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Machine learning for industrial processes: Forecasting
amine emissions from a carbon capture plant
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One of the main environmental impacts of amine-based carbon capture processes is the emission of the solvent
into the atmosphere. To understand how these emissions are affected by the intermittent operation of a power
plant, we performed stress tests on a plant operating with a mixture of two amines, 2-amino-2-methyl-1-prop-
anol and piperazine (CESAR1). To forecast the emissions andmodel the impact of interventions, we developed a
machine learning model. Our model showed that some interventions have opposite effects on the emissions of
the components of the solvent. Thus, mitigation strategies required for capture plants operating on a single
component solvent (e.g., monoethanolamine) need to be reconsidered if operated using a mixture of
amines. Amine emissions from a solvent-based carbon capture plant are an example of a process that is too
complex to be described by conventional process models. We, therefore, expect that our approach can be
more generally applied.
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INTRODUCTION
The most well-known and broadly used benchmark solvent to
capture CO2 is monoethanolamine (MEA) (1). Energy efficiency,
however, is not the only criterion that is important in selecting a
solvent for a carbon capture process. Amine emissions are equally
important, as these may require cost-incurring gas treatment strat-
egies to meet the operational permits and address environmental
concerns (2, 3). At present, we do not have a clear understanding
of these amine emissions from a capture plant operating with
these new solvent mixtures such as CESAR1 (4, 5).

Amine emissions from carbon capture plants are one example of
an industrial process for which the plant’s design, control, and op-
timization require detailed knowledge of how the process parame-
ters interact and affect the operation of the plant and what the
(chemical) mechanisms and rate constants are. Because of the com-
plexity of such plants, process models typically focus on capturing
the steady-state operation (6). However, there are many cases in
which operation beyond the steady state is required. For instance,
the design and operation of current and future power plants will
need to constantly adapt to the increased share of intermittent re-
newable energy generation (7, 8, 9, 10). This requires tools that fully
capture the dynamic and multivariate behavior of the plant away
from its steady-state operation. The classical analysis techniques,
such as response function fits (11, 12), or chemometrics approaches
(13) give some insights into the typical response to the different per-
turbations. However, these techniques cannot take the full multivar-
iate, nonlinear nature of the time-dependent behavior of a complex
plant into account. In addition, conventional causal analysis tech-
niques cannot be used without an understanding of the mecha-
nisms (i.e., the causal graph) (14) or additional experiments,

which interpretation, however, is not trivial because one cannot
easily compare to a baseline (i.e., the behavior of the plant under
the same environmental and solvent conditions without a particular
change).

In this work, we show that data sciencemethods that are typically
used for dynamic pattern recognition and predictions of financial
data can successfully be adapted to forecast the performance of a
plant (in real time) given its current and historic behavior, even if
it is operated far from its steady-state conditions, without a detailed
understanding of the underlying process. These forecasts can sub-
sequently be used to model potential emission mitigation scenarios
and to understand experimental observations.

Experimental campaign
To mimic the intermittency expected for the operation of future
power plants, we carried out an experimental campaign that in-
volved a series of stress tests on the pilot capture plant at Niederau-
ßem. Because of its size and the fact that it has been operating on a
slipstream of flue gas from a raw lignite-fired power plant (15, 16)
with CESAR1 solvent for more than 12 months (see Fig. 1 for a
schematic flow diagram), it provides an ideal real-life example of
the difficulties of understanding amine emissions (12). These
stress tests were based on eight different scenarios of how intermit-
tency can affect the operation and hence the amine emission of the
capture plant (see note S1 for more details on the rationale of these
scenarios).

Figure 2 shows that the sequence of stress tests causes emissions
substantially higher than those under normal operating conditions.
The other interesting observation is that 2-amino-2-methyl-1-prop-
anol (AMP) and piperazine (Pz) have different emission profiles.
Such a campaign gives us a wealth of experimental data on the be-
havior of a capture plant. These data would even be more valuable if
we were able to use them for quantitative predictions on future
emissions. However, we cannot even make qualitative predictions.
For example, during most of the stress tests, interventions of the op-
erators were required to ensure the safe operation of the plant. These
interventions make even a qualitative interpretation of the data a
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challenge, as we cannot disentangle the effects of these interven-
tions from the operational changes induced by the stress test.

Therefore, we have a case in which we have a large amount of
valuable experimental data, but where the complexity of the opera-
tion of the pilot plant does not allow any other conclusion that these
emissions are problematic. In particular, we cannot draw any stat-
istically relevant conclusions on why our stress tests caused such a
marked increase in emissions and which countermeasures we could
take to reduce emissions.

Machine learning model
During the experimental campaign, data were taken every minute.
This provides us with a large dataset. Such a dataset allows us to use
data science methods and develop a machine learning model to
analyze the data. In this section, we summarize the main features
of our approach; for details, we refer to Methods and the Supple-
mentary Materials. Our machine learning approach is based on
the observation that we can build a forecasting model by thinking

of the time-dependent process and emission data as an image (i.e.,
matrix of data; see Fig. 3). This representation allows us to use the
most powerful machine learning techniques for pattern recognition.
In this representation, the state of the plant at a given time t defines a
“state” feature vector x(t) with p elements representing the process
variables (e.g., flue gas temperature and water wash temperature). If
we take the state vectors of the plant for t timestamps, we have a
matrix of t × p entries, which can be seen as an “image” that is con-
nected to a future emission profile, y(t).

The next step is to link the pattern in the image of the history of
the plant to a particular future emission. For this, we have adopted a
gradient-boosted decision tree (17, 18) model that is trained on a
feature vector of concatenated historic data of process parameters
and emissions (i.e., we combine the rows, characterizing the differ-
ent parameters and emissions, into a long vector). We train these
models using quantile loss (19, 20) to obtain uncertainty estimates.
We have also adopted a temporal convolutional neural network
with Monte Carlo dropout for uncertainty estimation and show

Fig. 1. Simplified process flow diagram of the postcombustion carbon capture pilot plant at Niederaußem. The plant uses a slip stream from the coal-fired power
plant. The positions of the process parameters discussed in the main text are indicated in the figure. A complete piping and instrumentation diagram can be found in fig.
S2. FTIR, Fourier transform infrared.
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results (equivalent to those obtained with the gradient-boosted de-
cision tree) obtained with this model in note S8.

Insights into amine emissions from machine learning
We apply our machine learning model for different purposes, and
each of them requires us to forecast the emissions but each with a
different aim and time horizon:

1) (Real-time) prediction of future emissions: The aim here is to
predict what the emissions x hours in the future will be given the
historic and current operation and emissions.

2) Causal impact analysis of the data: To measure the impact of a
particular stress test on the amine emissions, we need a reference,
i.e., a baseline that gives us the emissions that would occur without
the changes directly induced by the stress test. Without this base-
line, it is impossible to correctly quantify the effect of the different
stress tests on the observed emissions.

3) Emissions mitigation: To understand and identify how we can
mitigate emissions, we use our model to predict emissions in “what-
if” scenarios. For example, we predict how the overall emissions
would change if we ran the entire experimental campaign with a
lower temperature of the water wash section.

In the next sections, we show how we use our machine learning
model to forecast amine emissions for the three different purposes
mentioned above. The basic model architecture we use is the same;
however, theway we apply and train themodel for the different ways
of forecasting is different.

Prediction of future emissions
The machine learning model that we introduced in the previous
section takes some historic data to predict future emissions. For
example, we use a sequence of input data (e.g., 2 hours) and
predict the emissions, say, 10 min, 1 hour, or 2 hours in the
future. For doing so, we use a sliding window; for the next

prediction, we update the input sequence with the observed emis-
sions (see Fig. 4).

The model can be used for making predictions for any time
horizon; however, one can expect the accuracy to decrease for
longer time horizons compared to shorter ones. To quantify the ac-
curacy of our prediction, we use the data that we have not used in
our training (and validation) set. One has to be careful in making
this comparison. Our machine learning model makes predictions
on the likely emissions, given the plant data preceding these predic-
tions, and in the testing step, we use the measured data in the test
set. However, this validation is overly pessimistic with respect to po-
tential real-world application because the validation and test set
contain, by construction, step changes that have not been seen in
the training set. In addition, these stress tests are designed to take
the plant outside normal operations. Also, the moment such a stress
test will be applied has no logical relation with the historic data of
the plant and hence cannot be learned. This makes our validation
overly pessimistic, as we are rather testing how well our learning
extends to very extreme conditions in the stress test.

Causal impact analysis
The key motivation for performing our experimental campaign is to
understand what changes to the plant have a significant impact on
the amine emissions. This understanding is essential to identify
those parameters that need to be tightly monitored and controlled
to mitigate emissions. In statistics, the gold standard for answering
such a question requires control experiments (21) to establish a
baseline. At present, such a baseline is impossible to obtain. As
the pilot plant receives the flue gas from a commercially operated
coal-fired power plant, it is impossible to precisely reproduce the
varying conditions of the plant. For this, one would need to run
two identical pilot plants at the same time.

Similar problems exist, for example, in finance where one might
want to measure the impact of some political intervention and

Fig. 2. Amine emissions during and after the experimental campaign. Time frame of the stress tests is highlighted in gray. The power plant was shut down from 25 to
30 January (red region), which explains the very low emissions around that time. In this work, we only used the data generated before the shutdown of the plant. In the
period of 6 to 8 February (gray region) other experiments were carried out at the pilot plant, but thesewere not part of our campaign. This figure shows that applying the
different scenarios cause the plant to emit muchmore compared to its steady-state operation. A preliminary analysis of the data has been reported by Charalambous et al.
(12). a.u., arbitrary units.

Jablonka et al., Sci. Adv. 9, eadc9576 (2023) 4 January 2023 3 of 11

SC I ENCE ADVANCES | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org on January 11, 2023



where it is equally impossible to duplicate society for a control ex-
periment. For these problems, causal impact analysis (22) can be
used to construct a so-called counterfactual baseline of the behavior
of the system without the intervention. For this, we use our machine
learning model to “rerun” the campaign but without the stress tests.
The fact that we now can obtain a reasonable performance baseline
is one of the major technical insights of our approach.

Let us assume that we have a perturbation on variable x2(t), e.g.,
we apply a step change for variable x2(t) at times t ∈ [tstartstep;
tendstep,]. To obtain a prediction of the baseline, we then train our
model on the training data but without any input from x2(t) [i.e.,
we also remove (Granger) causally related features]. We then have
a model that predicts the emissions worse than if x2(t) was included
in the training (as fewer features are used as input for the model),
but it does give us our best prediction for the normal operation of
the plant irrespective of the actual value of x2(t). This is the best ap-
proximation of the baseline operation we are interested in. Similar-
ly, we train our model for all other variables that are changed during

the different stress tests conducted in the experimental campaign.
We then use each of these models to predict the baseline (see Fig. 5).

Emission mitigation
To shed light on how we can reduce the overall amine emissions
during, for instance, a given experimental campaign, we have
used our model to run what-if scenarios. These scenarios were in-
spired by the outcome of the causal impact analysis, which high-
lighted some of the variables that affected the emissions the most.
An example of such a scenario could be: “What-if we run the entire
stress test with an increase in variable x2(t) of 10%.” For this scenar-
io, we replace in the input of our model x2(t) → 1.1x2(t) (see Fig. 6)
to compute the predicted emissions y′(t). We can then compute the
change in total emissions from

rel: emission change ¼ 100�
Ð
dt ½y0ðtÞ � yðtÞ�
Ð
dt yðtÞ

Fig. 3. Schematic illustration of the data representation. The dataset can be thought of an “image”with “width” equal to length of the input sequence (T ) and “height”
equal to the number of parameters, p. We represent with colors the value of parameter xj at a time ti. We then use a machine learning model to learn how this image
characterizing the history, and current state of the plant is connected to its future emissions.

Fig. 4. Predicting future emissions. In this figure, xi(t) represents the input data of the plant (e.g., temperatures, pressures, etc. in different parts of the plant) and y(t) the
emissions. The gray box represents the data used by the model to predict the future emissions. The black curve represents the measured past emissions and the gray
curve the measured future emissions. The purple curve represents the “real-time” predicted future emissions and the shaded purple area the uncertainty of the predic-
tions. We mimic these real-time predictions by sliding our gray box over the data, i.e., the measurements of the current time are added, and the oldest data are no longer
seen by thewindow, and wemake a new prediction. In the bottom figure, we collect the predictions for the different time horizons (2 min, red; 1 hour, green; and 2 hours,
blue). For the training of the model, we use the first half of the dataset.
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To compute these scenarios, we need to predict the emissions
y(t) given an input x(t). For doing so, we retrain the model using
all available data from the experimental campaign to ensure the
highest possible accuracy from our model. For a more detailed dis-
cussion, see also note S11.

RESULTS AND DISCUSSION
Prediction of future emissions
In Fig. 7, we compare the measured AMP and Pz emissions with the
predicted emissions for different forecasting horizons. For the
short-horizon predictions (top row), we observe that the measured
emissions are typically within our prediction interval (shaded area)
and that our model even correctly captures the spikes in the emis-
sion profile [AMP mean absolute percentage error (MAPE) of 2.4%
and overall percentage error (OPE) of 0.38%; Pz MAPE of 4.3% and

OPE of 2.0%; see note S7]. We can also make predictions for a
longer time horizon. For 1- to 2-hour windows, we can correctly
forecast the trends, but as expected, we lose accuracy on the
events (such as spikes) that happen on a short time scale (AMP
MAPE of 9.5% and OPE of 3.8%; Pz MAPE of 21% and OPE of
10%). It is interesting to zoom in on some of the areas where our
predictions deviate significantly from the actual measurements.
These deviations are associated with a stress test that was not seen
in the training, yet it is encouraging to see that our model did learn
something as we do predict the trends. In addition, our model in-
dicates at those conditions a very large uncertainty, which is exactly
how the stress test is designed, to take the plan far outside normal
operations. It is therefore very encouraging that our model recog-
nizes this and that this is correctly reflected in the uncertainties.

Of course, a stress test is far from ideal to test our model to make
(real-time) predictions, but these results do indicate that our model,
if applied under normal operating conditions, can be used to make
predictions about the emissions on a 2-hour window, which does
give the operators a window to take actions if emissions are predict-
ed to exceed specification limits.

Causal impact analysis
The first step in our analysis of the experimental data is computing
the baseline for all stress tests. In Fig. 8, we compare the measured
emissions for three of the stress tests with the predicted baseline
(which we predicted with the model architecture we validated in
Fig. 7). We can see the importance of these baselines in Fig. 8 (C
and D). At the first black vertical line, the lean solvent temperature
was increased from 43° to 52°C and put back to normal at the
second vertical line. The measurements (black lines) suggest an in-
crease in emissions during and after the intervention. However, we
find that this behavior is notably similar to the prediction without
the intervention (within the prediction interval) for AMP. Applying
the same analysis to those stress tests that involved changes in the
water wash flow rate or the solvent and water wash temperature

Fig. 5. Causal impact analysis. The left column shows the training of the model,
in which we use all the data preceding a particular step change to train our model
on predicting the capture plant’s performance. In this example, we make a step
change of variable x2(t) for example (A), and we train a model without variable
x2(t). For example (B), we make a step change in variable x3(t) and hence train
another model without variable x3(t). In this calculation, we have assumed that
the other variables are not causally related with x2(t) and x3(t), respectively; if
there is a causal relation, then these variables also need to be removed. The
right column shows how we compute the baseline, the step changes are indicated
by the vertical lines. The black curve gives the actual plant data, y(t), obtained from
the experimental campaign. The violet curves, y′(t) give the machine learning pre-
dictions of normal operation without the stress test, i.e., the baseline. The predic-
tions show that the x2 step change test caused a real reduction in emissions,
whereas the change in x3 showed no effect.

Fig. 6. Emission mitigation. To predict the effects of a given variable on the total
emissions, we train our machine learning model on the entire dataset (left). We
then use this model to run a what-if scenario, i.e., to use the model trained in
the first step to predict the emissions y ′(t) (red) for this changed input. For
example, what are the emissions if we replace input x2(t) (blue array) by, say,
x02ðtÞ ¼ a2ðtÞ (here, α2 = 1.1). We can then calculate the difference between the
actual measured emissions y(t) and the predictions y ′(t) (green). If we perform
this for different α, we can estimate and plot the change in emissions as a function
of α.
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(Fig. 8, A, B, E, and F), we observe a significant effect. In note S10,
we show the analysis for all interventions investigated in our
campaign.

It is interesting that the causal impact analysis reduces this ex-
tremely complex emission behavior (see Fig. 2) into an unexpected-
ly simple conclusion that controlling the water wash and solvent
temperature as well as the water wash flow rate are the most prom-
ising handles for emission mitigation. However, without the coun-
terfactual baseline, we would have concluded that many other
interventions that show a change in emissions during the interven-
tion are also good handles for emission control. This shows how
machine learning techniques can be used to extract insights from
complex experimental datasets that remained opaque to conven-
tional approaches.

Emission mitigation
The causal impact analysis can give us insights into the significance
and magnitude of the effects of changes we actually performed on
the plant. However, many other parameters were implicitly changed
during the stress test. Using our model, we can use these data to in-
vestigate which changes to the operation of the plant would result in
lower overall emissions during the stress test.

Figure 9 shows the predicted cumulative change in amine emis-
sions over the full campaign for the two sets of variables that caused
some of the largest changes in our in silico experiments. In these in
silico experiments, we change the value of two parameters by a fixed
percentage over the entire stress test, keeping also the dynamics un-
changed, and let our model predict the emissions. The heatmaps

then show the difference with the measured emissions for which
reason the center (0,0) of the heatmaps is gray.

These figures point to the most important conclusion from our
experimental campaign. Figure 9A suggests that lower AMP emis-
sions are obtained when operating at a lower solvent temperature.
However, under these conditions, we do not have the minimum Pz
emissions. On the other hand, minimum Pz emissions are predicted
for increased lean solvent temperature and increased temperature at
the top bed, under which conditions AMP emissions are predicted
to increase. Similar conclusions can be drawn from the other sce-
narios (see note S11). These results suggest that Pz and AMP have
different emission mechanisms. If volatility were the only mecha-
nism, one would expect the amine emissions to increase with in-
creasing solvent temperatures. This is what we observe for AMP.
Because AMP is more volatile, the AMP partial pressure throughout
the column is expected to be around two orders of magnitude
higher than that of Pz (23). One would not expect significant emis-
sions of Pz if volatility were the only mechanism. However, one can
also have emissions through aerosols (24). These aerosol emissions
are thought to be related to supersaturation in the column, which
can be caused by a temperature bulge in the column profile that
can be influenced by a change in lean solvent temperature (5, 25).
Absorbed in these aerosol droplets, Pz and AMP are forming non-
volatile carbamates, and (pure component) studies have shown that
the kinetics of this reaction is much faster for Pz (23). Moreover,
because of steric hindrance, the AMP carbamates are short-lived
and AMP is present as a protonated species in equilibrium with
the free amine (26). This leads to a situation in which there is a

Fig. 7. Amine emissions as predicted by the machine learning model. To test the performance of the model for the amine emissions of AMP (left) and Pz (right), we
trained the model on the first part of the data, used a subsequent part for hyperparameter search, and tested the performance on the final part. The splits are indicated
with gray vertical lines. The gap without predictions is due to the fact that the model needs to be initialized with a part of the sequence. The blue lines show so-called
historical forecasts, which can be produced by an expanding window approach where the model is moved over the time series, and we simulate what the predictions
would have been if one used the model with the forecasting horizon with an updated dataset (i.e., the model sees the actual emissions for making forecasts and does not
have to use its predictions, but we do not retrain the model). In the rows, we show the predictions for different forecasting horizons and we can observe, as one would
expect, that the predictions for shorter forecasting horizons are better than for longer ones. The shaded areas fill the range between the 10 and 90% quantiles.
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back-pressure buildup that hinders further AMP absorption in
aerosol particles, which is not the case for Pz. Hence, one would
expect the aerosol mechanism to be more relevant for Pz emissions,
and we conclude that in our stress test, the aerosol mechanism
seems more relevant for Pz than for AMP. Because the two compo-
nents in the CESAR1 mixture have different governing emission
mechanisms, different mitigation strategies have opposite effects
on the emission of the two components. Therefore, one needs to
design the capture plant to be able to deal with both mechanisms.
This is a more challenging task when considering blended solvents,
such as CESAR1, than single amine solvents. It is important to
include these additional costs in the current discussion to replace
conventional MEA-based capture plants with those based on
more advanced solvent systems such as CESAR1. Even though we
could not have derived this insight without our machine learning–
based analysis, further experiments will be needed for a more de-
tailed understanding of the causal mechanisms as our current
model can only highlight predictive correlations.

Even at steady state, we would not have been able to develop a
conventional process model to predict amine emissions from the
carbon capture plant. For instance, wewould need additional exper-
iments as we lack relevant thermodynamic data on the amines and
an understanding of the emission mechanisms. To make things
worse, over the experimental campaign, the plant was far from
steady state. The current process models are too simple to deal
with this complexity. In this work, we developed an alternative ap-
proach in which we start with the data and learn the mapping
between the process and the emissions directly from the data. The
resulting machine learning model allows us to not only forecast (in
real time) the emissions of the plant but also gain insights into
which parameters are key for emission mitigation. A similar ap-
proach can be used to forecast and understand other key perfor-
mance parameters such as those related to the plant energy
requirements.

Amine emissions from a carbon capture plant are just one
example of an industrial process for which a better understanding

Fig. 8. Causal impact analysis for three of our dynamic experiments. In causal impact analysis, we use the machine learning model to predict what the emissions [(A),
(C), and (E) AMP emissions; and (B), (D), and (F) Pz] were without intervention (blue). The difference between the prediction and the actual measurement (black) is the
effect size. That is, if we observe no difference between the measurement (black) and prediction (blue), then there is no effect. (A) and (B) show the measurement and
predictions for the step decrease (decr.) in water wash (WW) flow rate. One can observe that also the counterfactual model forecasts an increase (incr.) in amine emissions
compared to the actual observations. (C) and (D) show the effect of the increase (incr.) in lean solvent temperature. One can observe that Pz (D), in contrast to AMP (C),
shows a significant reduction in emission with respect to the baseline. (E) and (F) show the effect of an increase in water wash and lean solvent temperature. One can
observe that Pz (F), in contrast to AMP (E), shows a reduction in emissionw.r.t. the baseline. Shaded areas cover the area between the 0.05th and 0.95th percentiles. Dotted
vertical lines indicate the start and end of the step change.
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of its operation beyond its steady state is needed. Another example is
the start-up of a plant during which one has to carry out many tests
to identify safe operational limits. These tests can take manymonths
before a plant can be put into operation. Typically, during such a
start-up phase or any other change to a new operating regime,
there is a lot of data created and collected, but this data collection
has outpaced our ability to sensibly analyze the data, let alone un-
derstand it. Our work shows that we could feed the data into an
active learning model to harvest all the knowledge that has been col-
lected during these experiments. Interrogation of this model can
help us define the next most informative experiment (27, 28),
which we expect to greatly reduce the time to operability and, in
contrast to conventional approaches, can easily (via retraining)
adjust to changes in the plant (e.g., solvent degradation). This
power of machine learning in chemical engineering also highlights
the need to share data in a machine-actionable form (29, 30, 31).

Machine learning has the potential to make an even bigger
impact in chemical and process engineering than it did in computer
vision. In the case of computer vision, the basic features of an image
that are learned by a model are often closely related to how we per-
ceive images with our brain. However, in an industrial plant, we
often lack understanding of the underlying mechanisms, but with
machine learning, we can find the underlying rules of the mapping
from the parameters to observables and make predictions for phe-
nomena we could not predict thus far.

METHODS
Pilot plant
Figure 1 shows a schematic flow diagram of the capture plant at Nie-
deraußem (Germany). The flue gas is supplied by a 965 MWel raw
lignite-fired power plant subjected to a state-of-the-art multistage
electrostatic precipitator, a conventional wet limestone flue gas

Fig. 9. Predicted changes in emissions.Ordinate and abscissa show the relative change in the process variable (in percent). The color indicates the cumulative change in
normalized emissions over the full observation time compared to the actual emissions (i.e., not absolute emissions). To increase the reliability of the forecasts, we trained
the model for this analysis on the complete dataset and use a short output sequence length. Left column (A and C) shows predicted changes in emissions for 2-amino-2-
methyl-1-propanol (AMP). Right column (B and D) shows the predicted changes in emissions for Pz. (A) and (B) plot the changes in emissions for changes in water wash
temperature (temp.) and lean solvent temperature. For AMP, the highest predicted reduction in emissions is for decreased water wash temperature and decreased tem-
perature of the lean solvent, whereas for Pz, the highest predicted reductions in emissions are possible for increased solvent temperature. (C) and (D) show the predicted
change in emissions for a change in the temperature of the flue gas upstream of the adsorber column and the temperature of the top bed. Here, decreasing the tem-
perature at the top bed and the temperature of the flue gas yields the lowest AMP emissions but high predicted Pz emissions.
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desulfurization plant, and a direct contact cooler located upstream
of the absorber. The capture plant follows a conventional amine
scrubbing process. The absorber column consists of four beds and
is integrated with a flexible intercooling system and a water wash
section. The flexible intercooler, which can be located either
between the bottom and the second packing or between the
second and third packings, controls the temperature rise in the ab-
sorber. A water wash section has been added to the pilot plant to
reduce amine emissions to the atmosphere (32, 33). The amine deg-
radation, due to the presence of oxygen and other impurities such as
nitrogen oxides, as well as elevated temperatures during solvent re-
generation, can result in other gaseous emissions of degradation
compounds such as ammonia (34).

The flue gas upstream of the absorber was analyzed using a
BA5000 Bühler infrared spectroscope. The CO2-lean flue gas down-
stream of the water wash outlet was analyzed using a GasMET CX/
DX 4000 analyzer (i.e., CO2, CO, O2, AMP, Pz, NH3, and H2O).

Experimental campaign: Intermittency scenarios
As the baseline, we assume that the capture plant operates with the
power plant at full load but that the intermittency associated with a
future increase of renewables will cause regular changes of the load
of the power plant. Variations in this load not only change the
amount of flue gas that the capture plant has to process but can
also change the amount of steam that is available for the capture
plant. In the scenarios that drive our stress tests, we focus on
those (combinations of) changes, of which our previous study on
MEA (15) has shown that they can affect the emissions. The time
scale and the magnitude of the changes are based on the expected
intermittency (7) and typical requirements of the grid services (10,
35, 36), respectively. A more detailed description is given in note S1.

Machine learning
§To avoid overfitting and the exploitation of spurious correlations,
the models were trained on a small feature set that was created using
manual feature selection and engineering (see note S6). For all our
modeling, we removed deterministic trend components from the
data using linear regression, which is motivated by the fact that
the characteristic time scale of these components is beyond the
one captured by our dataset (and analysis). In addition, removed
outliers using a z-score filter (z = 3), performed exponential
window smoothing (window size of 16 min) and downsampled
the data to a frequency of 2 min. The impact of the preprocessing
is shown in fig. S5. For use in the models, we additionally standard-
ized the data using min-max scaling. We did not retrain models for
historical forecasts.

Quantile regression using gradient boosted decision
tree models
To forecast the emissions, we used gradient-boosted decision tree
models in which the feature vector is constructed by concatenating
lagged time series for process parameters and emission. In this ap-
proach, we train a new gradient-boosted decision tree [as imple-
mented in the LightGBM library (37)] for every forecasting
horizon using the darts package (38) To obtain uncertainty esti-
mates, we use quantile regression. We tune the hyperparameters
of the gradient-boosted decision tree and the number of lags
using hyperparameter optimization on a validation set using Baye-
sian optimization (see note S7.2.). For all models, we scaled the data

(emissions and process variables) based on statistics computed on
the training dataset.

Causal impact analysis
For the causal impact analysis, we remove causally related covariates
and trained models on the data of the days preceding the step
change and following the step changes. For every model, we per-
formed a new hyperparameter optimization (using the shorter se-
quence preceding or following the step change as a validation set).
We also attempted to use Bayesian-structured time series models as
in the original implementation of the causal impact analysis tech-
nique (22) and found qualitative agreement.

We made use of the following Python (39) libraries: pandas (40),
sklearn (41), scipy (42), statsmodels (43), matplotlib (44), jupyter
(45), numpy (46), pytorch (47), darts (38), lightgbm (37), and
shap (48).
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