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Executive summary

This Deliverable falls under the SAFE-UP Project Work Package 3 “Active safety systems for
vehicle-VRU interaction” and specifically under the Task 3.4 “Advanced intervention functions
to avoid critical events”. It is a purely technical document that targets to support the efficient
monitoring of the technical developments for Demonstrator 3 “Vehicle demonstrator for
trajectory planning and control for combined automatic emergency braking and steering
maneuvers including system for VRU detection, motion planning and trajectory control to
enhance real world performance”.

The present document is the first of two deliverables related to Demo 3 and focuses on the
scenario selection method, initial scenario selection results, and a description of the Demo 3
algorithms under development. Initial test results show the current status and maturity level
of the algorithms.

A detailed description of the Demo 3 architecture and technical specifications can be found
in the deliverable report D3.1 (SAFE-UP, Deliverable report D3.1, 2021).

This report is organized as follows: an overview of the hardware and software architecture
are presented in section 2. In section 3, the scenario selection method, data base and the
simulation results are described. The latter are used for an initial Demo 3 scenario
specification. Section 4 gives an overview about the developed algorithm subsystems and
their current development status. Initial test results are presented in section 5, followed by a
discussion, conclusion and a description of the next steps in section 6.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under Grant Agreement 861570.
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1. Introduction

This deliverable reports on the current development status of WP3 Demo 3. The scope of
Demo 3 is to develop advanced vehicle dynamics intervention functions to avoid or mitigate
critical events. The demonstrator will include a vehicle with trajectory control algorithms for
both emergency braking and steering.

The purpose of this document is mainly to support the technical coordination and monitoring
of the Demo 3 development. It is therefore working as a technical document, supporting the
work of the system developers throughout the process, as well as the related work that will
be performed in T3.6 focusing on technical verification. This version of the deliverable focuses
on the scenario selection method, initial scenario selection results, and a description of the
Demo 3 algorithms under development supported by initial test results showing the current
status and maturity level of the algorithms.

An updated version of this Deliverable is scheduled for Month 26 of the project (July 2022),
when Demo 3 has completed its development phase.

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under Grant Agreement 861570.
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2. Architecture

2.1 Demonstrator hardware architecture

A Bosch development vehicle as depicted in Figure 1 is used as Demo 3 integration platform.
The vehicle contains several sensors and actuators with enhanced interfaces as well as a
computing platform utilizing the Robot Operating System (ROS) as middleware to facilitate
communication between different subsystems.

A detailed description of the Demo 3 hardware architecture and technical specification can
be found in the deliverable report D3.1 (SAFE-UP, Deliverable report D3.1, 2021).

Figure 1: Demo 3 integration platform. A Bosch development vehicle featuring a radar/video sensor
set and steering and braking interfaces with enhanced dynamics.

2.2 Demonstrator software architecture

The software for Demo 3 consists of several functionalities developed by different partners.
Figure 2 shows the high-level interactions between the functionalities developed by the
partners for Demo 3. These functionalities are implemented in the ROS2 (Robot Operating
System) framework, which acts as a middleware and facilitates communication between the
functionalities. Within the ROS framework, the functionalities are implemented as separate
executables, or nodes, and these nodes communicate with each other via topics, using a
publish-subscribe pattern or services, using a server-client pattern.

A detailed description of the Demo 3 software architecture and technical specification can be
found in the deliverable report D3.1 (SAFE-UP, Deliverable report D3.1, 2021).

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under Grant Agreement 861570. 10
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1. Scenario Selection 4. Localization 7. Global Planning
& Baseline Simulation
““‘"' o TU/e imosston T fg
— : |
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Figure 2: High level interaction layouts between functionalities (light blue) and inputs needed from
other work packages (grey block).

This project has received funding from the European Union’s Horizon 2020 research
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3. Scenario selection

With the main goal of developing advanced active safety systems including autonomous
emergency steering (AES) as a novelty, special focus is given in understanding the potential
field of effect of such a system, especially in comparison to current state-of-the-art active
safety systems. Therefore, a simulative analysis to quantify a theoretical field of effect is
performed.

The goal of the following Demo 3 scenario selection process is to identify scenarios that
cannot be avoided by state-of-the-art systems and have the theoretical potential to be avoided
by AES. These scenarios are then used to steer Demo 3 development towards a real-world
safety benefit by directly addressing accident types that are not yet covered by any active
safety system.

3.1 Scenario selection method

The scenario selection method is based on a simulation of generic implementations of
Autonomous Emergency Braking (AEB) and Autonomous Emergency Steering (AES)
systems. Those systems are then simulated using Pre-Crash-Matrix (PCM) accident data
(German In-Depth Accident Study, n.d.). Based on an assessment of the accident avoidance
potential, accident clusters are formed and specified by their parameter distributions. Figure
3 shows an overview of the simulation process.

The following chapters describe the data base, as well as the simulation assumptions and

workflow.
Accident cluster Simulation framework to identify AES relevant accidents AES relevant accident cluster
q Regulations AES relevant accident
relevant accident cluster n Dynamic constraints cluster ny, ..., Ny
» Based on accidentology Specified by ranges of:
results » Ego velocity
» PreCrashMatrix trajectories o _ » Obj Ego velocity
/ » Hitpoint
™ - » Collision angle
é i r UTYP 431 AES avoidance
'l‘ > & | — —»| »Percentage of new
- &o cases adressable by AES
£ UTYP 461 Fiid of Effect
3 - accident
scenario
o
f UTYP 401 @ i > °
B
|

AEB avoidance

Figure 3: Overview of the simulation process for scenario selection. Clusters derived from accident
data are used to simulatively assess the accident avoidance potential of an AES maneuver and build
clusters of AES relevant traffic situations.

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under Grant Agreement 861570. 12
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3.1.1 Data base

SAF=-UP &

In Task 2.1 of the SAFE-UP project, various analyses of crash data and naturalistic driving
data were performed to derive scenarios for further work in the project. For car-to-VRU
crashes in adverse weather conditions four use cases were selected, which are shown in
Table 1. The focus of this analysis was on pedestrians and bicyclists as VRU types and on
precipitation as it is significantly more prevalent in crashes with VRUs than other weather
phenomena like fog. For the use cases, conflict scenarios with a high relative occurrence of
precipitation, as well as conflict scenarios with a high absolute occurrence of precipitation
were selected. The highest absolute number of cases under precipitation is in the conflict
scenario cluster P-CLwoSO (Pedestrian crossing from left without sight obstruction), which is
therefore selected with priority for the analysis in this document.

For more detailed information on the analysis and the selected use cases, refer to Deliverable
D2.6 of the project SAFE-UP (SAFE-UP, Deliverable report D2.6, 2021).
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Table 1: Car-to-VRU scenarios recommended in D2.6 for consideration for safety systems with
improved sensor performance (SAFE-UP, Deliverable report D2.6, 2021).

For the first iteration of the demonstrator development, special focus is given to the three
most common UTYPs (401, 431, and 461) in the cluster P-CLw0oSO, which are displayed in
Figure 3. For these, 137 cases in the PCM database could be identified, 109 of which could
be used for the simulation. The GIDAS-PCM database is a subset of the GIDAS database,
which contains the kinematic information of the pre-crash phase, including trajectories and

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under Grant Agreement 861570.
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speed information from the initiation of the conflict situation until the actual collision. Based
on information from the crash reconstruction, the pre-crash phase is described at least
approximately TTC=5 seconds before the collision and stored as a pre-crash matrix format
(PCM).

In further iterations, the present method is planned to be applied to all UTYPs within the
clusters and to the other relevant accident clusters from the SAFE-UP project scope.

3.1.2 Simulation assumptions

To be able to generate useful and realistic simulation results, several assumptions must be
made. Figure 4 shows an overview of the general simulation assumptions.

R 12
|

limitation

10 50 100130
ego velocity (km/h)

ENs cx 210}

cx

Only in-lane AES AES dynamics limitation Perfect sensors AES maneuvers are Maneuver trigger TTC
maneuvers beyond SOTA, but based on — only FoV considered, performed by steering only based on Bosch
(in accordance with UN Bosch controllability studies neither sensor nor — no change of v, , by approach
ECE R79) and limitations situational uncertainties avoidance maneuvre
)BOSCH )BOSCH

Figure 4: Simulation assumptions for the assessment of the accident avoidance potential of an AES
maneuver.

The main limiting factors for the AES field of effect are expected to be the available space for
an evasive maneuver, the allowed lateral dynamics and the trigger time of the system. The
AES system under investigation is considered to be a SAE Level 2 system (SAE, 2018) and
has to fulfill the legal requirements of the UNECE R79 regulation (UNECE, 2018), resulting
in the following general simulation assumptions:

1. In accordance with the UNECE R79 regulation, the AES maneuver is limited to
evade within the current ego lane only.

2. Based on Bosch controllability studies (Schneider, Schmitz, Ahrens, Loffler, &
Neukum, 2018), the lateral dynamic interventions are limited to a maximum lateral
acceleration of 5 3.

3. Sensor characteristics are considered by a field of view model only, sensor
detection or situational uncertainties are not considered.

4. AES maneuvers are performed by steering only. A combination of AES and AEB
is not considered in this initial step.

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under Grant Agreement 861570. 14
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5. The system trigger time is limited by a Bosch internal approach, which, if a driver
does not trigger an intervention, delays the system trigger until it is estimated that
a driver would not able to perform an avoidance maneuver on her own.

To assess the AES systems performance, criteria for collision avoidance have to be defined.
An illustration of the chosen collision avoidance criteria is shown in Figure 5.

The first and most obvious criterion is full collision avoidance. In this case there is no contact
of the ego vehicle and the pedestrian at any time during the AES maneuver.

As the velocity of the crossing pedestrian from the accident reconstruction is always constant
and the simulation does not make any assumptions regarding reactions of the pedestrians to
the ego vehicles evasive motion, cases occur where a collision of the pedestrian with the ego
vehicles front is avoided, but the pedestrian gets in contact with the side of the vehicle.

Because of the missing pedestrian reactions, the fact that a pedestrian is able to reduce its
velocity to stand-still on quasi-instant timescales and the assumption that side collisions may
be less critical than frontal collisions, a frontal collision avoidance criterion is used as a second
performance measure.

Lt 2 Lo - »
1
1
1
)
,l
/ -
4
4 I
4 1
I ]
U !
I
U
n -
‘- ]-[ | }!
Crash Variant 1: full collision avoidance Variant 2: frontal collision avoidance
used as avoidance criterion used as avoidance criterion

Figure 5: Avoidance criteria for the assessment of the accident/collision avoidance of an emergency
steering or braking maneuver.

3.1.3 Simulation workflow

The simulation workflow is depicted as a flow chart in Figure 6.

The initial step of the simulation is the extraction of ego and VRU trajectories and dynamics
as well as lane information from the PCM accident scenario. Based on the trajectories and
dynamics, the Time-To-Collision (TTC) and the collision overlap are calculated for each

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under Grant Agreement 861570. 15
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timestamp and then fed into the calculation of the system trigger. At the timestamp where
TTC falls below the system trigger threshold AES and AEB maneuvers are initiated.

For the AEB maneuver, a longitudinal acceleration profile is used to calculate the vehicle’s
future motion until stand-still.

For the AES maneuver, two trajectories are calculated for every accident scenario: One
evading to the left and one to the right. Both trajectories end on the maximum lateral
displacement possible (given by the ego lane information) and use the maximum allowed
lateral dynamics.

For both maneuvers, the vehicle dynamics of the component of motion which is not affected
by the maneuver (lateral in case of AEB, longitudinal in case of AES) are assumed to be
constant. For an AEB maneuver lateral dynamics are calculated with a model of constant
acceleration, starting at the time of the system trigger. Likewise, for the AES maneuvers
longitudinal dynamics are calculated with a model of constant acceleration, starting at the
time of the system trigger.

The trajectories and dynamics of the ego maneuvers are then used to perform collision
checks with the pedestrian trajectory to decide if full collision avoidance or frontal collision
avoidance can be realized.

PCM accident scenario

Ego and target Ego and target

Changed Ego
accident trajectories | accident dynamics

accident trajectory

Changed Ego
accident dynamics

TTC and collision
overlap calculation

Collision
overlap

1 . . tri
Trigger time calculation k=l

AEB/AES maneuvre

Driver calculation
reaction

Driver reaction
calculation

Figure 6: Logical view of the simulation workflow.

3.2 Selected scenarios for Demo 3

3.2.1 Overall results

The overall simulation results are separated into evaluations for the two collision avoidance
criteria: full collision avoidance and frontal collision avoidance.

Figure 7 shows an illustration of the AEB and AES field of effect for full collision avoidance.
Out of the 109 simulated PCM cases, 76.15% can be avoided by AEB and 54.45% only by

This project has received funding from the European Union’s Horizon 2020 research
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AEB and not by AES. 36.7% can be avoided by AES and 11.93% only by AES and not by

AEB.
Field of Effect 3
O
~--Ta

full avoidance

AES:
AEB: 36.7%
76.15% 11.93% unique

51.45% unique

24.7% shared

7> N=13cases
with AES avoidance
and no AEB avoidance

N =109 PCM cases = 100%

Figure 7: Field of effect estimations for AEB and AES maneuvers using the full collision avoidance
criterion.

These 11.93% of sole AES avoidance potential, equaling a number of 13 cases, are the ones
of interest for the Demo 3 development, as addressing these cases with novel avoidance
functions would have a direct impact on total accident avoidance numbers.

Figure 8 contains distribution plots of ego vehicle and pedestrian velocities, angles between
ego vehicle and pedestrian (all at the time of the original accident and the time of the system
trigger), overlap of the ego vehicle and the pedestrian in the original accident and the system
trigger time (green distributions) as well as a potential mitigation effect of an AEB by the
reduction of collision velocity (blue distributions).

The distribution plots contain the discrete values of each case, shown as dark green or blue
dots, as well estimated distributions around them. Due to the limited data the validity of theses
distributions can not be guaranteed and should only be taken to guide the eye.
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Figure 8: Parameter distributions for PCM cases with unique AES avoidance potential (green) and

AEB mitigation potential (blue) using the full collision avoidance criterion.

The collision hitpoint of the original accident is a parameter of special interest here, as it
already separates the original scenarios along the system performance criteria. The original
scenarios can be clustered into frontal collisions and side collisions, where the latter cluster
would meet the frontal collision avoidance criterion even without any emergency system. An
illustration of the hitpoint definition can be found in Figure 9.

Six out of the 13 cases where the AES maneuver is able to realize full collision avoidance are
frontal collisions with a hitpoint on the leftmost part of the ego vehicle’s front (hitpoint = O for
all cases). The remaining seven cases are side collisions with hitpoints predominantly
distributed along the front-half of the vehicle side (see Figure 10).

, 0
1

frontal collision

side collision

Figure 9: Hitpoint definitions for frontal and side collisions as used by the scenario selection
simulations.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under Grant Agreement 861570.

18



SAFE-UP D3.3: Demo 3 Vehicle demonstrator for S A F — - U P @
advanced vehicle dynamics intervention —

= =
o o

=2
I

(=]

collision hitpoint [0- 1]
Y

S
i3

04

Figure 10: Distribution of original accident hitpoints in PCM cases with unique AES avoidance
potential using the full collision avoidance criterion.

Using the frontal collision avoidance criterion 51.38% out of the 109 simulated PCM cases
can be avoided by AES and 9.17% (equals ten cases) only by AES and not by AEB. The AEB
field of effect remains identical. Cases with side-collisions in the original accident scenario
are not considered here, since no intervention is needed to fulfill the frontal collision avoidance
criterion. Figure 11 shows the AEB and AES field of effect for the frontal collision avoidance
criterion.

Analog to the full avoidance analysis, Figure 12 contains plots of the parameter distributions
for the frontal collision avoidance evaluation.

Field of Effect 1
O—5"

frontal avoidance
AES:

51.38%
9.17% unique

33.95% unique

42.2% shared

T N =10 cases
with AES avoidance
and no AEB avoidance

N =109 PCM cases = 100%

Figure 11: Field of effect estimations for AEB and AES maneuvers using the frontal collision
avoidance criterion.
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Figure 12: Parameter distributions for PCM cases with unique AES avoidance potential (green) and
AEB mitigation potential (blue) using the frontal collision avoidance criterion.

With the frontal collision avoidance criterion, the overall AES field of effect increases by about
15%, while the percentage of AES avoidance only cases decreases by about 2%.

In four out of the ten relevant cases, frontal collisions are converted into side collisions. These
cases enlarge the potential field of effect of the AES system, as they do not occur in the
evaluation using the full collision avoidance criterion. In the remaining six cases, the frontal
collisions can be fully avoided.

The distribution of hitpoints in the original accident is shown in Figure 13.
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Figure 13: Distribution of original accident hitpoints in PCM cases with unique AES avoidance
potential using the frontal collision avoidance criterion.

In conclusion, accidents of the three UTPYs 401, 431, and 461 with avoidance potential using
the aforementioned AES system are characterized by:

Hitpoints on the front half of ego vehicle’s left side,
Hitpoints on the leftmost part of the ego vehicle’s front,
Initial ego vehicle velocities in the range of about 30 km/h to 60 km/h,

Initial pedestrian velocities in the range of about 2 km/h to 10 km/h and

a > wn e

Collision angles in the range of 260° to 280°.

3.2.2 Scenario description

Based on the simulation results the following scenario specifications for the first iteration of
the Demo 3 AES development are chosen:

1. Ego vehicle velocity: 40 km/h, 50 km/h, 60 km/h,
2. Pedestrian velocity: 3 km/h, 6 km/h, 9 km/h,
3. Collision angle: 90° and

4. Collision hitpoint on the ego vehicle’s front: 0, 0.2, 0.4.

Figure 14 shows an illustration of those first iteration scenarios. An obstruction of the
pedestrian (black solid line) will be used for better demonstrability of the criticality of the
accident scenarios and the resulting of rather late system trigger times.
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Scenario with AEB avoidance potential Scenario with AES avoidance potential
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Figure 14: lllustration of the Demo 3 scenarios chosen for the first iteration of the demonstrator.

3.3 Applicability for future scenarios for Demo 3

The general method of scenario selection can be applied on any other data base or scenario
set. So when definitions of future accident scenarios become available (SAFE-UP,
Deliverable report D2.8, 2021) (SAFE-UP, Deliverable report D2.13, 2021), the scenarios that
could be addressed by Demo 3 can be extended.
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4. Demo 3 development status

4.1 Overall demonstrator scope

In the first iteration of Demo 3 the focus will be on demonstrating the basic functionality of all
algorithms and the whole algorithm chain. The general layout of the software is shown in
Figure 2.

System integration and functional verification of the whole architecture will be done using the
scenarios described in chapter 3.2.2. An extensive analysis of further relevant scenarios for
Demo 3 based on the results of D2.6 (SAFE-UP, Deliverable report D2.6, 2021) using the
scenario selection method described in section 3.1 will be performed in the further course of
the project.

Preliminaries:

The terminology used within this report can have in literature slightly different interpretations.
To avoid confusion, this paragraph defines the terminology and ontology used in this chapter,
which is an extension on the review article of (Lauréne Claussmann, 2020) where widely
accepted terminologies are explained.

In a general hierarchical scheme of automated vehicles (see Figure 15) once the high level
route and decision are known, the motion strategy includes generating and selecting a path
and a trajectory.

>{ Perception / Localization / Communication

| Scene representation & sensor fusion

Motion Strategy
| Route Planning \

| Decision making | < Driver |
| Generation |

‘ Control |

| Actuation «

Figure 15: General hierarchical abstraction scheme of automated vehicles adopted from (Laurene
Claussmann, 2020), where the generation block contains the path and trajectory generation.

Path here refers to the sequence of space-related states in the free space (also referred to
as geometric waypoints) and trajectory refers to the sequence of spatiotemporal states in the
free space (also referred to as time-varying waypoints).
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Furthermore, maneuvers refer to a predefined motion considered as a subspace of paths or
trajectories, i.e. motion and actions or tasks refer to symbolic operations of maneuvers or
intentions of road users.

4.2 Demonstrator subsystems

A general overview of the demonstrator subsystems is given in Figure 2. Detailed descriptions
for each subsystem can be found in the following subsections.

With the goal of demonstrating the basic functionality of all algorithms and the whole algorithm
chain within this first iteration of Demo 3, special focus is given on developing the most
relevant subsystems. These are Path Planning, VRU Intent & Trajectory Prediction,
Trajectory Generation and Crash Prediction & Avoidance Estimation, which will be described
in more detail in the following sections. The subsystems Localization, Global Planning, Safety
Decision and Vehicle Control are implemented in a way that the system works as a whole but
kept rather simple. The subsystem Sensor Input and Object Fusion & Tracking mainly uses
already available algorithms which are embedded into the radar sensor module.

4.2.1 Subsystem Localization

As localization is merely an enabling technology for the Demo 3 developments, validation and
demonstration, the vehicle will be equipped with a high end GNSS-RTK sensor. This sensor
will output high frequent and accurate GNSS data, which can be fused with odometry and/or
IMU data if needed.

4.2.2 Subsystem Global Planning

Global goal points are provided from the global planning module for to the path planning
module to plan towards. These goal points will be updated periodically and are always an
approximate fixed distance away from the current vehicle position. The goal points can be
extracted from a stored map (e.g. in OpenDrive format), or from a recorded GNSS trace.
Besides the geometry point in a world fixed frame (e.g. UTM), the goal point can contain
information on the threshold for which it is considered reached, or alternatively be a goal area,
represented by a polygon.

Furthermore, the global planner is able to provide road information such as lane centers
and/or boundaries, which can be used by the path planner module to find a better solution.

4.2.3 Subsystems Sensor Input and Object Fusion & Tracking

As Demo 2 covers the aspects of advanced sensor perception and Demo 3 is focused on the
development of an evasive emergency maneuvering, the subsystems Sensor Input and
Object Fusion & Tracking are realized using a single front-facing radar sensor module and
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single front-facing video camera module with close-to-series hardware and software
revisions.

Fusion of radar and video data is performed using radar locations (single reflexes detected
by the radar detector) and video objects (object data derived from solely raw video signals by
the camera module). Video objects are communicated by the camera module via a CAN FD
bus to the radar sensor module. The sensor data fusion and object tracking algorithms are
executed on hardware embedded into the radar sensor module.

Fusion objects (object data derived from the sensor data fusion and tracking algorithms) are
then provided to the Localization and VRU Intent & Trajectory Prediction subsystems.

4.2.4 Subsystem Path Planning

To perform any automated driving task the basic idea is to safely traverse a state space to
get from point A to point B. When given a driving goal by a route/global planner, if a path can
be found then also sequentially a trajectory can be found that ensures the desired
smoothness, continuity, comfort, speed and that obeys vehicles constraints.

The challenge of selecting a good path for automated driving tasks (e.g. lane changes,
obstacle avoidance, car following, merging, etc..) can be solved with different algorithms each
having their own advantages and disadvantages. The review by (D. Gonzélez, 2016)
distinguishes 4 main categories of motion planning algorithms: graph search, sampling,
interpolating and numerical optimization. Other recent review papers, such as (Lauréne
Claussmann, 2020) highlight that depending on the architecture that is selected for motion
planning and the scope of the automated vehicle, different algorithms have been used to find
a feasible and optimal path for the vehicle.

Current challenges in real-time planning lie in dealing with dynamic environments in urban
scenarios with multiple agents (i.e. pedestrians, cyclists, other vehicles) and dealing with
extended ODDs (operational design domains), such as bad weather, complex road layouts,
bad light and so on. This extra complexity requires the algorithms to become proactive rather
than reactive, be robust to perception uncertainties and also be interaction-, risk- and context-
aware.

To discover which algorithm performs better for the use cases considered here, two of the
four classes of algorithms are implemented in this work: the sampling based and the
numerical optimization. The sampling based planner is selected due to its wide usage by
multiple previous research, its ability to deal with high dimensional spaces and allowing a fast
planning in semi structured environments by executing a random search through the
navigation area. The second algorithm selected, MPC (Model Predictive Control) was
selected to investigate the currently existing trend of bringing more of the vehicle control tasks
upwards towards the motion planner and to research if MPC can include predicted information
of other road users and make the vehicle react more proactively. Compared to the sampling
based algorithm which leads to suboptimal solutions, MPC has the potential to offer an
optimal one. Both algorithms have the ability to consider non-holonomic constraints such as
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vehicles’ momentum and maximum turning radius and both algorithms consider the same
inputs as shown in Figure 16.

6. VRU Intent & 4. Object Fusion 8. Global
Trajectory Prediction & Tracking Planning

| /
\ 9. Path Planning

10. Trajectory
Generation

Figure 16: Path Planning subsystem (inter)dependencies.

4.2.4.1 Sampling-based Path Planning

Most sampling based planners sample a new state in the selected state space. Such state
spaces can be R?, Dubin or Reeds-Shepp. However, planning in such space either puts a
massive limit on the movement of the car (e.g. the constant curve radius in Dubin) or does
not necessarily satisfy the differential and/or kinematic constraints of vehicle's motion model.

To facilitate the integration of kinematic and differential constraints while maintaining flexibility
on the reachable space of the vehicle, action space sampling is an alternative. Contrary to
state space sampling, action space sampling (alternatively called control space sampling)
samples inputs to a dynamical system. Integrating this control input over a specified time
interval given a fixed initial state (sample) will then result in a new state space sample, which
satisfies the kinematic constraints. In this case, the following state and input are used:

X=[x Y 0 Vimear t]Ta
U= [alinear ¢]T’

with x,y being the positions in a world-fixed frame, 8 the orientation in a world fixed frame,
Viimear @Nd a;in0qr respectively the forward speed and acceleration, ¢ the steering angle and
t a (reference) time. For the forward propagation of the dynamic system, the following non-
linear kinematic bicycle model discrete-time system is used:

Xewnr = [ (X, Up, At),

with

VlinearCOS (9)
UlinearSin (9)
(X, U, At) = X, + |Plinear 4an (@) At.

wheel base
Alinear

1
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The control inputs are sampled based on a Gaussian distribution with a parametrizable mean
and standard deviation.

First, the propagated state is checked for validity based on free space and collision with other
targets (VRU’s, vehicles). If feasibly, the states are awarded a penalty based on several,
parametrizable, objectives such as:

- Desired speed,
- Path length,
- Driveable space,

- Distance to targets

and added to the tree. If multiple solutions are found from start- to end state, the solution is
chosen with the lowest cumulative cost. The full algorithm is described in (Yanbo Li, Zakary
Littlefield, Kostas E. Bekris, Sampling-based Asymptotically Optimal Sampling-based
Kinodynamic Planning, 2014). For the implementation of this planner, the Open Motion
Planning Library (OMPL) is used (loan A. Sucan, Mark Moll, Lydia E. Kavraki, The Open
Motion Planning Library, IEEE Robotics & Automation Magazine, 19(4):72-82, December
2012. https://ompl.kavrakilab.orqg).

Figure 17: Sample based planner result.

Figure 17 shows a visual representation of the path planner output with the vehicle negotiating
a left turn. Here a penalty grid map based on driveable space (following from the lane
geometry) is shown, together with the virtual lane markings (in blue) and resulting path (green
arrows).
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4.2.4.2 MPC-based Path Planning

Parallel to the sample based path planners, research is conducted involving the design of a
local planner using a model-predictive control (MPC) algorithm. As opposed to a trajectory
generator using MPC, the MPC formulation for a local planner usually looks slightly different
since the goal is not to follow a certain trajectory, defined at each time-step, but to follow a
discrete set of points generated by a behavior planner (e.g., using a Dijkstra algorithm). These
points are usually spaced at a low resolution and primarily provide the information to, e.g.,
take a left turn or to keep driving straight. These discrete points work well in a scenario where
the environment is unstructured and you simply need an algorithm to move from point A to
B, collision-free, while satisfying constraints.

An example in which this information is not sufficient is the scenario in which you are
expected to follow a lane (not necessarily straight), or have the possibility to follow multiple
lanes. The exact reference to the center of the lane, or even which lane to drive on based on
surrounding obstacle positions is not something which can be captured in these low-
resolution positions.

On the public road, a driver and its vehicle is expected to always follow the lanes and respect

regulations. For this purpose, many research papers have augmented the problem with a
potential field or a "risk-assessment" field. This field captures analytically the risk of driving at
certain positions. For example, driving off-center in an empty lane poses a higher risk than
simply driving in the center. Using this risk-assessment field, the vehicle can guide itself
through the environment in a potentially optimal way, up to the goal point.

The MPC formulation of the path planner is formulated as follows:

0-Np (Xs)=min Tl e (Ke=Ti0+ IR, Ly )M (XN 4 =T 4y )+U (X 00)
s.t.Xp = X,
Xir1 = f (Xi, ux), Vk 2 0,
h(Xy, ux) < 0,Vk =0,
9 Xy, ug, 08) < 0,Vk =0,

where X, and u;, represent the same state and input vectors as the sampling based planner,
functions g(.) and h(.) represent constraint functions, U(.) represents the artificial potential
field function which could depend on state X, and objects oy, Iy and [,, are the stage cost of
the state w.r.t. reference r, and input respectively, m(.) represents the terminal costs and N,,
is the prediction horizon. The model for MPC synthesis considered here is the same non-
linear kinematic bicycle model as used in the sample based planner.

Note, that the stage cost [y may not be used due to an absence of a trajectory to follow at
each time-step. The terminal cost, however, is used and is compared to the low-resolution
discrete-points, in this case Ny r - Moreover, the constraint g(Xy, ug, o) < 0 may not be used

due to the fact that the potential field could incorporate the presence of surrounding objects.
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This reduces the complexity at the cost of it becoming more difficult to guarantee a collision-
free trajectory. The potential field is composed of 2 parts, one representing the infrastructural
potential field (i.e. the road lanes) and one representing a potential field taking into account
static and/or dynamic objects and predictions.

4.2.5 Subsystem VRU Intent & Trajectory Prediction

The ability of an automated vehicle to accurately sense its surroundings and anticipate how
the driving environment will evolve is crucial for road safety. If the vehicle is fully aware of the
current and future positions of all static (e.g. road infrastructure) and dynamic (e.g. other road
users) objects, it can plan its own trajectory optimally and prevent any hazardous situations.

The task predicting the future positions of road users can be solved with different algorithms.
These algorithms can be classified along two main dimensions: (i) the choice of modeling,
and (i) the contextual information they use (see Figure 18). The different modeling
approaches have their own strengths and weaknesses. Physics-based approaches are
accurate for short prediction horizons, but they don’'t capture the complexity of real-world
dependencies and therefore their performance degrades rapidly for longer horizons.

Behavior Prediction

Modeling Contextual
Approach Information
Physics-based r Ta(ge[ Ag@nt
’ Pattern-based Dynamic

Environment |

Planning-based l Slalic
. |__Environment |

Figure 18: Taxonomy of behavior prediction models. Adapted from (Rudenko, et al., 2020).

Pattern-based approaches can approximate complex behavior without prior expert’'s domain
knowledge, but if some behavior is not present in the data used to develop them, they will
perform poorly on those situations. Finally, planning-based approaches capture well the goal-
oriented nature of humans, but their running time scales exponentially with the number of
objects in the scene, and automatic goal inference requires a complex understanding of the
driving environment.

In recent years pattern-based prediction models have gained popularity due to their
performance in a variety of applications (Lecun, Bengio, & Hinton, 2015). In particular for
trajectory prediction, recurrent neural networks (RNNSs) are at the center of most state-of-the-
art methods (Rasouli, 2020). Long short-term memory (LSTM) is one of such RNN
architectures which is commonly chosen due to its ability to capture temporal dependencies
(Hochreiter & Schmidhuber, 1997). Thus, this architecture is also chosen for this submodule.
Additionally, the more contextual information considered in the predictions, the more accurate
the predictions tend to get. However, the required information is not always available or
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accurate while driving, and in these cases the predictions of pattern-based models become
unpredictable, so it is vital to have other simpler, fail-safe models that are at least reliable for
short prediction horizons.

4. Object Fusion & Tracking

6. VRU Intent & Trajectory
Prediction

Situation assessment |

Model selection |

Trajectory Prediction |

b
9. Path
Planning

7. Crash
Estimation

10. Trajectory
Generation

Figure 19: Overview of the VRU Intent & Trajectory Prediction subsystems (inter)dependencies.

To that end, this subsystem has been developed as overviewed in Figure 19. The inputs
considered result from the object fusion & tracking module. An initial assessment is performed
to verify if sufficient information is available for the implemented pattern-based model. If this
information is not available (e.g. missing past target trajectory due to a late detection), the
future positions are predicted with a constant velocity model, which is shown to describe
pedestrian motion well in nominal conditions (Scholler, Aravantinos, Lay, & Knoll, 2020). The
implemented pattern-based model is detailed next.

Pattern-based model — LSTM Autoencoder

The selected architecture for the first choice of prediction model is an LSTM Autoencoder, a
flexible architecture allowing inputs and outputs of varying type and size.

Past 1s
[x.y.v.yaw...]

LSTM Encoder

| Encoded state |

LSTM Decoder

Future 8s
[x.y]

Figure 20: Overview of the LSTM autoencoder architecture.

Figure 20 provides an overview of the model’s currently implemented architecture. Its inputs
are 1 second of past states (positions, velocities, headings, etc.) of target(s) to be predicted,
and its outputs are the target’s estimated positions for the next 8 seconds. In future iterations,
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the model will also consider as input the static environment (i.e. road infrastructure) and
dynamic environment (i.e. other road users).

To train and evaluate the implemented LSTM Autoencoder, the Waymo Open Motion Dataset
was considered (Ettinger, et al., 2021). This dataset contains hundreds of thousands of
annotated trajectories for three types of road users: pedestrians, cyclists, and vehicles.

4.2.6 Subsystem Trajectory Generation

The Trajectory Generation subsystem is responsible for the computation of vehicle
trajectories (spatiotemporal information about the vehicles future motion) on the basis of the
information provided by the Path Planning and VRU Intent & Trajectory Prediction
subsystems. Vehicle trajectories are evaluated regarding a risk estimation associated with
their potential realization by the Crash Prediction & Avoidance Estimation subsystem and
handed over to the Safety Decision subsystem (see Figure 21).
The Trajectory Generation subsystem constitutes of three subsystems of its own: Nominal
driving trajectory generation, AEB trajectory generation and AES trajectory generation.

6. VRU Intent &
Trajectory Prediction
\ |
!

10. Trajectory Generation

9. Path Planning

. | Nominal driving trajectory generation ]
7. Crash Prediction &

Avoidance Estimation | AEB trajectory generation ‘

| AES trajectory generation ‘

I

XX. Safety Decision

Figure 21: Overview of the Trajectory Generation (inter)dependencies.

Nominal driving trajectory generation is used to compute the vehicle's trajectories for driving
under nominal conditions when there is no need for any emergency maneuvering and the
driving goal is to follow the path planned by the Path Planning subsystem (see Figure 22).
Here the trajectory generation utilizes an inverted stationary state approximation of the linear
single-track model (Schramm, Hiller, & Bardini, 2010) to calculate a path-following trajectory
as well as the control command for the vehicle's steering system based on the vehicles
current velocity (assuming constant velocity for future motion) and the path information.

AEB trajectory generation performs the calculation of vehicle trajectories for an automated
emergency braking maneuver (see Figure 22). Trajectories are generated using the same
model inversion as used by the Nominal driving trajectory generation, but employs a fixed
deceleration profile for the computation of the vehicles future motion. Thus, AEB trajectories
are planned to be path-following with a deceleration of the vehicle until stand-still. For
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determination of the spatiotemporal starting point of an emergency braking maneuver an
adaptive sampling of starting times for the computation of the vehicle's deceleration is used.
Trajectories are iteratively sampled with starting times chosen from the interval of the time of
trajectory calculation to the time of a predicted collision with a target object (VRU) when the
vehicle would follow the Nominal driving trajectory. For each iteration the sampled trajectories
are handed over to the Crash Prediction & Avoidance Estimation subsystem for a collision
and risk estimation, that is used to determine the sampling of starting times for successive
iterations.

AES trajectory generation computes vehicle trajectories for an automated emergency
steering maneuver (see Figure 22). Trajectories are generated by adaptively sampling
deviations from the path planned by the Path Planning subsystem. Deviations are given in
terms of deviation profiles that are generated using a switched feedback controller topology
(Sira-Ramirez & Agrawal, 2004), that uses an extended linear single-track model (Uhler,
2021) to take higher (compared to nominal driving) lateral vehicle dynamics into account and
features the possibility of an intrinsic handling of state variable and model input constraints
(Joos, Bitzer, Karrelmeyer, & Graichen, 2018). The latter allows to consider external (e.qg.
legal, safety, human-factors) and system constraints at the level of trajectory planning which
guarantees the feasibility of all planned maneuvers. The deviation profiles thereby maximize
the usage of the vehicle dynamics potential within the constraints given by an emergency
situation. The degrees of freedom of the sampling of deviation profiles are their
spatiotemporal starting point and maximum lateral deviation. Profiles are iteratively sampled
with starting times chosen from the interval of the time of trajectory calculation to the time of
a predicted collision with a target object (VRU) when the vehicle would follow the Nominal
driving trajectory and maximum lateral deviations chosen from the interval of vehicle overlap
with a target object when the vehicle would follow the Nominal driving trajectory to the
maximum possible lateral deviation (given by lane boundaries\legal constraints). As for AEB
trajectory generation sampled trajectories of each iteration are handed over to the Crash
Prediction & Avoidance Estimation subsystem for a collision and risk estimation to determine
the sampling for successive iterations.
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Figure 22: Overview of the trajectory generation by the Nominal driving trajectory generation, AEB trajectory
generation and AES trajectory generation subsystems. Planned trajectories are displayed with offsets to the
planned path for clarity. Details see text.

Iterative sampling of AEB and AES trajectories is terminated either by reaching the sampling
tolerances of the respective subsystems or the cycle time of environmental information
updates as provided by the Object Fusion & Tracking subsystem. The final sets of trajectories
generated by the Nominal driving trajectory generation, AEB trajectory generation and AES

trajectory generation subsystems and their collision and risk estimates are then handed over
to the Safety Decision subsystem.

4.2.7 Subsystem Crash Prediction & Avoidance Estimation

The crash prediction and avoidance estimation are based on a risk assessment for a set of
ego and object trajectories. Therefore, the inputs for this subsystem are an ego trajectory and
the predicted trajectories of dynamic objects. Note that static objects are not considered since
the ego trajectories are already collision-free for those. The output is a value of risk for the
ego trajectory. Risk is defined as the product of collision severity and collision probability. The
risk function is based on (Wang, Wu, Zheng, Ni, & Li, 2016). Due to the computational
complexity of field-based functions, the work is adapted to evaluate single points on
trajectories, reducing the computational complexity by multiple magnitudes.

The algorithm uses trajectories of the form ¢ € [to, t¢] X (x,¥,6,v), where t, and t; are the

start and end times of the trajectory. The position is denoted as (x, y), and the heading angle
is 6. Lastly, v denotes the velocity. From this information, a distance-vector 7(t) = (Xego(t) —
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Xobj (), Yego (£) — Yobj(t)) is computed. The vector represents the distance of points of the
trajectory at the same time instances. Figure 23 depicts this pointwise comparison.

Trajectory abject_j

t1 t2 t3 t4 I

NN

Trajectory ego

Trajectory: t € [t,, t] X (X ¥, 8,v)

. N _ (%1 — Xego
Distance vector 1;(t;) = (yj _ yggg)

) ) Cymyvy F(E
Risk function; R; = “2™1%. 71 )
[ Il

t2 13 t4

t1

Figure 23: Illustration of distance vector calculations.

After computing the distance-vector, the risk is evaluated for each distance-vector. Since the
risk function depends on the inverse absolute value of the distance-vector, the risk increases
towards infinity when both trajectories intersect at the same time.

Since thus far only points are compared in the time domain, it is unlikely to detect a collision
due to points not having a size. To ensure the computational feasibility, the object sizes are
approximated by circles as (Ziegler & Stiller, 2010). As depicted in Figure 24, three circles
approximate vehicles, and VRU's are approximated with one circle.

rfront =T+ 7}
0 Coll Tmid =Te + 7}
E%O 4 © Trear = Te t l"j

& Tfront
Tinid

1

Yrear V
n: number of circles

W — 92 _WZ
Fo = \/1112 +W2 d=2Vr T

Figure 24: lllustration of circular bounding box estimations.

The collision function detects a collision if and only if the sum of the radii of one circle of the
ego and the circle of the object is less or equal to the distance vector between both center
points. Having three circles in the ego vehicle enables the risk function to distinguish between
a front, mid and rear collision. Therefore, a factor is introduced that can model the differences
in collision severity of each case.
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The chosen risk assessment methodology ensures that a subsequent decision module can
make a reasonable decision based on potential harm and closeness to objects. Further, it
can compute where and when a collision occurs.

4.2.8 Subsystem Safety Decision

The subsystem safety decision is implemented to decide between different motion
alternatives. The sampling-based planner provides the motion alternatives (see Figure 22).
For the first implementation of the proposed system design, the decision will be solely based
on the risk value assigned to each trajectory by the crash prediction and avoidance estimation
module (see Figure 21). Still, this subsystem will be designed such that it can be easily
extended to include more information for a decision process.

4.2.9 Subsystem Vehicle Control

Vehicle control is executed via the vehicles steering and braking system. Steering and braking
command references corresponding to the planned maneuvers (hominal driving, emergency
braking, emergency steering) are generated by respective trajectory generation subsystems.
These command references are used to directly control vehicle dynamics by means of
feedforward control only, without a feedback path on short timescales. On longer timescales
the cyclic trajectory replanning acts as a feedback path for vehicle control by taking updates
of the vehicle state as well as environmental information into account. Due to the short
timescales of higher (than nominal driving) dynamics during an emergency maneuver, errors
in the vehicle control that accumulate within one trajectory planning cycle are estimated to be
negligible for the first iteration of Demo 3. A dedicated short timescale feedback path for
vehicle control is planned for the second iteration of Demo 3.
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5. Initial test results for Demo 3

As described in section 4.2, the goal of this first iteration of Demo 3 is to demonstrate the
basic functionality of the whole algorithm chain with special focus on the subsystems Path
Planning, VRU Intent & Trajectory Prediction, Trajectory Generation and Crash Prediction &
Avoidance Estimation.

Initial test results for each of these subsystems are described in the following.
5.1 Initial test results Path Planning

The path planning algorithms are tested and benchmarked on one of the TNO Carlab
vehicles, which are shown in Figure 25. To be able to test the system in closed-loop, dummy
modules are created for the global planner and vehicle controller. The localization and object
tracking & fusion modules are taken from TNO background IP.

Figure 25: TNO Carlabs.

The tests are performed at the RDW test track in Lelystad, the Netherlands. First, several
virtual routes are recorded in an offline run representing different road layouts, e.g. straight
road, corner, roundabout and intersection. From these virtual routes, virtual lanes and road
layouts are created, as if there were physical lines on the asphalt. These are sent to the
vehicle to mock the input from e.g. a road camera sensor.

Then, the path planner is enabled together with the other modules in the closed loop system
and these different road layouts are navigated in closed loop. The results are recorded and
stored for post-processing and the algorithms are evaluated based on several safety and
comfort criteria, such as deviation from lane center and acceleration.

A sample of the results of the TNO Carlab negotiating an oval track is shown in Figure 26 for
the sample based Path Planner and in Figure 27 for the MPC based path planner. Here, the
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vehicle is controlled and actuated based on the path planner outputs. In these figures, some
relevant KPI's are shown (e.g. deviation from lane center).
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Figure 27: Sample of the TNO MPC based path planning in closed loop.
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5.2 Initial test results VRU Intent & Trajectory Prediction

A preliminary evaluation of the developed LSTM’s predictive accuracy was performed using
a part of the Waymo dataset reserved for this purpose (i.e. these trajectories were not used
during model development), and a constant velocity model is used as a baseline for model
comparison.

Figure 28 shows the final displacement error (FDE) of the predicted trajectory with respect to
the actual trajectory for approximately 1 second in the future. As can be seen in the figure,
the constant velocity model is more reliable for very short prediction horizons (i.e. <0.2
seconds), and after that point the LSTM results in a lower error. For predictions of up to one
1 second, both models present a mean error lower than 0.2 meters, although the variability
of this error is considerably lower with the LSTM.

Accuracy on Pedestrian Trajectories (Short Term)
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Figure 28: Short-term prediction accuracy of the LSTM and CV models on pedestrian trajectories.
Vertical bars denote standard deviation of the errors.

Figure 29 depicts the same information for predictions of up to 8 seconds. Overall, the LSTM
presents slightly superior performance in terms of accuracy and variability of the errors in the
predictions. However, the benefits of the LSTM over a simple CV model are not directly visible
from this model evaluation. The reason for such a minute improvement is the fact that most
recorded pedestrian trajectories follow a straight path with approximately constant velocity. In
other words, a simple CV model describes pedestrian motion reasonably well in most cases,
and the advantages of more sophisticated models are most noticeable when a pedestrian
suddenly turns, accelerates or decelerates.
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Accuracy on Pedestrian Trajectories (Long Term)
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Figure 29: Long-term prediction accuracy of the LSTM and CV models on pedestrian trajectories.
Vertical bars denote standard deviation of the errors.

Figure 30 depicts example predictions of both the CV and LSTM models for a crossing
pedestrian that performs a minor change in direction. The LSTM is able to anticipate this
minor turn and adapt its predictions accordingly, resulting in significantly higher predictive
accuracy.

Example CV and LSTM Predictions on a Crossing Pedestrian
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Figure 30: Example predictions on a scene where a pedestrian is crossing in front of the ego vehicle.

5.3 Initial test results Trajectory Generation

In the first iteration of Demo 3, special testing focus has been given to the AES trajectory
generator, while testing of both the nominal and AEB trajectory remains open. For an initial
evaluation regarding feasibility and potential unforeseen limitations, the AES trajectory
generator has been tested within both a simulation framework and the demo 3 in-vehicle
integration platform.

The simulation testing has the purpose of verifying and validating both the base trajectory
generation algorithm, generating one trajectory from a predefined target lateral displacement
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and predefined settling dynamics considering dynamic constraints, and the sampling
algorithm, sampling target lateral displacement values and trajectory start times.

Figure 31 shows an exemplary case with a crossing pedestrian from the left side of the road,
according to the defined scenarios in section 3.2.2. The ego vehicle is depicted as a black
rectangle at the current timestamp, one second before a collision. The pedestrian is depicted
as a red rectangle at the predicted collision timestamp, leading to a minimum required lateral
displacement of 0.4m. Note that the x and y axes are not scaled equally for a better visibility
of the trajectories, leading to a distortion of the objects. The right lane border is included to
the figure as a dashed red line. Sampled trajectories are shown in blue. The sampling space
in lateral direction is defined from the minimum required lateral displacement to the maximum
possible lateral displacement, delimited by the right lane border. The sampling space for the
trajectory starting time is given by the current timestamp and the collision timestamp.
Trajectory sampling is activated when a collision is predicted by the crash prediction
subsystem. Note that the length of each trajectory is automatically given by the predefined
settling dynamics of the base trajectory generation algorithm. For this simulation example,
five samples for both the sampling in lateral and longitudinal direction have been chosen,
leading to a total sum of 25 trajectories. The specific starting times and lateral displacement
values are displayed as black dashed lines. The collision timestamp is marked in red. Note
that trajectory sampling will be repeated with each object data update, ensuring a fast
adaptation to changes in the situation as well as adaptations due to prediction uncertainties.

sampled evasion trajetories

1 —
|] pedestrian position
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0.5
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Figure 31: AES Trajectory Generation example in a crossing pedestrian case. The pedestrian
position is displayed at the collision timestamp, while the ego vehicle position is displayed at the
current timestamp. Sampled trajectories are displayed in blue.
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The simulation results show that trajectories are generated within the defined sampling space,
considering the dynamic constraints as specified.

The in-vehicle testing has the purpose of tuning the trajectory dynamics in a way that the
steering actuator can follow the required steering angle command. Furthermore, the steering
actuator’s dynamic constraints are determined and incorporated into the trajectory generation
base algorithm.

Figure 32 shows the result of one planned AES trajectory with a target lateral displacement
of 1m, including all planned vehicle states from the enhanced linear single track model
described in section 4.2.6. Measured vehicle states are show in magenta, in case this was
possible. Because no GNSS based reference system was available at the time of testing,
lateral displacement, yaw angle and slip angle could not be measured. For the lateral
displacement and the yaw angle, an estimation has been performed based on an integration
of the measured yaw rate, displayed in dash-dotted magenta. The yaw rate of the maneuver
is limited to a maximum of 12 °/s to ensure controllability by the driver, shown in dashed black.
As described in section 4.2.9, the maneuvers are executed by means of feedforward only,
without closed-loop control on short timescales for the first iteration of Demo 3. Because of
the model based nature of the used trajectory generator, a feedforward steering angle
command can directly be calculated using the model equations.
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Figure 32: One planned AES trajectory, consisting of the displayed planned vehicle states in blue.
The measured or estimated vehicle states are displayed in magenta.
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The in-vehicle testing results show a good following behavior of the steering actuator. A
communication latency of ~100ms can be observed. Despite a short overshoot in the counter
steering phase, the given yaw rate limitation can be fulfiled. The estimated lateral
displacement shows values below the planned curve, leading to a stationary deviation of
~0.2m at the end of the maneuver. This is expected to be due to the fact that the slip angle
of the vehicle is not considered for the lateral displacement estimation. Furthermore, a closed-
loop trajectory controller could improve the trajectory following behavior.

The next step is the integration and test of the complete trajectory sampling algorithm within
the demo 3 in-vehicle integration platform.

5.4 Initial test results Crash Prediction & Avoidance
Estimation

Figure 33 shows two use cases: on the left side, no collision is occurring, but both trajectories
come close to a collision. On the right side, a collision occurs, leading to the risk value's rapid
growth.

Global X-Y Plane »-

T
Ego Traj
Object Traj

Global X-Y Plane

@

S
@
=]

Ego Traj
Object Traj

)

S
&
=3

Global Y Coordinate [m]
S

Gbbal Y Coordinate [m]
3
B

)
. O
L

5 10 15 20 25 30 35 40 45 50 10 20 30 40 50
Global X Coordinate [m] Global X Coordinate [m]
Risk Function for Ego Traj

o
=]
o

__Risk Function for Ego Traj

o
=1
=

250
200

S
§ 150

Risk Value

& 100
(4

50

Time [s] Time [s]

Figure 33: Evaluations of the time-resolved risk calculation for the use cases of no collision (left) and
collision (right).

To return a single risk value for one ego trajectory, the accumulated risk value over time is
computed. The inputs to the risk function are: One ego trajectory, one object trajectory (as
described in 4.2.7) and the timewise length of the trajectory as well as the timewise step size
for each discrete trajectory value. After executing the function, the risk function returns the
accumulated risk value, if a collision occurs, where the collision occurs and when the collision

OcCcurs.
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6. Discussion, conclusions and next
steps

In this first phase of the project several important development steps towards Demonstration
3 (Advanced Intervention Functions) have been done, which form a good basis for the
previous and future developments to realize the active safety ambitions in WP3. These
developments have started with the high level vehicle design specification, to scenario
selection, software architecture and interfaces definition until sub-system specification and
design.

Hereafter, all individual algorithms have been defined and developed in a first version for a
subset of scenario variations. Each individual algorithm was evaluated in simulations and,
when needed, through tests at each individual project partner. The first remote-integration of
all software functionalities and interface verification has made an additional step towards the
upcoming integration and in-vehicle testing.

The immediate next step will focus on applying, integrating, and porting all individual
components to the Demo 3 vehicle. A set of (incrementally difficult) tests will be performed to
ensure the desired integration and test the behavior according to the specified scenarios.
After these first Demo 3 tests the algorithms will be further advanced and a new
demonstration will be done in the next year.

The final system will be tested on the test track with VRU dummy systems under controlled
environments with a subset of the selected scenarios, as well as in simulations with the
complete set of scenarios.
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