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Abstract

We perform statistical analyses on spatiotemporal patterns in the magnitude distribution of
induced earthquakes in the Groningen natural gas field. The seismic catalogue contains 336
earthquakes with (local) magnitudes above 1:45, observed in the period between 1 January
1995 and 1 January 2022. An exploratory moving-window analysis of maximum-likelihood
b-values in both time and space does not reveal any significant variation in time, but does reveal
a spatial variation that exceeds the 0:05 significance level.

In search for improved understanding of the observed spatial variations in physical terms we
test five physical reservoir properties as possible b-value predictors. The predictors include two
static (spatial, time-independent) properties: the reservoir layer thickness, and the topographic
gradient (a measure of the degree of faulting intensity in the reservoir); and three dynamic (spa-
tiotemporal, time-dependent) properties: the pressure drop due to gas extraction, the resulting
reservoir compaction, and a measure for the resulting induced stress. The latter property is the
one that is currently used in the seismic source models that feed into the state-of-the-art hazard
and risk assessment.

We assess the predictive capabilities of the five properties by statistical evaluation of both
moving window analysis, and maximum-likelihood parameter estimation for a number of sim-
ple functional forms that express the b-value as a function of the predictor. We find significant
linear trends of the b-value for both topographic gradient and induced stress, but even more
pronouncedly for reservoir thickness. Also for the moving window analysis and the step func-
tion fit, the reservoir thickness provides the most significant results.

We conclude that reservoir thickness is a strong predictor for spatial b-value variations in the
Groningen field. We propose to develop a forecasting model for Groningen magnitude distri-
butions conditioned on reservoir thickness, to be used alongside, or as a replacement, for the
current models conditioned on induced stress.

Introduction

The Groningen reservoir in the Netherlands is the largest gas field in western Europe. Since
2014, annual production volumes from the Groningen gas field are rapidly declining.
Although approximately one fifth of the initial�2900 billionm3 is still technically recoverable,
the Dutch government has decided to cease production by 2023 or 2024 to ensure public safety
and well-being. Induced earthquakes at the Groningen natural gas reservoir have put local com-
munities at risk to a level that has led to societal and political upheaval (Vlek, 2019). The res-
idential population living and working near the contours of the Groningen gas field is about half
a million people. About 25,000 damage claims for masonry buildings have been filed in the past
years of which a part can be associated to individual seismic events. Older homes and farms built
with single brick walls are especially vulnerable; these are either taken down and rebuilt or struc-
turally strengthened.

The 100–300 m thick gas-bearing Rotliegend sandstone reservoir at 2.6–3.2 km deep is over-
lain by a 1 km thick Zechstein salt formation that acts as a seal (De Jager &Visser, 2017). Around
700 faults have been mapped in and below the reservoir (Kortekaas & Jaarsma, 2017). The
weight of the overburden causes compaction of the reservoir formation due to gas withdrawal.
Differential compaction results in localized stress concentrations along existing faults resulting
in ruptures and earthquakes (Van Thienen-Visser & Breunese, 2015). Groningen-specific mod-
els describing this process are given by (Bourne et al., 2014; Bourne &Oates, 2017; Candela et al.,
2019; Bourne & Oates, 2020) and references therein.

The Gutenberg–Richter relation is a model for the magnitude distribution of earthquakes
mostly characterized by its exponential coefficient, the b-value. Variations of the b-value express
changes in the rate of occurrence of small earthquakes relative to large ones. Spatiotemporal
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b-value variations have been associated to various geophysical
processes and circumstances for earthquake catalogues over natu-
ral tectonically active environments. Dependence of b-values on
differential stress has been reported by Scholz (1968) and Wyss
(1973). More specifically, spatial b-value variations have been
related to variations in tectonic regimes: thrust faulting systems
being associated with relatively low values, normal faulting systems
with relatively high values and strike-slip systems in between
(Gulia & Wiemer, 2010; Schorlemmer et al., 2005; Nakaya,
2006). Also, the depth of occurrence of the events has been iden-
tified as a possible cause of b-value variations (Eaton et al. 1970;
Wyss, 1973; Wiemer & Benoit, 1996; Mori & Abercrombie,
1997; Wyss et al., 1998; Spada et al., 2013; Gerstenberger et al.,
2001). Other possible factors that may be relevant to the
Groningen situation include stress fluctuations or regimes
(Wiemer & Wyss, 1997; Langenbruch & Shapiro, 2014; Scholz,
2015) and the (fractal) geometry of fault systems (Hirata, 1989;
Rundle, 1989; Mandal & Rastogi, 2005).

In the context of induced seismicity, b-value variations have
been attributed to several processes. These include: fluid-driven
triggering mechanism possibly due to faults cutting into the reser-
voir and hydraulic connection between reservoir and basement at a
CO2 injection site (Goertz-Allmann et al., 2017); normalised shear
stress instead of differential stress at the Basel Enhanced
Geothermal System (Mukuhira et al., 2021); loading rates in the
Lacq gas field (Lahaie & Grasso, 1999) and at the The Geysers geo-
thermal field (Henderson et al., 1999); pore pressure, fluid content
and injection activity at the Oklahoma oil field (Vorobieva et al.,
2020; Rajesh & Gupta, 2021).

Despite the large and increasing number of proposed b-value
dependencies, the physical context is not always well understood.
This especially holds for induced seismicity cases, where the num-
ber of studies is significantly lower (possibly due to the limited size
of event catalogues). Considering the highly non-stationary char-
acteristics of the anthropogenic activities, hazard and risk assess-
ment models could benefit greatly from a better understanding of
b-value variations. The current state-of-the-art seismological
source models for the Groningen gas field (Bourne & Oates,
2017; Bourne & Oates, 2020) forecast spatiotemporal variations
in both activity rate and magnitude distribution in terms of an
induced stress metric. Bourne and Oates (2020) provided an
insightful separation of literature studies on stress dependent
and not dependent b-value variations. The choice of induced stress
as a predictor is based on a comparative analysis of a suite of pos-
sible predictors in Bourne and Oates (2017) for seismic activity
rate. However, it appears that the authors did not make a separate
attempt to determine the most appropriate predictor for the mag-
nitude frequency model. We consider it possible that the best pre-
dictor for activity rate may not automatically be the best predictor
for the magnitude distribution.

In this paper, we perform statistical analyses on the spatiotem-
poral variations of the b-value in the Groningen gas field. We use a
relatively small catalogue of 336 events with (local) magnitudes
above the estimated completeness level of 1.45 over the entire
observation time span from 1 January 1995 to 1 January 2022.
We investigate the predictive capabilities of five physical quantities
(covariates) that describe static or dynamic properties of the
Groningen field. The general goal of the investigation is to steer
the development of forecasting models that allow a more precise
assessment of the seismic hazard and risk analysis through more
precise forecasts on the magnitude distribution.

Data and methods

Earthquake catalogue

The first instrumentally recorded seismic event in the Groningen
gas field was an earthquake with local magnitude 2.4 in 1991.
When the event took place, the mean reservoir pressure had
already decreased from the initial 350 bar to below 200 bar.
With ongoing reservoir gas production the induced seismicity con-
tinued leading to the installation of a regional borehole seismic net-
work by 1995 (Dost et al., 2017). In the following years, the annual
number of recorded earthquakes fluctuated around ten to fifteen
events per year until about 2003 when it started to increase, to
nearly 120 in 2017. Figure 1(top) shows the annual number of
event in different magnitude categories. The largest magnitude
observed to date is the 3.6 event near Huizinge in 2012.

The sensitivity of themonitoring network has not been uniform
in space and time. A relatively safe (conservative upper bound)
estimate of the completeness level over the entire period and region
is a magnitude of 1.5 (Dost et al., 2017). For the purpose of the cur-
rent study we adopt this level as the minimum threshold mmin for
earthquakes to be considered. In fact, since we use unrounded
magnitude values we slightly relax the threshold to mmin ¼ 1:45,
as the value 1.5 was specified for magnitude values rounded to
one decimal place. Figure 1(bottom) shows the annual number
of events in the curated catalogue.

We note that the current study might, in principle, benefit from
an enlarged data set by taking into account a time-dependent com-
pleteness level (Dost et al., 2017; Varty et al., 2021). However, by
taking a conservative assumption here, we largely steer clear of dis-
cussions on how the spatiotemporal completeness level should be
estimated and to what extent imperfections would affect the results
(e.g. Herrmann & Marzocchi, 2020). Also, since one of our objec-
tives is to provide forecasting models for risks that occur only at
magnitudes that are several units larger than the completeness
magnitude (say, magnitude 4 and beyond), it is questionable
whether we should go as low as we possibly can. After all, the lower
we choose the range of input data for our model inference, the
larger the distance we effectively have to extrapolate at a later stage.

We obtained the Groningen earthquake catalogue from the
Seismological Service of the KNMI (KNMI, 2022b) through their
FDSN Event Web Service (URL found in reference KNMI
(2022a)), which provides origin times, locations in WSG-84 coor-
dinates and unrounded local magnitudes. Epicentral coordinates
have subsequently been transformed into the local Amersfoort/
RDNew coordinates system (epsg.io, 2022). The hypocenter depth
is not used. We selected all earthquakes above mmin ¼ 1:45, in the
time window between 1 January 1995, T00:00 and 1 January 2022,
T00:00. To avoid interference of earthquakes due to other explo-
ration activities in the vicinity as much as possible, the spatial
extent of the catalogue is limited to the Groningen gas field outline
(NAM, 2021). The total number of events in the curated catalogue
is 336. Figure 2 shows the catalogue of all earthquakes of the Gro-
ningen gas field.

Gutenberg–Richter magnitude distribution

We employ the classical Gutenberg–Richter relation (Gutenberg &
Richter, 1941, 1944), as a model for the magnitude distribution of
induced earthquakes in the Groningen gas field. The survival func-
tion, or probability P½MmjMmmin� of a random magnitude sample
M exceedingm, under the condition that it exceedsmmin is given by:
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P½M � mjM � mmin� ¼ 10�bðm�mminÞ; (1)

with b the exponential parameter, or b-value, and its probability
density function as:

fMðmÞ ¼ � dP½M � mjM � mmin�
dm

(2)

¼ b�e�b�ðm�mminÞ; (3)

where b� ¼ b logð10Þ.
Unlike previous authors (Bourne & Oates, 2020), we do not

consider a dedicated prescription of the high-magnitude tail of
the distribution such as a truncation or a taper. The focus of
our efforts is to find evidence for any significant spatiotemporal

Fig. 1. Number of earthquakes in the Groningen field in different magnitude categories. This Figure is created by first rounding the magnitudes to 1 decimal place and subsequently
assigning the earthquakes to their magnitude categories. Only events within the outline of the Groningen gas field are included (see also Fig. 2). Top view: all recorded events in said
space/time window. Bottom view: the events above the minimum magnitude included in the current study (336 in total).
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variation of the magnitude distribution. However, as argued in
Marzocchi et al. (2019) and Bourne and Oates (2020), among
others, failure to recognize and accommodate a truncated or
tapered tail may lead to artifacts appearing in b-value estimates,
especially if the tail starts close to the mmin considered. However,
we argue that if a tail effect is relevant, in the sense that it is some-
how exposed in the data, then such artifacts may actually help to
reveal any spatiotemporal variation of this effect through the
analysis of the b-value. We only need to keep in mind that any sig-
nificant spatiotemporal variation in the assessed b-value does not
necessarily have to be caused by a variation in the exponential
character of the distribution, but may also be caused by variations
in the tail behaviour that we do not model explicitly.

In this study we are interested in spatiotemporal variations of
the b-value b, so that we can express it as a function of time t and

space coordinates x. More specifically, we test prospective predic-
tors that may act as a spatiotemporal covariate cðt; xÞ for the
b-value:

b ¼ gCðcðt; xÞ; �Þ; (4)

where we use a generic functional form gC that depends on cova-
riate cðt; xÞ and a, generally multivariate, parameter set �, which
represents, for example, the coefficients in functional form. We
investigate a number of functional forms (i.e. models) with corre-
sponding parameter sets, for which we infer information from
the data.

The inference of model parameters starts with expressing the
log-likelihood of themodel, conditional on the data. The likelihood
is defined as:

Fig. 2. Map view of the Groningen gas field and its location inset (in red at the top-left corner). Locations of all recorded induced earthquakes at any time in the vicinity are shown by
grey dots. The colored dots represent the earthquakes included in the current study, that is, within the field outline and the time span from 1995-01-01 to 2022-01-01, and (1 decimal
rounded) magnitudes of 1.5 and higher. The colors represent the magnitude categories, analogous to Fig. 1.
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Lð�jfðci;miÞ; i ¼ 1 . . .NgÞ ¼
YN

i¼1

fMðmijci; �Þ; (5)

withmi the magnitude, and ci ¼ cðti; xiÞ the covariate based on the
time and location of each event i out of N events in the catalogue.
Each event in the catalogue is associated to a specific b-value bi:

bi ¼ gCðci; �Þ; (6)

such that the log-likelihood equals:

logðLÞð�jfðci;miÞ; i ¼ 1 . . .NgÞ ¼
XN

i¼1

½logðb�i Þ

� b�i ðmi �mminÞ�: (7)

Note that for a constant b-value a maximization of logðLÞ is
achieved algebraically in closed form by the maximum likelihood
estimate (MLE) b-value bMLE:

bMLE ¼ log10e
m̄�mmin

(8)

where m̄ is the arithmetic mean of the magnitudes in the data set
(Aki, 1965). For non-constant models the maximum-likelihood
parameters can be found by maximizing the log-likelihood for
model parameter vector � to find �MLE. This search can be done
using a gradient ascent algorithm or an exhaustive grid search.

Assuming a constant b-value we have determined the MLE b-
value for the entire catalogue: bMLE ¼ 0:96. The result is shown
together with the empirical distribution in Fig. 3.

Static and dynamic predictors

In Bourne and Oates (2020), the authors propose two models for
the spatiotemporal evolution of the magnitude distribution, that
are both conditioned on the induced stress (“Coulomb stress”) pre-
dictor: one with a constant b-value and a stress-dependent high-
magnitude taper, and one without a taper but with a stress-depen-
dent b-value. On the basis of physical considerations and the result
of some statistical tests the authors express a preference for the for-
mer model. As mentioned in sec:intro, they did not investigate or
report alternative predictors for the magnitude distribution.

Similar to the approach of Bourne and Oates (2017) for activity
rate prediction, we investigate a range of physical reservoir proper-
ties as predictors for the b-value throughout the Groningen gas
field. These prospective predictors are related to the geological lay-
out of the gas reservoir, the gas depletion process itself, or a com-
bination of both.

• Reservoir thickness The reservoir thickness hðxÞ is a 2-D spa-
tial representation of the thickness of the Rotliegend reservoir
formation, provided by the field operator (NAM, 2021) and is
given in units of meters. The thickness is assumed to be static
(time-invariant) and independent of the gas production. The
(relatively small) compaction of the reservoir due to the gas
extraction is considered as a separate prospective predictor
below.

• Topographic gradient The topographic gradient ΓðxÞ is a spa-
tially smoothed, 2-D, static measure of the roughness of the
topography of the top of reservoir. This roughness is largely
due to faults with varying offsets (Bourne &Oates, 2017). It is

calculated based on the locations and offsets of the pre-
existing faults in the reservoir, and is controlled by two
parameters: rmax and σ. The parameter rmax describes an
upper cut-off value for the local fault offset-to-thickness ratio.
Faults with an offset-to-thickness ratio larger than rmax are
disregarded in the calculation. The final property is calculated
by mapping the fault offsets that pass the rmax filter onto a
regular grid, which is subsequently smoothed by a Gaussian
kernel with kernel size σ. As a result, the property is roughly
proportional to both fault offset and fault density. A ready-
made topographic gradient grid with parameter values
rmax ¼ 1:1 and σ ¼ 3500 m is supplied by the operator
(NAM, 2021; Bourne & Oates, 2020).

• Pressure drop The pressure drop DPðt; xÞ is at any time t a
2-D spatial representation of the vertically averaged pore
pressure depletion in the reservoir with respect to the original
(pre-production) gas pressure, provided by the operator
(NAM, 2021). This property is dynamic (time-dependent)
and naturally depends on the gas production.

• Reservoir compaction The reservoir compaction Dhðt; xÞ is at
any time t a 2-D spatial representation of the change in res-
ervoir thickness as a result of the gas pressure decline. This
covariate is defined as:

Dhðt; xÞ ¼ DPðt; xÞ � cmðxÞ � hðxÞ (9)

where DPðt; xÞ is the dynamic pressure drop, cm is the poro-elastic
coupling coefficient, and hðxÞ is the reservoir thickness. These are
all provided by the operator (NAM, 2021). Reservoir compaction is
a dynamic (time-dependent) property due to its dependence on the
gas production.

• Induced stress The induced stress at any time t is a 2-D spatial
property representing the (spatially smoothed) change in
Coulomb stress on pre-existing faults according to the
thin-sheet model. It is calculated in accordance with Bourne
and Oates (2017) as1:

Fig. 3. Empirical complementary cumulative distribution function (CCDF), or probabil-
ity of exceedance per event. Also shown is the maximum-likelihood Gutenberg–Richter
distribution under the assumption of a constant b-value. MLE for the constant b-value
is 0.96.

1Equation numbers in this footnote refer to Bourne and Oates (2017). From
Equation 55, we obtain DC ¼ �Hr"zz � �HG"zz . For steeply dipping faults that offset
the reservoir, DC ¼ ��HG"zz , which leads to Equation 57. The � parameter is a field
constant and is absorbed into themodel parameter �2, which givesDC ¼ HG"zz . Using
Equation 15 H"zz ¼ ðH�1

r þ H�1
s Þ�1"zz . Since "zz ¼ DPcm , we can write
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DCðt; xÞ ¼ ΓðxÞ � DPðt; xÞ � cmðxÞ
H�1

s þ cmðxÞ
(10)

where ΓðxÞ is the topographic gradient, andHs is a stiffness param-
eter. Both ΓðxÞ and Hs ¼ 107 MPa are supplied by the operator
(NAM, 2021). Induced stress is dynamic due to its dependence
on the gas production. We note that the use of a spatial Gaussian
smoothing kernel in the calculation of the topographic gradient
makes it difficult to interpret the numerical values of this covariate
field in terms of absolute stress changes. Rather, it is a metric that
combines fault density of faults below a certain offset-to-thickness
ratio and vertical compaction strain. In a stricter sense, it is perhaps
best interpreted as a propensity-to-failure proxy, rather than Cou-
lomb stress change.

Along with the above five prospective predictors representing
physical properties of the reservoir, we also take time as a possible
predictor to complete a set of six predictors that we submit to the
same sequence of statistical tests. Figure 4 illustrates the spatial
variation patterns of the six predictors. The figures come without
explicit legend, serving as a visual representation of the spatial pat-
terns. For the dynamic predictors (pressure drop, reservoir com-
paction and induced stress), the situation at the end of the
observation period (i.e. 2022-01-01) has been chosen. The numeri-
cal value ranges of the predictors are shown in Table 1.

In the statistical analysis that follows, earthquakes are associ-
ated, or ’labelled’, with the predictor values at the origin time
and location of the earthquake according to the catalogue. For
example, for the predictor reservoir thickness, we label each earth-
quake with the reservoir thickness at the location of the earth-
quake, while for the predictor induced stress, we label each
earthquake with the induced stress at the location and the origin
time of the earthquake. To facilitate the statistical analysis, after
the earthquakes have been labelled, we perform a linear rescaling
to the covariate values, such that the earthquake with the lowest
covariate value receives a covariate value of 0 and the earthquake
with the largest covariate value receives rescaled value of 1. In most
figures, the minimum and maximum covariate values are simply
labeled as ‘min’ and ‘max’ respectively.

The labelling of each event by the predictor values determines
an ordering of observed magnitudes specific to that predictor.
These predictor-specific orderings are displayed in Fig. 5. The cor-
responding value ranges are given in Table 1. If a reservoir property
has a predictive capacity with regard to themagnitude distribution,
then the ordering (and spacing) of the magnitudes may be distin-
guishable from random orderings. In that case, the property has
the potential to be used as a predictor in a seismic hazard and risk
forecasting. In the following section we use this concept of ordering
to define a null hypothesis.

Statistical toolkit

Null hypothesis realization by random shuffling
If a predictor has predictive power for the magnitude distribution,
then that implies that the ordering of magnitudes relative to that
predictor may carry information on variations and trends. This
also means that when the magnitudes of the events are randomly
shuffled, that is, all magnitudes are reassigned in the catalogue ran-
domly to the predictor labels, that information will be erased. As a
result, such a random shuffling represents a realization of a

magnitude distribution that carries no relation to the predictor.
In other words, the magnitude distribution is constant relative
to the predictor. Random shufflings may therefore be regarded
as realizations of a constant distribution.

In the following we consistently make use of random shufflings
as realizations of a constant null hypothesis. If we observe a certain
quantitative features in the data we may judge the feature signifi-
cance from the occurrence frequency in random shufflings.

An alternative approach to realize samples of the null hypoth-
esis would be to generate (new) magnitude samples from a (con-
stant) magnitude distribution based on the Gutenberg–Richter

time pressure drop

reservoir thickness reservoir compaction

topographic gradient induced stress

Fig. 4. The six predictors for b-value variations investigated in this study represented as
contour plots within the outline of the Groningen field. Each figure is individually scaled,
where green colors correspond to the lowest, orange to the highest values.
Representative values for the covariates are presented in Table 1. For the dynamic pre-
dictors (pressure drop, reservoir compaction and induced stress), the state at the end of
the observation period (i.e. 2022-01-01) is shown.

DC ¼ ðH�1
r þ H�1

s Þ�1GDPcm . Finally, using Equation 15 to obtain H�1
r ¼ cm, we can

write DC ¼ GDPcm=ðH�1
s þ cmÞ.
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distribution. However, by applying the random shuffling tech-
nique we make sure that the generated statistics are not contami-
nated by any possible deviation of our observations from an
idealized Gutenberg–Richter distribution. By exactly honouring
the empirical magnitude distribution we can focus on the spatio-
temporal variations.

Moving window analysis
To gain some first-order insight into the spatiotemporal variations
in the magnitude distribution as characterized by theMLE b-value,
we apply moving window analysis. We perform a 1-D analysis on
the set of six predictors that includes time, and a 2-D analysis on
the spatial coordinates.

We define an algorithm that works consistently for both 1-D
and 2-D cases and automatically adapts the algorithm resolution
to the available data. We associate to each event in the catalogue
a “window” of theN “nearest” neighbouring events. Then, for each
window we determine the MLE b-value, under the assumption of a
constant magnitude distribution, according to Equation 8. Note
that we use the MLE b-value simply as a statistic on the data, with-
out any reference to its uncertainty or evaluating the appropriate-
ness of the Gutenberg–Richter model that it defines.

What remains is to define the concept of “nearest” that we
apply. Although it is possible to use the Euclidean distance in
terms of the covariate at hand (i.e. the difference in predictor
values in 1-D, or the geometric distance in 2-D space), we have
chosen instead to use the Euclidean distance in terms of the
sequence number on each of the covariates. For space this means
that we first define for each event a sequence number for both
coordinates. This choice of nearest neighbourhood definition
was made for a practical purpose. Using sequence numbers,
the statistics of the null-hypothesis (i.e. constant magnitude dis-
tribution) are exactly the same for all 1-D analyses. Using the
distance in terms of the covariate values, however, can lead to
slightly different window configurations for each predictor
and therefore slightly different statistics.

We use windows ofN ¼ 51 andN ¼ 101 events. These choices
are to a large extent arbitrary, but naturally represent a sort of com-
promise between resolution and stability. Within the resolution
limits imposed by the size of the windows, the moving window
analysis is sensitive to any type of b-value variation in the 1-D
or 2-D domain considered and therefore is suitable for exploratory
research. However, for the benefit of model building for forecasting
purposes and hazard and risk assessment, it is more practical to
consider simpler models with a limited number of parameters.
These are introduced in the next section.

If there are spatiotemporal variations in the b-value, or if a pro-
spective predictor does carry information on b-values variations,

then we may expect the b-value variability among the collection
of windows higher than if the b-value would actually be a constant.
Like Schorlemmer et al. (2003), we choose the difference between
the maximum and the minimum b-value as a statistic representing
these variations, and call it themin-max statistic. Themin-max sta-
tistic obtained for the observed catalogue can be compared with the
distribution of this statistic under the null hypothesis to determine
its significance.

Functional forms and maximum-likelihood estimation
If we can establish that a certain reservoir property carries infor-
mation on the magnitude distribution we may try to exploit the
predictive power of such property for more precise forecasting.
We apply a total of five functional forms for the scalar predic-
tor/covariate c 2 ½0; 1�, with one, two or three free parame-
ters (�0; �1; �2):

• constant: b ¼ �0,
• linear: b ¼ �0 þ ð�1 � �0Þc,
• quadratic: b ¼ �0 þ ð�1 � �0Þcþ �2cðc� 1Þ,
• step: b ¼ �0 þ ð�1 � �0ÞHðc� �2Þ, and
• hyperbolic tangent: b ¼ �0 þ �1ð1� tanhð�2 � cÞÞ,

with HðcÞ the Heaviside step function. For our statistical investi-
gations the constant model represents the null hypothesis. In all
cases we determine the maximum-likelihood parameter estimates
on both the observed data and on the synthetic realizations (by
random shuffling) of the null hypothesis. The linear and the step
model are subjected to significance tests. In particular, we use both
the parameter difference ð�1 � �0Þ and the (maximum) likelihood
as test statistics. The quadratic model is used in addition to com-
pare the performance of the models in terms of their maximum-
likelihood. We look at the added value of the extra quadratic term
relative to the linear model and we compare the performance of the
quadratic and step models in relation to their equal number of
parameters.

Finally, the hyperbolic tangent (tanh) model is used, albeit only
for the induced stress predictor, as it is used in the Groningen
source model of Bourne and Oates (2020). We note that for the
tanh model we apply a slightly different scaling for the covariate.
To reproduce the model of Bourne and Oates (2020) we need to
associate c ¼ 0 with the zero induced stress rather than with the
lowest value of stress in the catalogue as shown in Fig. 5. The value
c ¼ 1 is still associated with the maximum value of stress in the
catalogue.

Cramér-von Mises test
The maximum-likelihood regression of the step model effectively
leads to a partitioning (in two parts) of both the predictor range
and the catalogue ordered according to this predictor, each with
a constant b-value. The significance of this partition can be further
studied by a two-sample goodness-of-fit test. Such a test attempts
to reject the null hypothesis that the two samples are actually gen-
erated by the same distribution. Commonly applied tests include
Kolmogorov-Smirnov, Anderson-Darling, and Cramér-von
Mises (Stephens, 1970; Darling, 1957). For our experiments we
picked the Cramér-von Mises test as it turned out to be the most
efficient in terms of computation time, while there was no particu-
lar reason to prefer one over the other.

Important to note, however, is that the p-value result from the
goodness-of-fit test cannot be used without the following

Table 1. Predictor value ranges as sampled by the catalogue.

Predictor Unit min max

Time UTC 1995-01-24T10:38 2021-12-28T20:19

Reservoir thickness m 128: 310:

Topographic gradient – 0:0145 0:0442

Pressure drop MPa 10:6 27:9

Reservoir compaction m 0:0787 0:349

Induced stress MPa 0:303 0:991
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consideration. Due to themaximum-likelihood optimization of the
step model, the two subsets are not completely independent any-
more. In fact, the total likelihood of the step model benefits if both
subsets are as dissimilar as possible. As a result, an overabundance
of low p-values is to be expected even for the null hypothesis.
Therefore, the Cramér-von Mises test needs to be recalibrated
for this particular purpose. This is achieved by the experiment
illustrated in Fig. 6. The yellow curve shows that the Cramér-
von Mises test works as expected for random partitions of a
Groningen-sized constant b-value catalogue. The blue curve shows
that introducing the optimization step compromises the test
results. However, a correction is obtained relatively easily by

applying the inverse CDF of the p-value distribution (blue curve).
The formal test result appears on the horizontal axis, while the cor-
rected result appears on the vertical axis. A formal Cramèr-von
Mises p-value of 0.05 should be corrected to a p-value of 0.36
for this experiment (as indicated by the grey crosshair).

Likelihood ratio and the Akaike information criterion
As we investigate a total of six prospective predictors and five func-
tional forms, we have quite a collection of statistical models for
which we can assess the performance in terms of their maxi-
mum-likelihood with respect to the Groningen observations. At
this point we immediately want to make the disclaimer that we
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Fig. 5. For each of the six prospective predictors, the magnitudes of the earthquakes in the seismic catalogue are plotted against the predictor value. Each predictor provides it
own specific ordering and spacing of the catalogue.
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do not intend to apply these maximum-likelihood models directly
to hazard and risk assessments. For that purpose we prefer to apply
the models in a Bayesian context, where we can take all uncertain-
ties into account and make use of probability distributions of the
model parameters rather than just the maximum-likelihood point
estimates used in this study. Moreover, we would like to submit
these models to pseudo-prospective testing and performance
assessment before deciding on their use (e.g. Zechar et al., 2010;
Bourne et al., 2014).

That being said, model selection is commonly based on the like-
lihood-ratio test and information-theoretical extension such as the
Akaike Information Criterion (e.g. Burnham et al., 2011; Lewis
et al., 2011). These methods simply take maximum-likelihood
results as an input.

The Akaike Information Criterion AICj for model j is
defined as:

AICj ¼ �2 logLj þ 2pi; (11)

where pi is the number of model parameters (or degrees of freedom
therein). According to this definition, a lowerAIC corresponds to a
better performance. Two models that differ by Dp degrees of free-
dom are considered to have an equal performance if their likeli-
hoods differ by a factor e�Dp. The inclusion of pi in Equation 11

is basically a bias correction that compensates for the higher like-
lihood values expected for models with a higher number of param-
eters under the null hypothesis that these parameters are not
required.

The Akaike likelihood ratioRij between models i and j is basi-
cally a bias corrected likelihood ratio:

Rij ¼ expðAICi � AICjÞ=2 ¼ eðpi�pjÞ Lj
Li
: (12)

We compute AIC-corrected likelihood ratio’s with respect to
the constant b-value null hypothesis. This gives us relative mea-
sures of the model performance in terms of the relative likelihood.
From an information-theory perspective these numbers indicate
the relative probability that model j (relative to model i) is able
to minimize the information loss inherent to the abstraction of
reality in terms of a (mathematical) model.

We like to note that during the evaluation of the results of our
analysis we found out that the Akaike formula (11) does adequately
compensate the expected likelihood gain for the step model, as
illustrated in Fig. 7. Although the constant model is a nestedmodel,
that is, special case of the step model, the likelihood ratio statistics
are not chi-square distributed. It turns out that relative to the null
hypothesis, the step model has an advantage that is higher than the
number of its free parameters (3) would suggest. As a result, the
AIC likelihood ratio’s for the step model relative to the other mod-
els are expected to be inflated, that is, biased by over-fitting. The
performance results of the step models should therefore be inter-
preted with restraint. We speculate that the cause is related to the
discontinuity of the model, and to the fact that the null hypothesis
does not constrain the third parameter, that is, the location of the
discontinuity. Exploration of this specific hypothesis is beyond the
scope of this paper. We expect that in a pseudo-prospective model
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Fig. 6. Results of applying the Cramér-von Mises test on two subsets of 10,000 randomly
drawn catalogues (N= 336, b= 0.96). For each catalogue, a random split point is chosen
in the catalogue, and an optimal split point is found by considering the step location of
the maximum-likelihood step function. The Cramér-von Mises test is then applied, and a
p-value is obtained for subsets created by the random split point and the optimal split
point. The blue curve shows a CDF of p-values obtained over 10,000 catalogues for the
optimal split point, while the yellow curve shows the CDF for the random split points. The
Cramér-von Mises p-values for the yellow curve are distributed homogeneously between
0 and 1, while the blue curve shows an overabundance of low p-values. This indicates
that the likelihood optimization corrupts the test, which should be corrected for. In fact,
the blue curve provides the correction: the formal test result appears on the x-axis, while
the corrected test result appears on the y-axis.

Fig. 7. Likelihood ratio statistics for maximum-likelihood linear, quadratic and step
b-value functions, relative to the maximum-likelihood constant b-value model. The
statistics are obtained for 1000 random reassignments of the magnitudes to the cata-
logue’s reservoir thickness samples. Other predictors give comparable results. Both
the linear and quadratic functions closely follow amaximum-likelihood chi-square dis-
tribution (dashed curves), with degrees of freedom very close to the theoretic values of
1 and 2, for functions with 1 and 2 degrees of freedom more, respectively, than the
constant function. The step function, however, also has just two more parameters
than the constant function, but apparently is expected to perform much better than
the quadratic, and apparently is not chi-square distributed (the dashed curve is the
maximum-likelihood chi-square fit to the data). As a result, the Akaike Information
Criterion does not compensate adequately for the surplus degrees of freedom.
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performance testing procedure (Zechar et al., 2010), that we antici-
pate any newmodel to be subjected to before application in hazard
and risk assessment, this issue will be treated adequately.

Results

The results of the analyses as described in Section 2 are shown in
Figs. 8 to 13, and in Tables 2 and 3.

Figure 8 shows the result of the spatial moving window analysis.
A NW-SE trend can be seen in both the 51-event and the 101-event
windows. The 51-event window results in a wider spread ofMLE b-
values. We determine the difference min-max statistic for both
window sizes and compare it with the null hypothesis distribution.
This comparison is visualized for both the spatial and the temporal
moving windows in Fig. 9. The Figure shows that the test statistic
for temporal moving windows is not particularly special, as it is
exceeded quite frequently in the null hypothesis distribution. As
a result it cannot be used to reject the null hypothesis. The statistic
for the spatial moving windows however is quite high and rarely
exceeded for the null hypothesis. The corresponding p-values
are 0.03 and 0.07 for the 51- and 101-event window sizes, respec-
tively. The moving window analysis does not resolve any trend or
variation in time, but it is unlikely that the magnitude distribution
is constant in space.

Themoving window analyses for the other predictors follow the
same procedure. The p-values are provided in Table 2, to be dis-
cussed below.

Figure 10 shows a visual summary of the moving window and
maximum-likelihood analyses for all six considered covariates. The
maximum-likelihood results are visualized in the spatial context in
in Figs. 11 and 12. Note that due to the static, spatial nature of these
figures, the trends for the covariates reservoir thickness and topo-
graphic gradient, which are static spatial covariates, are easier to
discern than for the dynamic covariates. It is interesting to see
the difference in the empirical and MLE magnitude distributions
for the catalogue partitioning that the step model effectively cre-
ates. These results are on display in Fig. 13.

Table 2 summarizes the p-values of all statistical tests on the
moving window and maximum-likelihood analyses. The table
reveals that reservoir thickness as a predictor consistently scores
lowest p-values, indicating a low probability that it does not carry
any information on the magnitude distribution. To a lesser extent

the same holds for topographic gradient on wide set of tests, and
induced stress in particular for the linear trend model. In summary
it appears that static factors are more informative than dynamic
factors.

Finally, Table 3 shows the relative likelihood of the various
combinations of predictor and functional form. In this table we
also include the results for the quadratic function for which we
do not provide visualizations. The Table shows that the extra
degree of freedom for quadratic models relative to the linear mod-
els does not lead to better results. The Table also shows an (appa-
rently) exceptional performance of the step function, which we
discuss in Section “Likelihood ratio and the Akaike Information
Criterion”, and accompany with a warning to interpret with
restraint. Overall, the Table shows that the maximum-likelihood
models for reservoir thickness provide the best performance rela-
tive to the other predictors.

Discussion

Previous analysis of variations of the magnitude distribution in the
Groningen field focused on induced stress as the predicting cova-
riate (Bourne & Oates, 2020). In this study, we have investigated
the possibility of other covariates performing better as predictors
of the observed earthquake magnitude distribution. Our explora-
tory moving window analysis indicated that while temporal varia-
tion in b-value appear to be statistically insignificant, there are
significant spatial variations. In our subsequent search for a better
b-value predictor, we tested a number of covariates, each of them
with a distinct physical relation to the Groningen gas field.
Reservoir thickness, a static property, unaffected by the gas pro-
duction process, proves to be the statistically superior predictor
of the b-value spatial variation.

In order to facilitate the comparison between different models,
we have focused our attention on the relative performance of the
MLEmodels. Although this provides a first-order indication of rel-
ative predictive performance, the performance assessment is not
yet in line with the approach followed in seismic hazard and risk
analysis. For future integration the models should be cast in a
Bayesian framework, including the definition of a prior distribu-
tion for the model parameters and taking into account the full like-
lihood distribution of the model parameters conditional on the
observation. In this framework a forecast is based on an integration
of the posterior model parameter distribution. Therefore, ulti-
mately, it is the performance of this integrated prediction that is
of prime interest.

Nevertheless, our MLE based assessment provides valuable
insights. Variations of b-value over the Groningen field seem to
be predominantly controlled by static rather than dynamic factors,
resulting in significant spatial variations, but (for the field as awhole)
no significant changes in time. We find that the dynamic induced
stress predictor does resolve a significant linear trend, albeit at lower
significance level than reservoir thickness. Future work may inves-
tigate combinations of predictors to establish whether the static fac-
tors are sufficient predictors for b-value variations by itself, or that
dynamic factors are able to contribute significantly.

Although our predictors were chosen because of their direct
physical relation to the Groningen gas field, it should be noted that
we are strictly looking at correlations. As such, the famous wisdom
correlation does not imply causation also applies here. We do not
propose a physical model that explains the observed effectiveness

Fig. 8. B-values resulting from the spatial moving window analysis. Each earthquake is
assigned the MLE b-value for the sub-catalogue consisting of the event itself and its 50
(left) or 100 (right) nearest neighbors. The legend applies to all corresponding figures.
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of the different predictors, nor do we claim that there necessarily is
a direct causal relation between the more effective predictors (e.g.
reservoir thickness) and the b-value. For reservoir thickness, we
have shown that it is statistically very unlikely that the observed
correlation is purely due to chance. However, it is possible (and

perhaps even likely) that a confounding factor exists (i.e. that res-
ervoir thickness itself is not the driving mechanism behind the
b-value difference).

Table 2. For each of the six prospective predictors for b-value variations in the Groningen field, a total of seven statistics are compared to the distribution of results
generated for the null-hypothesis, in which the predictor does not carry any information on the b-value. Realizations of the null-hypothesis are generated by random
shuffling of the observed magnitudes with respect to the predictor values. The exceedance probabilities, that is, p-values, indicate the probability that the observed
statistics are the result of chance. Lower values give stronger stronger evidence for rejecting the null hypothesis that a b-value is constant. The column C-vM* refers
to the corrected Cramér-von Mises test result.

Predictor

Moving window maximum
likelihood b-value range

Maximum likelihood linear
trend model Maximum likelihood step model

51 events 101 events Gradient Likelihood Step size Likelihood C-vM*

Time 22% 73% 23% 24% 84% 54% 37%

Reservoir thickness 0.77% 0.31% 0.1% 0.2% 28% 0.2% 0.35%

Topographic gradient 1.7% 19% 1.5% 2.2% 16% 1% 8.3%

Pressure drop 15% 6.2% 38% 38% 26% 15% 33%

Reservoir compaction 21% 4.8% 3.1% 3.2% 45% 8.6% 20%

Induced stress 17% 19% 0.5% 0.6% 33% 5.8% 6.9%

Table 3. Relative likelihood of predictive models for b-value variations in the
Groningen field consisting of simple functional forms conditioned on six possible
predictor covariates. The likelihoods are calculated according to the Akaike
Information Criterion and normalized relative to the likelihood of the constant
model, or null hypothesis.

Predictor
Functional
form

No. parame-
ters

Relative likelihood
(AIC)

-Any- Constant 1 1.

Time Linear 2 0.72

Quadratic 3 0.26

Step 3 0.88

Reservoir
thickness

Linear 2 28.

Quadratic 3 10.

Step 3 250.

Topographic
gradient

Linear 2 3.9

Quadratic 3 4.2

Step 3 43.

Pressure drop Linear 2 0.55

Quadratic 3 0.53

Step 3 4.4

Reservoir
compaction

Linear 2 3.1

Quadratic 3 1.1

Step 3 6.5

Induced stress Linear 2 11.

Quadratic 3 4.5

Step 3 9.9

tanh 3 4.9
Fig. 9. The graphs show empirical distributions (CCDF) for 1000 51-event (top) and 101-
event (bottom) moving window analyses in both time and space on random realizations
of the null-hypothesis obtained by magnitude shuffling. The test statistic is the difference
between the maximum and the minimum MLE b-value estimate in the moving window
collection. Vertical bars indicate the observed values for the Groningen catalogue. The
corresponding values on the vertical axis indicate the p-value.
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Conclusions

We have investigated spatiotemporal variations of magnitude dis-
tributions as characterized by the Gutenberg–Richter b-value in
the Groningen gas field. We have found that spatial variations
are more pronounced than variations in time. In addition we have
investigated the predictability of observed variations in terms of a
number of physical properties of the reservoir, including both
static and dynamic properties, the latter being directly coupled
to gas production.

We find evidence that observed variations are more likely to be
controlled by static rather than by dynamic properties. Predictions
in terms of the static properties topographic gradient and reservoir
thickness lead to very low likelihood, around 2% and lower, of the

null-hypothesis (i.e., no relation, or constant b-value) on a variety
of statistical tests. Of the dynamic properties, induced stress is the
most convincing predictor, still resolving a significant linear trend
for the b-value.

In terms of relative likelihood, statistical models for b-values
based on reservoir thickness outperformmodels based on the other
predictor properties. An MLE linear model based on reservoir
thickness outperforms the MLE linear model based on induced
stress by a factor of 3. The hyperbolic tangent model based on
induced stress, which is currently being applied in hazard and risk
assessment models (Bourne & Oates, 2020), does not manage to
improve on the linear trend with its extra parameter.

Fig. 10. For each predictor, five lines are shown. In silver (51-event) and black (101-event) the moving windows analyses (see section 2.4.2). We have chosen to plot the results for each
window at themean value of the contributing covariates. In blue, orange and green, the maximum-likelihood estimates of the constant, linear, and stepmodels, respectively. Note that
the moving-window results and themaximum-likelihoodmodels are each independently generated from themagnitude data in Fig. 5. In particular, the MLE functions are not intended
to fit the moving window results.
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We find that step models, in general, reach higher likelihoods
than linear and quadratic models, but we also note that these
results may be inflated due to a level of over-fitting that is
not adequately compensated for in the Akaike Information
Criterion.

The main conclusion of this study is that reservoir thickness is a
strong predictor for spatial b-value variations in the Groningen
field. We propose to develop a forecasting model for Groningen
magnitude distributions conditioned on reservoir thickness, to

be used alongside, or as a replacement, for the current models con-
ditioned on induced stress.
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Fig. 11. The MLE linear trend models for each predictor result in a b-value for each
event in the catalogue. Here, we show the b-value assigned to each event in its spatial
context. Yellow shades correspond to lower, blue shades to higher values of the
covariate.

Fig. 12. The MLE step-function models for each predictor result in a b-value for each
event in the catalogue. Here, we show the b-value assigned to each event in its spatial
context. Yellow shades correspond to lower, blue shades to higher values of the
covariate.
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