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Abstract
The unification of statistical (data-driven) and symbolic (knowledge-driven) methods is widely recognized as one of the key
challenges of modern AI. Recent years have seen a large number of publications on such hybrid neuro-symbolic AI systems.
That rapidly growing literature is highly diverse, mostly empirical, and is lacking a unifying view of the large variety of
these hybrid systems. In this paper, we analyze a large body of recent literature and we propose a set of modular design
patterns for such hybrid, neuro-symbolic systems. We are able to describe the architecture of a very large number of hybrid
systems by composing only a small set of elementary patterns as building blocks. The main contributions of this paper are:
1) a taxonomically organised vocabulary to describe both processes and data structures used in hybrid systems; 2) a set of
15+ design patterns for hybrid AI systems organized in a set of elementary patterns and a set of compositional patterns;
3) an application of these design patterns in two realistic use-cases for hybrid AI systems. Our patterns reveal similarities
between systems that were not recognized until now. Finally, our design patterns extend and refine Kautz’s earlier attempt
at categorizing neuro-symbolic architectures.

Keywords Neuro-symbolic systems · Design patterns

1 Introduction

It is widely acknowledged in recent AI literature that the
data-driven and knowledge-driven approaches to AI have
complementary strengths and weaknesses [16]. This has
led to an explosion of publications that propose different
architectures to combine both symbolic and statistical
techniques. Surveys exist on narrow families of such
systems [3, 61, 62], but to date no conceptual framework is
available in which such hybrid symbolic-statistical systems
can be discussed, compared, configured and combined. In
this paper, we propose a set of modular design patterns
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for Hybrid AI systems that combine learning and reasoning
(using combinations of data-driven and knowledge-driven
AI components). With this set of design patterns, we aim
to achieve the following goals. First, we provide high-
level descriptions of the architectures of hybrid AI systems.
Such abstract descriptions should enable us to better
understand the commonalities and differences between
different systems, while abstracting from their specific
technical details. We will show for a number of our design
patterns that they describe systems which have not been
recognised in the literature as essentially doing the same
task. Secondly, our set of design patterns is intended to
bridge the gap between the different communities that are
currently studying hybrid approaches to AI systems. AI
communities such as machine learning and knowledge-
based systems as well as other communities (such as
cognitive science) often use very different terminologies
which hamper the communication about the systems under
study. Finally, and perhaps most importantly, our design
patterns are modular, and are intended as a tool for
engineering hybrid AI systems out of reusable components.
In this respect, our design patterns for hybrid AI systems
have the same goals as the design patterns which are well
known from Software Engineering [25].
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Darwiche [16] draws attention to the distinction between
two types of components in AI systems, for which he uses
the terms function-based and model-based. Similarly, Pearl
[47] uses the term “model-free” for the representations
typically used in many learning systems. Other names used
for inferences at this layer are: “model-blind,” “black-box,”
or “data-centric” [47], to emphasize that the main task
performed by machine learning systems is function-fitting:
fitting data by a complex function defined by a neural
network architecture. Such “function-based” or “model-
free” representations are in contrast to the “model-based”
representations typically used in reasoning systems. We
will use a similar distinction in our design patterns. Both
Darwiche and Pearl argue for combining components of
these two types: “the question is not whether it is functions
or models but how to profoundly integrate and fuse
functions with models” [16] and “Our general conclusion is
that human-level AI cannot emerge solely from model-blind
learning machines; it requires the symbiotic collaboration
of data and models” [47]. However, neither of the cited
works discuss how such combinations must be made. This
is exactly what we set out to do in this paper by proposing a
set of modular design patterns for such combinations.

Lamb & Garcez [17] ask for “The trained network and
the logic [to] become communicating modules of a hybrid
system [..]. This distinction between having neural and
symbolic modules that communicate in various ways and
having translations from one representation to the other
in a more integrative approach to reasoning and learning
should be at the centre of the debate in the next decade.”
Our proposal is a concrete step in precisely the direction that
they call for, providing a set of composition patterns that can
be used as modular building blocks in hybrid systems.

The main contributions of this paper are as follows:
(i) a taxonomically organised vocabulary to describe both
the processes that constitute hybrid AI systems as well
as the data structures that such processes produce and
consume; (ii) a set of modular design patterns for hybrid AI
systems, organised in a set of elementary patterns, plus more
sophisticated patterns that can be constructed by composing
such elementary patterns; we will show how a number
of systems from the recent literature can be described as
such compositional patterns; these patterns are a further
elaboration of our first proposal for such design patterns in
[60]; (iii) two realistic use-cases for hybrid AI systems (one
for skill matching, one for robot action selection), showing
how the architecture for each of these use-cases can be
described in terms of our compositional design patterns.

The paper is structured as follows, first we describe
our taxonomical vocabulary in Section 2, in Section 3 we
describe a set of elementary patterns, followed by a set of
compositional patterns in Section 4. Section 5 describes two
realistic use-cases in terms of the patterns from Sections 3

and 4. Section 7 concludes and discusses directions for
future work.

2 A taxonomical vocabulary

In order to describe design patterns, a terminology is
required that defines a taxonomy of both processes and
their inputs and outputs on various levels of abstraction.
On the highest level of abstraction, we define instances,
models, processes and actors. In the pattern diagrams,
instances are represented as rectangular boxes, models as
hexagonal boxes, processes as ovals and actors as triangles.
More specific concepts will be used, when necessary and
useful, using a colon-separated notation. For example,
model:stat:NN refers to a neural network model. The
level of abstraction depends on the use of the pattern
and the stage of design and implementation: the closer to
implementation, the more specific the concepts will be.
The design patterns should abstract from implementation
details, but be specific enough to document applicable
design choices. As abbreviated notation, we will not name
the highest abstraction level, because that is implied by the
type of box. In the models, we always indicate whether a
specific model is statistical (stat) or semantic (sem). The full
taxonomy with definitions can be found in the Appendix.

2.1 A taxonomy of instances

Instances are the basic building blocks of “things”,
examples or single occurrences of something. The two main
classes of instances are data and symbols. The precise
distinction between symbols and “non-symbols” remains a
contentious issue in modern philosophy. We are following
[7] by imposing the following requirements before any
token can be deemed a symbol: (1) a symbol must designate
an object, a class or a relation in the world, and such
a designated object, class or relation is then called the
interpretation of the symbol; (2) symbols can be either
atomic or complex, in which case they are composed of
other symbols according to a formal set of compositional
rules; and (3) there must be system of operations that, when
applied to a symbol, generates new symbols, that again
must have a designation. Thus, the tokens p1 and p2 may
designate particular persons, with the symbol r designating
some relation between these persons; then r(p1,p2) is a
complex symbol made out of these atomic symbols, and
the operation r(p1,p2) |=T r(p2,p1) defines an operation
constructing one complex symbol out of another. In logic,
such “operations” correspond to logical inference |=, and
this logical view is most relevant in this paper, but in another
context such operations may be transitions between the
symbols that denote the states of a finite state machine. All
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this makes the symbol p1 different from a data item, say
a picture of a person, where the collection of pixels may
be an accurate image of a person, but does not designate
the person in a way that allows the construction of more
complex designations and operations that transform these
into other designations. Simply put: a symbol p designates
a person, whereas a picture is just itself. Such tokens which
are not symbols are what we will call “data” in this paper.

The types of data that appear in Hybrid AI systems
include

– numbers: numerical measurements;
– texts: sequences of words, sentences;
– tensors: multi-dimensional spaces, including bitmaps;
– streams: (real-time) sequences of data, including video

and other sensor inputs.

The types of symbols, on the other hand, include

– labels: short descriptions;
– relations: connections between data items, such as

triples and other n-ary relations;
– traces: (historical) records of data and events, such as

proof traces for explanations.

2.2 A taxonomy of models

Models are descriptions of entities and their relationships.
They are useful for inferring data and knowledge. Mod-
els in Hybrid AI systems can be either (1) statistical or
(2) semantic models. Statistical models represent depen-
dencies between statistical variables. Examples are (Deep)
Neural Networks, Bayesian Networks and Markov Models.
Semantic models represent the implicit meaning of symbols
by specifying their concepts, attributes and relationships.
Examples are Taxonomies, Ontologies, Knowledge Graphs,
Rulebases and Differential Equations. We summarise these
semantic models under the umbrella term “knowledge base”
(KB).

2.3 A taxonomy of processes

In order to perform operations on instances and models,
processes define the steps that lead from inputs to results.
Three main types of processes are: (i) the generation of
instances and models, (ii) their transformation and (iii)
inferencing thereupon. Generation of models is performed
either via training or, “manually” by knowledge engineering
with experts. Many forms of transformations exist, such
as transforming a knowledge graph to a vector space.
Inferences are made using induction or deduction. Induction
is constructing a generalisation out of specific instances.
Such a generalisation (a “model”) can take many different
forms, ranging from the trained weights in a neural network

to clauses in a learned Logic Program, but in every case,
such models are created by inductions on instances.

Using such models, we can apply deductive inferencing
in order to reach conclusions about specific instances
of data. Commonly, deduction is associated with logical
inference, but the standard definition, namely as inference
in which the conclusion is of no greater generality than
the premises, equally applies to the forward pass of
a neural network, where a general model (the trained
network) is applied to an instance in order to arrive at a
conclusion. Both inductive and deductive processes can be
either symbolic or statistical, but in every case induction
reasons from the specific (the instances) to the general
(a model), and deduction does the converse. Thus, the
distinction between induction and deduction corresponds
precisely to the distinction between learning and reasoning.
Both classification (“the systematic arrangement in groups
or categories according to established criteria”, see our
Appendix) and prediction (“to calculate some future event
or condition as a result of analysis of available data”, again
see our Appendix) are deductive processes, since both use
a generic model (obtained through an inductive process of
learning or engineering) to derive information about specific
instances (the objects to be classified or the events to be
predicted).

2.4 A taxonomy of actors

Processes in an AI system are initiated by autonomous actors,
based on their intentions and goals. They interact with each
other using many protocols and behaviours, such as collabo-
ration, negotiation or competition. These interactions lead to
collective intelligence and emergent social behaviour, such
as in swarms, multi-agent systems or human-agent teams.
Autonomy is a gradual property, ranging from remotely con-
trolled to selfish behaviour and all forms of cooperation
in between. Actors can be humans, (software) agents or
robots (physically embedded agents). Examples are proac-
tive software components, apps, services, mobile agents,
drones or (parts of) autonomous vehicles. Actors are not
yet used explicitly in the current collection of patterns, but
will be included in the future, when we will also dive into
distributed AI and human-agent interaction.

3 Elementary patterns

The taxonomy of instances, models and processes from
the previous section gives rise to a number of elementary
building blocks for hybrid systems that combine learning
and reasoning. The “train” process consumes either data or
symbols to produce a model (Fig. 1a and b, all these terms
taken from the taxonomy)
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Additionally, an actor (e.g., a domain expert or knowl-
edge engineer) can create a model, such as an ontology or
rule-base (Fig. 1c).

In the processing, often a transformation step is needed to
create the right type of data, either from symbol or data (Fig. 1d).

Of course models are only trained in order to be
subsequently used in a downstream task (predicting labels,
deriving conclusions, predicting links, etc). This process
is captured in the patterns (Fig. 2a–c), depending on the
symbolic or statistical nature of the data. Following our
taxonomy, an infer step uses such models in combination
with either data or symbols to infer conclusions:

Finally, sometimes an operation on a semantic model is
neither a logical induction or deduction, but a transforma-
tion into another datastructure. This is captured by the final
elementary pattern (Fig. 2d):

As is encoded in these diagrams, the types of models
involved (symbolic or statistical) and the type of results
derived is constrained by the type of the inputs of these
elementary processes.

These elementary patterns allow us to give a more precise
definition of the concept of “hybrid systems”, which is often
used rather nebulously in the literature:

Definition Machine Learning systems are systems that
combine pattern (Fig. 1a) with (Fig. 2a), yielding pattern
(Fig. 3a), see below; Knowledge Representation systems are

Fig. 1 Elementary patterns to generate a model

Fig. 2 Elementary patterns to use a model

systems that follow pattern (Fig. 2b); Hybrid systems are
systems that form any other combination of the elementary
patterns (Figs. 1a–2d).

Already these elementary patterns (Figs. 1a–d, 2a–d),
even in their almost trivial simplicity, can be used to
group together a large number of very different approaches
from the literature: even though the algorithms and
representations of Inductive Logic Programming (ILP) [34],
Markov Logic Networks [50], and Probabilistic Soft Logic
[4, 29] are completely different, the architecture pattern
Fig. 1b applies to all of them, showing that they are all aimed
at the same goal: learning over symbolic structures.

Similarly, learning a symbolic rule-set that captures rules
for knowledge graph completion [43] is captured by this
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pattern. Constructing knowledge graph embeddings into a
high-dimensional vector space [44, 46, 62] is also captured
by Fig. 1b. So ILP and KG embedding would each be
captured more specifically by adding type annotations to
the constructed model: model:sem for ILP, and model:stat
for KG embedding. Many “classical” learning algorithms
such as decision tree learning and rule mining, as well as
deep learning systems, are covered by architectural pattern
Fig. 1a. The learning patterns (Fig. 1a–b) must be combined
with the prediction patterns (Fig. 2a–c) to give a model for
the full learning and prediction task (Fig. 3a):

This model is precisely the composition of the elemen-
tary processes for train and infer given above. Even learning
with a regular neural network is captured by this diagram
(although it is not typically recognized that the feed-forward
phase, when a trained neural network is applied to new data,
is actually a deductive task, namely reasoning from given
premises (input data plus the learned network weights) to a
conclusion.

Analogously to learning from data, it is also possible
to learn from symbols, using elementary patterns (Figs. 1b
and 2b) instead of (Fig. 1a) and (Fig. 2a):

As mentioned above, this pattern then describes the
learning (and subsequent inference) in Inductive Logic
Programming, Knowledge Graph embeddings, Probabilistic
Soft Logic and Markov Logic Networks.

Using our hierarchical taxonomy, the two patterns
(Fig. 3a and b) can be abstracted into a single pattern,
replacing all the boxes labelled with “data” or ”symbol”
by the generic term “instance”. The specific diagrams
(Fig. 3a and b) can then be recovered by adding type
annotations “instance:sym” or “instance:data”. Such type-
specialisations maintain the insight that many of these very
different approaches (ILP, MLN, PSL, Knowledge Graph
embeddings) actually follow the same schema.

Fig. 3 Pattern for basic machine learning systems

4 A collection of compositional patterns

In this section, we describe compositional patterns based
on the elementary pattern described in the previous section.
We combined papers from several fields into one pattern.
From the elementary patterns, we create compositions in
two ways: (1) we can create a more complex pattern by
connecting or ‘stitching’ elementary patterns; (2) we can
go more specific or more abstract (only showing the boxes
of Fig. 1a – b for example); in a specific pattern we can
specify the type of, for example, a symbol block in terms of
symbol:relations.

4.1 Learning from data with symbolic output

In ontology learning, a symbolic ontology is learned from
data in the form of text [3, 10, 11, 22, 35, 65]. The text is
first translated into (subject, verb, object) relations using a
statistical model such as the Stanford Parser [12, 18]. These
relations are an intermediate representation. A semantic
model, for example rules for Hearst patterns, can then infer
the relations that form a full ontology including relation
hierarchies and axioms. This pattern (Fig. 4) combines
patterns (Fig. 2a and b). Whereas in other cases an ontology
can play the role of a model on the basis of which properties
of instances are deduced, in this case, we represent the
ontology as a set of relations, because it is the output of a
process, and not a model which is input to a process.

A related but different instantiation of this pattern is the
use of text-mining not to learn full-blown ontologies, but
to learn just the class/instance distinction (which is always
problematic in ontology modelling), as done in [45]. As
concerns the architectural patterns, this work only differs
in the actual content of the symbolic output: a full-blown
ontology, or only a class/instance label.

In contrast, other ontology-learning systems [10, 35] start
from a given set of relations (the “A-box” of description
logic) and then infer an ontological hierarchy. These
systems only apply the second half of the above pipeline,
pattern (Fig. 2b).

An entirely different application domain is found in
[2], where symbolic first-order logic representations are
generated to describe the content of images.

4.2 Explainable learning systems through rational
reconstruction

Hybrid symbolic-statistical systems are seen as one possible
way to remedy the “black-box” problem of many modern
machine learning systems [63]. Pattern (Fig. 5a) shows one
of the hybrid architectures that have been proposed in the
literature for this purpose. A standard machine learning
system is trained (generate:train) to construct a model
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Fig. 4 Pattern for learning with symbolic output

which is then applied to input data in order to produce
(infer:deduce) a prediction (for example, a label for a given
input image). The result of this process (in the form of the
pairs of image + label) is then passed on to a symbolic
reasoning system which then uses background knowledge
(model:semantic) to produce a “rational reconstruction” of
a reason to justify the input/output-pair of the learning
system. An example of this is the work by [59] who
uses large knowledge graphs to reconstruct the justification
of temporal patterns learned from Google Trends data. It
is important to emphasize that the justification found by
the symbolic system is unrelated to the inner workings
of the black box of the machine learning system. The
symbolic system produces a post-hoc justification that is
not necessarily reflecting the statistical computation. This
architecture is also used in [53], where a description logic
reasoner is used to come up with a logical justification of
classifications produced by a deep learning system. Notice
that pattern (Fig. 5a) is a straightforward combination of
elementary patterns (Figs. 1a, 2a and b).

Pattern (5a) captures so-called “instance-level explana-
tions”, where a separate explanation is generated for every
specific result of applying the learned model. In contrast,

it is also possible to generate “model-level explanations”,
where a generic explanation is constructed that captures the
structure of the entire learned model (Fig. 5b). An exam-
ple of this is [13], which trains a second neural network
that uses the input/output behaviour of a classifier network
to general first-order logic formulas that can then be used
to explain the behaviour of the classifier. This results in
a modification of the above pattern in which the subsys-
tem labelled with “2b” is replaced by a learning system
that takes the learned model from 1a as input and produces
a symbolic explanation of that model. In other words: the
explanation is generated based on the trained model, and not
just on the derived individual result of applying that model
to a given piece of data.

4.3 Learning an intermediate abstraction

Intermediate abstraction for learning A well known
machine learning benchmark is to recognise sets of hand-
written digits [37]. This digit-recognition task could be
extended to perform addition on such handwritten digits
through end-to-end training on the bitmap representations of
the handwritten digits. This would correspond to our basic

Fig. 5 Patterns for explainable
learning systems through
rational reconstruction
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pattern (Fig. 3a). However, many authors have observed
that it is more efficient to learn an intermediate sym-
bolic representation (mapping the pixel representation of
the handwritten digit into a symbolic representation), and
then train a model to solve the symbolically represented
addition task. This pattern is represented in Fig. 6a, where
two standard train+deduce patterns (pattern Fig. 3a, b) are
chained together through a symbolic intermediate represen-
tation which serves as output for the first pattern and as input
for the second. This pattern is exploited in Deep Problog
[40] where a system is trained to add handwritten digits
by first recognising the digit and then doing the addition.
This then turns out to be a much more robust approach then
simple end-to-end training going from the digit bitmaps to
the summed result in one step. This same pattern also cap-
tures the DeepMind experiment [27] where a reinforcement
learning agent is trained to not just navigate on a bitmap
representation of its world, but to first learn an intermediate
symbolic representation of the world and then use that for
navigation.

Besides learning a spatial abstraction (as in [27]), the
work in [32] uses the same architecture pattern for deriving
a temporal abstraction of sequence of subtasks, which are
then input to reinforcement learning agents. One of the
advantages of such an intermediate representation is the
much higher rates of transfer learning that can be obtained

after making trivial changes to the input distribution, be they
handwritten digits or bitmaps of floor spaces.

Intermediate abstraction for reasoning Whereas pattern
(Fig. 6a) consists of a composition of two patterns for
learning, pattern (Fig. 3) (first deriving an intermediate
abstraction on the basis of a trained model and then using
this intermediate abstraction as the basis for a further
derivation on the basis of a second trained model), it is
also possible to use the derived abstraction as the input
for a deductive reasoning task, composing pattern (Fig. 3)
with pattern (Fig. 2b), creating pattern (Fig. 6b). A classic
example of this pattern is the AlphaGo system [56], where
machine learning is used to train an evaluation function that
gives rise to a symbolic search tree which is then traversed
using deductive techniques (Monte Carlo tree search) in
order to derive a (symbolically represented) next move on
the Go board. Notice that pattern Fig. 5a is a specialisation
of this pattern (Fig. 6b).

Pattern (Fig. 4) above (ontology learning from text) can
now be seen to also be a variation on the general theme
of “learning an intermediate abstraction”, where the set of
relations extracted by linguistic analysis is the intermediate
abstract that is input for the set of rules that constructs the
final ontology out of these relations. In pattern (Fig. 4) the
models (model:semantic) are assumed to be given (e.g. by

Fig. 6 Patterns for learning an
intermediate abstraction
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using the pretrained Stanford parser) and hence the training
phases are omitted.

4.4 Informed learning with prior knowledge

In [61] a large collection of over 100 different systems
is discussed which are all captured by pattern (Fig. 7).
In this pattern, the training phase of a learning system is
guided by information that is obtained from a symbolic
inference system (pattern Fig. 2b). For this purpose,
the training step from elementary pattern (Fig. 1a) is
extended with a further input to allow for this guidance
by inferred symbolic information. A particular example
is where domain knowledge (such as captured in modern
large knowledge graphs) is used as a symbolic prior to
constrain the search space of the training phase [8]. In
general, this patterns also captures all systems with a so-
called semantic loss function [66], where (part of) the
loss-function is formulated in terms of the degree to which
the symbolic background knowledge is violated. Such a
semantic loss-function is also used in [38], where the
semantic loss is calculated by weighted model counting. In
[20] and [41] the semantic loss-function is realised through
approximate constraint satisfaction. Another example is
[19] where logical rules are used as background knowledge
for a gradient descent learning task in a high-dimensional
real-valued vector space. In the same spirit, [52] exploits a
type-hierarchy to inform an embedding in hyperbolic space.

Logic Tensor Networks [21] also fall in this category,
since they jointly minimise both the loss function of a neural
network and maximise the degree to which a first-order
logic theory is satisfied. The fact those LTN’s are captured
by the same design pattern as semantic loss functions
suggests an analogy between the two (namely that the
maximisation of first-order satisfiability in LTN’s can be
regarded as a semantic loss-function). This analogy between
these two systems was not mentioned in their original
papers, but only comes to light through our analysis in terms
of high-level design patterns.

An entirely different category of systems that is cap-
tured by the same pattern are constrained reinforcement
learners (e.g. [28]), where the exploration behaviour of a
reinforcement learning agent is constrained through sym-
bolic constraints that enforce safety conditions. Similarly,
[33] uses high-level symbolic plans to guide a reinforce-
ment learner towards efficiently learning a policy. Silvestri
et al. [57] shows how adding domain knowledge in the
form of symbolic constraints greatly improves the sampling-
frequency of a neural network trained to solve a combinato-
rial problem. The LYRICS system [42] proposes a generic
interface layer that allows to define arbitrary first order
logic background knowledge, allowing a learning system to
learn its weights under the constraints imposed by the prior
knowledge.

The full design pattern (Fig. 7) requires that the symbolic
prior is derived by a symbolic reasoning system, but it is of
course also possible that this symbolic prior (or “inductive
bias”, using the terminology from [6]) is simply in the
form of an explicit knowledge-base for which no further
derivation is possible. This would lead to a simplified
version of pattern (Fig. 7) where the “Infer” step would be
omitted. An example of this is [36], where input data is
first abstracted with the help of a symbolic ontology, and
is then fed into a classifier, which performs better on the
abstracted symbolic data than on the original raw data. A
similar example is given in [5], where knowledge graphs are
successfully used as priors in a scene description task.

An interesting variation is presented in [67]. This work
exploits the fact that pattern (Fig. 7) uses prior knowledge
in symbolic as input for learning, while pattern (Fig. 4)
produces symbolic results as the output of learning. The
system described in [67] then iterates between producing
symbolic knowledge, then using this symbolic knowledge
as input for informed machine learning, followed again
by using the learned model to produce better symbolic
knowledge, hence iterating between patterns (Fig. 7) and
(Fig. 4). The IterefinE system [1] is another example of this
pattern.

Fig. 7 Pattern for informed
learning with prior knowledge
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4.5 From symbols to data and back again

Link prediction (or: graph completion) in knowledge graphs
[44, 46, 62], has been a very active area on the boundary of
symbolic and statistical representations, and is an example
of what is captured in pattern (Fig. 8). Almost all graph
completion algorithms perform this task by first translating
the knowledge graph to a representation in a high-
dimensional vector space (a process called “embedding”,
this is captured in pattern (Fig. 1d)), and then use this
representation to predict additional edges which are deemed
to be true based on geometric regularities in the vector
space, even though they are missing from the original graph.
This can be expressed in a variant of pattern Fig. 2a.

4.6 Learning logical representations for statistical
inferencing

Integrating knowledge representations into a machine
learning system is a long standing challenge in Hybrid AI,
since it allows logic calculus to be carried out by a neural
network in an efficient and robust manner. Encoding prior
knowledge also allows for better training results on fewer
data. This pattern (Fig. 9) describes the integration of logic
into a machine learning model through tensorization of the
logic involved [26] by applying prior (semantic) knowledge
representations as constraints for machine learning. The
pattern transforms a semantic model into vector/tensor
representations and uses these to train a neural network in
order to learn. The machine learner can make inferences
based on its embedded logic, for example Logic Tensor
Networks [54, 68] where relational data is embedded in
a (convolutional) neural network. Graph Neural Networks
(GNNs, [9]) embed a semantic graph model by transforming
a neighbourhood structure of its nodes and edges into
vectors and using these to train a neural network. In [14] a
reified knowledge base is provided as input to train neural

Fig. 8 From symbols to data and back again

modules to perform multi-hop inferencing tasks. The pattern
in itself is an extension of pattern Fig. 3a, where the training
input data is a (transformed) representation of relational
data.

4.7 Learning to reason

Whereas pattern (Fig. 9) provides representation learning
by embedding vector/tensor representations of logical
structures in a neural network, there are also attempts to
learn the reasoning process itself in neural networks. This is
motivated by the ability of neural networks to provide higher
scalability and better robustness when dealing with noise in
the input data (incomplete, contradictory, and erroneous).
The focus of pattern (Fig. 10) is on reasoning with first-
order logic on knowledge graphs. This pattern learns
specific reasoning tasks based on symbolic input tuples and
the inferencing results from the symbolic reasoner. Pattern
(Fig. 10) is a combination of our basic patterns for symbolic
reasoning (Fig. 2b) and training to produce a statistical
model (Fig. 1a).

This pattern for training a neural network to do logical
reasoning captures a wide variety of approaches such as
reasoning over RDF knowledge bases [22], Description
Logic Reasoning [30], and logic programming [51].
Relational Tensor Networks (RTNs) [30] use a recurrent
neural network to learn two kinds of predictions, namely
the membership of individuals to classes and the existence
of relations. In a somewhat different application, [22] takes
a set of normalized triples and a normalized query to
learn classification of the entailment of the query from the
statements in the current knowledge graph. Whereas current
efforts focus on deductive reasoning in knowledge bases
of FOL and DL (or fragments thereof), the pattern can in
theory be applied to other inference tasks and mechanisms.

4.8 Meta reasoning for control

There is a long-standing tradition in both AI [15] and in the
field of cognitive architectures (e.g. [48]) to investigate so-
called meta-reasoning systems, where one system reasons
about (or:learns from) the behaviour of another system.

It is widely recognised that the configuration of
machine learning systems is highly non-trivial, ranging
from choosing an appropriate neural network architecture
to setting a multitude of hyper-parameters for that
architecture. The field of AutoML [31] aims to automate
that configuration task. This is often done through applying
machine learning techniques to this task (ie the system is
learning the right hyper-parameter settings for the target
learning system), but the configuration of the target system
can also be done by capturing the knowledge of machine
learning engineers. This is done in a system such as
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Fig. 9 Pattern for learning logical representations for statistical inferencing

Alpine Meadow [55] and is captured in pattern (Fig. 11): a
knowledge based of ML configuration knowledge is used to
deduce appropriate hyper-parameter settings for a learning
system (sub-pattern (Fig. 2b)), these parameters are then
used to train a model (requiring a slightly modified version
of sub-pattern (Fig. 1a)), and the resulting performance of
this model is inspected by the knowledge base which may

give rise to adaptations of the hyper-parameters in the next
iteration.

Another class of systems which at first sight may seem
very different, but which are an instantiation of the same
pattern are so called “curriculum-guided learning” systems.
Curriculum learning problem can be defined as the problem
of finding the most efficient sequence of learning situations

Fig. 10 Learning to reason
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Fig. 11 Meta-reasoning for control

in these various tasks so as to maximize its learning speed
[23, 24]. In terms of pattern (Fig. 11), the task of the
(Fig. 2b) subsystem is to feed the learner in subsystem
(Fig. 1a) its training instances in the optimal sequence.

Notice that this pattern closely resembles pattern (Fig. 7)
(informed learning with prior knowledge). In that pattern,
the symbolic component deduces prior knowledge as input
for the training component once, but the resulting training
model is not subsequently inspected to possibly adjust this
input. Whereas in pattern (Fig. 11) a symbolic system is
used to guide the learning behaviour of a subsymbolic
system, the converse is also possible. In [39], a system is
presented where a subsymbolic system learns the search
strategies needed to guide a symbolic theorem prover. This
line of work has a long history, dating back to the 1990’s
[58].

5 Two use-cases

In this section, we describe the use of our boxology patterns
in two real world use cases.

We have identified the need for a pattern-based system of
systems approach towards design and evaluation of hybrid
AI systems. Using our approach can increase the level
of trustworthiness of such systems. Trust in AI systems
emerges from a number of factors, such as transparency,
reproducibility, predictability and explainability. A Hybrid
AI system is not to be seen as a monolithic component,
but communicating modules of such a hybrid system
[17]. Insight into the individual modules and components
and their relationships and dependencies is essential, in
particular in a decentralised system. The specification
and verification of each component and their interactions
enable a system-wide validation of expected behaviour. The
definition and use of best practices and design patterns
supports the generation of trustworthy AI systems - either
when building new systems or when understanding existing
systems by dissection and reverse-engineering.

Our method allows for step-wise refinement of a system
design by starting with a high level of abstraction and
drilling down towards implementation details and reusable

components by specifying more and more concrete choices,
such as which models to use. Starting from generic patterns,
an implementation can be derived and deployed, based on
the experience and best practices in Hybrid AI.

5.1 Skills matching

In the first use case, the goal is to create a piece of software
that is able to match open vacancies or job descriptions
with CVs of job seekers. In this specific use case skills,
defined as the ability to perform a task, are used to do
the matchmaking. In the first part of the project, a large
architecture picture was created with a lot of boxes, arrows,
and terms. The distinction between processes and data was
not very clear and the type of model was also not explicitly
defined.

With use of the boxology, the architecture picture is
better readable (see Fig. 12). This figure made it possible
to on the one hand talk about the bigger boxes (elementary
patterns) and on the other hand go into more detail about the
specific implementation of for example a model box and the
specific input and output type needed. The figure makes it
also possible to think about the future of the project in terms
of patterns that have to be added, substituted or removed.

To go into more detail for this specific use case: in the
training phase, vacancies are transformed to the data type
tensor using an (word2vec) embedding. A Skills ontology,
which is a semantic model, engineered by a human (pattern
Fig. 1c), is also transformed to a tensor using an embedding
(variant of pattern Fig. 1d). Both the vacancy and the skill
ontology are used to train a neural network (pattern Fig. 1a),
a statistical model. This model learns which sentences or
parts of sentences of a vacancy text contain a skill and match
to which specific skill in the ontology. When this model is
applied to a new vacancy, transformed using an embedding
to a tensor (pattern Fig. 1d), it predicts the most probable
skill through deduction (pattern Fig. 2a). An additional step
is to use the ontology to deduce (pattern Fig. 2b) the label
skill to a more understandable skill, for example a skill with
a description.

5.2 Robot in action

In the second use case, the goal is to get a robot to choose
the best action to perform. The robot has access to a camera.
In a training phase, an object detector and a tracker are
trained using statistical models, whereas an ontology is
handcrafted by an expert actor. The object detector is a
neural network trained using images of the environment
(pattern Fig. 1a). The tracker uses the video stream of the
camera and uses a different type of neural network (pattern
Fig. 1a). A semantic model in the form of an ontology about
the world is engineered by a human (pattern Fig. 1c). At
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Fig. 12 Use-case for skills matching

each timestep, the robot obtains new information from the
camera. The image is used to predict which objects are
visible in the environment (pattern Fig. 2a). The tracker is
used to track objects through time (pattern Fig. 2a). The
tracks and the world model are used to induce semantic
rules (pattern Fig. 2c), such as reasoning what will happen
next. Then these rules and the detected object(s) are used to
predict what the best action is (pattern Fig. 2b).

In this (Fig. 13), the boxology helped to see the similarity
between the object detector and the tracker and to determine
how the detailed process flow should be.

6 Related work

In [61] a large collection of over 100 different systems for
“informed machine learning” is presented. The survey paper
provides a broad overview of how many different learning
algorithms can be enriched with prior knowledge. Their
Fig. 2 provides a taxonomy of “informed machine learning”
across three dimensions: which source of knowledge is
integrated (e.g. expert knowledge or common sense world
knowledge), how that knowledge is represented (e.g. as
knowledge graphs, logic rules, algebraic equations and 5
other types of representation) and where this knowledge is

integrated in the machine learning pipeline (in the training
data, the hypothesis set, the learning algorithm or the final
hypothesis). The second and third of these dimensions are
used to categorise well over 100 different published systems
into an 8x4 grid. All of these systems are captured in one of
our design patterns (pattern Fig. 7), so while our proposal
covers a much broader set of hybrid systems, the result of
[61] is a very detailed analysis of one of our patterns.

In his invited address to the AAAI 2020 conference,
Henry Kautz introduced a taxonomy for neural-symbolic
systems1 The proposed taxonomy consists of a flat set
of 6 types. We will briefly summarise (our understanding
of) these informally characterised types (partly based
on the explanation in [17]), and we will show how
Kautz’s types relate to the design patterns that we will
propose in this paper. Type 1 systems (informally written
by Kautz as “symbolic Neuro symbolic”) are learning
systems that have symbols as input and output. This
directly corresponds to our elementary pattern Fig. 3b.
Type 2 systems (informal notation: “Symbolic[Neuro]”)
are symbolic reasoning systems that are guided by a

1https://www.cs.rochester.edu/u/kautz/talks/index.html
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learned search strategy. These directly correspond to a
variation of our pattern (Fig. 11). Type 3 systems (informal
notation “Neuro;Symbolic”) consist of a sequence of a
neural learning system that performs abstraction from
data to symbols, followed by a symbolic system. This
corresponds to our patterns (Fig. 6a and b), showing that
in this case we make a more fine-grained distinction.
Type 4 systems (informal notation “Neuro:Symbolic →
Neuro”) use symbolic I/O training pairs to teach a neural
system. These correspond partly to our elementary pattern

(Fig. 3b) (for example: inductive logic programming), partly
to our pattern (Fig. 8) (eg link prediction) and partly to
pattern (Fig. 10) (eg learning to reason), again showing
that we propose a much more fine-grained distinction.
Type 5 systems (informal notation “Neuro”) use symbolic
rules that inform neural learning. These correspond to
our pattern Fig. 7. Finally, Type 6 systems (informally
“Neuro[Symbolic]”) remains somewhat unclear (as also
acknowledged in [17]), and we refrain from interpreting this
type.

Kautz types: Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Our Patterns: 3b 11 6a,6b 3b, 8, 10 7 -

The above table shows that there are substantial
differences between our proposed design patterns and the
system types from Kautz. Kautz’s taxonomy has similar
goals to ours, namely to identify different interaction
patterns between neural and symbolic components in a
modular hybrid architecture, but our proposal goes beyond
Kautz’s proposal because (a) Kautz proposes a taxonomy
of systems without describing the internal architectures of
the types of systems in his taxonomy, and (b) we make
more fine-grained distinctions than Kautz, refining his 6
categories into distinctive subtypes, each with their own
internal modular architecture (= design pattern).

In [49] the authors survey hybrid (“neural-symbolic”)
systems along eight different dimensions. We briefly
describe each of these, and discuss their relationship to the
distinction made in our own work.

Directed vs undirected graphical models. This is a finer
grained distinction about representations than we make.
In our patterns, these are both captured by the same
“semantic model” component

Model-based vs. proof-based inference (better known as
model-theoretic vs. proof-theoretic inference). Note this
use of “model-based” is using “model” as the term is used
by logicians, which is unlike how Darwiche uses the term
model-based, using the term model as used by machine
learning, showing the highly ambiguous use of the term
“model” in Computer Science in general and in AI in
particular. Again, this is a finer grained distinction than
we make, and again both of these forms of inference are
captured in our single KR component.

Logic vs. Neural. This corresponds to our distinction
between ML and KR components

Boolean vs. probabilistic semantics. Similar to above,
both of these would be captured by the KR component
without making the distinction

Structure vs. parameter learning. This is captured in our
notation by ML components that have either a statistical
or a semantic model as their result

Symbols vs. Sub-symbols. This corresponds to our distinc-
tion between symbols and data. Unfortunately, and sim-
ilar to our work, De Raedt et al. do not give a precise
distinction between the two categories.

Type of Logic. This is another finer distinction then we
make, these different types of logic are all captured in
terms of our KR component

Summarising, on the one hand, De Raedt et al. make a
number of finer distinctions than our boxology, mostly
in terms of the details inside our components (different
variations of KR components, different variations of
models), while on the other hand de Raedt et al. do not
discuss how these components should be configured into
larger systems in order to achieve a particular functionality,
which is the goal of our boxology. Whereas our boxology
is a refinement of the 6 types proposed by Kautz (both
aiming to describe modular architectures of interacting
components), the work by de Raedt et al. is a refinement of
some of our components, and could be combined with our
work in a future version. The same is true for [61].

7 Conclusion and future work

In our paper, we have presented a visual language (boxol-
ogy) to represent learning and reasoning systems. The tax-
onomical vocabulary and a collection of patterns expressed
in this language aim to foster a better understanding of
Hybrid AI systems and support communication between
AI communities. A practical application in two use cases
demonstrates that we can use the boxology to create a com-
municable blueprint of rather complex Hybrid AI systems
that integrate various AI technologies.
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Fig. 13 Use-case for robot in action

The work presented here provides ample opportunities
for additional features and uses. We expect to apply the
taxonomy and visual language in many more use cases and
is likely to evolve further as a result. New examples of
AI systems will contribute to extending and improving the
taxonomy, which in turn allows us to cover more use cases.
Using this approach, an increasingly more mature visual
language will evolve.

As a first extension to the current boxology, the concept
of actors can be defined, along with the corresponding
interaction processes and models. Actors are necessary for
modelling interactions among autonomous entities, such as
software agents or robots, whether they are physically or
logically distributed. They also allow for specifying systems
with humans in the loop and human-machine interaction
in general. Use cases for actors include federated learning
and reasoning, multi-robot coordination or hybrid human-
agent teams. In [64] the authors propose an extension of
our boxology [60] with two abstract patterns for humans-
in-the-loop systems, namely where the human agent either

performs the role of a feedback-provider or a feedback-
consumer.

Future work also includes developing the boxology from
a means of representing system functionality towards an
architectural tool-set of reusable components for design,
implementation and deployment of hybrid AI systems. A
more coherent methodology for complex AI systems based
on the boxology allows these systems to be easier to
understand in terms of functionality. This in turn provides
a basis for more explainable and trustworthy AI systems
design. An interesting topic to pursue in this respect is the
creation and development of a generative grammar and logic
calculus for composing and verifying patterns. This would
facilitate the above-mentioned goals of and allow for formal
verification at the component, pattern and system levels.

When using a coherent methodology for complex Hybrid
AI system design, it is expected that such a design becomes
easier to understand and maintain. In addition, hybrid
AI systems will become better explainable, responsible,
reliable, and predictable. It is our aim to develop such
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systems as being trustworthy by design. This could provide
a framework for system quality control by evaluation and
certification.

Finally, the methodology needs to be further documented
using guidelines for specifying increasingly concrete
implementations of the concepts.

Appendix: Taxonomy

Table 1 Hybrid AI taxonomy

Concept Definition

Instance An example or single occurrence of something. (Collins)

Data Factual information (such as measurements or statistics) used as a basis for reasoning, discussion, or calculation.
(MW)

Number A numerical quantity that is assigned or is determined by calculation or measurement. (MW)

Text Words and form of a written or printed work. Something (such as a story or movie) considered as an object to be
examined, explicated, or deconstructed. (MW)

Tensor A set of components, functions of the coordinates of any point in space, that transform linearly between coordinate
systems. For three-dimensional space there are 3 r components, where r is the rank. A tensor of zero rank is a scalar,
of rank one, a vector. (Collins) A picture (bitmap) can be represented as a tensor of rank 2.

Stream A stream of things is a large number of them occurring one after another. (Collins) Digital data (such as audio or
video material) that is continuously delivered one packet at a time and is usually intended for immediate processing
or playback. (MW)

Symbol Something that stands for or suggests something else by reason of relationship, association, convention, or accidental
resemblance. An arbitrary or conventional sign used in writing or printing relating to a particular field to represent
operations, quantities, elements, relations, or qualities (MW)

Label A descriptive or identifying word or phrase (MW)

An aspect or quality (such as resemblance) that connects two or more things or parts as being or belonging or working
together or as being of the same kind. (MW)

Trace A sign or evidence of some past thing. (MW)

Model A system of postulates, data, and inferences presented as a mathematical description of an entity or state of affairs.
(MW)

Statistical Model A statistical model is usually specified as a mathematical relationship between one or more random variables and
other non-random variables. (MW)

Semantic Model A conceptual model represents ’concepts’ (entities) and relationships between them. (MW) Semantic technologies
formally represent the meaning involved in information. For example, ontology can describe concepts, relationships
between things, and categories of things. (MW)

Processing A series of actions or operations conducing to an end. (MW)

Generation A process of coming or bringing into being. (MW) Defining or originating (something, such as a mathematical or
linguistic set or structure) by the application of one or more rules or operations. (MW)

Training The process of learning the skills that you need for a particular job or activity. (Collins) In particular: model building,
the process of preparing a machine learning model to be useful by feeding it data from which it can learn, ie. detect
statistical patterns.

Engineering The application of science and mathematics by which the properties of matter and the sources of energy in nature are
made useful to people. The design and manufacture of complex products. (MW) In particular, software engineering:
the methodical design, implementation, and maintenance of models and components of software architectures.

Transformation The operation of changing (as by rotation or mapping) one configuration or expression into another in accordance
with a mathematical rule. (MW)

Inference A conclusion or opinion that is formed because of known facts or evidence. (A) The act of passing from one
proposition, statement, or judgment considered as true to another whose truth is believed to follow from that of the
former. (B) The act of passing from statistical sample data to generalisations, usually with calculated degrees of
certainty. (MW)

Induction Inference of a generalised conclusion from particular instances. (MW)

Deduction The deriving of a conclusion by reasoning. Inference in which the conclusion about particulars follows necessarily
from general or universal premises. (MW)

Classification systematic arrangement in groups or categories according to established criteria. (MW)
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Table 1 (continued)

Concept Definition

Prediction To calculate (some future event or condition) usually as a result of study and analysis of available pertinent data. (MW)

Actor Autonomous entity acting proactively to initiate processes, based on intentions and goals. Interaction among actors
leads to emergent system behaviour.

Human Human beings interacting with AI system components and other actors.

Agent Active software components that are proactive, rather than merely reactive. Agents can be based on many internal
reasoning mechanisms.

Robot Physically embedded agents that can sense their environment and act in it.
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Dr. André Meyer-Vitali is a
senior scientist at TNO, The
Netherlands, and obtained his
PhD at the University of
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