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Executive summary 

The SAFE-UP project aims to proactively address the novel safety challenges of the future 

mobility systems through the development of tools and innovative safety methods that lead 

to improvements in road transport safety.  

Future mobility systems will rely on partially and fully automated vehicles to reduce traffic 

collisions and casualties by removing causal factors like driver distraction, fatigue or 

infractions and by reacting autonomously to emergency situations. On the other hand, they 

may introduce new collision risk factors or risky behaviours when interacting with other traffic 

participants. 

SAFE-UP’s Work Package 2 will further the understanding of the impact of vehicle 

automation technologies on safety by leveraging newly developed behavioural traffic 

simulation tools. These tools will allow one to simulate specific road networks with a variable 

proportion of automated vehicles to non-automated traffic participants (including human-

drivers, pedestrians, cyclists, and powered two-wheelers). The simulation models will be 

detailed enough to realistically recreate the effects of unexpected events (like surprise cut-

ins). In this way, one will be able to determine whether these technologies induce changes 

(positive or negative) in surrogate indicators of traffic safety.  

An important surrogate indicator of safety is the occurrence of safety-critical interactions in 

different driving scenarios. The analysis of interaction criticality is the main focus of the 

partners in Task 2.2, who authored this report. This report1 summarizes the state of the art 

on reasoning about criticality (or severity) of driving interactions and: 

• Recommends the best suited metrics to recognize safety-critical and non-safety 

critical driving interactions in simulation (Section 2); 

• Identifies areas where the literature may be lacking and describes the initial 

research and development plans for each of the partners of Task 2.2 (Section 3). 

An important conclusion of this survey is that the criticality of a driving interaction depends 

on the type of traffic participants involved. For instance, a critical interaction between a car 

and a motorcycle may not be critical between two cars. Also, an interaction between a car 

and a pedestrian may not be critical from the vehicle’s perspective, but perceived as critical 

from the pedestrian’s perspective. Consequently, the information is presented from three 

different perspectives: motor vehicles, vulnerable road users, and powered two-wheelers. 

Finally, a selection of the main criticality metrics to be used to analyse simulation results is 

presented in the Conclusion & Recommendation section (Section 4).  

 

 

 

1 This report is our contribution to this topic. A final report, D2.14, will be published in July 2022. 
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1. Introduction  

1.1 The EU Project SAFE-UP   

The SAFE-UP project aims to proactively address the novel safety challenges of the future 

road mobility environment by developing tools and innovative safety methods, leading to 

improvements in road transport safety.  

Future mobility systems are expected to make use of vehicles with full or partial automation 

of the driving task, the so-called SAE L3/4/5 vehicles (SAE, 2018). By supporting (or even 

replacing human) drivers during the driving task, such vehicles may help improve road safety 

by removing some of the known sources of collisions (e.g., driver distraction) or by taking 

control during critical situations (e.g. automated emergency braking). On the other hand, 

automated vehicles may introduce new collision risk factors (e.g., increased distraction 

during transition of control) or induce new risky behaviours in other traffic participants 

(Hamilton, 2019). 

The true impact of vehicle automation technologies on road safety will become apparent in 

the decades to come, as it depends on social and market trends that are difficult to forecast 

(like technological developments in sensors for automated vehicles, market penetration and 

acceptance of automation technologies, etc.).  

Through the work in Work Package (WP) 2, SAFE-UP will further the understanding of the 

future impact of vehicle automation technologies by leveraging newly developed behavioural 

traffic simulation tools. These tools, currently under development by SAFE-UP’s partners in 

Tasks (T) 2.3 and 2.4 (see Deliverable (D) 2.4 for details), will allow one to simulate specific 

road networks with a variable proportion of vehicles equipped with automation technologies. 

By analysing the simulation results, one will be able to determine whether these 

technologies induce changes (positive or negative) in surrogate indicators of traffic safety.  

An important surrogate indicator of safety is the occurrence of safety-critical interactions in 

different driving scenarios. Safety-critical (and non-safety-critical) interactions are generally 

defined by applying thresholds to particular criticality metrics. The identification and/or 

development of criticality metrics for driving interactions is one of main goals of T2.2. Such 

metrics can be used to develop collision avoidance algorithms, to test the capabilities of 

specific vehicle automation technologies or, as in the case of T2.5, to identify safety critical 

interactions in micro-simulations. Thus, the metrics presented in the rest of this document 

play an important role in the contributions of this project. 
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1.2 Objective of this Report 

This report presents a summary of the state of the art on reasoning about criticality (or 

severity) of driving interactions. The aim is twofold: 

• To survey the literature of severity metrics in order to identify those that can be 

used to recognize safety-critical and non-safety critical driving interactions. 

• To identify areas where the literature may be lacking and describe the initial 

research and development plans for each of the partners of T2.2. 

 

It is important to remark this report constitutes the initial version of WP2’s contribution to this 

topic. A second and final version of this report, D2.14 (expected in June 2022), will include 

the work products of the partners of T2.2, and a more detailed connection to the scenarios 

and use cases defined in D2.6 (expected in September 2021). 

1.3 Report Organization 

The rest of the report is organized as follows: Section 2 presents an overview of the available 

literature on severity metrics for driving interactions. To this end, we provide first a brief 

glossary of common terms used in the document (Section 2.1) and a well-established 

approach to relate traffic interactions and safety (Section 2.2). The literature overview is 

presented in Sections 2.3-2.5 from three different perspectives: motor vehicles, powered 

two-wheelers (PTWs), and vulnerable road users (VRUs), respectively (the order reflects 

the decreasing level availability of literature on these topics). Next, in Section 0, we present 

a summary of the T2.2 partners’ initial research and development plans, which is followed 

by our conclusions and recommendation in Section 4.  
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2. Traffic Interactions and Safety 

This section summarizes the literature on severity metrics for driving interactions. As 

mentioned in Section 1, the metrics are presented from three different perspectives (motor 

vehicles, PTWs and VRUs) and will be used to identify safety-critical (and non-safety critical) 

driving interactions in traffic (micro) simulations.  

These three perspectives are needed because the criticality of a driving interaction depends 

on the type of traffic participants involved. For instance, an interaction deemed critical 

between a car and a motorcycle may not be critical between two cars.  Further, an interaction 

between a car and a pedestrian may not be critical from the vehicle’s perspective, but 

perceived as critical from the pedestrian’s perspective. 

It is important to remark that there is significantly more literature available on assigning 

criticality to interactions from the motor vehicle perspective than from the PTW or from VRU 

perspectives (the latter is the least represented perspective in the literature). 

Sections 2.1 and 2.2 next introduce common terminology that aid in the description of the 

metrics presented in Sections 2.3-2.5.  

2.1  Basic Terminology 

The terms and definitions presented here are the result of the work of a task force formed 

by SAFE-UP partners from different work packages charged with defining a common 

terminology for the project. A complete glossary will be published elsewhere. However, main 

terms relevant for Task 2.2 as presented next. 

2.1.1 Microscopic traffic simulation 

A microscopic traffic simulation is a form of agent-based simulation wherein “…traffic flow is 

based on the description of the motion of each individual vehicle composing the traffic 

stream” (Barceló, 2010).  

In such simulations, a section of (a possibly real) road network is first constructed, including 

infrastructural elements like lanes, roundabouts, lane marking, traffic lights and signals, etc. 

The network is then populated by individual traffic participants (motor vehicles, VRUs, etc.), 

whose behaviour is prescribed by models (e.g., car following (Alexiadis, Jeannotte, & 

Chandra, 2004)). The individual participant then traverses the network and interacts with 

each other following their own individual behaviours. The models are generally calibrated in 

such a way that metrics such as traffic flow and density reach measured levels in the real 

world. 

While traversing the network, different participants will interact with each other under 

different scenarios. These are defined next. 
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2.1.2 Scenario and scenes 

A scenario describes the traffic, infrastructure and environment (including e.g. weather and 

lighting conditions) for the simulation and consists of a sequence of scenes. It is limited in 

terms of time and space (ISO 21934, 20XX).  

A scenario can be considered to be a sequence of scenes. A scene describes a snapshot 

that encompasses the mobile and immobile elements of the traffic, infrastructure and 

environment, and the relations between these elements.   

 

 

(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1: Scenario example (overtake manoeuvre). It is composed of 4 scenes (a)-(d). 

 

The scenarios give rise to interactions among traffic participants. When one or more 

interactions are safety-critical (e.g., if a severe intervention is needed to avoid a collision) 

the scenario is considered to be a safety-critical scenario.  

2.1.3 Interactions 

As mentioned, scenarios give rise to interactions. By interactions we mean situations where 

the behaviour of at least two traffic participants can be interpreted as being influenced by a 
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space-sharing conflict, that is, by their intention of occupying the same region of space at 

the same time in the near future (Markkula, et al., 2020). 

Interactions in which only the behaviour of one traffic participant is influenced by the space-

sharing conflict can be considered to be reactions. 

2.1.4 Surrogate measures of safety 

Traffic interactions are very frequent but traffic accidents are very rare. Although not all traffic 

interactions lead to accidents, some interactions are more severe than others and some 

lead to collisions.  

The underlying hypothesis is that crashes result from a temporal sequence of events in 

which a conflict event occurs prior to a crash event (Laureshyn, et al., 2016). Since conflicts 

and collisions are aligned on the same continuum of events, the frequency of the low-

severity events (conflicts) can be used to predict that of high-severity events (collision). 

Surrogate Measures of Safety (SMoS) are metrics that quantify the severity of a traffic 

interaction. As they help characterise the initial conditions and frequency of conflicts, they 

act as “surrogates” for the likelihood of collision events. 

2.2 Driving Interaction and Severity 

For the purpose of identifying future safety-critical scenarios, it is necessary to be able to 

reason about the level of criticality, i.e., severity, of the interactions that occur in such 

scenarios. A useful approach to relate driving interactions and severity is shown in Figure 2. 

It was first introduced by (Svensson & Hydén, 2006).  

 

Figure 2 Driving interaction frequency distribution as a function of their severity. Adapted from 
(Svensson & Hydén, 2006) 

 

This figure shows the frequency distribution (i.e., the histogram or probability density 

function) of driving interactions according to their severity. The authors did not specify how 

severity is defined, but remarked that the driving interactions with highest severities are 

those that become collisions. These are also very rare. Given their rarity, these types of 
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interactions cannot serve as the basis to define critical scenarios. Instead (Svensson & 

Hydén, 2006) suggested to use the so-called severe traffic conflicts. These are interactions 

that become collisions if none of the traffic participants involved takes an (emergency) 

action. Severe traffic conflicts are generally defined by defining thresholds over measures 

of intervehicle separation (based on space, time or speed). As they are more abundant in 

available driving data, they have served as the basis for defining safety-critical scenarios in 

the past few decades (see references in Sections 2.3-2.5). Finally, non-safety-critical 

interactions are rarely defined in the literature. However, they could be defined as those 

interactions that are not severe traffic conflicts. 

It is important to remark that the precise distribution of interactions as functions of severity 

changes with the scenarios, the location, the type of traffic participants, etc. It should be 

customized based on specific driving data (see, e.g., (Tejada, Manders, Snijders, 

Paardekooper, & de Hair-Buijssen, 2020). It also changes with the specific definition of 

severity one uses. Nevertheless, this approach provides a useful way to relate the research 

and development efforts by the partners in T2.2., as explained in Section 0.  

2.3 Motor Vehicle Perspective 

From the perspective of car-car interactions, two participants are normally defined. The ego 

or response vehicle (RV), which is the vehicle under study, while the other vehicle is called 

the stimulus vehicle (SV). The RV responds to a certain stimulus triggered by the SV. The 

trigger can be driving close, decelerating, changing lanes, driving in a path of potential 

conflict (for example at junctions). This trigger causes the response vehicle to respond in a 

certain way in order to lower the risk of collision (Cunto F. , 2008). The potential risk is thus 

measured for the ego (response) vehicle.  

For example, when the interaction is between a follower and a leader, the follower is the 

response vehicle while the leader is the stimulus vehicle.  In a cut-in scenario, the stimulus 

vehicle is the vehicle doing the cut-ins while the response vehicle responding directly to the 

cut-in. In a crossing scenario at a junction, the stimulus vehicle is any vehicle in a path of 

potential conflict with the ego vehicle.  

Although this description focuses on car-car interactions, in general, the vehicle perspective 

should consider interactions between a car and another object like pedestrian, cyclist, 

powered two-wheelers. Indeed, the interactions with the various objects may share similar 

characteristics described above (leader, follower, response and stimulus), however, there 

are clear differences in the perception of risk. These differences arise due to differences in 

dynamics (speeds, acceleration, braking capabilities), physical properties of the object (size, 

shape, strength) and even human behaviour (drivers tend to behave differently when 

following another car compared to when following a cyclist).  

In theory, most of the risk metrics defined for car to car-car interactions can be adapted for 

use in a car to object situation. In most cases, the formula for the metrics will remain the 

same but the threshold for considering severity will be different for different objects. This 
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should be taken into account when using the suggested metrics. In the future, it is expected 

that appropriate thresholds for various car-to-object interactions will be derived from 

literature and added to this report to give a complete coverage of all types of interactions.  

2.3.1  SMoS for Car-Car Interactions 

Traditionally, traffic safety studies for car-car interactions relied on the records of reported 

vehicle crashes, field operational test data and naturalistic driving data (NDD), etc. Such 

studies have been effective to identify the factors influencing traffic safety (Dingus, et al., 

2016; Mullakkal-Babu, Wang, He, Arem, & Happee, 2020) and to draw realistic conclusions 

on the effectiveness of automotive applications such as Automated Emergency Braking and 

Forward Collision Warning (Yue, Abdel-Aty, Wu, & Wang, 2018). However, the dependency 

on recorded data is a major limitation of this approach, as crashes or safety-critical cases 

are rare events and the recordings may not contain all information required for analysis. 

Moreover, this method cannot be applied to measure severity for future interaction scenarios 

that are yet to appear in the traffic. An alternative approach to severity assessment, that 

does not rely on crash records, is by certain metrics estimated from simulations. In this 

approach, the traffic of the target road facility is simulated at high resolution and the 

simulations are post-processed to estimate the magnitude and frequency of one or more 

severity-metrics. The distributions of these metrics are then statistically analysed to draw 

conclusions about the interaction classifications. There exist several statistical methods for 

such analysis, for example alternate hypothesis tests (Bagdadi, 2013; Morando, Tian, 

Truong, & Vu, 2018), curve fitting (St-Aubin, Miranda-Moreno, & Saunier, 2013), probabilistic 

causal models (Davis, Hourdos, Xiong, & Chatterjee, 2011; Kuang, Qu, & Wang, 2015) and 

extreme value theory (Songchitruksa & Tarko, 2006). Currently, simulation-based severity 

metrics have been used to predict the traffic-safety impacts of automotive applications 

related to Intelligent Transportation Systems (Liu, Wei, Zuo, Li, & Yang, 2017; Jeon & Oh, 

2017; Dedes, et al., 2011). Consequently, the applied severity metrics have a huge impact 

on identifying car-car interactions. 

The car-car interaction severity can be quantified by various metrics that are estimated from 

the simulated vehicle trajectories. The variation of these metrics is analysed to interpret and 

explain the collective traffic safety within the studied road stretch. As mention in Section 

2.1.4, such measures are known as SMoS (Gettman & Head, 2003; Laureshyn, et al., 2016), 

and a prominent example is Time-To-Collision (TTC). These metrics indicate a potential 

conflict between two road users. The underlying hypothesis is that a crash process is a 

temporal sequence of interactions in which a conflict interaction (safety-critical situation) 

occurs prior to a crash interaction (vehicle accident) (Laureshyn, et al., 2016). Defining the 

crash process this way provides theoretical credibility for traffic interaction classifications. 

Since conflicts and crashes are aligned on the same continuum of interactions, the 

frequency of low-risk interactions (conflicts) can be used to predict the frequency of high-

risk interactions (crashes) (Laureshyn, et al., 2016).  
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2.3.2 Classification of SMoS 

The literature on SMoS is rich and diverse and can be broadly divided into two categories. 

The metrics in the first category are based on spatial and temporal proximity to the collision. 

Examples of this include Post Encroachment Time (Zheng, Ismail, & Meng, 2014), TTC and 

its derivatives, Potential Index for Collision with Urgent Deceleration (Bevran & Chung, 

2012), Deceleration Required to Avoid a Collision (Archer, 2005), Safety Field Strength 

(Wang, Wu, Zheng, Ni, & Li, 2016). The second category includes metrics based on driver 

actions such as maximum braking, jerk rate (Bagdad & Várhelyi, 2011), standard deviation 

of lateral position (Niezgoda, Kamiński, & Kruszewski, 2012) and acceleration noise. 

In this report, SMoS are classified into three categories according to (Shi et al,2018) defined 

below:   

• Behaviour: These are metrics calculated based on current behaviour with no 

evasive action taken into account (e.g. braking). These are mostly time-based 

• Avoidance: These are metrics calculated based on current behaviour and current 

evasive action. These are usually evasive action-based 

• Margin Indicators: These metrics are calculated based on the final outcome of 

an evasive action. These are used to check whether there is enough space to 

complete evasive actions. These are usually distance-based. 

In addition to the classifications above, risk metrics are also classified based on how they 

are calculated in time. Two categories are defined:  

• Instantaneous: which are calculated at specific time instant  

• Aggregated: which are calculated over a specific time-period. 

Finally, the risk metrics can also be classified according to the difficulty in the calculation. 

The difficulty is related to how easy the parameters needed for the metrics can be obtained, 

how quickly it is to make the calculations and finally if the metric is easy to understand. Three 

categories are defined: 

• Simple: Easy to interpret, easy to calculate and parameters needed are easy to 

obtain. 

• Moderate: Easy to interpret, parameters are easy to obtain but the calculation 

takes time. 

• Difficult: Metric is not very easy to interpret, parameters difficult to obtain and 

calculation takes time. 

The  described classifications  for some selected severity metrics is summarised in Table 1. 

For each metric, variables like speeds , positions and length are required  for both the subject 

vehicle and the response vehicle. Since these metrics are made to  be used for simulation, 

positions are preferred to distance as distance can be easily derived from positions. In the 

simulation environment, positions of vehicles are defined with respect to  a reference point 
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in the vehicle( front, back or centre) and the network properties like  beginning of a link or  a  

specified coordinate system. This information is sufficient to calculate any type of inter-

vehicle distances like front to front, front to back depending on the definition and formula of 

the metric. A more extensive list of severity metrics including the exact formulas used to 

them is presented in Table 5 in the appendix. 

Table 1: Classification of severity metrics 

Metric 

 

Unit Definition Variables 

needed 

Calculation 

difficulty 

How metric 

is 

calculated 

Type of 

metric 

Time to 

Collison 

(TTC) 

(s) The time until 

a collision 

between the 

vehicles would 

occur if they 

continued on 

their present 

course at their 

present 

speeds. 

• Speeds 

• Positions   

• Vehicle 
Length 

Simple Instantaneous 

value  

  behaviour 

(time-based)  

Time 

Exposed   

Time to 

Collision 

(TET) 

(s)  The total time 

a  vehicle TTC 

is lower than 

given 

threshold in a 

given time 

period 

• TTC Time 
Series 

• TTC 
threshold 

• Total Time 
Period 

• Number of 
discrete time 
intervals in 
Time Period 

Moderate Aggregated 

Single value 

within a time 

Period 

behaviour 

(time-based) 

Time 

Integrated 

Time to 

collision (TIT) 

(s) Integral of the 

TTC-profile 

during the time 

it is below the 

threshold 

• TTC Curve 

• TTC 
threshold 

• Total Time 
Period 

• Number of 
discrete time 
intervals in 
Time Period 

Difficult Aggregated 

single  value 

within a time 

Period 

 behaviour 

(time-based) 

Modified 

Time to 

Collision 

(MTTC) 

(s) Modified 

models which 

considers all of 

the potential 

longitudinal 

conflict 

scenarios due 

to acceleration 

• Speeds 

• Positions  

• Accelerations 

• Vehicle 
Length 

Moderate  Instantaneous 

value  

behaviour 

(time-based) 
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or deceleration 

discrepancies  

Post 

Encroachme

nt Time (PET) 

(s) The time 

between the 

moment that a 

road user 

(vehicle) 

leaves the 

area of 

potential 

collision and 

the other road 

user arrives 

collision area. 

• Time of detection 

of first vehicle 

 Speed of first 

vehicle 

• Length of first 

vehicle 

• Distance 

between first and 

second 

vehicle 

• Speed of second 

vehicle 

• Length of second 

vehicle 

• Path of first 

vehicle 

• Path of second 

vehicle 

Difficult Instantaneous 

value 

behaviour 

(time-based) 

Deceleration 

Rate to Avoid 

Collision 

(DRAC) 

m/s2 Differential 

speed 

between a 

following/ 

response 

vehicle and its 

corresponding 

subject/ lead 

vehicle (SV) 

divided by their 

closing time. 

• Speeds 

• Positions  

• Vehicle 
Length 

 

Simple Instantaneous 

Value 

Avoidance 

(evasive-

action 

based) 

Crash 

Potential 

Index (CPI) 

 Probability that 

a given vehicle 

DRAC 

exceeds its 

maximum 

available 

deceleration 

rate (MADR) 

during a given 

time interval. 

• MADR pdf 
distribution 
over different 
road and 
weather 
conditions 

DRAC 

Moderate Aggregated 

value over a 

time interval 

Avoidance 

(evasive-

action 

based) 
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Driver reaction 

time can be 

incorporated in 

DRAC  

modified CPI  

Time to 

Accident 

(TTA) 

(s) Time-to-

Accident (TTA) 

is the time that 

remains to an 

accident from 

the moment 

that one of the 

road users 

starts an 

evasive action 

if they had 

continued with 

unchanged 

speed and 

directions  

• TTC 

• Braking 
detection 
using speeds 
and 
acceleration 

Can also be 

calculated 

empirically using 

Swedish formula 

TA formula 

Moderate Instantaneous 

Value 

Avoidance 

(evasive-

action 

based) 

Proportion of 

stopping  

distance 

(PSD) 

  Ratio between 

the remaining 

distance to the 

potential point 

of collision and 

the 

minimum 

acceptable 

stopping 

distance. 

• Acceptable 
maximum 
deceleration 

Point of potential 

accident 

moderate Instantaneous 

Value 

Margin 

(distance-

based) 

Potential 

index for 

collision with 

urgent 

deceleration 

(PICUD) 

(m) Distance 

between the 

two vehicles 

considered 

when they 

completely 

stop. 

• Initial 
distance 

• Deceleration 
rate 

• Reaction 
time 

moderate Instantaneous 

Value 

Margin 

(distance-

based) 

 

2.3.3 Recommended SMoS for car-car accident prediction 

The availability of several surrogate safety measures makes it difficult to select which metrics 

to use for identifying potential  car-car accidents in urban, rural and highway scenarios. 
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There are currently many ongoing research efforts to establish the relationship between 

these metrics and actual accidents.  

In one of such studies carried out to measure the effectiveness of severity metrics to predict 

accidents, an experimental procedure was performed in using video data of actual accidents 

on a highway in Singapore (Shi, Wong, Li, & Chai, 2018). The goal was to identify whether 

some metrics can be used to distinguish accidents from non-accidents using different 

threshold values. Such indicators are called key severity indicators. 

The following are the main findings from the study (Shi, Wong, Li, & Chai, 2018):  

1. The performance of each SMoS is different in measuring severity. TIT and CPI 

are better in identifying potential accident conditions from normal interactions. 

2. TIT can be used to identify many severe traffic conflicts while CPI is helpful in 

further identifying the severest conditions (the near-accident) from among these 

severe conditions. 

3. For each SMoS, various threshold values are required to classify the level of 

severity.  

4. PSD is helpful to describe the spatial proximity in emergency situations (for 

example during an emergency brake). 

Based on these conclusions, the following classification of  severity is recommended for 

highway scenario (Shi, Wong, Li, & Chai, 2018):  

• LOW RISK: If CPI=0 and TIT=0 and PSD≤ 1 

• MEDIUM RISK: CPI=0 and TIT> 0 

• HIGH RISK: CPI> 0 

For urban scenarios, a study was performed at various in intersections in the United States 

(Gettman, L, T, Shelby, & S., 2008). A surrogate safety assessment model (SSAM) was 

developed and used for this purpose. For the classification of potential conflicts at 

intersections, TTC<1.5 and PET<5.0 are recommended (Gettman, L, T, Shelby, & S., 2008).  

For rural scenarios, no specific studies were found to give recommendations for SMoS. 

However, most recommendations for the urban and highway scenarios could be used for 

rural ones, depending on speed and infrastructure. For rural roads with high speeds and no 

intersections the recommendations for highway could be used, while for rural areas with low 

speeds and intersections, the recommendations for urban scenarios would apply.  

In order to use the above recommended classification of severity, threshold values for 

several other SMoS like TTC, DRAC are required. For example TTC threshold values are 

used to calculate TIT while DRAC, MADR threshold values are used for calculating CPI. 

Table 2 below shows recommended threshold values, the sources they are derived from 

and which scenarios the metrics are suited for. A more complete description of severity 

metrics and appropriate thresholds for various scenarios is presented in the appendix. 
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Table 2: Threshold values for recommended car-car SMoS (Shi, Wong, Li, & Chai, 2018) 

Metric Threshold Source  Scenario 

TTC 1.5-4.0 s (Van der Horst, 1990) 

 

Highway, Urban, 

Rural 

DRAC 3.3-3.4m/s2 (Archer, 2005), (Guido, 

Saccomanno, Vitale, 

Astarita, & and Festa, 

2011) 

Highway, Urban 

MADR 

For 

pavement 

surface 

conditions 

Average (m/s2) 8.45 Standard 

deviation (m/s2) 1.40  

Truncated Normal Distribution 

Upper limit (m/s2) 12.68 

Lower limit (m/s2) 4.23 

(Cunto & Saccomanno, 

2008), 

(Guido, Saccomanno, 

Vitale, Astarita, & and 

Festa, 2011) 

Highway, Urban 

CPI >0 (Guido, Saccomanno, 

Vitale, Astarita, & and 

Festa, 2011) 

Highway, Urban 

PSD <1 (Guido, Saccomanno, 

Vitale, Astarita, & and 

Festa, 2011) 

Highway 

PICUD 0 (Shi, Wong, Li, & Chai, 

2018) 

Highway, Urban 

Reaction 

Time 

1.0(s) (Uno, Iida, & Yasuhara, 

2003) 

Highway, Urban, 

Rural 

TTA Generally, 1.5s   is used to 

distinguish serious conflicts 

and it worked well for urban 

roads with low speeds. 

For rural roads with high 

speeds<1.5s is  

recommended 

(Mahmud, Md, Hoque, & 

Tavassoli., 2017) 

Rural, Urban 

PET Values between 1.0 to 1.5s 

are considered critical 

However, some  studies have 

found values between 5 and 

6.5s to match well with 

aggregate crash data 

The SSAM uses 5.0s as 

default threshold value 

 

(Mahmud, Md, Hoque, & 

Tavassoli., 2017) 

 

 

 

 

(Gettman, L, T, Shelby, & 

S., 2008) 

Urban 
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2.4 PTW Perspective 

As in the case of car-to-car interactions, previous research has analysed interactions 

between PTWs and cars with crash data, analysing the main factors contributing to crashes 

(Van Elslande, 2002; Huertas-Leyva, Baldanzini, Savino, & Pierini, 2021) and developing 

models to predict injury severity (Savolainen & Mannering, 2007). However, collision cases 

represent only a specific risk scenario that, due to different factors, ends in a collision. 

Therefore, new studies with traffic models that include PTWs are needed to measure the 

risk of different interactions and to better understand the patterns of both safe and high-risk 

interactions in order to quantify risk. 

Current traffic models are predominantly composed of passenger cars and usually do not 

take into account the characteristics of motorcycle/mopeds behaviour (i.e. PTWs). Modelling 

riding patterns of PTWs through road traffic is indeed challenging because of its complexity 

in detailing the chaotic and erratic trajectories of PTWs (Das & Maurya, 2018). Previous 

simplification of models of PTW riders’ behaviour have focused on mixed traffic models that 

apply the models of car drivers’ behaviour to motorcycles that are suboptimal because of 

the previously exposed reasons (Ksontini, Espié, Guessoum, & Mandiau, 2012; Lin, Wong, 

Keung Li, & Tseng, 2016). 

2.4.1 Differences between PTW and car driving behaviour 

Car drivers’ behaviour is different from that of PTW riders. Cars follow one after another 

keeping a ‘lane-discipline’ (Cho & Wu, 2004) and the lateral movement is mainly due to the 

lane change. Motorcyclists need less space to move themselves and often perform “non-

lane-based” actions and trajectories, e.g. zigzag movements or filtering the traffic (Nguyen, 

Hanaoka, & Kawasaki, 2012). For example, taking advantage of the smaller size, on straight 

sections of urban carriageways, PTWs mostly use lanes when traffic flow is fluid and 

overtake in the space between lanes when traffic is congested (Hublart & Durand, 2012). 

PTWs take advantage of their manoeuvrability in congested traffic situations to filter through 

the available space between vehicles and move to the front of the queue (Fan & Work, 2015; 

Nair, Mahmassani, & Miller-Hooks, 2011).  PTW users may also filter between lanes for 

safety reasons so that, depending on the behaviour of other users, they can move over into 

one lane or another and also see better and anticipate manoeuvres (Hublart & Durand, 

2012). Consequently, motorcycles could potentially ‘show up’ from some unexpected 

locations, representing safety concerns, as frequently other vehicles fail to detect the 

presence of PTWs in the traffic. 

Several studies have attempted to understand the filtering behaviour of PTWs in 

heterogeneous traffic streams. (Bonte, Espié, & Mathieu, 2007) proposed a multi-agent 

solution for two-wheeled vehicles to reproduce behaviours specific to them, such as driving 

between cars. (Vlahogianni, 2014) evaluated the factors that significantly affect PTW riders’ 

decision to accept critical lane widths during filtering. Critical lane width is defined as the 

minimum lateral clearance between any two vehicles, which most of the PTW riders uses 
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while filtering. Some of the parameters that influence riders’ decision are relative speed, 

spacing, heavy vehicles’ presence and occurrence of platoon of moving PTWs.  

Additionally, there are some differences in dynamic characteristics because of high power-

to-weight ratio (i.e., speeds and accelerations of the vehicle types) and in area occupancy 

(i.e., size). The speed of a car in heavy traffic and at urban intersections is lower than that 

of a motorcycle or scooter (Walton & Buchanan, 2012; Lee, Polak, Bell, & Wigan, 2012). 

The capability of PTWs to make quick lateral manoeuvres leads to a shorter longitudinal and 

lateral separation than other classes of larger vehicles such as passenger cars (Walton & 

Buchanan, 2012; Amrutsamanvar, Muthurajan, & Vanajakshi, 2021) 

Concerning area occupancy, generally, most existing simulation tools assume that the 

positioning of vehicles on a road results from the existence of physical lanes. However, this 

modelling does not simulate observed space occupation phenomena of motorcycles and 

scooters based on dynamic virtual lane-based movements. Very few studies on multi-agent 

traffic simulations apply the actual area occupancy behaviour of the PTWs. Different models 

based on microscopic data, collected from field video images in cities in Vietnam, defined 

the dynamic lane width of motorcycles with a minimum lateral distance of 0.8 m (Minh, Sano, 

& Matsumoto, 2012) and the lateral distance of the threshold safety space of 1.8 m on 

average for two vehicles driving side by side (Nguyen, Hanaoka, & Kawasaki, 2014). 

2.4.2 SMoS for car-PTWs interactions 

The classification of SMoS for motor vehicle perspective from Section 2.3.2 with time-based, 

evasive action-based and distance-based metrics (TTC, DRAC, PICUD…) can also be 

applied for PTWs. Those metrics are valid to measure the interaction between users that 

must share the same road (including PTWs). Yet, the differences between cars and PTWs 

noted in the previous section, mean that the appropriate thresholds and the severity risk 

models used for car-PTW interactions will differ from those of car-car interactions. 

Currently, very few studies have measured the risk severity of traffic-conflict with PTWs vs. 

other road users, and most of them are focused on defining thresholds of parameters 

associated with near misses or crashes (Vlahogianni, Yannis, & Golias, 2013; Guo, Sayed, 

& Zaki, 2018) and loss of control (Attal, Boubezoul, Oukhellou, Cheifetz, & Espie, 2014; 

Huertas-Leyva, Savino, Baldanzini, & Pierini, 2020) without a SMoS to assess the potential 

risk of different interactions with other vehicles in real-time. Evasive actions-based SMoS 

typically involve powerful braking, speeding, or sudden swerving. As such, they can be 

simplified to either a significant change in speed or direction. Evasive actions-based SMoS 

for PTWs were analysed in cities of China using as independent variables evasive action-

based indicators such as TTC, yaw rate and jerk extracted from video-based computer vision 

techniques and three levels of risk categorized by experts as dependent variable (Guo, 

Sayed, & Zaki, 2018; Tageldin, Sayed, & Wang, 2015). The latter studies concluded that in 

less organised environments with a high frequency of interactions between different types 

of road users, indicators of temporal proximity on their own may not work very well. The 

limitations of time-based SMoS for PTWs without other indicators (e.g., deceleration 

information) were investigated in case study in China (Tageldin, Sayed, & Wang, 2015). This 
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study determined that evasive actions-based SMoS had greater potential for identifying 

motorcycle conflicts in highly mixed and less organized traffic environments than time-based 

SMoS, such as time to collision. 

Studies focused on distance-based SMoS for PTWs are relevant since safety gaps of 

motorcycles were observed to be smaller than those of cars (Amrutsamanvar, Muthurajan, 

& Vanajakshi, 2021; Lee, Polak, Bell, & Wigan, 2012; Nguyen, Hanaoka, & Kawasaki, 2012). 

Distance-based SMoS developed with simulations and calibrated with data from video-clips 

have been used to evaluate motorcycle traffic conflicts related to sudden braking using the 

‘safety space’ concept on straight segments of congested urban roadways of Ho Chi Minh 

(Nguyen, Hanaoka, & Kawasaki, 2014). The contribution of PTW speed in fatal accidents 

was studied in a parameter space for considering the accident risk and accident severity 

dimensions provided by the speed-squared versus stopping distance domain (Murphy & 

Morris, 2020), but this mainly applied to see the effects on the severity of real fatal crashes 

and not in traffic conflicts. Lee at al. (2012) defined the safety gap as the longitudinal spatial 

distance between the front edge of a following vehicle and the rear edge of its preceding 

vehicle. They found that the headways of those motorcycles located in the right differed from 

those in the left half areas behind the preceding cars. The possibility to faster lateral speed 

(swerve) and to require a shorter lateral movement if positioned behind left/right side of the 

bottom of the leading vehicle makes that for PTWs may allow a lower safety gap than other 

vehicles such as cars. Consequently, the same risk-metrics in car-following cannot be 

applied for PTWs and cars.  

2.4.3 Recommended SMoS for PTWs 

As commented previously, for urban scenarios a few studies were found to give 

recommendations for SMoS for PTW interactions.  Considering the few studies analysing 

the severity risk of the PTW-car interactions, methods estimating the Crash Potential Index 

(CPI) from studies of vehicles interactions (not specific for PTWs) may be adapted for PTW-

car interactions. Wang and Stamatiadis (Wang & Stamatiadis, 2014; Wang & Stamatiadis, 

2013)  proposed a CPI method (called crash propensity metric by the authors) to estimate 

the crash probabilities of three types of traffic conflicts between vehicles at intersections 

(crossing conflict, lane-change conflict, rear-end conflict). They conducted an experimental 

validation by simulating 12 four-leg signalized intersections along three arterials in Kentucky 

through a simulation package. As an example of the method, during a rear-end conflict, two 

situations were expected. First situation, during the traffic conflict Time-to-Collision (TTC) 

the rider brakes and the vehicle performs as expected with more than the minimum required 

braking rate (RBR) and avoids the crash. Second, the vehicle fails to perform as expected 

and does not meet the RBR, so the conflict turns into a crash. The CPI considers multiple 

factors such as time, speed, reaction time, and braking rate, which are able to identify the 

safety critical scenarios that TTC alone cannot detect. In order to use a Crash Potential 

Index as SMoS for PTWs for urban scenarios, threshold values for several other SMoS 

threshold values are required. As presented in Section 2.3.3 for car-car interactions, Table 

3 shows information about threshold values for different metrics found in the literature mostly 



 

 

SAFE-UP D2.5: Description metrics for traffic interactions  

 

 

 

This project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under Grant Agreement 861570. 
25 

focused on PTWs. A more complete description of severity metrics for various scenarios is 

presented in Table 6 in the appendix. 

Table 3: Threshold values for recommended severity metrics with PTW interaction 

Metric Threshold Source  Scenario 

TTC ≤1.5s (Tageldin, Sayed, & 

Wang, 2015; Wang & 

Stamatiadis, 2014) 

Urban 

Desired 

braking 

deceleration 

(average) 

left-half area: -4.12m/s2 

right-half area: -4.04m/s2 

(Lee, Polak, Bell, & 

Wigan, 2012) 

Congested Urban, 

car-following/rear-end 

 

MADR 
dry conditions 

Range Novice-Expert  

[3.83-8.03m/s2] 

(Huertas-Leyva, et al., 

2019) 

Urban, PTW straight 

 

Reaction 

Time 

0.75s 

 

0.5 s   

(Lee, Polak, Bell, & 

Wigan, 2012) 

(Nguyen, Hanaoka, & 

Kawasaki, 2012) 

Car-following/rear-

end 

Lane-Change: 

(including side-swipe) 

 

 

Safety gap 

distance 

(average; SD) 

Longitudinal gap: 

7.00m (0.32) for the left half  

5.42m (0.34) for the right-half 

 

Longitudinal gap:  

8.1m (3.64) 

 

 

Safe lateral distance:  

>1.8m 

(Lee, Polak, Bell, & 

Wigan, 2012) 

 

 

(Amrutsamanvar et al., 

2021) 

 

 

(Nguyen, Hanaoka, & 

Kawasaki, 2012) 

Congested Urban, 

car-following/rear-end 

(avg. speed 36km/h) 

 

Congested Urban, 

car-following/rear-end 

(avg. speed of traffic 

stream 20km/h)  

 

Congested Urban 

 

Crash 

Potential 

Index (CPI) 

Low severity:  CPM < 0.10  

High severity: CPM > 0.90  

(Wang & Stamatiadis, 

2013, 2014) 

Urban,  

car-following/rear-end 
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2.5 VRU Perspective 

This section focuses on VRU-traffic interactions, with the central goal to identify relevant 

description metrics for safe and unsafe behaviour of VRUs. When it comes to such SMoS 

for VRU-traffic interaction the literature available reveals a low level of maturity. For instance, 

in 2016 the EU Project InDeV (Laureshyn, et al., 2016) presents recent insights into the topic 

by putting upfront that it may be exhausting to gain a clear overview of the current state of 

the art. The authors state that the literature is vast and diverse, hard to reach, and one may 

run the risk to focus on technical improvements in this area, while neglecting human factors 

(Laureshyn, et al., 2016). 

To deal with the issues raised in InDeV and to enrich existing work, we choose a 

complementary approach in SAFE-UP. For the identification of description metrics for VRU-

traffic interactions, it could be useful to focus not only on the observable behaviour of VRUs 

(e.g., TTC, PET), but to consider the emergence of VRUs’ behaviour as well (Liu, et al., 

2012). From a psychological perspective, human behaviour is the result of cognitive 

information processing which can be broadly described via the three stages Perception 

Cognition Action (and its output and feedback); cf. (Proctor & Van Zandt, 2008; Kuligowski, 

2009). The result of VRUs’ perception and cognition processes are likely to determine the 

activation, selection, and conduction of responses (action stage). More specifically, the 

VRUs’ perception and subjective interpretation of a situation (perception stage) lead 

together with an internal matching with memory stages, and the interpretation of potential 

risks (Kuligowski, 2009) to an understanding of the respective situation and an emotional 

state (cognitive stage). Recent research has shown that processes in this cognitive stage 

do not exclusively depend on aspects of a singular situation (such as an approaching 

vehicle), but on the accumulation of recent experiences (Dittrich, 2020). Hence, depending 

on the recent past, two similar situations can lead to a different understanding and valence 

(or in other words, the probability for a certain understanding and emotional state is 

different). The outcome of the cognitive stage together with the VRUs’ individual 

characteristics are key to the VRUs’ behaviour (action stage). They set the probability for an 

(un-) safe behaviour in a given situation. This is why measures of the perception and 

cognition stage appear to be important description metrics for VRU-traffic interactions when 

setting up a traffic simulation including VRUs and their probable behaviour.  

Participant studies enable the direct assessment of VRUs’ subjective evaluations as well as 

the resulting objective behaviours and are, therefore, good sources for the compilation of 

such measures. For this purpose, IKA conducted a literature review on (mostly empirical) 

studies with regard to VRU-traffic interactions. In line with argumentation of InDeV and 

underlining the novelty of this bottom-up approach from IKA, the key word “Surrogate 

Measures of Safety” was not mentioned in these empirical studies (apart from one (Liu, et 

al., 2012)). The most promising studies (selection criteria mentioned in appendix A) were 

analysed in detail and are being described briefly in the same appendix. The conclusions 

with regard to possible description metrics for VRU-traffic interactions along the information 

processing paradigm (perception, cognition, and action) that are assumed to influence the 
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probability for an (un-) safe behaviour are depicted in the following section. Please note that 

the measures of the stages perception and cognition originate from human factors research 

and thus differ from conventional computational variables of traffic simulations. The transfer 

into computable variables is one of the steps planned to be conducted in SAFE-UP.  

2.5.1 Description metrics for VRU-traffic interactions 

The references of the studies reviewed are depicted in Table 4.  

Regarding the individual’s understanding of a traffic situation at the perceptual and cognitive 

stage, the literature review implies that the psychological constructs perceived risk, 

perceived criticality, perceived comfort, and subjective understanding of the traffic situation 

are relevant for VRUs’ subjective evaluations and hence could serve as description metrics 

(see Table 4). These constructs were mostly assessed via short self-formulated 

questionnaires or open questions regarding the participants’ (self-estimated) behaviour and 

their reasoning for this. Furthermore, the emotional state that results from a given situation, 

e.g., the level of frustration, can influence the VRUs’ behaviour and, therefore, can be 

understood as a description metric for the cognitive stage as well. As mentioned above in 

section 2.5, both, the understanding and emotional valence of a traffic situation should be 

regarded in an interplay with other factors. Namely, these VRU description metrics seem to 

be highly influenced by the traffic situation, other subjective dimensions, such as distraction, 

habits, safety beliefs, as well as subjective norms, socio-demographic factors, such as age, 

experience and incidents in the past (Abadi, Hurwitz, & Macuga, 2019; Dittrich, 2020). 

Physiological responses, such as heart rate, could serve as objective description metrics. 

Regarding the probable VRU-behaviour at the action stage, objectively quantifiable metrics 

are e.g., the lateral trajectory, reaction time (i.e., time to desired behaviour), speed reduction, 

gaze behaviour/ fixation time of potential hazard, or aggressive behaviour (see Table 4).  
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Table 4: Description metrics for VRU-Traffic interactions derived from the twelve studies. 

Stage of 

metric 

Description 

metric 

Category Study number (See 

Appendix/ Source) 

Scenario 

Perception 

and 

cognition 

Perceived risk Evaluation of 

situation 

(subjectively 

measured) 

8,9 (Kovácsová, de 

Winter, & 

Hagenzieker, 2019; 

Doorley, et al., 2015) 

Urban 

Perceived 

criticality 

1 (Oron-Gilad & Meir, 

2020) 

Perceived level of 

Comfort 

10 (Abadi, Hurwitz, & 

Macuga, 2019) 

Understanding of 

the situation 

2, 3 (Tabibi & Pfeffer, 

2003; Habibovic & 

Davidsson, 2012) 

Frustration Emotional state 12 (Dittrich, 2020) All 

Action Heart rate Physiological 

values 

9 (Doorley, et al., 

2015) 

Urban 

Lateral trajectory 

(cyclists only) 

Behaviour of 

VRUs 

(objectively 

measured)  

 

7 (Abadi M. G., 

Hurwitz, Sheth, 

McCormack, & 

Goodchild, 2019) 

Reaction time, i.e. 

time to desired 

behaviour 

1, 5 (Liu, et al., 2012; 

Oron-Gilad & Meir, 

2020) 

Speed reduction 7 (Abadi M. G., 

Hurwitz, Sheth, 

McCormack, & 

Goodchild, 2019) 

Aggressive 

behaviour 

12 (Dittrich, 2020) All 

 

To clarify the measures listed in Table 4 in terms of their possible contribution to estimate 

the probability of VRUs’ (un-) safe behaviour, every description metric is explained briefly in 

the following in chronological order of the table:  

The levels of perceived risk, criticality, comfort, and understanding of a traffic situation serve 

as indicators to determine the probability for a certain evaluation of and, thus, a certain 

behaviour in a traffic situation. The level of frustration has the potential to increase the 

occurrence of aggressive behaviour. The prevalent heart rate can be an indicator for the 
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equivalent arousal level in a safety-critical situation. It is to be expected that the lateral 

trajectory of a cyclist is a potential cue for a risk mitigating behaviour (i.e. evasive trajectory). 

A fast reaction time indicates a quick response to a hazard. A fast speed reduction can be 

a risk mitigating behaviour or a reaction to a hazard while a slow speed reduction can be a 

cue for an ongoing attention process/ understanding of the traffic situation. Gaze behaviour/ 

fixation time of a potential hazard could serve as indicator if a hazard has been identified or 

not. This in turn has the potential to determine, if a risk mitigating behaviour is to be 

expected. 

As indicated at the beginning of the section, VRUs’ recent experiences (e.g., multiple cutting 

off or a sequence of red traffic lights) can potentially influence the VRUs’ understanding of 

a situation and emotional states (e.g., level of frustration) and, thus, can modulate the 

probability of (un-) safe behaviours (an aggressive reaction in a low safety critical situation, 

which in turn can cause a safety critical situation) (Dittrich, 2020). This interplay is not 

assessed sufficiently yet and, therefore, not implemented in Table 4. Nevertheless, we 

assume that VRUs’ behaviours are based at least in parts on external reasons and only a 

holistic approach can lead to a deeper understanding with regard to the probability of (un-) 

safe behaviour (Liu, et al., 2012). A holistic view to better understand (non-) safety critical 

VRU-traffic interactions would, therefore, include at least:  

(a) the role of external/ situational factors on the probability of both, a certain emotional 

state and an understanding of a situation, and  

(b) the role of these on the probability of a certain behaviour.  

Further empirical research is needed in this holistic approach to define situation-dependent 
description metrics and SMoS for VRUs, so that the listed metrics can be transferred into 
computable metrics of traffic simulations. In D2.6 (use case definition and initial safety-
critical scenarios) of SAFE-UP some of the mentioned aspects will already be tackled based 
on literature research. In Sections 3.2 and 4.3, IKAs’ plans to tackle the open questions are 
briefly outlined.  
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3. Partners’ Contributions to the State 

of the Art 

As mentioned in Section 1.2, this chapter presents each partner’s initial research and 

development plans for T2.2. These plans are inspired by areas in the state of the art (SotA) 

that are not well covered. The focus area of each partner is shown in Figure 3. 
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Figure 3 Overview of the positioning of the research work by T2.2 partners. 

 

3.1 IDIADA 

In T2.2 IDIADA will process information provided by T2.1 and help define metrics for 

assessment of safety-critical scenarios considering all traffic participants. This activity is 

expected to start in September of 2021, after T2.1 completes its work. 

During the first months of T2.2 resources had been dedicated to understand the needs and 

requirements for the definition of the metrics. While doing this activity it was noticed the need 

to obtain better NDD. On the other hand, jointly with T2.1 it was detected the need to create 

a common activity to align the needs between T2.2 and T2.1 regarding NDD needs.  

The first step was to create a template so the partners from T2.2, T2.3 and from other WPs 

could explain their needs regarding NDD. This process is ongoing. Once the information is 

collected, T2.1 will be able to check if the databases in which they are working on can 

provide the needed input or if it will be necessary to define another NDD activity to cover 

specific needs of the partners. 
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3.2 IKA 

Surrogate measures of safety (SMoS) are being utilised to investigate and quantify traffic 

safety (Laureshyn, et al., 2016; Liu, et al., 2012). As these measures are according to InDeV 

not based on accident data they are referred to as “surrogates” and introduced to be 

complementary to accident records. The literature discusses this approach as advantageous 

in terms of time-efficiency, ethics, informational content, and accurateness (Svensson A. , 

1998; Hydén, 1987). Today, SMoS help to characterise relevant conditions as well as 

frequencies of occurrence of conflicting events and are, therefore, utilised as approximation 

for the probability of collisions, mainly regarding car-to-car interactions. 

When it comes to SMoS for VRU-traffic interactions, however, the literature available reveals 

a different level of maturity and former work has already pointed at the risks to focus on 

technical improvements in this area, while neglecting human factors (Laureshyn, et al., 

2016). This is where IKA sees the potential to take over a complementary perspective on 

SMoS for VRUs. 

As outlined in the introduction of the present deliverable, traffic interactions are very frequent 

whereas traffic accidents appear to be comparably rare. Although not each traffic interaction 

leads to an accident, some interactions seem to be more severe than others and some lead 

to collisions. This motivates the hypothesis that crashes result from a temporal sequence of 

events in which conflicting events occur prior to a crash event (Laureshyn, et al., 2016).  

Since conflicts and collisions tend to share a common continuum of events, the frequency 

of subjectively perceived and negatively evaluated events can be used to predict those of 

high-severity events (Dittrich, 2020). This approach deviates from the usage of well-known 

SMoS, i.e. those established for car-to-car interactions, such as TTC or PET. Instead, IKA 

puts VRUs and their ability of cognitive information processing in the focus of its work. In 

this vein, ika follows up on the hypothesis that human beings perceive their environment via 

a cognitive filter (Wickens, 2015) letting only pre-selected information pass over to the 

cognitive stage. Here, (depending on the nature of the information) higher/lower cognitive 

processing will result in a subjective understanding of and an emotional state regarding the 

information perceived and finally, lead to an observable response (action) (Proctor & Van 

Zandt, 2008). In others words, IKA pursues the approach by Dittrich (Dittrich, 2020) that 

human behaviour in traffic is being moderated by the occurrence, frequency, as well as 

subjective evaluation of events on a temporal and spatial basis. This approach sheds light 

on a novel aspect in SMoS research, as the interplay of the variables occurrence and 

frequency together with the subjective evaluation of events experienced will be used as 

variables for probability functions to predict (un-)safe VRU behaviour in a traffic simulation. 

In order to derive these probability functions via regression analyses, IKA will conduct an 

empirical study (T2.3) to research (a) the role of external events (e.g., nature, frequency, 

spatial and temporal resolution) on the probability of a certain subjective evaluation (e.g., 

level of frustration, comfort etc.) and (b) the role of this on the probability for (un-) safe human 

behaviour (e.g., inappropriate steering or acceleration habits, ignorance of traffic rules). 
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Based on the hereof resulting probability functions, the derivation of SMoS for VRUs and 

their usage in respective micro-simulations is the anticipated next step. 

IKA’s research is planned to be done in lab experiments using a VR pedestrian and bicycle 

simulator setup. IKA will focus on subjective and objective data. In a nutshell, this systematic 

approach will support the development of the simulation model of SAFE-UP and is aimed at 

an increased level of accuracy of VRU description metrics. 

3.3 THI 

THI proposes an approach to integrate common SotA technics with novel methods into a 

new risk assessment framework. This framework will also introduce a new measure of risk 

based on artificial risk field theory. This risk artificial risk field will be composed of a prediction 

module for dynamic objects and a crash severity estimation module. The product of 

interaction likelihood (prediction module) and interaction severity (crash severity estimation 

module) will be the risk measure. Which is another metric to measure the interaction 

severity. Most SotA system designs only consider collision avoidance but not the case of 

unavoidable collisions.  

Here, THI will contribute to the crash severity estimation, which in turn can cover the case 

of an unavoidable collision. The advancements to SotA will include the propagation of 

uncertainty values to increase the robustness of the overall system design. Another feature 

will be continuity to increase robustness for numerical solving further.  Also, such a system 

will be built to satisfy scenarios beyond the scope of SAFE-UP. To evaluate the crash 

severity, metrics from potential injury indices are derived. Typical metrics are occupant load 

criterion, frontal crash criterion, and acceleration severity index. To derive those values, THI 

focuses on investigating data-driven as well as deterministic approaches. The exact 

approach will be chosen during the development phase based on the selected scenarios 

and needs of the other SAFE-UP partners. 

The chosen approach to introduce an uncertainty-aware crash severity estimation algorithm 

then integrates well to generate a general-purpose risk measure based on potential field 

theory. 

3.4 TNO 

TNO focuses on two areas 

• Development of methods to identify the most typical driving interaction from 

driving data 

• Development of a severity metric for driving interactions that is context-

dependent. 
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3.4.1 Typical driving interactions 

As shown in Figure 2, the vast majority of driving interactions carry low severity. The 

relationship between driving interactions and severity is context-dependent. That is, it varies 

with the type of location, time of day, weather conditions, etc.  

Thus, there is a need for a generic method to characterize typical driving interactions based 

on recorded data from specific contexts, which allows one to differentiate between a safe 

driver and an unsafe one. 

We propose to develop one such method based on machine learning (ML) algorithms 

trained on publicly-available naturalistic driving data, such as NGSIM (USDOT, 2006). The 

method would allow one to represent the most typical features of driving interactions withing 

a trained ML model, and then used it to classify new interactions as typical or a-typical using 

an anomaly detection approach.  

This work will be an improvement over our initial efforts (Tejada, Manders, Snijders, 

Paardekooper, & de Hair-Buijssen, 2020) by improving the original ML algorithm and 

applying it to urban driving data. 

3.4.2 Context-dependent Severity Metric 

As mentioned above and shown in Section 2.3, most severity metrics currently available are 

based on explicit formulas that relate the kinematic variables of interacting vehicles. These 

formulas are not context-dependent. Generally, they rely on assumptions about driver 

behaviour (e.g., instant reaction times) and how traffic participants drive (e.g., constant 

speed). That is, they do not directly reflect specific driving conditions at specific locations. 

Thus, we propose to develop a method to replace such assumptions in known severity 

metrics with data-driven models of the variations in drivers and traffic participant behaviours. 

An initial version of this approach will be based on highway driving data from datasets such 

as NGSIM. 

3.5 TUD 

During on-road driving, the surrounding traffic environment, especially for the surrounding 

vehicles, can vary dynamically. The car-car SMoS, which are defined based on the predicted 

motions of interacting vehicles, are suitable for this purpose, i.e., they can be calculated at 

each moment during an encounter. However, the subject vehicle, is not certain about the 

future motion of its neighbouring vehicles and consequent crash outcome. Uncertainty, 

therefore, is an inherent component of the driving risk estimate. SMoS do not typically 

account for this uncertainty. They assume a deterministic future motion, i.e. motion with 

unchanged velocity/acceleration. 

The artificial potential field is a prominent paradigm used to tackle vehicle and robot 

navigation (Dunias, 1996). The attractive feature is that it allows the vehicle to autonomously 
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navigate using only its location and local sensor measurements. In this paradigm, an 

obstacle to the vehicle is modelled as a repulsive potential field (or risk field). The vehicle 

can use the field gradient at its location to generate control actions to navigate while avoiding 

the obstacle. A field paradigm was initially employed to model driving risk accounting for the 

influence of driver, vehicle and road characteristics (Wang, Wu, & Li, 2015). Later, this model 

was extended and applied in a rear-end crash avoidance system (Wang, Wu, Zheng, Ni, & 

Li, 2016). However, the model cannot be directly used for traffic safety analysis, as it is not 

objectively formulated using factors correlated to crash statistics. Therefore, the artificial 

potential field theory offers a paradigm to develop a generic driving safety assessment 

(Mullakkal-Babu, Wang, Farah, Arem, & Happee, 2017). Using the paradigm of artificial field 

theory, in this project, we will present an approach to assess the driving risk of an individual 

vehicle. The driving risk estimate constitutes a crash severity term and a collision probability 

term. To estimate the collision probability, the subject and neighbouring vehicles possible 

positions and associated probabilities at discrete future time steps are predicted.  

Moreover, we will develop a neural network based two-stage multi-modal prediction model, 

consisting a lane-change prediction module and a trajectory prediction module. The lane-

change prediction model is first invoked and its output is then used as input for the multi-

model trajectory prediction model, which can provide more accurate prediction results in 

terms of different evaluation metrics. The prediction model will be integrated with the 

probabilistic collision-based safety assessment framework. The effectiveness and 

computational efficiency of the integrated safety assessment framework will be validated 

using existing NDD as well as simulations. The proposed safety assessment framework is 

promising to further provide guidance for vehicle motion planning. 

3.6 UNIFI 

Current modelling approaches cannot explicitly group filtering, overtaking, oblique following, 

swerving and tailgating manoeuvres of PTWs in a single model (Das & Maurya, 2018). 

Literature shows, that although some PTW riding behaviour models have been developed 

giving insights about the riding behaviour for specific manoeuvres, almost no metrics are 

available to determine the severity risk of the different interactions among PTWs and other 

road users. A point to consider is that a minor proportion of the few studies on riding 

behaviour model have been investigated on traffic scenarios of countries of developed 

economies with passenger cars being predominant and characterized by a more 

‘homogeneous’ traffic than that of developing economies where frequently traffic is 

composed of a wide variety of vehicle types which frequently occupy the same right of way 

(Kiran & Verma, 2016). The effect of cultural differences in traffic behaviour may affect the 

effectivity of traffic conflict techniques (Tiwari, Mohan, & Fazio., 1998; Tageldin, Sayed, & 

Wang, 2015), thus, significant differences may occur between behaviour models and SMoS 

belonging to PTW-dominated traffic (70% PTWs) more frequent in Asian cities or passenger 

cars-dominated traffic (e.g., European or North American cities). This makes even more 

necessary to study traffic interactions in scenarios from developed countries where 
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autonomous car use is expected to be deployed earlier. A better understanding of the unique 

patterns of interaction of PTWs with other road users will help to develop better simulation 

models capable of measuring the risk of traffic conflicts. Realistic models of mixed traffic 

conditions must faithfully address the interaction of cars with VRUs, such as PTWs. 

Previous research has demonstrated that the driving behaviours of riders on PTW’s 

significantly differs from that of car drivers (safety gaps, trajectories, speeds…) that are more 

present in traffic interactions related to lane-sharing, tailgating or overtaking in multimodal 

rural environment  (Barmpounakis, Vlahogianni, & Golias, 2016; Das & Maurya, 2018). The 

behaviour of motorcycle drivers on highways, however, seems to be less different from that 

of cars, so early research should prioritize understanding behaviour in urban environments 

in order to model traffic simulations more realistically. Very few studies have measured the 

risk of traffic interactions with PTWs involved. The main limitation for this type of studies is 

the need for extensive naturalistic driving data (Barmpounakis, Vlahogianni, & Golias, 2016) 

and, in contrast, so far there is very few naturalistic driving data involving PTWs. 

The SAFE-UP approach is to develop an integrated model to assess the traffic-conflict of 

motorcycles and mopeds in urban roads. We aim to develop an integrated model to assess 

the traffic-conflict of motorcycles and mopeds in urban roads, the target scenario consists 

of tailgating issues and rear-end conflicts in urban road. The proposed risk metric will be 

unique for motorcycles and will include new features developed with a concept of time 

proximity indicator (Time Headway / Distance Headway) and evasive action-based (based 

on kinematics-based measures: e.g. yaw and roll rate and deceleration) indicators for 

evaluating the severity of powered two-wheeler (PTW) conflicts. The Surrogate Safety 

Metrics will be developed using naturalistic data collected in urban area.  Initially our risk 

metric will estimate the severity of events in traffic, mainly for events involving vehicles 

moving in the same direction than PTW. We will introduce a new measure of risk based on 

probabilistic models of crash outcome severity for real-time safety prediction, identifying 

those safe interactions, and consequently quantifying potential risk scenarios by detecting 

deviation from defined safe riding. 

Two different approaches with two different datasets will be used to derive the surrogate 

safety metrics.  First approach will use naturalistic data collected by a PTW (local view) to 

code the traffic conflicts including severity (critical, safe) with the observation of the videos, 

then will develop the severity metrics based on extreme events by making the best use of 

observed ‘maximal’ data with the variables from video-coding and the kinematics-based 

measures (e.g., steering rate, yaw rate, deceleration, jerk…). The second approach will use 

bird’s-eye view naturalistic data using the spacing with traffic mix, speeds and type of road 

user as factors of the real-time safety metrics. In both approaches a validation subset of the 

naturalistic data will be used to assess the performance of the risk metrics.  

Risk metric will also include the severity of the collision avoidance required, using the 

frequency distribution of braking from naturalistic data. If the number of near-miss cases 

from naturalistic data is limited, UNIFI will examine the Maximum Available Braking Rate 

(MABR) and the distribution using their data on emergency braking performance in field 

experiments with different levels of riders (Huertas-Leyva, et al., 2019). The conflicts 
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selected in our study will be those rear-end with braking as the main evasive manoeuvre, 

assuming that adjacent gap is rejected to perform a lane-change manoeuvre. Additionally, 

work exploring risk-based trajectory generation and decision making for straight road 

segments to assess risk conflicts during lane change manoeuvres can be considered. To 

assess the generalization of the results for different datasets, the risk severity models 

developed may be validated with the car-PTW interaction collected by IDIADA in urban 

scenarios. 
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4. Conclusions & Recommendations 

4.1 Motor Vehicle Perspective 

The literature review performed for car-car interactions revealed that there is an abundant 

number of SMoS for quantifying the severity of car-car interactions both in highway and 

urban scenarios and for various types of collisions. The most recommended set of metrics 

to identify critical interactions in simulations are listed in Table 2. A more complete list of 

metrics that provides formulas for each metric and the scenarios they apply to is given in the 

appendix in Table 5. This table also includes recommended threshold values for various 

combination of metrics and scenarios. 

Despite this abundance of SMoS, challenges still remain in applying them for safety 

evaluations. One of such challenges is the choice of threshold values for the metric. In 

literature, there is no consensus on threshold values. The practice is usually to give a range 

for the threshold value. This means that a scenario may be considered critical for a specific 

threshold value and not critical for another threshold. This makes it difficult to conclude with 

much certainty whether a scenario is critical or not based on one threshold value of a metric. 

Therefore, methods to determine the most appropriate threshold value of a metric for a 

specific scenario are needed. Another way to circumvent the threshold issue is to develop 

methods for identifying critical situation which are threshold-independent. This alleviates the 

need to choose a specific threshold. 

Another challenge in applying SMoS is the selection of an appropriate metric for a particular 

scenario. In most cases, one metric is usually not enough to classify a scenario as critical or 

not. In addition, not all metrics are defined for all driving situations. A classic example is 

TTC, which is only defined for cases where the follower is faster than the leader. This means 

that for such situations, a different metric needs to be used. Finally, it is possible that the 

conclusions made by one metric may contradict the one made by another metric. So, a 

situation defined as safe by one metric can be considered critical by another metric. This 

poses a challenge in reaching a conclusion about the criticality of the situation. One way to 

overcome this challenge is to use an ensemble of metrics for analysing a scenario and then 

make a more informed conclusion on criticality by taking into account the conclusions from 

all the considered metrics. Another way is to derive a single metric which captures the 

properties of several metrics.  

Further, it is important to remark that most severity metrics are geared to identify critical 

driving interactions. Little work has been done on identifying and recognizing safe driving 

interactions. Such capability is important to prescribe how vehicles should drive in order to 

avoid engaging in critical interactions. There is a need to develop data-driven severity 

metrics that do not rely on a-priori assumptions of driver or vehicle behaviour, but on context-

dependent behaviours.  
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Besides, uncertainty is an inherent component of the driving risk estimate. SMoS do not 

typically account for this uncertainty. They assume a deterministic future motion, i.e. motion 

with unchanged velocity/acceleration. Using the paradigm of artificial field theory, in this 

project, we aim to present an approach to assess the driving risk of an individual vehicle. 

The driving risk estimate constitutes a crash severity term and a collision probability term. 

To estimate the collision probability, the subject and neighbouring vehicles possible 

positions and associated probabilities at discrete future time steps are predicted. Moreover, 

an interactive intention prediction model based on machine learning approaches is 

integrated to better represent the future vehicle reachable space. Eventually, the established 

safety metric is applied to classify interaction severity, and further provide guidance for 

motion planning. 

4.2 PTW Perspective 

Literature review has showed that behaviour of powered two-wheelers (including 

interactions with other road user) differs from that of car passengers, and that specific SMoS 

for PTW are necessary for a complete assessment of the interaction of cars (and eventually 

autonomous cars) with the rest of road users in the traffic environment. An overview of 

currently available SMoS for car-PTW interactions can be found in Table 6, and list of 

recommended metrics to identify critical car-PTW interactions in simulations are listed in 

Table 3. 

SAFE-UP will use real-life urban scenarios to define SMoS specific for PTW-car interactions, 

modelling the scenario parameters with fitted distributions (e.g., Kernel Density Estimations) 

collected from the key parameters of naturalistic driving. During T2.2 we will define safety 

space to describe the non-lane-based movements unique to motorcycles. New features will 

be also developed for traffic conflict assessment such as parameters of acceleration and 

deceleration, and the conditions for choosing a lead vehicle. Additionally, in this work, the 

surrogate severity metric will be used to directly extract simulated conflict data from 

trajectories files generated from microscopic traffic simulation. The probability of ending a 

traffic conflict with a crash will be estimated based on simulations. The simulation will 

generate test cases with traffic conflicts between cars and PTWs with the purpose to identify 

the scenarios where high severity metrics are more frequent. 
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4.3 VRU Perspective 

As outlined in existing work, e.g. in the EU project InDeV (Laureshyn, et al., 2016), the 
maturity level of SMoS for VRU-traffic interactions is low and respective literature is vast and 
diverse, hard to reach, and one may run the risk to focus on technical improvements in this 
area, while neglecting human factors. Therefore, IKA implemented a complementary 
approach and conducted a literature research with a focus on empirical studies on human 
factors (section 2.5 and Appendix A) which will be the basis for IKA’s future works in SAFE-
UP. This alternative approach in the literature research was conducted to include preliminary 
work regarding the preceding causal chain for resulting VRU behaviour and not limit the 
research to observable factors of a traffic situation.  It allowed to gain insights on subjective 
and objective description metrics for (non-) safety critical traffic situations of VRU-traffic 
interaction (VRU perspective). Whilst each description metric (Table 1) has the potential to 
serve as predictor for human behaviour, the interplay of these metrics is hypothesised to be 
promising for increasing the accuracy of computational modelling of VRU-vehicle 
interactions. Applying psychological models of human information processing, the 
probability for a certain VRU-behaviour (i.e. objective behavioural data) is the result of two 
preceding stages (perception and cognition). The hypothesis is that objective data alone can 
be regarded as a limited predictor due to missing information on the relevant question “why 
do humans behave as they do in certain situations?”. Perception and cognition are not 
observable and, therefore, considered to be latent. Nevertheless, both stages are the 
upstream process before it comes to observable human behaviour. Going one step further, 
recent events are known to influence subsequent traffic behaviour and future situations, 
respectively. E.g., traffic participants conduct aggressive (i.e. unsafe) behaviour due to their 
current level of frustration which in turn was caused by a chain of events in the traffic. In 
other words, it is to be assumed that knowing about the underlying reasons could contribute 
to the improvement of the probability estimation of human behaviour in traffic. Currently, the 
identified measures (Table 4) of the stages perception and cognition differ from conventional 
metrics of traffic simulations. To allow for a transfer into computational modelling on safety 
estimations, in T2.3 of SAFE-UP IKA plans to conduct an empirical participant study in a VR 
simulation setup. The results will feed into the simulation model of SAFE-UP and further 
deliverables (esp. D2.1, D2.6, D2.9 and D2.14).   



 

 

SAFE-UP D2.5: Description metrics for traffic interactions  

 

 

 

This project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under Grant Agreement 861570. 
40 

References 

Abadi, M. G., Hurwitz, D. S., Sheth, M., McCormack, E., & Goodchild, A. (2019, April). 

Factors impacting bicyclist lateral position and velocity in proximity to commercial 

vehicle loading zones: Application of a bicycling simulator. Accident Analysis and 

Prevention, pp. 29-39. 

Abadi, M., Hurwitz, D. S., & Macuga, K. L. (2019). Towards safer bicyclist responses to the 

presence of a truck near an urban loading zone: Analysis of bicyclist perceived level 

of comfort. Journal of Safety Research, pp. 181-190. 

Alexiadis, V., Jeannotte, K., & Chandra, A. (2004). Traffic Analysis Toolbox, Volume I: Traffic 

Analysis Tools Primer. US Department of Transportation. 

Alvergren, V. B., Karlsson, M., Wallgren, P., Op de Camp, O., & Nabvii Niavi, M. (2019). 

Specification of nudges (Deliverable 3.1). Ref. Ares(2020)5482574: MeBeSafe. 

Amrutsamanvar, R. B., Muthurajan, B. R., & Vanajakshi, L. D. (2021). Extraction and 

analysis of microscopic traffic data in disordered heterogeneous traffic conditions. 

Transportation Letters, 13(1), 1-20. 

Archer, J. (2005). Indicators for traffic safety assessment and prediction and their application 

in micro-simulation modelling : a study of urban and suburban intersections. 

Opgehaald van http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-143. 

Attal, F., Boubezoul, A., Oukhellou, L., Cheifetz, N., & Espie, S. (2014). The Powered Two 

Wheelers fall detection using Multivariate CUmulative SUM (MCUSUM) control 

charts. 17th IEEE International Conference on Intelligent Transportation Systems, 

ITSC 2014, (pp. 1280-1285). 

Bagdad, O., & Várhelyi, A. (2011). Jerky driving—An indicator of accident proneness? 

Accident Analysis & Prevention, 1359–1363. 

Bagdadi, O. (2013). Assessing safety critical braking events in naturalistic driving studies. 

Transportation Research Part F: Traffic Psychology and Behaviou, 117–126. 

Barceló, J. (2010). Models, Traffic Models, Simulation, and Traffic Simulation. In J. Barceló, 

Fundamentals of Traffic Simulation. New York: Springer. 

Barmpounakis, E. N., Vlahogianni, E. I., & Golias, J. C. (2016). Intelligent Transportation 

Systems and Powered Two Wheelers Traffic. IEEE Transactions on Intelligent 

Transportation Systems, 17(4), 908-916. 

Bevran, K., & Chung, E. (2012). An Examination of the Microscopic Simulation Models to 

Identify Traffic Safety Indicators. International Journal of Intelligent Transportation 

Systems Research, (pp. 66–81). 



 

 

SAFE-UP D2.5: Description metrics for traffic interactions  

 

 

 

This project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under Grant Agreement 861570. 
41 

Bonte, L., Espié, S., & Mathieu, P. (2007). Virtual lanes interest for motorcycles simulation. 

Proceedings of the fifth European Workshop on Multi-Agent Systems (EUMAS'07), 

(pp. 580-596). undef, France. 

Cho, H.-J., & Wu, Y.-T. (2004). Modeling and simulation of motorcycle traffic flow. IEEE 

International Conference on Systems, Man and Cybernetics, 6262-6267. 

Cunto, F. (2008). Assessing safety performance of transportation systems using 

microscopic simulation. University of Waterloo. 

Cunto, F., & Saccomanno, F. (2008). Calibration and validation of simulated vehicle safety 

performance at signalized intersections. Accident analysis & prevention, 40(3), 1171-

1179. 

Das, S., & Maurya, A. K. (2018). Modelling of motorised two-wheelers: A review of the 

literature. Transport Reviews, 38(2), 209-231. 

Davis, G. A., Hourdos, J., Xiong, H., & Chatterjee, I. (2011). Outline for a causal model of 

traffic conflicts and crashes. Accident Analysis & Prevention, 1907–1919. 

Dedes, G., Grejner-Brzezinska, D., Guenther, D., Heydinger, G., Mouskos, K., Park, B., & 

Toth, C. (2011). Integrated GNSS/INU, vehicle dynamics, and microscopic traffic 

flow simulator for automotive safety. 14th International IEEE Conference on 

Intelligent Transportation Systems (ITSC), (pp. 840–845). 

Dingus, T. A., Guo, F., Lee, S., Antin, J. F., Perez, M., Buchanan-King, M., & Hankey, J. 

(2016). Driver crash risk factors and prevalence evaluation using naturalistic driving 

data. Proceedings of the National Academy of Sciences, 2636-2641. 

Dittrich, M. (2020). Persuasive Technology to Mitigate Aggressive Driving - A Human-

centered Design Approach. Inaugural-Dissertation. Würzburg, Germany. 

Doorley, R., Pakrashi, V., Byrne, E., Comerford, S., Ghosh, B., & Groeger, J. A. (2015). 

Analysis of heart rate variability amongst cyclists under perceived variations of risk 

exposure. Transportation Research Part F, pp. 40-54. 

Dozza, M., & Werneke, J. (2014). ntroducing naturalistic cycling data: What factors influence 

bicyclists' safety in the real world? Transportation Research Part F, pp. 83-91. 

Dunias, P. (1996). Autonomous robots using artificial potential fields.  

Fan, S., & Work, D. B. (2015). A heterogeneous multiclass traffic flow model with creeping. 

SIAM Journal on Applied Mathematics, 75, 813–835. 

Gettman, D., & Head, L. (2003). Surrogate Safety Measures from Traffic Simulation Models. 

Transportation Research Record, 104–115. 

Gettman, D., L, P., T, S., Shelby, S., & S., E. (2008). Surrogate Safety Assessment Model 

and Validation: Final Report. Georgetown: US Department of Transportation Federal 

Highway Administration. 



 

 

SAFE-UP D2.5: Description metrics for traffic interactions  

 

 

 

This project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under Grant Agreement 861570. 
42 

Guéguen, N., Meineri, S., & Eyssartier, C. (2015). A pedestrian’s stare and drivers’ stopping 

behavior: A field experiment at the pedestrian crossing. Safety Science, pp. 87-89. 

Guido, G., Saccomanno, F., Vitale, A., Astarita, V., & and Festa, D. (2011). Comparing 

safety performance measures obtained from video capture data. Journal of 

Transportation Engineering, 7, 481-491. 

Guo, Y., Sayed, T., & Zaki, M. H. (2018). Exploring Evasive Action–Based Indicators for 

PTW Conflicts in Shared Traffic Facility Environments. Journal of Transportation 

Engineering, Part A: Systems, 144(11). 

Habibovic, A., & Davidsson, J. (2012). Causation mechanisms in car-to-vulnerable road user 

crashes: Implications for active safety systems. Accident Analysis and Prevention, 

pp. 493-500. 

Hamilton, I. A. (2019, 06 13). Uber says people are bullying its self-driving cars with rude 

gestures and road rage. Opgeroepen op 04 15, 2021, van Business Insider: 

https://tinyurl.com/pw7s7cs8 

Hublart, A., & Durand, J. F. (2012). Risks for powered two-wheelers and filtering between 

lanes on urban motorways. European Transport Conference 2012. Association for 

European Transport (AET). Glasgow , Scotland: Transportation Research Board. 

Huertas-Leyva, P., Baldanzini, N., Savino, G., & Pierini, M. (2021). Human error in 

motorcycle crashes: a methodology based on in-depth data to identify the skills 

needed and support training interventions for safe riding. Traffic Injury Prevention, 

(n.d.). doi:10.1080/15389588.2021.1896714 

Huertas-Leyva, P., Nugent, M., Savino, G., Pierini, M., Baldanzini, N., & Rosalie, S. (2019). 

Emergency braking performance of motorcycle riders: skill identification in a real-life 

perception-action task designed for training purposes. Transportation Research Part 

F: Traffic Psychology and Behaviour, 63, 93-107. 

Huertas-Leyva, P., Savino, G., Baldanzini, N., & Pierini, M. (2020). Loss of Control Prediction 

for Motorcycles during Emergency Braking Maneuvers using a Supervised Learning 

Algorithm. Applied Sciences, 10(5). 

Hydén, C. (1987). The development of a method for traffic safety evaluation: the Swedish 

traffic conflict technique. Doctoral Thesis. Department of Traffic Planning and 

Engineering: Lund University. 

ISO 21934. (20XX). Road vehicles -- Prospective safety performance assessment of pre-

crash technology by virtual simulation -- Part 2: Guidelines for application. ISO 

technical specification under preparation. 

Jeon, E., & Oh, C. (2017). Evaluating the effectiveness of active vehicle safety systems. 

Accident Analysis & Prevention, 85–96. 

Kasnatscheew, A., Olszewski, P., Laureshyn, A., Moeslund, T. B., & Polders, E. (2018). 

InDeV Final Report - Deliverable 7.9. Ref. Ares(2018)6584257. 



 

 

SAFE-UP D2.5: Description metrics for traffic interactions  

 

 

 

This project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under Grant Agreement 861570. 
43 

Kiran, S. M., & Verma, A. (2016). Review of Studies on Mixed Traffic Flow: Perspective of 

Developing Economies. Transportation in Developing Economies, 2(1), 1-16. 

Kovácsová, N., de Winter, J., & Hagenzieker, M. (2019). What will the car driver do? A video-

based questionnaire study on cyclists' anticipation during safety-critical situations. 

Journal of Safety Research, pp. 11-21. 

Ksontini, F., Espié, S., Guessoum, Z., & Mandiau, R. (2012). A driver ego-centered 

environment representation in traffic behavioral simulation. Advances on Practical 

Applications of Agents and Multi-Agent Systems. Advances in Intelligent and Soft 

Computing, 155. 

Kuang, Y., Qu, X., & Wang, S. (2015). A tree-structured crash surrogate measure for 

freeways. Accident Analysis & Prevention, 137–148. 

Kuligowski, E. D. (2009). The Process of Human Behavior in Fires. National Institute of 

Standards and Technology. 

Laureshyn, A., Johnsson, C., Ceunynck, T. D., Svensson, Å., Goede, M. D., Saunier, N., . . 

. Daniels, S. (2016). Review of current study methods for VRU safety - Appendix 6. 

Deliverable 2.1 Part 4. 

Lee, T. C., Polak, J. W., Bell, M. G., & Wigan, M. R. (2012). The kinematic features of 

motorcycles in congested urban networks. Accident Analysis and Prevention, 49, 

203-211. doi:10.1016/j.aap.2011.04.002 

Lin, W. C., Wong, S., Keung Li, C. H., & Tseng, R. (2016). Generating Believable Mixed-

Traffic Animation. IEEE Transactions on Intelligent Transportation Systems, 17(11), 

3171-3183. 

Liu, H., Wei, H., Zuo, T., Li, Z., & Yang, Y. J. (2017). Fine-tuning ADAS algorithm parameters 

for optimizing traffic safety and mobility in connected vehicle environment. 

Transportation Research Part C: Emerging Technologies, 132–149. 

Liu, W., Jeng, M., Hwang, J., Doong, J. L., Lin, C., & Lai, C. H. (2012). The response patterns 

of young bicyclists to a right-turning motorcycle: A simulator study. Perceptual & 

motor Skills: Learning & Memory, pp. 385-402. 

Mahmud, S. S., Md, L. F., Hoque, S., & Tavassoli., A. (2017). Application of proximal 

surrogate indicators for safety evaluation: A review of recent developments and 

research needs. IATSS research, 17. 

Markkula, G., Madigan, R., Nathanael, D., Portouli, E., Lee, Y. M., Dietrich, A., . . . Merat, 

N. (2020). Defining interactions: a conceptual framework for understanding 

interactive behaviour in human and automated road traffic. Theoretical Issues in 

Ergonomics Science, 21(6), 728-752. Opgehaald van 

https://doi.org/10.1080/1463922X.2020.1736686 

Minh, C. C., Sano, K., & Matsumoto, S. (2012). Maneuvers of motorcycles in queues at 

signalized intersections. Journal of Advanced Transportation, 46(1), 39-53. 



 

 

SAFE-UP D2.5: Description metrics for traffic interactions  

 

 

 

This project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under Grant Agreement 861570. 
44 

Morando, M. M., Tian, Q., Truong, L. T., & Vu, H. L. (2018). Studying the Safety Impact of 

Autonomous Vehicles Using Simulation-Based Surrogate Safety Measures. Journal 

of Advanced Transportation. 

Mullakkal-Babu, F. A., Wang, M., Farah, H., Arem, B. v., & Happee, R. (2017). Comparative 

Assessment of Safety Indicators for Vehicle Trajectories on Highways. 

Transportation Research Record, 127–136. 

Mullakkal-Babu, F. A., Wang, M., He, X., Arem, B. v., & Happee, R. (2020). Probabilistic 

field approach for motorway driving risk assessment. Transportation Research Part 

C: Emerging Technologies, 102716. 

Murphy, P., & Morris, A. (2020). Quantifying accident risk and severity due to speed from 

the reaction point to the critical conflict in fatal motorcycle accidents. Accident 

Analysis and Prevention, 141, 105548. 

Nair, R., Mahmassani, H. S., & Miller-Hooks, E. (2011). A porous flow approach to modeling 

heterogeneous traffic in disordered systems. Transportation Research Part B: 

Methodological, 45(9), 1331-1345. doi:10.1016/j.trb.2011.05.009 

Nguyen, L. X., Hanaoka, S., & Kawasaki, T. (2012). Describing Non – Lane-Based 

Motorcycle Movements in Motorcycle-Only Traffic Flow. Transportation Research 

Record, 2281(1), 76-82. 

Nguyen, L. X., Hanaoka, S., & Kawasaki, T. (2014). Traffic conflict assessment for non-lane-

based movements of motorcycles under congested conditions. IATSS Research, 

37(2), 137-147. 

Niezgoda, M., Kamiński, T., & Kruszewski, M. (2012). Measuring driver behaviour - 

indicators for traffic safety. Journal of KONES, 503–511. 

Oron-Gilad, T., & Meir, A. (2020, February). Understanding complex traffic road scenes: The 

case of child-pedestrians’ hazard perception . Journal of Safety Research, pp. 111-

126. 

Ozbay, K., Yang, H., Bartin, B., & Mudigonda, S. (2008). Derivation and validation of new 

simulation-based surrogate safety measure. Transportation research record, 

2083(1), 105-113. 

Proctor, R. W., & Van Zandt, T. (2008). Human Factors in Simple and Complex Systems. 

Taylor & Francis Group, LLC. 

S. I. (2018). Taxonomy and Definitions for Terms Related to Driving Automation Systems 

for On-Road Motor Vehicles. Opgeroepen op 2020, van 

https://www.synopsys.com/automotive/autonomous-driving-levels.html 

Savolainen, P., & Mannering, F. (2007). Probabilistic models of motorcyclists' injury 

severities in single- and multi-vehicle crashes. Accident Analysis and Prevention, 

955-963. 



 

 

SAFE-UP D2.5: Description metrics for traffic interactions  

 

 

 

This project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under Grant Agreement 861570. 
45 

Shi, X., Wong, Y. D., Li, M. Z., & Chai, C. (2018). Key risk indicators for accident assessment 

conditioned on pre-crash vehicle trajectory. 117. 

Songchitruksa, P., & Tarko, A. P. (2006). The extreme value theory approach to safety 

estimation. Accident Analysis & Prevention, 811–822. 

St-Aubin, P., Miranda-Moreno, L., & Saunier, N. (2013). An automated surrogate safety 

analysis at protected highway ramps using cross-sectional and before–after video 

data. Transportation Research Part C: Emerging Technologies, 284–295. 

Svensson, A. (1998). A method for analysing the traffic process in a safety perspective. 

Doctoral Thesis. Lund Institute of Technology, Department of Traffic Planning and 

Engineering: University of Lund. 

Svensson, A., & Hydén, C. (2006). Estimating the severity of safety related behaviour. 

Accident Analysis and Prevention, 38(2), 379-385. 

Tabibi, Z., & Pfeffer, K. (2003, June 19). Choosing a safe place to cross the road: the 

relationship between attention and identification of safe and dangerous road-

crossing sites. Child: care health and development, pp. 237-244. 

Tageldin, A., Sayed, T., & Wang, X. (2015). Can time proximity measures be used as safety 

indicators in all driving cultures? Case study of motorcycle safety in China. 

Transportation Research Record, 2520, 165-174. 

Tejada, A., Manders, J., Snijders, R., Paardekooper, J.-P., & de Hair-Buijssen, S. (2020). 

Towards a Characterization of Safe Driving Behavior for Automated Vehicles Based 

on Models of “Typical” Human Driving Behavior. 2020 IEEE 23rd International 

Conference on Intelligent Transportation Systems (ITSC), (pp. 1-6). 

Timmermanns, H. J. (2009). Pedestrian Behavior: models, data collection and applications. 

Bingley, UK: Emerald Group Publishing Limited. 

Tiwari, G., Mohan, D., & Fazio., J. (1998). Conflict analysis for prediction of fatal crash 

locations in mixed traffic streams. Accident Analysis & Prevention, 30(2), 207-215. 

Uno, N., Iida, Y., & Yasuhara, S. a. (2003). Objective analysis of traffic conflict and modeling 

of vehicular speed adjustment at weaving section. Infrastructure Planning Review, 

20, 989-996. 

USDOT. (2006). NGSIM -- Next Generation Simulation. US Department of Transportation. 

Opgeroepen op May 3, 2021, van https://tinyurl.com/y3k4s4y9 

Van der Horst, A. R. (1990). A time-based analysis of road user behaviour in normal and 

critical encounters . Delft: Delft University of Technology. 

Van Elslande, P. (2002). Specificity of error-generating scenarios involving motorized two-

wheel riders. Traffic And Transportation Studies(33), 1132-1139. 

Vlahogianni, E. I. (2014). Powered-Two-Wheelers kinematic characteristics and interactions 

during filtering and overtaking in urban arterials. Transportation Research Part F: 

Traffic Psychology and Behaviour, 24, 133-145. 



 

 

SAFE-UP D2.5: Description metrics for traffic interactions  

 

 

 

This project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under Grant Agreement 861570. 
46 

Vlahogianni, E. I., Yannis, G., & Golias, J. C. (2013). Critical power two wheeler driving 

patterns at the emergence of an incident. Accident Analysis and Prevention, 58, 340-

345. 

Walton, D., & Buchanan, J. (2012). Motorcycle and scooter speeds approaching urban 

intersections. Accident Analysis and Prevention, 48, 335-340. 

Wang, C., & Stamatiadis, N. (2013). Surrogate safety measure for simulation-based conflict 

study. Transportation Research Record(2386), 72-80. 

Wang, C., & Stamatiadis, N. (2014). Evaluation of a simulation-based surrogate safety 

metric. Accident Analysis and Prevention, 71, 82-92. 

Wang, J., Wu, J., & Li, Y. (2015). The Driving Safety Field Based on Driver-Vehicle-Road 

Interactions. IEEE Transactions on Intelligent Transportation Systems, 2203–2214. 

Wang, J., Wu, J., Zheng, X., Ni, D., & Li, K. (2016). Driving safety field theory modeling and 

its application in pre-collision warning system. Transportation Research Part C: 

Emerging Technologies, 306–324. 

Wickens, C. D. (2015). Noticing events in the visual workplace: The SEEV and NSEEV 

models. In R. R. Hoffman, P. A. Hancock, M. W. Scerbo, R. Parasuraman, & J. L. 

Szalma, Cambridge handbook of applied perception research (pp. 749-768). 

Cambridge: Eds. 

Williams, P. (2008). Security Studies: An Introduction. Ney York, NY: Routledge. 

Xie, K., Yang, D., Ozbay, K., & Yang, H. (2019). Use of real-world connected vehicle data 

in identifying high-risk locations based on a new surrogate safety measure. Accident 

Analysis and Prevention, 125, 311-319. 

Yue, L., Abdel-Aty, M., Wu, Y., & Wang, L. (2018). Assessment of the safety benefits of 

vehicles’ advanced driver assistance, connectivity and low level automation systems. 

Accident Analysis & Prevention, 55–64. 

Zheng, L., Ismail, K., & Meng, X. (2014). Freeway safety estimation using extreme value 

theory approaches: A comparative study. Accident Analysis & Prevention, 32–41. 

  



 

 

SAFE-UP D2.5: Description metrics for traffic interactions  

 

 

 

This project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under Grant Agreement 861570. 
47 

Appendix  

Mapping SMoS with Scenarios  

In this section, SMoS for both car-car and car-PTW interactions are mapped to scenarios. 

As discussed before, various SMoS are available in the literature for quantifying the severity 

of interactions. The choice of which metric to use depends on the scenario that is under 

consideration. For instance, some metrics are well-suited for car-car interactions during a 

car-following scenario on a highway while others are suited for crossing scenarios at urban 

intersections. There are also metrics which are suited for very dangerous situations like cut-

ins or emergency braking of the lead vehicle.  

The mapping is shown in Table 5 (car-car) and Table 6 (car-PTW), based on an adaption of 

the work in (Mahmud, Md, Hoque, & Tavassoli., 2017). These tables present the following 

information: 

Column 

Name 

Information Provided 

Metric This gives the name of the metric including the commonly used 

abbreviation as found in literature. 

Description This column gives a full definition of the metric. In general, for the selection 

of a metric, the scenario description should fit the description of the metric.  

Formula This columns gives the formula used for calculating the metric. It also 

includes a description of all the variables used in the formula. Before 

selecting   a metric for evaluating a scenario, all variables defined in the 

formula should be checked whether they can be extracted from the 

scenario. 

Thresholds For a given metric, an attempt is made to give indicative values for the 

threshold of severity (i.e. values beyond which a situation is considered 

critical). The thresholds vary according to the scenario and the use case. 

It should be noted that threshold values are indicative and should not be 

taken as strict values.  

Scenarios This column gives a suggestion of scenarios for which the metric is 

suitable. Most metrics can be used for various scenarios while some can 

only be used for a particular scenario. The list of scenarios is thus non-

exhaustive. When a scenario is defined, the description should be 

compared with the description of the metric to see if there is a potential 

match.  
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Use Cases Similar to the scenarios, this column attempts to match the metrics to the 

relevant use cases. Some metrics are suitable for highway or rural use 

case while others are suitable for urban.  

Reference For each metric, the relevant reference is given. To be concise, only a 

single reference is given for each metric. 

 The chosen reference is the one that gives the    most relevant information 

about the metric. In this reference, a description of the metric, formula and 

threshold can be found including references for the threshold values.  

 

These tables should serve as guides for selecting the appropriate metrics for the scenarios 

under consideration. 



 

 

SAFE-UP D2.5: Description metrics for traffic interactions  

   

 

 

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement 861570. 
49 

 

 

Table 5: Mapping of SMoS for car-car Interactions to scenarios 

Metric 
 

Definition Formula Thresholds Scenarios Use Case Ref 

Time-to-

Collision 

(TTC) 

The time until a 

collision between 

the vehicles 

would occur if 

they continued on 

their present 

course at their 

present 

speeds. 

TTCi(t) =
Xi−1(t) − Xi(t) − Ii
Vi(t) − Vi−1(t)

 

V: Vehicle speed 

X: Vehicle position 

l: ego vehicle’s length 

 Xi−1(t) − Xi(t): Relative distance 

Vi(t) − Vi−1(t): Relative speed 

 

1- 2.0s for 

Approaches 

at 

intersections 

 

1.6- 2.0s for  

Low level of 

conflict and 

less than 0.9s 

for high level 

conflicts 

 

2.5s for 

supported 

drivers and 

3.5s for non-

supported 

drivers 

 

Rear-end 

vehicle to 

vehicle 

collision, 

turning 

manoeuvres, 

crossing 

scenarios 

urban, rural 

and highway 

(Mahmud, 

Md, 

Hoque, & 

Tavassoli.

, 2017) 
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3s for two-

lane rural 

road 

2-4.0s for 

urban road 

tunnels 

Time 

Exposed 

Time-to-

Collision 

(TET) 

Summation of all 

moments (over 

the considered 

time period) that a 

driver 

approaches a 

front vehicle with 

a TTC-value 

below the 

threshold value 

TTC 

 

𝑇𝐸𝑇𝑖 =  ∑𝑡=0
𝑁  𝛿𝑖(𝑡) ⋅ 𝜏𝑠𝑐

𝛿𝑖(𝑡) = {
1 ∀0 ≤ 𝑇𝑇𝐶𝑖(𝑡) ≤ 𝑇𝑇𝐶

∗

0  otherwise 

 

where, for a period 𝑇 = 𝑁 ⋅ 𝜏𝑠𝑐 , there are 𝑁 small time 

intervals, each interval is 𝜏sc(e. g. 0.1 s). 𝛿𝑖(𝑡) is a 

switching variable between 1 and 0 , and value 1 

indicates a signal of risk condition, when the TTC 

value is below threshold TTC*. 

 

 Rear-end 

vehicle to 

vehicle 

collision, 

turning 

manoeuvres, 

crossing 

scenarios,  

urban and 

highway 

(Shi, 

Wong, Li, 

& Chai, 

2018) 

Time 

Integrated 

Time-to-

Collision 

(TIT) 

Integral of the 

TTC-profile during 

the time it is 

below the 

threshold 

𝑇𝐼𝑇𝑖 =  ∑𝑡=0
𝑁  [𝑇𝑇𝐶∗ − 𝑇𝑇𝐶𝑖(𝑡)] ⋅ 𝜏𝑠𝑐

∀0 ≤ 𝑇𝑇𝐶𝑖(𝑡) ≤ 𝑇𝑇𝐶
∗  

where, for a period 𝑇 = 𝑁 ⋅ 𝜏𝑠𝑐 , there are 𝑁 small time 

intervals, each interval is 𝜏sc(e. g. 0.1 s). 

 Rear-end 

vehicle to 

vehicle 

collision, 

turning 

manoeuvres, 

crossing 

scenarios 

urban and 

highway 

(Shi, 

Wong, Li, 

& Chai, 

2018) 
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Modified 

Time-to-

Collision 

(MTTC) 

Modified models 

which considered 

all of the potential 

longitudinal 

conflict 

scenarios due to 

acceleration or 

deceleration 

discrepancies. 

MTTC =
−Δ𝑉 ± √𝑉2 + 2Δ𝑎𝐷

Δ𝑎
 

 

 

ΔV: Relative speed (m/s) 

Δ a: Relative Acceleration (m/s2) 

D: Initial relative space gap (m); 

 

Ideally the 

same 

threshold as 

TTC . 

 

The authors 

however 

propose 4s 

as threshold 

for severity. 

Rear-end 

vehicle to 

vehicle 

collision, 

turning 

manoeuvres, 

crossing 

scenarios 

urban and 

highway 

(Ozbay, 

Yang, 

Bartin, & 

Mudigond

a, 2008) 

Crash Index 

(CI) 
 

Influence of 

speed on kinetic 

energy involved in 

collisions. 
 

CI =
(𝑉𝐹 + 𝑎𝐹 ⋅ MTTC)

2 − (𝑉𝐿 + 𝑎𝐿 ⋅ 𝑀𝑇𝑇𝐶)
2

2
×

1

MTTC
 

𝑉𝐹: Following vehicle’s speed (m/s); 

𝑉𝐿: Leading vehicle’s speed (m/s) 

𝑎𝐹: Vehicle’s acceleration (m/s2) 

𝑎𝐿: Leading vehicle’s acceleration (m/s2) 

 Rear-end 

vehicle to 

vehicle 

collision 

urban and 

highway 

(Ozbay, 

Yang, 

Bartin, & 

Mudigond

a, 2008) 

 

Time-to-

Collision 

with 

Disturbance 

(TTCD) 

 

TTC when a 

deceleration 

disturbance is 

applied to leading 

vehicle 

 

𝑇𝑇𝐶𝐷

=

{
 
 

 
 (𝑣1 − 𝑣2) + √(𝑣1 − 𝑣2)

2 + 2𝑑(𝑙0 − 𝑙𝑣)

𝑑
, 𝑑 ≤

2𝑣1𝑣2 − 𝑣1
2

2(𝑙0 − 𝑙𝑣)

2𝑑(𝑙0 − 𝑙𝑣) + 𝑣1
2

2𝑑𝑣2
, 𝑑 >

2𝑣1𝑣2 − 𝑣1
2

2(𝑙0 − 𝑙𝑣)

 

𝑑: the deceleration rate of the leading vehicle 

𝑑∗: the deceleration rate of the leading vehicle that 

causes the collision to occur exactly when 

the leading vehicle stops 

In principle , 

the same 

thresholds  

for TTC can 

be used.  

The authors 

however 

recommend  

1.7s to 

distinguish 

Rear-end 

vehicle to 

vehicle 

collision, 

turning 

manoeuvres, 

crossing 

scenarios 

urban and 

highway 

(Xie, 

Yang, 

Ozbay, & 

Yang, 

2019) 
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𝑣1: initial speed of the leading vehicle 

𝑣2: initial speed of the following vehicle (remains 

constant in the car following scenario) 

𝑡0: the time when a disturbance is given 

𝑡∗: the time interval between the given of the 

disturbance and the full stop of the leading 

vehicle 

𝑙𝑣: the length of the vehicle 

𝑙0: initial relative distance between the leading 

vehicle and the following vehicle 

𝑙1: distance travelled by the leading vehicle after 

being given a disturbance 

𝑙2: distance travelled by the following vehicle before 

colliding with the leading vehicle after a 

disturbance has been given to the leading vehicle 

 

critical 

situations 

Headway (H) The elapsed time 

between the front 

of the lead vehicle 

passing a point 

on the roadway 

and the front of 

the following 

vehicle passing 

the same point 

H = ti − ti−1 

 

 

 

 

 

ti: Time (vehicle i passes a certain location) ti−1: 

Time (vehicle ahead of vehicle i passes the same 

location). 

Recommend

ed safe 

headway is 

2s in the US 

and most 

European 

countries.  

 

Swedish  

National 

Road 

Rear-end 

vehicle to 

vehicle 

collisions 

urban and 

highway 

(Mahmud, 

Md, 

Hoque, & 

Tavassoli.

, 2017) 
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Administratio

n 

recommends 

3s for rural 

areas 

 

 Minimum 

safe headway 

0.7s  

 

1.1s to 1.7s is 

considered 

comfortable  

 

<0.6s  is 

considered 

dangerous.  

Time-to-

Accident 

(TTA) 

Time-to-Accident 

(TTA) is the time 

that remains to an 

accident from the 

moment that one 

of the road users 

starts an evasive 

action if they had 

 

TA = 1.5 ×
𝑉𝑖

16.7 × exp (−0.0306 × 0.5 Vm)
 

 

 

 

Generally 

1.5s   is used 

to distinguish 

serious 

conflicts and 

it worked well  

for urban 

Rear-end 

vehicle to 

vehicle 

collision, 

turning 

manoeuvres, 

crossing 

scenarios 

Urban, 

Rural and 

highway 

(Mahmud, 

Md, 

Hoque, & 

Tavassoli.

, 2017) 
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continued with 

unchanged speed 

and 

directions 

 

𝑉𝑖: initial speed 

𝑉𝑚: Mean speed. 

 

roads with 

low speeds.  

 

For rural 

roads with 

high speeds 

<1.5s is 

recommende

d  

Post-

Encroachme

nt Time 

(PET) 

The time between 

the moment that a 

road user 

(vehicle) leaves 

the area of 

potential collision 

and the other 

road user arrives 

collision area. 

 

PET = t2 − t1 

 

t2 : Coming time at conflict point 

t1 : Leaving time of conflict point. 

Values 

between 1.0 

to 1.5s are 

considered 

critical  

 

However,  a 

study has 

found  6.5s to 

match well 

with 

aggregate 

crash data 

Mainly 

crossing 

scenarios, 

lateral 

scenarios 

(merging / 

diverging) 

Urban (Mahmud, 

Md, 

Hoque, & 

Tavassoli.

, 2017) 

Potential 

Index 

for Collision 

Distance between 

the two vehicles 

considered when 

 

PICUD(m) =
V1
2 − V2

2

2𝛼
+ S0 − V2Δt 

It is 

considered 

dangerous if 

Rear-end 

vehicle 

collision, 

crossing 

urban and 

highway 
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with Urgent 

Deceleration 

(PICUD) 

they completely 

stop. 

 

 

V1,  V2: Velocity of leading car 1 and following car 2 , 

respectively 

S0: Distance between car 1 and 2 

Δt: Driver’s reaction time 1 

𝛼: Deceleration rate to stop 

 

the distance 

is <0 

scenarios, 

Lane 

changes , 

emergency 

break  by 

lead vehicle 

(Shi, 

Wong, Li, 

& Chai, 

2018) 

Proportion 

of 

Stopping 

Distance 

(PSD) 

Ratio between the 

remaining 

distance to the 

potential point of 

collision and the 

minimum 

acceptable 

stopping distance. 

 

PSD =
RD

MSD
 

 

 

RD: Remaining distance to the potential point of 

collision (m) MSD: Minimum acceptable stopping 

distance (m). 

Values <1 

are 

considered 

dangerous 

Collision with 

object 

 (Shi, 

Wong, Li, 

& Chai, 

2018) 

Unsafe 

Density 

(UD) 

Level of “unsafe” 

in the relation 

between two 

consecutive 

vehicles on the 

road for a 

determined 

simulation step. 

unsafety = Δ𝑆 ⋅ 𝑆 ⋅ 𝑅𝑏 

Unsafety Density =
∑𝑆=1
𝑆𝑡  ∑V=1

𝑉t   unsafety v,s⋅d

T⋅L
 

S: Speed of the follower vehicle 

ΔS: Difference of speed at collision time 

Rb: unsafe parameter 

Vt: nb of vehicles in the link 

St: nb of simulation steps within aggregation period 

d: simulation step duration [s] 

 Rear-end 

collisions, 

lane based 

traffic 

 (Mahmud, 

Md, 

Hoque, & 

Tavassoli.

, 2017) 
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T: aggregation period duration [s] 

L: section length [m] 

 

Difference 

of Space 

distance 

and 

Stopping 

distance 

(DSS) 

DSS is defined by 

the difference of 

the space 

and stopping 

distance. 

DSS = (
v1
2

2𝜇g
+ d2) − (v

2Δt +
v1
2

2𝜇g
) 

S: Space distance (m) Stop: Stop distance (m) 

v1 : Velocity of following vehicle (m/s) 

v2: Velocity of leading vehicle (m/s) 

𝜇 : Friction coefficient 

g: Gravity acceleration (m/s2) 

d2: Distance between leading vehicle and following 

vehicle (m) 

Δt: Reaction time 

 

Values < 0 

are 

considered 

dangerous 

Rear-end 

collisions, 

turning 

scenarios 

 (Mahmud, 

Md, 

Hoque, & 

Tavassoli.

, 2017) 

Time 

Integrated 

DSS (TIDSS) 

Total value of the 

time integrated 

value gap 

between DSS and 

the dangerous 

threshold value. 

𝑇𝐼𝐷𝑆𝑆 = ∫0
𝑡
 {𝑇𝐻 − (𝐷𝑆𝑆)}𝑑𝑡 

 

𝑇𝐻 is the threshold value 

 Rear-end 

collisions 

 (Mahmud, 

Md, 

Hoque, & 

Tavassoli.

, 2017) 

Deceleration 

Rate to 

Avoid the 

Crash 

(DRAC) 

Differential speed 

between a 

following/ 

response vehicle 

and its 

corresponding 

subject/ lead 

𝐷𝑅𝐴𝐶𝐿𝑉,𝑡+1
𝑅𝐸𝐴𝑅 =

(𝑉𝐿𝑉,𝑡 − 𝑉𝑆𝑉,𝑡)
2

𝐷
 

Or 

𝐷𝑅𝐴𝐶𝐿𝑉,𝑡+1
𝑅𝐸𝐴𝑅 =

(𝑉𝐿𝑉,𝑡 − 𝑉𝑆𝑉,𝑡)
2

2 × 𝐷
 

AASHTO   

threshold of 

3.40 m/s2 for 

most drivers. 

 

Rear-end 

collisions, hit 

object / 

parked 

vehicle, 

pedestrian. 

Merging / 

Urban, Rural 

and  

Highway 
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vehicle (SV) 

divided by their 

closing time. 

𝑉𝑆𝑉: Velocity of following venicle 

(m/s) 

𝑉𝐿𝑉: Velocity of leading vehicle (m/s) 

𝐷 : Relative Distance 

 

Another study 

recommend   

conflict if  

DRAC 

exceeds 

3.35m/s2. 

diverging 

manoeuvres 

Crash 

Potential 

Index (CPI) 

Probability that a 

given vehicle 

DRAC exceeds 

its maximum 

available 

deceleration rate 

(MADR) during a 

given time 

interval. 

Driver reaction 

time can be 

incorporated in 

DRAC → 

modified CPI 

 

CPIi =
∑t=tii
tfi  P(MADR(a1,a2,…,an) ≤ DRACi,t) ⋅ Δt ⋅ b

Ti
 

DRAC  i,t  : Deceleration rate to avoid the crash 

(m/s2) MADR (𝑎1, 𝑎2, … , 𝑎𝑛): Random variable 

following normal distribution for a given set of traffic 

and environmental attributes (a1, a2, … , an)(m/s
2) 

tii : Initial simulated time interval for vehicle 𝑖 

tfi : Final simulated time interval for vehicle 𝑖 

Δt: Simulation time interval 

Ti : Total travel time for vehicle 𝑖 

b: A binary state variable, 1 if a vehicle interaction 

exists and 0 otherwise. 

 

CPI>0 is 

considered 

very 

dangerous 

Rear-end 

collisions, hit 

object / 

parked 

vehicle, 

pedestrian. 

Merging / 

diverging 

manoeuvres 

 (Shi, 

Wong, Li, 

& Chai, 

2018) 

Criticality 

Index 

Function 

(CIF) 

Multiplication of 

vehicle speed 

with the 

required 

deceleration 

Criticality Index = V2/TTC (Time to 

Conflict) 

V: Velocity (m/s) 

 Collision with 

object 

Highway and 

urban 

(Mahmud, 

Md, 

Hoque, & 

Tavassoli.

, 2017) 
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Margin to 

Collision 

(MTC) 

Ratio of the 

summation of the 

inter-vehicular 

distance and the 

stopping distance 

of the preceding 

vehicle divided by 

the stopping 

distance the 

following vehicle. 

  Collision with 

object 

 (Mahmud, 

Md, 

Hoque, & 

Tavassoli.

, 2017) 
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Table 6 Mapping of SMoS for car-PTW Interactions to scenarios 

Metric 
 

Definition Formula Thresholds Scenarios Use 

Case 

Ref 

Safety Gap 

distance 

Longitudinal 

safety gap 

distance that 

the 

motorcyclist 

has to 

maintain 

when senses 

the leading 

vehicle 

decelerating  

 

Longitudinal 

gap:7.00m 

(0.32) for the 

left half 5.42m 

(0.34) for the 

right-half  

 

Congested 

Urban, car-

following/rear-

end(avg. 

speed 

36km/h) 

 

Urban (Lee, Polak, 

Bell, & 

Wigan, 

2012) 

Crash 

Propensity 

Metric (CPM) 

(not specific 

for PTWs)  

Crash 

Propensity 

Metric (CPM) 

is the 

probability of 

a conflict to 

become a 

crash 

The sum of Groups A and B-2 can be used as the CPM. 

For  

 RT is the reaction time; µrt and σrt are the mean and 

standard deviation of reaction time distribution which is 

assumed to be a log-normal distribution; erf is the error 

Low severity:  

CPM < 0.10 

High severity: 

CPM > 0.90 

 

Urban,  

car-

following/rear-

end 

Urban (Wang & 

Stamatiadis, 

2014) 



 

 

SAFE-UP D2.5: Description metrics for traffic interactions  

   

 

 

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement 861570. 
60 

function.

 

 RT is the reaction time; MABR is the maximum braking 

rate; µrt and σrt are the mean and standard deviation of 

reaction time distribution which is assumed to be a log–

normal distribution; µMABR and σMABR are the mean and 

standard deviation of MABR distribution which is assumed 

to be a truncated normal distribution; LMABR and UMABR are 

the lower and the upper limit of MABR; x is the reaction 

time of a driver; y is the required braking rate (RBR) for 

the driver; ϕ(·) is the cumulative distribution function of the 

standard normal distribution. 
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VRU Literature Survey 

This structured literature review (Figure 4) was conducted between August and November 

2020 to identify relevant parameters to differentiate (non-)safety critical driving situations of 

VRUs in traffic situations (Studies from 2002 to 2020). The keywords VRUs, pedestrian, 

cyclist, crash data, VR, simulation, experiment, perception, attitude, intersection, roundabout, 

and indicator were used in the platforms Semantic scholar, Google scholar, Researchgate 

and Umlibrary to get an overview of relevant studies. Recent, peer-reviewed, studies with the 

perspective of VRUs’ and a general high quality of the publication served as selection criteria.  

 

 

Figure 4: Procedure of Literature Review 

 

Study 1 (pedestrians, (Oron-Gilad & Meir, 2020)): In a simulator study, N = 46 participants 

were asked to decide when to cross a road in three traffic situations (T-junction, traffic circle, 

pedestrian crossing) and to indicate their decision via pressing a button. Response sensitivity, 

response time, and qualitative reasoning were assessed. Hazard perception skills and 

adequate perception indicator measures, like age or complexity of situation were revealed 

through logistic regressions and qualitative assessment.  Conclusion: Participants based their 

decisions on the road most salient features like vehicles and the presence of another 

pedestrian. 

Study 2 (pedestrians and cyclists, (Habibovic & Davidsson, 2012)): In a crash data analysis, 

N = 56 crashes (VRU-car incidents) were analysed regarding weather and light conditions as 

well as intersection type. Based on timing and directions of the VRUs the analysis revealed 

that 70% of the VRUs saw the conflicting car before the collision, but still misunderstood the 

traffic situation and/or made an inadequate plan of action. Conclusion: The mere possibility 

of seeing a hazard can therefore not account for reacting adequately and further research is 

needed on why crash participants react inadequate in a traffic situation.  
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Study 3 (pedestrians, (Tabibi & Pfeffer, 2003)): In a reaction experiment, N = 128 participants 

were asked to identify safe and dangerous road crossings based on a computer presentation 

with and without safety-relevant information displayed. The ability to identify objectively safe 

and dangerous road-crossing sites and attention level were assessed. Significantly longer 

identification times were needed in condition with irrelevant information, while limited sights 

produced more errors. This leads to the conclusion that the quality and quantity of cues for 

adequate behaviour are both relevant for pedestrians, when they encounter complex traffic 

situations. The central element for a decision of the participants is their subjective evaluation 

based on the presented cues. 

Study 4 (pedestrians, (Guéguen, Meineri, & Eyssartier, 2015)): In a field experiment at four 

pedestrian crossings, the stopping behaviour of N = 2560 cars was assessed, when four 

different confederates were staring at the oncoming vehicles. It was concluded that controlled 

actions by a pedestrian, like staring at a vehicle, have an impact on the possibility of the 

vehicle to stop for the passenger.  

Study 5 (cyclists, (Liu, et al., 2012)): In a simulator study, N = 60 participants were asked to 

respond to right-turning motorised vehicles. Steering and braking behaviour was assessed 

based on three safety-critical behaviours of motorised vehicles and three cut-in time gaps. 

Five different patterns of reactions were identified: 1) early response and quickly depress the 

brake; 2) last-moment response and slowly depress the brake; 3) late response quickly 

depress the brake; 4) very late response; and 5) quickly depress the brake, and no response. 

These patterns provide evidence that the estimated behaviour of a cyclist cannot be predicted 

reliably based on simple probability calculation containing connections between seeing a 

hazard, identifying it as a risk, and reacting adequately.  

Study 6 (cyclists, (Dozza & Werneke, 2014)): In a naturalistic bicycle driving study, N = 16 

participants were asked to press a button, when they encountered a critical event. 

Additionally, a critical event was assessed, when a kinematic trigger reached a threshold. 

Based on a subjective and objective critical events analysis, odds ratios calculations revealed 

three main risks for encountering a critical traffic situation, when driving a bicycle in an urban 

area: intersections (4x to 12x increased risk), poor road maintenance (10x increased risk) and 

crossing VRUs (2x increased risk). Conclusion: The three main risks for encountering critical 

traffic situations in urban area on a bicycle as identified in the study could be assessed via 

the combination of objective and subjective data. 

Study 7 (cyclists, (Abadi M. G., Hurwitz, Sheth, McCormack, & Goodchild, 2019)): In a 

simulator study, N = 48 participants encountered a potential critical traffic situation including 

a bicycle lane and a commercial vehicle loading zone. Velocity, lateral position, and crash 

events of the participants were assessed based on three markings in the conflict zone, three 

levels of truck manoeuvres, and two levels of traffic signs. It was observed that the presence 

of a truck or warning sign influenced the velocity and lateral position. The results indicate 

furthermore that infrastructural layout and therefore cues for adequate and desired behaviour 

in a traffic situation might be central for a risk reducing behaviour, such as reducing the speed 

or an adaptation of the lateral lane position.  

Study 8 (cyclists, (Kovácsová, de Winter, & Hagenzieker, 2019)): Within a video-based online 

survey, the anticipatory behaviour of N = 1384 cyclists from 65 countries was assessed during 
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safety-critical situations. Freezing moments and criticality of the traffic situations of the 50 

experimental video clips were modified to assess self-reported slowing down behaviour and 

subjective prediction of the behaviour of the conflicting cars displayed in the videos. The 

results indicate that high level of perceived risk is a significant predictor of slowing-down 

behaviour. Conclusion: The subjectively perceived risk is influenced by the traffic situations 

criticality and should be a core for modelling cyclists’ behaviour. 

Study 9 (cyclists, (Doorley, et al., 2015)): In a quasi-experimental/partially controlled field 

study N = 8 participants covered two routes and were asked to give a risk rating at 24 points 

in time. Additionally, heart rate was assessed. Results indicate a significant dependency 

between perceptions of risk among cyclists and heart rate. Conclusion: Heart rate can be 

used as a non-intrusive way to estimate risk perception of cyclists.  

Study 10 (cyclists, (Abadi, Hurwitz, & Macuga, 2019)): In an online study, N = 342 participants 

were asked to express their most probable reaction given a risky situation. Distracted cycling, 

subjective norms, habits, and safety beliefs were assessed. Results indicate that perceived 

level of comfort (PLOC) together with incidents in the past, and the general safety beliefs of 

the participant are the central elements in a structural equation model, which predicts a safe 

or risky response to a potential hazard. Conclusion: The subjective appreciation (comfort) of 

the traffic situation seems to be essential for predicting the behaviour of cyclists. 

Study 11 (cyclists, (Alvergren, Karlsson, Wallgren, Op de Camp, & Nabvii Niavi, 2019)): In 

the EU-project MeBeSafe the behaviour of N = 93 cyclists was assessed in a quasi-

experiment based on visual nudges. Two variants of digital signs and four markings on the 

bicycle lane were applied, while trajectories, speeds, braking distances, and head movement 

of the passing cyclists were assessed objectively. Additionally, the nudges were rated by 

questionnaires subjectively. Results revealed significant changes towards desired trajectories 

and lower speeds at all nudges in comparison to a baseline without nudges. Conclusion: The 

implemented infrastructural measures can objectively nudge the participants into a desired 

behaviour. 

Study 12 (cars, (Dittrich, 2020)): In a dissertation five empirical studies were carried out as 

part of the human-centered design process. Key is the first study, where N = 34 participants 

reported their emotions and their triggers while they were driving. Results and the literature 

examined in this dissertation revealed a positive relation between frustration-inducing traffic 

situations, subjective reported frustration levels and aggressive driving behaviour. 

Conclusion: The resulting driving behaviour is not only determined by the situation and its 

participants, but by the recent experiences and frustration levels of the drivers. 

 


