connection. 
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Figure 23 Bayes net generated from the structural definition of the fan. The shaft of the motor is 
connected to the shaft of the Blades but as that connection (an axle) can fail too, a node for 
the health of the axle is added. 

 

5.3 Functional model 

In contrast to the structural model, the functional model takes a functional 
decomposition as starting point. Figure 24 shows a somewhat contrived example. 
Instead of following the sequential causal steps of energy transportation, the 
functional model has a parallel structure where the function to blow air depends 
on three different subfunctions, each realized by a component. 
 

 

Figure 24 Functional view of the Fan. Components provide a function, the fan needs all functions to 
work correctly. 

 
Functions, here also referred to as capabilities, do not indicate that the function is 
actually active. In the example, although the Fan can blow air, it needs power to 
actually blow air. This is depicted in Figure 25, where it shows that there is only air 
if there is power and the fan is capable of doing its functions. This connects 
functions to actual observations. 
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Figure 25 Fan functional model including actuals 

 
Note that it is a design decision to exclude the power from the motor capability. 
Here power is considered exogenous to the fan. 
 

5.3.1 Translation to Bayes nets 

Translating a functional model to a Bayesian belief network is relatively 
straightforward: the required subfunctions are parent nodes to a function node, 
typically in a deterministic “and”-function: the function is only active if and only if 
all its subfunctions are active. 
 

5.4 Comparison structural versus functional modeling 

In the previous sections we presented two different modeling approaches: 
structural and functional. Here we will compare the two approaches. 
 

5.4.1 Structural approach 

The structural approach has the big advantage that one can take the physical 
layout and almost one-on-one model the system by connecting the component 
models according to this layout. If the physical layout is available in some sort of 
formal description, such as standardized electrical schema or CAD drawing, this 
can even be (partly) automated. 
 
Another advantage of the structural modeling is that the inputs and outputs of the 
components are directly observable (measurable). Connection to data (such as 
logging) is relatively easy because data are measurements on physical entities that 
have a one-on-one mapping to the structural model elements. 
 
Major limitation of the structural approach is that it does not work for loops, 
including control loops. To solve that we need additional abstraction mechanism 
that is explained in the next section. 
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 Another disadvantage is that is it more difficult (compared to the functional 
models) to associate tests with the model as tests typically test a particular 
function. 
 

5.4.2 Functional approach 

The functional approach has the benefit of large modeling freedom. At the same 
time this could be a disadvantage as it requires expertise to construct a model. 
Although functional descriptions could help in constructing a model, these are 
typically not exact enough to be easily converted in a model for diagnostics. 
Human competence is important here. When functions are chosen wisely, the 
connection to available tests is straightforward. 
 
Inserting data from sensor readings such as functional logging into the functional 
model is not trivial. To be able to use these data requires additional effort. Direct 
observation for a functional model could be present in an event log if function 
failures are logged. This requires a one-on-one relation between the definition of 
functions in the model and the event log, something to consider in the functional 
decomposition.  
 

5.4.3 What to choose? 

Our proposed strategy is: Use structural approach where possible, use functional 
approach when needed. The best balance will emerge when we start modeling 
bigger parts of the printer. Important is to understand that there is an option to 
choose between them. 
 

5.5 Property dependencies 

5.5.1 Problem statement 

In our modeling framework we reason about the properties of modalities. The 
examples in this document are purposely simple and usually only consider a single 
property for a modality but in general there are more. 
 
This leads to the following complications: 

1. The Bayes nets get very complicated because for every property we 
generate a node. 

2. Not all combinations of property values are possible. E.g. if there is no 
water, then what is its temperature? 

 
We address these issues in the following subsections. 
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 5.5.2 Multiple variables per node 

Although the Bayesian belief networks are not directly visible to end-users, for 
understanding and debugging it is beneficial to have a Bayes net that follows the 
system structure. See the straight forward system of Figure 27, consisting of three 
components in series. 

When interested in both the presence and temperature of water, we can model 
both properties of the modality water as variables, but aggregate them in a single 
node that represents water as in Figure 26. 

5.5.3 Constraints 

When ”impossible” combinations are still possible in the model, the probabilistic 
inference can give erroneous results. Consider the previous example when we 
measure Low temperature at the output of Valve 2. 

Figure 26 Network with multiple variables per node. 

Figure 27 Example system of two valves connected through a pipe transporting water from left to right 
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Clearly, there must be water present throughout the whole system but 
everywhere we see the possibility of no water being close to 50%. 
 
To tackle these problems we introduce Constraints that can be applied to 
properties. In this case we can specify that having water and an undefined 
temperature is impossible, and that no water with Low or High temperature is 
impossible. 
 
Technically, in the resulting network the input nodes then get a prior probability 
distribution that has zeros at the impossible combinations such as shown in Table 
5.  

In the example, now with the constraints applied, the network correctly concludes 
that measuring a low temperature at the output implies that there is water 
everywhere in the system. See Figure 29. 
 

Table 5 Prior probability distribution of the water input node reflecting the fact that certain 
water property combinations are impossible. 

 

Figure 28 Network without constraints. Even though we measure a low temperature at the output, the 
network infers that there could be no water. 
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5.6 Loops 

5.6.1 Problem statement 

In many situations we have a choice between structural and functional modeling. 
Structural modeling has the advantage of strong correspondence with the system 
structure, so existing design documentation can be used as starting point for such 
model. However, there is one particular area we encountered during our 
investigation in which structural models have shortcomings and that is when there 
are control loops. 
 
The issue is that the direct translation from a structural model with a loop to a 
Bayesian belief network as outlined in Section 5.2 will not work because a 
Bayesian belief network cannot have loops, it is a directed acyclic graph.  

5.6.2 Example 

As an example we take a house heating system consisting of a furnace, a sensor 
and a thermostat controlling a valve. 
 
 

Figure 29 Network with constraints applied correctly infers that low temperature at the 
output implies water everywhere. 
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Valve
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Temperature
sensorController

set point

 

Figure 30 Schematic of the house heating example 

 
 
Whenever the furnace is burning, the temperature in the house rises and the 
thermostat will close the valve causing the furnace to stop burning and as a 
consequence the temperature will drop. 
 

 

Figure 31 Structural model of house heating example with the loop clearly visible. 
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Figure 32 House heating generated "Bayes net" with the loop. The Bayes Server tool warns that this is 
not a directed acyclic graph and is therefore not a valid Bayes net. 

 

5.6.3 Solution 

Key observation is that the loop only exists because we do not take time into 
account. The seemingly obvious solution to model time explicitly will result in very 
complex models. See Appendix C for some alternatives to the method described 
here. 
 
The solution is to first regard the loop as a single entity that eventually reaches a 
stable situation. If diagnosis indicates that the loop has a fault, the components 
that are part of the loop are further examined by breaking the loop. 
 
Example 
 
In the house heating example this approach would lead to the following structure: 
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Figure 33 House heating loop represented as a single component 

 
Note that the output of this loop component is “controlled temperature”. This 
captures the fact that there is time involved. In particular this implies that if we 
want to add evidence to this node, we will have to see if the temperature is indeed 
“controlled”. This is more complicated than merely measuring a temperature. It 
requires to see that if room temperature is below setpoint, then eventually the 
temperature is stable. The exact meaning of “eventually” and “stable” depend on 
the control loop characteristics. 
 
The previous discussion centered around control loops as they are abundant in 
mechatronics systems but the same principles apply to other loops such as coolant 
fluid flowing in a loop through the system. 
 
Steps 
 
The approach is then described as follows: 
 

   

1. Designer Construct model by connecting primitive components according to system 
description. 

2. Tool Check for loops. When a loop is detected, the designer is warned that a loop 
description is required. 

3. Designer Introduce a component that represents the loop with a higher level concept 
describing the output of the loop.  

3a. Designer Add behavior of this new component based on combination of failure modes of 
every component in the original loop. 

3b. Designer Connect inputs and outputs of the new component to the rest of the system. 

 
Our prototype implementation now supports the infrastructure for these models 
by introducing a “Super Component”, which captures the loop behavior as 
described above. Validation of  the method on real-world cases is still ongoing. 
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 5.7 Upstream effects 

5.7.1 Problem statement 

The models discussed up to now assume that a failure mode only affects 
components “down the chain”. However, this not always true. For example a 
water pipe that is blocked at its exit, causes a pressure increase and flow decrease 
at its entry. Another example is a short-to-ground failure mode in an electrical 
circuit that will drain power from all components attached to the circuit. We will 
use the latter example to explain how we handle such situations. 

5.7.2 Example 

PSU
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2
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b
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Figure 34 Example electrical system 

 
In the example of Figure 34 , we have a Power Supply Unit (PSU) that is connected 
to three components A, B, and C through the wires a-e. The wires are joined using 
wire joints 1 and 2 and together form a cable tree. 
 
If one of the wires, e.g. wire c would have a short to ground, all components, 
including A, would stop functioning. This is different from a failure mode such as a 
broken wire that would only affect components B and C in case wire c is broken, as 
shown in Figure 35. 
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Figure 35 Failure modes of wire c. Left: short to ground that has an effect on components A,B, and C; 
Right: broken that only effects components B and C. 

 
To recall, for diagnosis, the structural description is translated into a Bayesian 
Belief Network according to the following rules: 
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 1. Every wire gets its own “Health”-node representing the failure modes of a 
wire: ok, broken, short to ground. 

2. Every wire joint gets a “Health”-node just as every other system 
component. The normal behavior is that when there power in its input, 
both outputs have power and if there is no power on the input, neither 
output has power. 

Such a network, however, would not capture the correct behavior of a short-to-
ground failure of a wire as it would not propagate the error from that wire upward 
the chain. In other words, the failure mode does not only causally change the 
output of a wire, but also its input. 

5.7.3 Solution 

Extending the model with a short-to-ground can be done in different ways. Here, 
we show the preferred way. For alternative solutions refer to Appendix B. 
 
The basic principle is to introduce a node that captures upstream effects. In the 
wire example we introduce an “Upstream short-to-ground” node. This node is 
then an input to the node preceding it in the structural flow. 
 
As a consequence, every node that has a Power output must now also specify its 
behavior when the output experiences a short-to-ground from the following 
component. See Table 6. 
 

 

NORMAL 
power in(Power) Power out Upstream 

(Power) 
Power out (Power) 

Present Effect Present 
Yes Ok Yes 
Yes Short No 
No Ok No 
No Short No 

Table 6 Specification of the output given its inputs, including the input from the following component 

Additionally, we now need to define the upstream behavior as a result of the 
upstream effect of the following components. In the example of a wirejoint (see 
figure below) this means that we need to define the wirejoint upstream effect 
based on the upstream effects of its successors. See Table 7 for the Normal 
situation. 
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 NORMAL 

Output 1 upstream Output 2 upstream Input Upstream 
Effect Effect Effect 

Ok Ok Ok 
Ok Short Short 

Short Ok Short 
Short Short Short 

Table 7 Specification of the Upstream effect of the wirejoint 

 
The generated Bayes net for a wire joint in its immediate environment then looks 
like Figure 36. 

Figure 36 Generated Bayes Net of a wirejoint splitting wire1 into wire2 and wire3 

 
The example shows a wire joint, that cannot fail, connected to two wires that can 
fail by being disconnected or having a short to ground. It is constructed according 
to the following principles: 

1. Because a wire has a failure mode that causes an upstream effect, it 
generated a node to that effect (see wire2 Upstream). 

2. Because the wire joint is connected to something that has upstream 
effects, all its output nodes take these upstream effects as parents. 

3. And, it defines a node that captures the combination of upstream failures 
to propagate this to the components upstream.  

 
Note that although we do see many edges point in the backward direction, this 
approach does not introduce cycles in the Bayes Net. 
 
In a scenario when the is no power at the end of wire3 as shown in Figure 37. the 
probability of having a short to ground failure of both wire3 and wire 2 increased. 
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In a scenario where we know wire3 has a short to ground failure, we know for sure 
there is no power at the output of wire2 and the short to ground failure is 
propagated to the inputs of the wire joint (output of wire1). See Figure 38. 
 

 
Currently (end 2022), this way of working is not yet supported by our prototype 
modelling language and tools. However, we have considered multiple design and 
implementation issues that could arise. For one, the upstream nodes in the 
previous example look to have a failure mode as state but this is actually incorrect. 
What they describe is a property of the modality (in this case Power). 
 
To further illustrate the approach let’s look at a more complicated example of an 
electrical driven water valve that has an indicator light output.  
 

Figure 38 Wirejoint scenario where we know wire3 has a short to ground failure (D). As a result, there can be no 
power at the other output (E), and the short-to-ground effect is propagated upstream to earlier 
components in the chain (F). 

D 

E
 

F
 

A
 

C
 

B
 

Figure 37 Wirejoint scenario where we observe no power at the output of wire 3 (A). This increases the 
probability of a short to ground in wire 3 (B) as well as wire 2 (C). 
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Figure 39 Schematic of a powered water valve with indicator light 

 
In this example if power is provided to the valve, it will let the water pass through. 
When powered, it can show that state through an LED connected to its power 
output. If that light output has a short to ground, the valve closes and therefore 
stops the flow of water. 
 
To gently introduce the resulting Bayes Net, we first show how it looks like without 
considering upstream behavior in Figure 40. 

 

Figure 40 Bayes Net of the electrical valve example without considering upstream behavior 

 
To model the upstream behavior, we connect the upstream properties of the 
component down the line (water pipe and LED in the example) to  

1. All outputs of the previous component 
2. The node that captures the upstream effect 

Although the resulting Bayes Net looks complicated, it is can be generated 
automatically according to the rules above. See Figure 41. 
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Note that there is an asymmetry in the upstream effects between water and 
power: a short in the power circuit causes an upstream water flow block, but a 
water stream block does not cause an upstream power loss. This is not visible in 
the picture but is specified in the conditional probability tables. Both scenarios are 
shown in the figures below. 
 

 

 

A 

B 
 

C 

Figure 42 Scenario where a short in the LED (A) leads to a no water out situation (B) and a water blockage effect 
upstream (C) 

Figure 41 Bayes Net of the electrical valve example including upstream behavior 
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5.8 Fuses, interlocks and other safety related components 

Fuses, interlocks and other safety related components need special consideration. 
Let us take a fuse as an example. 
 

5.8.1 Multi-step diagnosis 

When diagnosing a system without power, the cause might be a fuse that is blown. 
However, this is probably not the root-cause of the failure: replacing the fuse is 
not the solution. Although the fuse explains why several components are without 
power, we are looking for an explanation of why the fuse was blown. The fuse is 
both a cause and an effect. Root-cause analysis requires a “second why”-step. 
 
 

D 

E 

F 

Figure 43 In contrast to the previous scenario, a blocked pipe (D) does not cause the LED to go out (E) nor 
cause an upstream power failure (F). Although the figure looks symmetrical, the behavior as 
specified in the conditional probability tables is not. 
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Figure 44 Diagnosing root cause where a safety component licked in is a two-step approach. 

 
The general approach to finding the second why in these cases is to detach 
components from the circuit and test. This is an intervention (system change, then 
observe). Interventions are subject of section 5.10.  
 

5.8.2 Bayesian Belief Network 

The Bayesian Belief Network with two identical components connected to a single 
fuse looks like Figure 45 (simplified, wires are not modelled). 
 

 

Figure 45 Bayes net of two components connected to a single fuse. Depicted is the diagnostic scenario in 
which power is provided but neither component produces output. See text for discussion. 
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 If power is provided but neither component produces output, the most likely 
“component” that has failed is the Fuse (the alternative that both Components are 
broken at the same time is possible but much less likely). 
 
When the Fuse is verified to have blown, the next diagnostic step is to identify 
which component has caused the short in the first place. As stated before, this will 
typically require an intervention such as disconnecting one component and trying 
to powerup the system with a fresh fuse.  
 
Note the similarity with the upstream effect discussed in the previous section. The 
difference is that here we regard the Fuse as a component, be it that its “failure” is 
not independent but rather fully dependent on the components it protects2.  
 

5.8.3 Conclusion 

We can handle fuses and other safety related components using the approach we 
developed so far. In practice this means that: 

1. System designers can design their system in a natural way 
2. The Bayes Net generating algorithm has to treat these components in a 

special way 
 

 

Figure 46 System specification of an electrical system of two components protected by a single fuse. 
The specification resembles the system structure. 

 
 

5.9 Modeling software 

The diagnosis task is not to identify a particular bug in the software. We assume 
the software is correct and does not deteriorate over time. What we do need is a 
model of its (normal) behavior in order to diagnose the hardware components. 
 
Up to now this report used small examples to illustrate the basic concepts. To 
illustrate the modeling of software we will use part of the Paper Input Module as 
example. 
 

 
2 If a fuse or other safety device can fail itself then that would introduce another failure mode. The Bayes 
net itself would not change. 
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 The printer behavior is not fully defined by its mechanical or electrical 
components. The control software is an important part too. So, to describe system 
behavior in order to diagnose when it misbehaves, a model of the software 
behavior is required. 
 
An example is shown in Figure 47 where a message if the tray is empty is based on 
the status of two sensors, the Position Up sensor and the Tray Empty sensor. The 
logic is captured in an Empty Tray Logic-component. When signaled, a message is 
generated if the required computing resource is available. This computing resource 
is provided by a physical component, in this case the CPU of the PBA Board. This 
models the fact that if the PBA board fails, or has no power, there will be no Tray 
Empty message. 
 

 

Figure 47 Part of the PIM model showing how the sensors in a tray eventually lead to an error or 
message on the user interface 

 

5.9.1 Software modeling alternatives 

Because a software function does not really have a physical location we have some 
design freedom of where to locate it in the model. Taking the Tray Empty logic 
example again, we could take 

1. The structural view: the function runs on the PBA-board CPU and 
therefore belongs to the PBA-board. 

2. The functional view: it is part of the Tray (there is one instance for every 
tray) so it belongs to the tray. Instantiating a PIM with multiple trays 
would then automatically add the necessary functions. 
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 Although the second view sounds appealing, it has a serious drawback. If the cable 
between sensor and PBA-board were broken, the first approach would correctly 
deduct that the Tray Empty message cannot be displayed, while the second view 
would not capture this. 
 

5.9.2 Software modeling process 

Up to now we have modeled the software behavior based on an understanding of 
the behavior of actual software implementation. This in a way is inefficient as the 
software itself is a formal description of the behavior. Other approaches could be 
to either extract the rules from the software code itself (difficult), or tap into the 
model based software engineering approach (when possible). 

 

Figure 48 Different ways of capturing software behavior in a diagnostic model. Left: manual analysis; 
Middle: automatic extraction; Right: model based software engineering 

 
 

5.10 Interventions 

5.10.1 Do-operations 

Interventions change the system or the environment in which it operates. 
Examples include trying a different system function to see whether that works, 
temporarily disconnecting a connector, and triggering a sensor by hand to see if at 
least the sensory circuit works as expected. 
 
Evidence obtained after an intervention cannot be treated the same way as we do 
when merely observing additional facts. This is best illustrated with an example. 
 
Re-using the Fan example of sections 3.2 and 5.2, where we diagnose the fact that 
there is no wind. The additional observation that the motor shaft is rotating 
indicates that the motor is OK and that power must be present. In contrast, 
consider the test that we turn the motor shaft by hand (instead of using the 
motor). If we now observe that there is no wind blowing, we obviously do not gain 
information on the motor health or power status 
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Figure 49 Compare the passive observation that the motor shaft is turning (top) versus the active 
intervention of turning the motor shaft (bottom, with red checkmark). The probability of 
having power and the health of the motor is different. 

 
The intervention on a node does not change the marginal probabilities of its 
parents. In the Bayes Server tool, interventions can be entered using the “do(…)” 
evidence context menu. The terminology is based on the do-calculus coined by 
Pearl (Pearl, 2000). 

 

Figure 50 Context menu in Bayes Server to enter interventions 

 
The notation here is P(Health motor | do(motor shaft moving), Air present) 
 
If we do an intervention, or possibly multiple interventions, we need to combine 
the information we have for each of these scenarios because a single scenario only 
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 provides one part of the puzzle. It is important to realize that doing an intervention 
might change certain observations but we still need to take into account what we 
observed before the intervention. Therefore, we cannot have just a single instance 
of node for a certain phenomenon. The solution is to copy large part of the Bayes 
Net to accommodate for every scenario. 
 

5.10.2 Example 

Suppose we have 3 electrical components C1, C2, C3, in a row. All components 
must be OK for power to come out at the end.  

 
 
We know there is power at the input of C1 but we see no power at the output of 
C3.  

 
 
How can we diagnose which component is broken? 
 

5.10.3 Extending the network  

Suppose we can test what happens if we apply power (intervention!) to the input 
of C2 and observe that now we do have power at the output. If we merely insert 
the intervention we get the following result: 

Figure 51 Model of 3 electrical components in series 

Figure 52 Scenario where there is power at the input but no power at the output 

Figure 53 Scenario where we insert power in the middle if the network and observe power at the output. Note the 
red checkmark indicating a do-operation. The incoming arrows are displayed in light gray color because 
the do-operation effectively blocks the upstream information flow. 
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We can conclude that C2 and C3 are OK, but the network tells us that the 
probability of C1 being broken is only 10%. This is incorrect, because from the 
previous scenario we know that at least one component must be broken, so in this 
case the only explanation is that C1 is definitively broken. 
 
To have the Bayes Net calculate this correctly we extend the network as shown 
below. Because in both scenarios (with and without intervention) we are using the 
same physical components and assume the health of these components do not 
change between these scenarios, we reuse the health nodes of the components. 
 

 
The top row shows the first scenario, the bottom row the second (with 
intervention). Now, the network takes the information of both scenarios into 
account and correctly concludes that C1 must be broken. 
 
Note that because we duplicate the nodes we have the possibility to add different 
observations for the same phenomenon. In this case we can express that we 
observe no power at the output of C3 in scenario 1 while there is power in 
scenario 2. 
 

5.10.4 Replacing a component 

Another type of intervention is to replace a specific component and then observe 
the effect. We model this by (again) extending the network but in this case we also 
“duplicate” the replaced component because it is in fact another item with its own 
health. In the example we assume that the new component is 100% OK but this is 
not required for the method to work. 
 
Building on the previous example, assume that the first intervention of adding 
power was not successful: 

Figure 54 Combing the two scenarios into a single network, with the component healths as connecting nodes 
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We now have a high suspicion that either C2 or C3 is broken. Let’s see what 
happens if we replace C3. See Figure 56. 
 
 

 
In this scenario we do have power at the output so the network correctly infers 
that C3 must have been broken and that C1 and C2 are OK. 
 
Should we still have no power, as in the next figure, the most likely cause is C2 
being broken. 

Figure 56 Adding information that replacing C3 solved the problem. The network concludes that C3 must have 
been the problem and that C1 and C2 are definitively OK. 

Figure 55 Alternative scenario compared to Figure 55. Here we observe no power at the output after inserting 
power. 
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5.10.5 Multiple faults 

Note that we are not 100% sure because it could be, although less likely, that both 
C1 and C3 are broken. This information cannot be understood immediately from 
the picture above but can be obtained by looking at the joint probability 
distribution 𝑃𝑃(𝐶𝐶1,𝐶𝐶2,𝐶𝐶3) as shown in Table 8. 
 

 

Table 8 Joint probability distribution over the three components after at the end of three scenarios. 
Example: the probability that C1 and C3 are broken and C2 is OK, is 0.036609 (last column, 
second row from below). 

 

5.10.6 Calculating the best intervention to do 

Not only do we need to assess the information after an intervention, we also have 
to determine which intervention is the best to do. This topic is addressed in 
section 6.8. 
 

Figure 57 Network when replacing C3 still did not solve the problem. Now C2 is by far the most likely 
candidate. For discussion why see text in the next section. 
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 5.10.7 System inputs 

In the previous sections we have not discussed if we should duplicate the nodes 
that represent system inputs or not. The answer is: it depends. 
 

1) If we do not observe the inputs they are effectively part of the root cause 
analysis (the system does not work because there is no power). In this case 
we do not duplicate the input nodes, assuming that the input does not 
change between interventions, just as we assume the component healths 
do not change. 

 
2) If we set an input (as an intervention) we duplicate the node, and set the 

evidence accordingly using the “do-action”3. 
 

3) If we observe an input, we do not duplicate the node and set the evidence. 
This assumes that the input did not change between interventions. Even if 
we observe an input in a later scenario, adding it as evidence then also 
influences the beliefs in earlier scenarios. 

 

5.10.8 Alternative: Posteriors as the new priors 

Instead of extending the network we also considered an alternative approach: for 
a new scenario we insert the posterior probabilities (the new beliefs after the 
previous scenarios) as the prior probabilities. Intuitively this makes sense. E.g. 
when we concluded in scenario 1 component C1 is OK we fix its state to being OK 
in the next scenario. However, we encountered several cases in which this 
approach yields the wrong outcome. See for example the next diagnostic scenario. 
 
We have an all-in-one printer that can copy and print. Copying requires a scanner 
component, printing requires an image processing component and both functions 
require an ink jetter component. 
 

 
3 Since by definition an input has no parents nodes, using do-action or setting regular observational 
evidence is actually computational equivalent. 
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Suppose we see that copying does not work. 
 

 

Figure 59 Scenario where we see that copying does not produce a sheet. Conclusion is that either 
Scanner or Ink jetter are likely failing 

 
To further diagnose, we try the printing functionality. Suppose that printing 
succeeds. We model that by carrying over the posteriors of the previous scenario 
and add evidence that printing succeeds. 
 

Figure 58 Modeling an all-in-one printer that can copy and print 
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Figure 60 Second scenario where printing succeeds. The Scanner health probability is still at the 
probability from the previous scenario. Apparently, not all information from the previous is 
carried over as we know the Scanner must be failing. 

 
 
The network correctly infers that the image processor and ink jetter are OK but 
fails to conclude that the scanner must be the failing component. 
 
This example shows that although using the posteriors as the new priors transfers 
knowledge from one scenario to the next, it does not transfer all available 
knowledge. 
 

5.10.9 Implementation consequences 

Supporting interventions requires a change in the tool chain: instead of pre-
computing a single Bayes Net that is used at diagnostics time, we now have to 
generate new Bayes Nets on the fly as interventions are planned and executed. 
 
 

5.11 Diagnosing wrong inputs 

5.11.1 Problem statement 

In all examples up to now we assumed that all system inputs were known and are 
correct. The only task left is then to diagnose a failing component. 
 
In reality not all inputs are known and the reason for a system failure could be a 
wrong input. The most obvious example is that there is simply no power provided 
to the system, but in complex systems it is not at all obvious which inputs are 
required for a specific system function. 
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 5.11.2 Solution 

As a small example consider a water supply system that can provide hot or cold 
water. Opening the valve will give water (if water is supplied) and pressing the 
switch will activate the heater (if power is supplied). 
 

 
For model simplicity we leave out failing components and focus on the inputs. 
 

 

Figure 62 Bayesian Belief Network modeling the water supply system 

 
If we observe that there is cold water coming out, the diagnosis depends on our 
expectation: 

Figure 61 Schematic of a system that can supply water, either hot or cold, depending on user 
control settings 
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 1. If we expected no water, then we need to check the valve knob position 
2. If we expected hot water, then we need to check the switch position as well as 

the power input. 
 
Thus, the “correct” diagnosis suggestion depends on our expectation. 
 
To handle this in our diagnostic framework we make the users’ expectation on the 
system explicit. First we set the expectation and then we provide the actual 
situation. Then a diagnosis corresponds to the comparison between the actual 
situation  and the expected situation. This comparison can be done in the BN by 
first setting the base evidence (expectation) and subsequently calculating for every 
node either the difference in probability or the quotient (called lift) given the 
actual evidence. 
 

 
Scenario 1: we expect no water, but we see cold water 
 
Step 1: setting expected situation by indicating no water at the output and 
capturing the results as base evidence. 
 

Figure 63 Setting base evidence and calculating deviation from the base by either Difference or 
Lift in the Bayes Server tool. 
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Step 2: setting cold water as observation and calculating the lift. 
 

 

Figure 64 Setting the expectation "no water" on the output. This is then set as base evidence. 

Figure 65 Setting the observation "cold water" and calculate the lift (quotient) compared to the 
previously set base evidence. Lifts larger than 1 (increase) are indicated with a yellow upward 
pointing arrow. 
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We see that the lift (indicated by the arrows in Figure 65) is very high on the Valve 
handle input. That is the input we should check first. 
 
Scenario 2: we expect hot water, but we see cold water 
 
Step 1: setting the expectation by indicating hot water at the output and capturing 
the results as base evidence. 

 
 
Step 2: setting cold water as observation and calculating the lift. 
 

Figure 66 Setting the expectation "how water" on the output. This is set as base evidence. 



 

TNO PUBLIC 

TNO PUBLIC | TNO report |  | 1.0 | 10 January 2023  61 / 82  

 

 

Figure 67 Setting the observation "cold water" and calculating the lift. In contrast to scenario 1, now we 
see that lift is very high in the power section of the model: either the switch is open or the 
input power is not available. 

 
Now we see that the lift is very high on the power switch and on the power input. 
These are the items we need to check first. Although the evidence (cold water) is 
the same in both scenarios, the outcomes are different because the expectation 
was different. 
 

5.11.3 Conclusion 

By setting the expectation and calculating the difference or lift compared to the 
base situation we can diagnose wrong or unknown inputs. This is not much 
different from diagnosing component failures except that in that case we have the 
implicit expectation that components are working correctly.  
 
For inputs it is not obvious what is the right and what is the wrong input, as that 
depends on the expected system function, and therefor has to be set explicitly. 
This could be done by either explicitly indicate the correct value for every input, or 
as we have shown in this section, to only set the expected outcome, and have the 
model calculate the corresponding expected inputs. 
 
This approach is not yet implemented in our diagnostics software. 
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 6 Service tool 

 
The service tool is created from the model and supports the service engineer in 
their diagnostic task.  
 

6.1 Workflow 

 
The workflow would be like this: 
 

1. Optionally, the tool reads all available machine data and adds these 
observations as evidence in the model 

2. Service engineer selects the problem (observation as evidence, e.g. an 
error code) 

3. Tool calculates: 
a. Which components are most likely to have failed, including 

i. Confidence in this outcome 
ii. Explains why these components are suspected to have 

failed 
b. Which inputs are important to know for a good diagnosis 
c. Which tests are the most valuable to do to get a better or more 

specific diagnosis 
4. Service engineer selects and executes a test and enters the outcome of the 

test in the tool 
5. Go to step 3, until the engineer decides to do a service action. 
 

To illustrate these steps we developed a web-based prototype. See Figure 68.  
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Figure 68 User interface showing the capabilities of the diagnostic tool for the service engineer. Starting 
from the error message or at the top, the tool lists suspected components and suggests tests 
for further diagnoses. Evidence entered is shown at the bottom 

 
This chapter addresses the steps mentioned above in more detail. 
 

6.2 Connecting to data 

Machine data that is available can be automatically entered as evidence in the 
Bayesian belief network. This supplies the tool with as much information as 
possible that is available “for free”. Data can be sensor data or event data from the 
event logs. 
 
When setting up such an automated data pipeline there are two potential pitfalls: 
 
Event processing 
 
To correctly interpret the events logged in an event file it is important to 
understand the event generating mechanism. As an example, a system process 
might log its starts and ends with a JobStart and JobEnd events. However, if the 
last job event in the event log is a JobStart, this does not mean that the system is 
running a job. It could be that the system stopped processing the job due to an 
error. 
 
Sample frequency 
 
Typically, sensors are sampled with a certain sample frequency. This means that at 
any point in time you actually don’t know the current situation, only the situation 
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 at the last measurement. This can lead to a situation in which an effect can be 
observed before the cause is observed. In a naïve modeling approach, this will also 
lead to inconsistent evidence or wrong diagnosis. 

 

Figure 69 When doing diagnosis at the time indicated by the dashed line, we would conclude that the 
temperature is low while the power is on (last known measurements), indicating a heater 
problem. However, it could be that the temperature is low because the power went off and 
therefore not a heater failure. 

 
 

6.3 Observations and inputs 

Typically, a diagnosis starts with the observed problem, such as an error message. 
This observation is entered into the tool. Other “known” facts are also entered to 
get the best possible diagnosis. This includes the model inputs (for systems 
typically things like power supply: if the power plug is not connected to the wall 
socket or the building electricity supply fails then the system will not work). If not 
provided and relevant for the diagnoses, the test recommendation (see below) will 
include a request to observe an input (“is the plug connected to the wall socket?”). 
 

6.4 Hypotheses and explanation 

At any point in time the service tool will list the most likely hypotheses for the root 
cause. Showing multiple hypotheses (especially when their likelihoods are similar) 
helps in understanding “what the tool is thinking”, can immediately trigger the 
service engineer for either positive or negative conclusions, and helps in 
understanding why certain tests are recommended (see next section). 
 
In addition to a list of hypotheses the tool also shows the certainty of these 
hypotheses. In the beginning of a diagnosis session the certainty will be low and 
then gradually increase as the session progresses. How the uncertainty should be 
conveyed to the user is still subject of research. 
 
Providing an explanation with the failure hypotheses will 

time

diagnosis
power
failure

power measurement

temperature measurement
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 1) increase the trust of the engineer in the tool  
2) help the engineer in selecting the best next action  
3) educate the engineer while doing diagnosis. 

 
This is still subject to research on how to do this effectively. Current prototypes do 
not yet have the explainability feature.  

6.5 Test recommendation 

6.5.1 Types of test 

To further pinpoint the root cause, additional diagnosis steps are proposed. 
 
These steps include: 

- Add additional observations (probing) 
- Make a change in the system and observe the result (intervention) 

 

6.5.2 Value and cost of a test 

The tool recommends the best actions to take based on its diagnostic value (how 
much will the test result reduce the uncertainty in the diagnosis?) as well as the 
amount of effort required to execute a test (checking an indicator light might be 
much easier than using measurement equipment, although the latter could 
provide more detailed information). 
 
Technically, the reduction of uncertainty is based on some information theoretic 
value such as the value of information of potential new evidence or entropy 
reduction over a set of hypothesis. The amount of effort is encoded in a cost. The 
tool will then determine the tests with high value of information and low cost. An 
obvious way to include cost is to simply divide the expected entropy loss by the 
cost, which would give us per test candidate the number of bits per Euro to rank 
them but there might be better alternatives. This is part of the ongoing research. 

 

Figure 70 Bayesian network tools provide analysis of networks, such as Value of Information (left) and 
Entropy (right). Picture from Bayes Server. 

 
As with the hypotheses, the tool recommends multiple actions sorted according to 
its effectiveness for diagnoses.  
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 6.5.3 Decision networks 

As an alternative to using entropy or other information-theoretic metric to 
calculate the best test to do, we also investigated the use of decision networks for 
this purpose. 
 
Decision networks are an extension to Bayesian Belief Networks by adding 
decision nodes and utility nodes in addition to the random variable nodes. 

 
 
As we found out, using decision networks quickly runs into practical issues of 
memory consumption when scaling up model size. We experimented with 
approximations to circumvent these obstructions [8] but have not yet arrived at a 
satisfactory solution. Further research on this topic is planned for the near future. 
 

6.6 User Interface 

We have described the capabilities of the service tool and built a prototype 
showing the principles of the tool but have not designed an actual interface for use 
by the service engineer as such a tool should fit in the system manufacturers 
service ecosystem. 
 

Figure 71 Part of a decision network in the Bayes Server tool. The yellow nodes are utility nodes 
representing costs and the dark gray nodes represent decisions. Every decision is associated 
with a cost. Example taken from [8] 
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 6.7 Prototype implementation 

In our prototype implementation, we implemented a strategy that shows the 
principles but definitively needs refinement towards a real tool. 
 
All the nodes in the Bayesian network that drive the tool are divided into 3 
categories: 

1. Inputs and observations 
2. Capabilities and functions 
3. Components, including connections 

 
Given all the evidence we calculate the posterior probability for every state of 
every node, assume that the Normal state (or correct behavior) is the first state in 
the network, and sort the nodes per category. The probability displayed is the sum 
of all abnormal state probabilities, or 1 minus the Normal state probability. 
 
The tests to recommend are calculated as follows: 

- All components that have a failure probability larger than 0.2 are 
considered potential failures 

- For every available capability/function (category 2), we calculate the 
entropy of the set of potential failures, given the capability.  

- The top N capabilities that have the lowest entropy (intuitively: that gives 
the most information among the set of potential failures) are 
recommended as tests. 

- To show the test when a user clicks the clipboard icon, we have manually 
connected the capability to a test description in a csv file. 
 

6.8 Intervention prototype 

The prototype described above only implicitly deals with interventions. In 
particular, it assumes that a function can be tested without explicitly modeling 
what this test entails. This approach does not work when using a more structural 
oriented model. There we need to specify what the intervention actually is and 
what we then physically observe.  
 
The intervention-aware prototype is depicted in Figure 72. 
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We augmented the earlier prototype with the following elements: 
 

1) In the list of tests we specifically indicate interventions and an associated 
intervention. 

2) We show in the left columns different icons for interventions (wrench) and 
probing tests (clipboard). 

3) To calculate the expected information gain after intervention we extend 
the network and calculate the entropy decrease given the observation 
associated with the intervention. 

4) Previous interventions are shown in the new Interventions segment of the 
user interface. 

5) If there was already an intervention done, the question is, is that 
intervention still applicable. Currently (end 2022) we deal with this in the 
following way but this is subject to further research: 

a. To calculate the expected value of an intervention we calculate 
the maximum value over all possible combinations of earlier 
interventions. 

b. When an intervention is done, the user is asked whether earlier 
interventions are still applicable. Previous interventions turn 
yellow until the user has either confirmed or rejected them. Only 

Figure 72 User interface prototype supporting interventions. the section "Current observations" refers to 
situation in which components C2 and C3 have been replaced as indicated in the Interventions 
section. 
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 then the probability distribution over the health variables is 
recalculated. 
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 7 Conclusion 

In this report we have outlined an approach towards faster diagnostics. 
 
It includes 

1. A method to systematically describe system normal and abnormal 
behavior; 

2. A way to rank root-cause hypotheses, using a generated Bayesian Belief 
Network; 

3. An outline to recommended the most efficient next step in a diagnosis 
task; 

4. A way to methodically reason with interventions, i.e. dealing with multiple 
scenario’s; 

5. Suggestions for a service engineer facing user interface. 
 
The method mentioned in 1. is not only beneficial for root-cause analysis but also: 

• Supports design for diagnosability; 
• Streamlines the FMEA process. 
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 A. Bayesian Belief Network tools 

There are several tools available that support Bayesian Belief Networks. They 
typically have a computation engine with API to include in custom made software, 
as well as a GUI for experimenting and validation. All tools have a trial version with 
limitations. 
 
There are slight differences in the capabilities of the different tools, but all support 
dynamic networks, continuous variables, and decision networks to some degree. 
 
Tools include 
 

Tool Website Remarks 
Hugin www.hugin.com Expensive. Old-fashioned GUI. 
Netica www.norsys.com Old-fashioned GUI. Very good 

tutorial section to get started. 
Bayes Server www.bayesserver.com Easy connection to databases. 

Examples in this report are created 
using this tool. 

Bayes Fusion www.bayesfusion.com Also has web-based query interface. 
 
There are also free libraries available in various programming languages. 
Implementing the inference algorithms is not an easy task as dealing with 
thousands of small numbers requires attention to efficiency and numeric stability. 

http://www.hugin.com/
http://www.norsys.com/
http://www.bayesserver.com/
http://www.bayesfusion.com/
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 B. Upstream effect handling alternatives 

In section  5.7 we discussed the handling of upstream effects in the Bayes net 
generation. There are alternatives and variations to that approach that we 
considered during development. These alternatives are listed here for 
completeness. 
 
All these alternatives have one characteristic in common: the Bayes Net generating 
algorithm needs to accommodate for exceptions based on specific failure modes 
and components. In these examples the short to ground failure mode in 
combination with wires and other components that handle power there is an 
exception to the otherwise general Bayes Net generating rules. As a consequence, 
every time a new power related component is added to the library, the Bayes Net 
generating algorithms needs to be updated. 
 
The solution described in the main text requires a more elaborate component 
definition but does not require changes to the Bayes Net generating algorithm. 
 
For clarity we reduce the size of the example so we can simplify the Bayes nets. In 
particular, we leave out the WireJoints and consider a cable of several segments. 
 

1
1

2
2

3
3PSU

 

Figure 73 Simplified model of 3 wires in series 

 
Alternative 1 ― Top node 
 
Basic idea is to introduce a cable tree node representing the state short-to-ground 
of the cable tree We then model that a wire has a short-to-ground if the cable tree 
has a short to ground.  

 
 
 
Although this encodes the behavior well some disadvantages are: 
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 1. If a wire is diagnosed as short-to-ground, the cable tree must be short-to-
ground and then all other wires in the cable tree are also short-to-ground. 
This is not what one would like to see when looking at the components 
individually. 

2. If somehow you could assess the state of a single wire as being OK (not 
short-to-ground), then in this model no other wire could be shorted. Note 
that in general you cannot find individual wires to be OK without 
disconnecting them from the system.  

3. In this model one has to specify the a-priori probability of the cable tree to 
short, which would actually be a result of the probability of the individual 
wires. 

 

Alternative 2 ― Reverse causality 
 
The difference compared to Alternative 1 is that instead of encoding that the cable 
tree “causes” the wire to short, we encode that a short in the wire causes the 
cable tree to short, which in turn inhibits power to flow.  
 

 
This model fixes all disadvantages of option 1, at the expense of more complexity 
of the Bayes net, but since this is generated from the structural description 
anyway this is not a huge disadvantage.  
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 Alternative 3 ― Reduce complexity 
 
In alternative 2, all arrows from the CableTree node to the individual Power nodes 
are superfluous. If there is no power at the beginning of the cable tree, then no 
other points on the wire will have power. This is expressed in the following model: 

 
This works fine but has the slight downside that the PSU output node has to 
change when it is connected to a cable tree: it gets an additional parent. Although 
technically possible, this feels uneasy as we would like to see the Input-Health-
Output triple as a building block of the PSU component. A similar argument can be 
made if we connect the CableTree to the first Wire output (Power111 in the 
picture). 
 
Alternative 4 ― Add blocking node at the start of the flow 
 
This was previously our proposed solution but has been superseded by the 
solution described in the main text. 
 
The general idea is to add a node at the start of the flow that blocks downstream 
flow when an upstream component has a specific failure. The CableTree node in 
the picture stops the flow whenever one of the wires has a short-to-ground failure. 
 

 
 
Alternative 5 ― Reduce number of links 
 
To reduce the number of links in the solution as described in Section 5.7, we can 
move the short-to-ground failure mode from the wires into the new CableTree, 
effectively making it a component that sits inside the energy flow. 
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 Despite the appeal of simplicity this has two disadvantages: 
 

1. A component node in a physical flow is different from the standard model 
approach 

2. Setting the probability of a short-to-ground must be computed from the 
individual short-to-ground probabilities of the constituting wires, while 
these wire nodes do not show a short-to-ground failure mode. This feels 
messy. 

 



 

TNO PUBLIC 

TNO PUBLIC | TNO report |  | 1.0 | 10 January 2023  77 / 82  

 C. Loop handling alternatives 

In section Error! Reference source not found. we described how loops in the 
structural model are handled. We investigated some alternatives and these are 
described here. 
 
Alternative 1 ― Cut the loop 
 
The basic idea of “cutting the loop” is to take a node in the loop, duplicate it, and 
have one copy take all incoming arrows and the other copy provide all outgoing 
arrows. Then, we instantiate these copies for different observations and for each 
observation calculate the health for all components. If we repeat this process by 
duplicating another node in the network, we end up with set of equations we can 
solve. 
 
Again, this is best illustrated with our house heating example. 
 
The diagnoses scenario is that we know there is fuel available, yet the temperature 
is low.  
In Figure 74 we duplicated the Thermostat node into an a and b copy. 

 
 

Figure 74 House heating network where the Thermostat node is split into two nodes a and b to break 
the loop. In addition to the observations, the evidence added here is Thermostat=On. 
Similarly we compute the marginal probabilities for Thermostat=Off. 

 
From probability theory we know that4 
𝑃𝑃(𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) = 

𝑃𝑃(𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎|𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑂𝑂𝑂𝑂) ∙ 𝑃𝑃(𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑂𝑂𝑂𝑂) + 

𝑃𝑃(𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎|𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑂𝑂𝑓𝑓𝑓𝑓) ∙ 𝑃𝑃(𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑂𝑂𝑂𝑂𝑂𝑂) 
The Bayes Net provides the numbers marked in yellow if we set the condition on 
both copies of the Thermostat node.  

 
4 All probabilities in this example are conditioned on Fuel=Present and Temperature=Low, but these are 
left out in the text for readability. 
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Similarly we know 
𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) = 

𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎|𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑡𝑡 = 𝑂𝑂𝑂𝑂) ∙ 𝑃𝑃(𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑂𝑂𝑂𝑂) + 

𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎|𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑂𝑂𝑂𝑂𝑂𝑂) ∙ 𝑃𝑃(𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑂𝑂𝑂𝑂𝑂𝑂) 
 
Key insight is that we do not have to break the loop by splitting the Thermostat 
node, we can do the same exercise splitting the Furnace node as in Figure 75.  

 
 

Figure 75 House heating network with Furnace node split into a and b to break the loop. Shown here is 
the case where Furnace=Off. 

 
This leads to following set of equations: 
𝑃𝑃(𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) = 

𝑃𝑃(𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏|𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑂𝑂𝑂𝑂) ∙ 𝑃𝑃(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑂𝑂𝑂𝑂) + 

𝑃𝑃(𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎|𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑂𝑂𝑂𝑂𝑂𝑂) ∙ 𝑃𝑃(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑂𝑂𝑂𝑂𝑂𝑂) 
 
𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) = 

𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎|𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑂𝑂𝑂𝑂) ∙ 𝑃𝑃(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑂𝑂𝑂𝑂) + 

𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎|𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑂𝑂𝑂𝑂𝑂𝑂) ∙ 𝑃𝑃(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑂𝑂𝑂𝑂𝑂𝑂) 
 
We now have two expressions for 𝑃𝑃(𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) and 
𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) so we can combine these equations. Let 𝒑𝒑 =
 𝑃𝑃(𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑂𝑂𝑂𝑂) and 𝒒𝒒 = 𝑃𝑃(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑂𝑂𝑂𝑂), and replace the known 
yellow terms given by the Bayes Net with c1,…,c8.  Then combining the four 
equations above gives us 

�𝑐𝑐1 ∙ 𝒑𝒑 + 𝑐𝑐2 ∙ (1 − 𝒑𝒑) = 𝑐𝑐3 ∙ 𝒒𝒒 + 𝑐𝑐4 ∙ (1 − 𝒒𝒒)
𝑐𝑐5 ∙ 𝒑𝒑 + 𝑐𝑐6 ∙ (1 − 𝒑𝒑) = 𝑐𝑐7 ∙ 𝒒𝒒 + 𝑐𝑐8 ∙ (1 − 𝒒𝒒) 

 
This is a set of two linear equations that we can solve for 𝒑𝒑 and 𝒒𝒒. Substituting 𝒑𝒑 
and 𝒒𝒒 then gives: 
 

�𝑃𝑃(𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) = 0.403
𝑃𝑃(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) = 0.201  
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 This is outcome of our diagnosis. The ratio of 2:1 corresponds to the component 
prior probability ratio (0.01 and 0.005 respectively). 
 
Note that the sum of the probabilities is not 1.0. This is due to the non-
deterministic conditional probability tables that this approach requires. See point 2 
in the discussion below. 
If we have evidence for a node that is part of the loop, the calculation is much 
simpler because then we can cut the loop at the node with the evidence and the 
Bayes Net will give the answer directly, as shown in Figure 76. 
 

 

Figure 76 Cutting the loop at the node with evidence. The computed health for Furnace and Thermostat 
correspond to the values calculated earlier 

 
 
This approach has two major drawbacks. 

1. The math looks convincing but there we cannot justify the method of 
duplicating a node and setting both versions to the same value. This would 
need theoretical underpinning. 

2. It requires some “fuzziness” in the conditional probability tables. The CPT 
of the Temperature node is shown in Figure 79 where we encode the 
possibility that the temperature is low when the furnace is on. This is the 
moment that the temperature just dropped below the furnace activation 
threshold of the thermostat. This (small) probability has an impact on the 
diagnoses outcome but is difficult, if not impossible, to assess5. 
On a more fundamental level, this actually demands that the conditional 
probability table is constructed based on the knowledge of the control 
loop of which it is part of. This defeats the purpose of the approach in 
which the behavior of the larger system should emerge from its 
constituent parts. 

 

 
5 In fact we considered many variations this CPT and all have their shortcomings. 
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Figure 77 Conditional probability table of the Temperature node 

 
On these grounds this alternative was rejected in favor of the approach discussed 
in the main text. 
 
 
Alternative 2 ― Model time explicitly 
 
All earlier loop handling methods abstract from time in the loop. A different 
approach is to model time explicitly. This technique is known as Dynamic Bayesian 
Belief Networks (DBN). 
 
In a DBN, some links have a delay. Nodes that have an incoming delayed link are 
temporal nodes (time-dependent) and so are all its descendants. Figure 78 shows 
the house heating example with the temporal nodes Furnace, Room Temperature, 
and Thermostat. Note the self-loops with delay 1 for the latter two nodes. 
 
The model assumes that the outside temperature is cold, i.e. if the furnace is not 
burning the room temperature will decrease because of the heat loss. 
 
The room temperature has 4 states: 

• Cold: Temperature is far below setpoint. 
• Little cold: temperature is a little below the setpoint but still acceptable. 
• Little hot: temperature is a little above the setpoint but still acceptable. 
• Hot: Temperature is far above setpoint. 

This encodes the small interval around the setpoint where the actual temperature 
fluctuates because of the switching behavior of the system. 



 

TNO PUBLIC 

TNO PUBLIC | TNO report |  | 1.0 | 10 January 2023  81 / 82  

 

 

Figure 78 Dynamic Bayesian Network for the house heating example 

 
The Room Temperature is connected from the Furnace indicating that it takes 
some time for the room to heat up if the Furnace is on. The “loop” Furnace -> 
Room Temperature -> Thermostat -> Furnace is then not a cycle because it 
contains a delay link making all its nodes temporal. The figure shows the 
probability distribution of these nodes in the time stamps t=0 to t=5. The 
Temperature node is a final node indicating (in this case) the temperature at t=5. 
 
To model the dynamics of the house heating example correctly we also added self-
loops for the Room Temperature and Thermostat. This makes their value 
dependent on their previous value, effectively turning them into a stateful node. 
For example, the Room Temperature at time=t then depends on both the Furnace 
and the Room Temperature at time=(t-1) as shown in Figure 79. 

 
 

Figure 79 Conditional Probability Table (CPT) of the Room Temperature node on the Dynamic Bayesian 
Belief Network. Note the dependency on the previous time-step denoted by [t-1]. 
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 The time variable t is not absolute time but advances from t-1 to t when a state 
change occurs. Consequence is that we cannot just combine multiple loops in one 
system model as all loops will have different timings and cannot share the same t. 
Instead, we have to connect the final loop result when it reaches a stable state (is 
at equilibrium, in this example the final node Temperature ) to the rest of the 
system. 
 
In contrast to the alternative presented earlier, all CPT’s in this model are 
deterministic. The only “probabilistic numbers” are the priors at t=0 but since all 
transitions are deterministic and we wait until the loop reaches an equilibrium, 
these priors are irrelevant. This is a major benefit over the alternative presented 
earlier. However, we consider building these detailed dynamic loops models too 
complicated for our purposes and rejected this alternative in favor of the solution 
mentioned in the main text. 
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