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Abstract—The electrification of the transport industry
is rapidly becoming a solution to mitigate the greenhouse
emissions problem. However, this electrification faces mul-
tiple challenges related to higher operational cost and
limited charging capacity. To cope with these challenges,
within the European project URBANIZED, an optimiza-
tion algorithm has been developed to determine charging
schedules (i.e., charging current vs time) for electric vehicle
fleets. The optimization algorithm exploits the benefits of
adding a Battery Storage System (BSS) to the charging
infrastructure. The algorithm minimizes the economical
costs associated to charging a vehicle, such as battery
degradation, grid connection and BSS costs, while taking
into account vehicle-related and grid-related constraints.
Simulation results show that charging the vehicle fleet as
late as possible is the best way to reduce the total operation
costs, due to the lower battery degradation. Likewise, the
usage of a BSS allows to further increase the battery
lifetime at an extra-cost of investing in a BSS system.

Keywords—Battery electric vehicles; Optimized charging
scheme; Battery degradation; Grid congestion; Battery stor-
age system.

I. INTRODUCTION

Greenhouse gas emission mitigation is one of the
major challenges of the 21st century. The negative con-
sequences of these emissions are already visible in the
environment [1]. One way of reducing these emissions
is by decreasing fossil-fuel usage. Such fuels are used in
multiple sectors of the economy, with the transport sector
alone accounting for 25% of its total usage via Internal
Combustion Engines (ICEs) [2]. Reducing the fossil-
fuel usage in the transport sector would significantly
contribute towards solving the emissions problem.

Due to climate change, alternatives are being explored
in the transport sector such as switching from ICEs
to Battery Electric Vehicles (BEVs) [3]. During their
life time, the emissions of BEVs are lower than those
of ICEs [4]. They can even be close to zero when
they are charged with electricity generated by renewable
sources. However, the adoption of BEVs faces multiple
challenges such as the relatively long charging time and
a shorter driving range, when compared to ICE-based
vehicles [5]. This implies that BEVs cannot drive long
distances as time efficient as their ICEs-based counter-
parts. Adding to these challenges, the battery of BEVs
continuously degrade over time, resulting in batteries
with less capacity and further reducing the BEVs range
[6]. Degradation is accelerated when stress factors are
present in the battery cycle such as overcharge, depth of
discharge or storing while fully charged [7]. Taking into
account these stress factors is therefore crucial for the
successful implementation of BEVs.

Another challenge related to the adoption of BEVs
is the added load on the electrical grid resulting from
charging such vehicles. Modern electrical grids were
not designed to take into account the load peaks that
charging BEVs fleets have on the total grid load. This
leads to situations where grid operators might not be
able to guarantee enough power for charging complete
fleets of BEVs. For example, in The Netherlands, a large
part of the electricity grid is already operating at nearly
maximum capacity [8]. This implies that charging a few
extra BEVs is feasible, but adding complete fleets might
result in grid congestion. This challenge is more relevant
for companies with (large) fleets of vehicles, such as bus
operators or delivery companies. These companies would
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require larger amounts of power (when compared to
normal consumption) to charge their vehicles to continue
with their normal operation [3]. Mitigating the grid
impact of charging vehicles fleets is therefore crucial for
the adoption of BEVs [9].

A potential solution for these challenges may be
the use of Battery Storage Systems (BSSs). A BSS
corresponds to a stationary battery used to support grid
operation. A BSS is therefore charged when no or
few BEVs are connected to the grid. It is discharged
when a large amount of vehicles need charging. This
BSS is placed close to the vehicles in a way that the
connection between the vehicles and the BSS does not
go through the grid. This reduces the BEVs impact on
the grid at an extra cost of adding a BSS [10]. Another
potential solution to these challenges is to dynamically
decide when to charge the BEVs based on charging
schemes (i.e., charging schedules). These schemes can
be optimised to have not only the least impact on the
grid, but also to reduce total charging cost. Combining
these two solutions might lead to an optimized charging
strategy with respect to the grid as well as the charging
cost.

Charging a fleet of BEVs is a wide topic which has
been studied from multiple angles. From the vehicle per-
spective, [11] showed in which cases a BSS can create
revenue and how to optimize fleet charging. [12] showed
what processes influence battery degradation and what
the important factors are that accelerate degradation.
From the fleet perspective, studies have been carried out
on how to create charging schemes while minimizing
some objective. For example, [13] showed what the
optimised decentralized charging strategy would look
like, while also taking into account network congestion.
[14] shows the impact of uncontrolled charging of BEVs
on the grid. They further elaborate on optimal charging
strategies to mitigate such an impact. [15] developed
an optimisation strategy for buses, where the desired
routes and fleet charging were jointly determined. [16]
developed an optimal charging algorithm taking into
account electricity price. [17] focused on developing an
algorithm for overnight charging of busses with respect
to battery degradation and electricity price. None of this
research considers the usage of a BSS and none take
both grid capacity and battery ageing into account.

This paper presents an optimization algorithm that de-
termines the charging schemes of BEVs, while including
grid capacity restrictions and battery ageing in the BEVs

and BSS. The optimization algorithm uses a multilevel
modelling strategy to capture the dynamics of the system:
from battery models to fleet-level cost models. Multiple
cost functions are minimized and compared aimed at
reducing battery ageing and CO2 emissions related to the
electricity production, while optimizing grid connection
size.

This paper is divided as follows. Section II intro-
duces the used modelling strategy for vehicle batter-
ies. Section III defines the mathematical aspects of the
optimization algorithm. Section IV discusses the result
of applying the optimization algorithm to a case study.
Section V closes the paper with conclusions.

II. BATTERY MODELLING STRATEGY

To optimize the charging schedule of a fleet of BEVs,
multiple models are required to capture the dynamics in
the vehicle battery and battery degradation. The follow-
ing subsections present the used models.

A. Battery Model

The second order Equivalent Circuit Model (ECM)
shown in Fig. 1 is used to model a battery cell [18].
Using this ECM, the following model is derived:

Vcell = VOCV + IcellR+ V1 + V2

dV1

dt
=

Icell
C1

− V1

R1C1

dV2

dt
=

Icell
C2

− V2

R2C2
,

(1)

where Vcell denotes the terminal cell voltage, VOCV is
the open circuit voltage, Icell cell current, R, R1, and
R2 are resistances, V1 and V2 are polarization voltages
over the RC tanks, and C1 and C2 are capacitors. All
magnitudes in this paper are expressed in SI units unless
noted otherwise. The model parameters C1, C2, R1, R2,
R and VOCV are dependent on the current direction (i.e.,
charging or discharging), cell temperature, and State of
Charge (SOC). An example of these parameters can be
found in Fig. 2. The current and voltage at pack level
is computed by scaling up the cell current and voltage,
i.e.,

I = Icellnp

V = Vcellns,
(2)

where I is the pack current, np is the number of parallel
cells in the pack, V is the pack voltage, and ns is



Fig. 1: Overview second order equivalent circuit model,
extracted from [18]

the number of cells in series in the pack. The SOC is
calculated with coulomb counting

Zk+1 = Zk +
Ikdk

3600Corig
, (3)

where Z is the SOC, Corig is the capacity of the whole
battery in Ah, the constant 3600 is used to convert
seconds to hours, k is the discrete-time index, and
dk the length of one time step in hours. This time
step is assumed to be 0.25 hours. Such a value saves
on computational time, while maintaining the accuracy
needed for the optimization.

Based on the battery model presented in this subsec-
tion, a degradation model and thermal model for batteries
are introduced in the next subsections.

B. Degradation of batteries

Although multiple processes cause degradation in bat-
teries, these can be grouped in two categories: calendar
ageing and cyclic ageing. The first happens over time,
whether the battery is used or not. This type of ageing
is mainly caused by an irreversible and unintended side
reactions that slowly consumes the lithium in the battery
[19]. Cyclic ageing happens only when the battery is used
and is mainly caused by forming an unintended layer
on the anode, which hinders or prevents the anode from
releasing electrons, therefore reducing the capacity of the
battery [20]. To capture these degradation processes, [19]
proposed an empirical model which takes into account
SOC, current, voltage, battery temperature, and time to
calculate the corresponding degradation of a cell. Such
a degradation is expressed in terms of capacity loss and
resistance increase. For this research only the loss of
capacitance is considered as the optimizer is designed

Fig. 2: Example of parameters for the ECM under
charging conditions



to minimize capacity loss. Including resistance increase
remains an interesting research topic.

The calendar loss is defined by [19] as

Ccal
after = 1− (7.543V̄cell − 23.75)

× 106exp

{
−6976

T̄cell
T 0.75

}
,

(4)

with V̄cell the average voltage over one cell, T̄cell the
average cell temperature in Kelvin, and T the time in
days. Ccal

after is the new capacity after T days if only the
calendar aging is taken into account, which ranges from
0 to 1.

Cycling aging is defined as

Ccyc
after = 1− (7.348× 10−3(VRMS − 3.67)2

+ 7.6× 10−4 + 4.08× 10−3(1− Z))
√

Q,
(5)

where
Q = (1− Z)CoriginTcycles. (6)

Here VRMS is the root mean square of the cell terminal
voltage, 1 − Z is the depth of discharge, Q is the cell
charge throughput of one cycle in Ah, and Tcycles is the
number of cycles. Ccyc

after is the new capacity after Tcycles

cycles if only the cyclic aging is taken into account. The
updated capacity is obtained using

Cnew = Corig(−1 + Ccal
after + Ccyc

after), (7)

where Cnew is the new capacity after a cycle has been
applied.

The updated capacity, computed with Eq. 7, is used
in the optimization process to calculate the cost of
degradation (see Section III). Note that this updated
capacity requires average cell temperature as one of its
inputs. The computation of this temperature is explained
in the next subsection.

C. Thermal model

A thermal model at cell level is used to compute
the cell temperature. The thermal model considers the
addition of four heat flows [21], [22], i.e.,

Cheat,cell ∗mcell
dTcell

dt
= Q̇s + Q̇O − Q̇B + Q̇cool, (8)

where Q̇S is the reversible reaction heat, Q̇O is the
overpotential heat, Q̇B is the heat transferred to the
environment, and Q̇cool is the heat added by a cooling
system. All heat flows are expressed in watts. Cheat,cell

is the heat capacity of one cell and mcell is the mass of

one cell. The multiple heat flows are further described
as:

Q̇s = TcellIcell
∂VOCV

∂Tcell

Q̇O = RI2cell +
V 2
1

R1
+

V 2
2

R2

Q̇B = Rth(Tcell − Tamb),

(9)

where ∂VOCV /∂Tcell is the partial derivative of the open
circuit voltage with respect to the cell temperature. This
parameter is obtained via experiments and dependents
on the SOC. Rth is the thermal resistance between the
battery surface and the environment. Tamb is the ambient
temperature. Note that Q̇cool depends on the cooling
capacity of the thermal system and the battery geometry,
therefore a general definition is not included in Eq. 9.

Based on the modelling framework presented in these
subsections, an optimization algorithm is defined in the
next section.

III. OPTIMIZATION OBJECTIVE

This section details the cost function and the con-
straints used in the optimization algorithm.

A. Cost function definition

The optimization objective minimizes some cost Ctot,
which consists of four components: a degradation-related
cost (Cdegr), CO2-related costs (CCO2

), grid-connection
costs (Cgrid), and BSS-related cost (CBSS). This is
captured by the following optimization problem:

min
I

Ctot

s.t. Eq. 17, Eq. 18

Eq. 19, Eq. 20,

(10)

where I is a set of current profiles that charges each
vehicle in the fleet, further defined by

I = {In,k | n = 1, . . . , Nfleet ∧ k = 1, . . . , Tcharge},

where Nfleet is the number of vehicles in the fleet and
Tcharge is the number of steps in which the total charging
time is divided. Note that Tcharge is a design choice: a
large number of steps results in a more detailed current
profile at an extra cost of computational effort. In,k is
the charging current during time slot t of vehicle n.
The definition of In,k implies that the current is discrete
during the duration of each time slot dk. Furthermore,
the total cost is defined as

Ctot = Cdegr + CCO2
+ Cgrid + CBSS . (11)



Each cost is expressed in euro. This function excludes
the price for electricity. The underlying assumption the
electricity price is fixed throughout the day.

For the degradation-related costs, it is assumed that
the end of life of a battery occurs when the battery
capacity is 80% or lower. The battery is assumed to
have no second-life value, which implies that its value
is zero when the capacity reaches the end of life. This
is considered common practice among researchers [23].
The degradation-related costs are given by

Cdegr =
Corig − Cnew(Tsim, I)

0.2Corig
Cbatt, (12)

where Cnew is the in resulting capacity after the optimal
charging cycle has been applied. Cnew is calculated using
Section II-B. Note that the pack current I influences the
amount of degradation as shown in Section II Moreover,
the degradation is only computed for the charging period
Tsim. The constant 0.2 takes into account the end of life
spam (i.e., 80% of original capacity). Cbatt is the initial
battery price in euros.

The costs related to CO2 generation are calculated
using

CCO2
=

Tcharge∑
k=1

(
Nfleet∑
n=1

Pn,k × ECO2,griddk

)
× CCO2,gramTsim,

(13)

with
Pn,k = Vn,kIn,k. (14)

Here, Pn,k is the power demand for charging at time step
t and vehicle n. ECO2,grid is the CO2 emissions of the
electricity in the grid at the time step k in grams of CO2

per kWh. The CO2 emissions of the grid were calculated
using data from [24]. An example of the CO2 emissions
is shown in Fig. 3. Note that k = 0 corresponds to the
starting time of 20:00. CCO2,gram are the costs related
to each gram of produced CO2. This is based on the
average of the European Emission Trading System (EU
ETS), which assigns a price to CO2 generation. Vn,k

is calculated using Eq. 2. Tsim is the length of the
simulation in days.

The cost related to the grid connection are based on
data from [25]. The costs for the grid connection are
formulated as

Cgrid =
Cfix + CvarSconnection

365.25
× Tsim. (15)

The costs consist of a fixed (Cfix) and a variable part
(Cvar). Both of these costs dependent on the connection

TABLE I: Example of operational costs per grid
connection size in The Netherlands [25]

Grid connection
size (kW)

Fixed cost
(C/year)

Variable cost
(C/(kW*year))

0 - 175 208 44.63
176 - 1750 812 34.70
1751 - 3000 2239 34.70
3001 - 6000 2351 29.83

size (Sconnection). An example of such costs can be found
in Table I, which shows the prices in The Netherlands
for companies. Cost of connections larger than 6000 kW
are not given by the grid operator, since they are highly
dependent on the situation. These situations are therefore
not be considered in this paper [25]. The constant 365.25
converts the cost from year to day.

To compute the cost of the BSS, it is assumed that
the BSS has a life time of 4 years when used every day
[26]. Therefore the cost is described as

CBSS =
CBSSρBSS

Γ
× Tsim. (16)

The discharged energy of the BSS (CBSS) is in kWh.
ρBSS is the BSS price which can be found in Table II.
Based on [26], the cost of a BSS in 2022 is 100 euros
per kWh. Γ is the battery lifetime in days.

B. Constraints formulation

The objective of the optimization is to minimize the
total cost function as described in Eq. 10. The constraints
are the following:

Nfleet∑
n=1

Pn,k ≤ Pgrid,k + PBSS,k

for all k ∈ {1, . . . , Tcharge},

(17)

Tcharge∑
k=1

PBSS,kdk ≤ CBSS , (18)

0.97 ≤ Zn,Tcharge
≤ 0.99

for all n ∈ {1, . . . , Nfleet},
(19)

In,k ≥ 0 for all n, k. (20)

Here, Pgrid,k and PBSS,k are the power delivered by the
grid and BSS respectively.

Each one of the constraints shown above have a
different purpose. For example, Eq. 17 makes sure that
the power used by all the vehicles never exceeds the



TABLE II: Example of model parameters values

Parameter Value Unit
Ambient temperature 283 K
Battery price EV new 16,000 C
BSS price 100 C/kWh
Battery Capacity EV 142.5 Ah
Specific heat capacity one cell 880 J/(kg*K)
Thermal resistance between cell and ambient 2.94 W/K
CO2 costs 80 C/tonne CO2

Observed month for CO2 cost November -
Cells in parallel 50 -
Cells in series 96 -

amount that the grid and the BSS can deliver at a time
instant k. Eq. 18 takes into account that the total power
that is drawn from the BSS cannot exceed the stored
energy of the BSS (CBSS). The BSS is assumed to
be fully charged at k = 0 and can be fully discharged
at Tcharge. Eq. 19 makes sure that the battery of each
vehicle is charged to at least 97% before the end of
the charging period and not more than 99%. Eq. 20 is
the lower bound, which prevents the current from being
negative.

This section presented the details of the optimization
algorithm used to schedule the charging schedule of a
fleet of electric vehicles. The optimization is applied and
analysed in a case study in the next section.

IV. SIMULATION RESULTS AND DISCUSSION

This section illustrates the applicability of the opti-
mization algorithm, based on a realistic case study.

A. Case study

To show the benefits of the optimization algorithm, a
case study was created, which gives insights in how the
algorithm works. The case study is based on lightweight
electric freight trucks, used for last-mile deliveries. The
BEV weighs a maximum of 3500 kilogram including
payload. This weight makes these vehicles an attractive
solution for a fleet operator, because no truck driver
license is required.

The BEVs are used for deliveries throughout the day.
At the end of the day, all vehicles are brought back to the
same depot and can be charged overnight from 20:00 till
8:00. They can be charged with different currents, which
is decided by a central coordinator, i.e., the optimization
algorithm of Section III. Fleet sizes of 20, 40, and 60
vehicles are considered for simulation purposes. For the
CO2 emissions, the month of November is considered as
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Fig. 3: Amount of CO2 in the grid during the month of
November in The Netherlands Fig. 3

Fig. 3 shows. In the figure, Time = 0 corresponds with
the start time of charging, namely 20:00 hours.

The batteries are assumed to be Li(NiMnCo)O2
18650 lithium-ion batteries. The batteries are modeled as
explained in Section II. The model parameters of Fig. 2
are used in the simulation. All vehicles are assumed
to have a starting SOC of 30%. To easily analyse
the results, all vehicles are assumed to have the same
model parameters. However, notice that the methodology
presented in this paper supports different parameters
sets. An overview of the model parameters is shown in
Table II. The BEVs do not have active cooling/heating
of their batteries (i.e., Q̇cool = 0). However, in case of
vehicles with this system, this heat flow could be added
as explained in [22].

Fig. 4: The optimization flowchart

Using the steps presented in Section III, the cost
function and constraints are formulated. The optimal



problem was solved using Matlab, which runs an interior-
point algorithm. A flowchart of the optimization can
be found in Fig. 4. To speed up the optimization, the
solution of the single-vehicle result was used as input
(i.e., initial solution) for the fleet-level problem.

B. Single-vehicle result

To intuitively show the results of the optimization
strategy, the problem is solved first for a fleet with a
single vehicle. Three scenarios are considered, where the
grid cost were neglected as they are constant for one
vehicle, i.e., Cgrid = 0. For the same reason, no BSS is
included, i.e., CBSS = 0. The three scenarios are:

• Greedy charging: No optimization is applied.
This implies that the vehicles are charged at
the moment they are connected with a charging
current high enough to charge the pack in ap-
proximately 3 hours.

• Optimized charging: A charging schedule is de-
rived solving the optimization objective presented
in Eq. 10.

• Optimized charging for CO2 emissions mini-
mization: The optimization presented in Eq. 10
is solved only taking into account the CO2

component, to generate a charging schedule that
emits the least amount of CO2 emissions, i.e.,
Ctot = CCO2

.

The resulting SOC and charging profile per scenario
can be seen in Figs. 5a and 5b, respectively. In both
figures, time = 0 corresponds to the starting time of
20:00, which is moment when the BEVs are connected.
The greedy charging scenario charges the vehicle as soon
as it arrives. The optimized charging charges as late
as possible. This is because charging late reduces the
average and RMS voltage in Equations (4) and (5). Re-
ducing these voltages leads to less degradation. Likewise,
the optimized charging scheme shows higher charging
currents than the greedy scenario, as this would generate
lower degradation. Notice that the greedy scenario was
only created for reference, therefore it does not apply the
highest possible charging current.

The CO2 optimized scenario charges when the CO2

concentration is the lowest on the grid, i.e., between 2:00
and 5:00, as can be seen from Fig. 3. In that time frame,
the emissions are low, because the total share of wind
and nuclear energy becomes relatively higher, as fossil
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Fig. 5: Single-vehicle simulation

fuel-based energy sources are turned down since less
electricity is required in the grid.

Fig. 6 shows the cost comparison of the single-vehicle
result. There it can be seen that the greedy scenario
is the worst cost wise, with the degradation costing
C7.92 (71%) more than the optimized scenario. The CO2

optimized scenario shows the little relevance of the CO2

cost. This scenario has the lowest CO2 cost which is only
C0.05 (3%) lower than the optimized charging scheme,
while the degradation costs is C4.82 (43%) higher. This
is because the price of CO2 is relatively low, and the
variation of CO2 in the grid is minor, which results in
only around 40 g CO2/kWh saved in the simulation.
This does not compensate for the increased degradation.
This optimization becomes more relevant in grids with
significant variations of CO2 emissions during the day.

C. Fleet results

In the case of fleet charging, fleets with sizes of 20,
40, and 60 vehicles are analyzed. A comparison is made
for each fleet size in three different scenarios, namely:

• Unconstrained optimized charging: A charging



Optimized CO2 optimized Greedy
10

12

14

16

18

20
C

os
t (

Eu
ro

)

degradation cost
CO2 cost

Fig. 6: Cost comparison single vehicle

schedule is obtained by solving the optimization
problem of Eq. 10 without taking into account
the maximum grid connection constraint (i.e., the
grid capacity is unlimited) in Eq. 17 and thus
ignoring the constraint in Eq. 18 as well.

• Constrained optimized charging without BSS: A
charging schedule is derived solving Eq. 10 with
a maximum grid capacity of 175 kW. This power
is chosen as this is the highest possible connec-
tion within the lowest price range, as described
in Table I. No BSS is present in the system.

• Constrained optimized charging with BSS: The
same scenario as above including a 30, 100,
100 kWh BSS for fleet sizes of 20, 40, 60,
respectively.

Each one of these scenarios are compared in terms of
power consumption, total resulting cost, and influence of
the BSS size.

1) Power comparison: The resulting total power that
the fleet uses each time step can be found in Fig. 7.
The dashed horizontal line shows the grid restriction. The
unconstrained optimal charging profile charges later than
the constrained one without a BSS, as the constrained
one has to ensure to stay below the grid limitation,
while ensuring that every car is fully charged. Note that
the unconstrained scenario, the charging power exceeds
the grid limit (as it is designed to be). The resulting
power profile is comparable to the optimized charging
scheme in Fig. 5b. For the BSS scenario, the area above
the dotted line is the energy provided by the BSS.
This allows the optimal charging to go above the grid
constraint.

In the constrained scenario without a BSS with a
fleet size of 60 BEVs, the constraint which forces each
vehicle to be fully charged (Eq. 19) cannot be met due
to insufficient energy available in the grid during the
available charging time. For the same fleet with a BSS
of 100 kWh, this constraint is (barely) met and a peak
of 370 kW is observed, which is twice as high as the
grid connection. This might become unrealistic and needs
further analysis from a practical point of view and is
therefore left out of further analysis.

2) Cost comparison: In Fig. 8, a cost comparison
(i.e., the evaluation of Eq. 11) can be found for each
fleet size and aforementioned scenarios. For the 20 and
40 vehicles fleet, the scenario with the BSS shows the
least total cost, saving 7% and 12.4% for a fleet size of
20 and 40, respectively, compared to the unconstrained
scenario. Likewise, for both fleet sizes the constrained
scenario without BSS is more cost effective than the
unconstrained scenario. The addition of a BSS is cost
effective by a 1% margin compared to the constrained
scenario. The differences in CO2 cost for each scenario
are almost negligible. Note that the unconstrained case
shows the least degradation cost, because this strategy
allows to charge the battery the last.

Fig. 8c shows the costs results with a 60 vehicle fleet.
Note that the constrained case without BSS is left out
due to its infeasibility. The figure shows that at this fleet
size, the constrained scenario with BSS results in higher
costs. The costs related to degradation are higher than
the associated cost of the grid connection. Therefore a
bigger connection is more cost effective.

3) BSS size comparison: The influence of multiple
BSSs sizes in the total cost is shown in Fig. 9. The
fleet size of 60 vehicles is not shown for the practical
reasons discussed earlier. It can be seen that there is an
optimal size for the BSS and this is dependent on fleet
size. For a fleet of 20 vehicles this optimum lies between
10 and 30 kWh, but the profit margin is less than 1%.
For a fleet size of 40 vehicles, the optimal BSS size lies
around 300 kWh. This margin is larger, namely 2.8%.
With larger fleet sizes the addition of a BSS therefore
becomes more cost effective. The more constrained the
grid becomes the more cost effective the BSS can be,
due to the fact that the BSS provides more freedom to
the optimizer, which results in lower battery degradation.
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Fig. 8: Cost comparison for charging each fleet size

V. CONCLUSION

This paper showed an optimal charging strategy for
a fleet of Battery Electric Vehicles (BEVs) using a
Battery Storage System (BSS). The optimal charging
strategy is based on a modelling strategy that captures the
battery dynamics and battery degradation. The optimal
charging strategy minimizes the combined effects of the
degradation cost of the batteries in the BEV, the cost
related to CO2 generation, the cost of the BSS, and the
grid connection costs.

To show the applicability of the optimal charging
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Fig. 9: Battery cost for different battery size

strategy, a case study is presented where multiple fleet
sizes and BSS are compared. For comparison purposes,
a “greedy” charging strategy (i.e., charging as soon as the
vehicle arrives to the depot) is applied to the case study.
This case study shows that, first, the optimization algo-
rithm provides a charging strategy that results in lower
total costs in all compared scenarios. For example, in
a single-vehicle charging scheme, the degradation costs
are 71% higher when greedy charging is used than with
an optimized charging scheme. This was achieved by
charging the vehicles as late as possible, as it corresponds
in the least amount of battery ageing. Second, using
an optimal charging algorithm can further reduce the
total costs and degradation costs by using a BSS. For
example, the total cost of charging a fleet of 20 and 40
vehicles is reduced by 1% and 2.8%, respectively, while
using a BSS. However, this result cannot be generalized

to all cases as it depends on multiple factors such as
grid connection and energy requirements. Third, the grid
connection cost and battery degradation costs are the
dominant factors in the total cost of charging a fleet of
BEV. The optimal charging strategy is shown to reduce
mostly these costs. Likewise, the effect of CO2 costs are
marginal and could not be significantly reduced by the
optimization algorithm. This is due the low variations of
CO2 emissions from the grid through the day and the
relatively low cost of these emissions.
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