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North Sea Energy 2020-2022

Unlock the low-carbon energy potential North 
Sea with optimal value for society and nature
The North Sea Energy program and its consortium partners aim to identify and assess 

opportunities for synergies between energy sectors offshore. The program aims to integrate 

all dominant low-carbon energy developments at the North Sea, including: offshore wind 

deployment, offshore hydrogen infrastructure, carbon capture, transport and storage, energy 

hubs, energy interconnections, energy storage and more. 

Strategic sector coupling and integration of these low-carbon energy developments provides 

options to reduce CO2 emissions, enable & accelerate the energy transition and reduce costs. 

The consortium is a public private partnership consisting of a large number of (international) 

partners and offers new perspectives regarding the technical, environmental, ecological, safety, 

societal, legal, regulatory and economic feasibility for these options.

In this fourth phase of the program a particular focus has been placed on the identification of 

North Sea Energy Hubs where system integration projects could be materialized and advanced. 

This includes system integration technologies strategically connecting infrastructures and 

services of electricity, hydrogen, natural gas and CO2. A fit-for-purpose strategy plan per hub 

and short-term development plan has been developed to fast-track system integration projects, 

such as: offshore hydrogen production, platform electrification, CO2 transport and storage and 

energy storage.

The multi-disciplinary work lines and themes are further geared towards analyses on the barriers 

and drivers from the perspective of society, regulatory framework, standards, safety, integrity 

and reliability and ecology & environment.  Synergies for the operation and maintenance for 

offshore assets in wind and oil and gas sector are identified. And a new online Atlas has been 

released to showcase the spatial challenges and opportunities on the North Sea. Finally, a 

system perspective is presented with an assessment of energy system and market dynamics 

of introducing offshore system integration and offshore hubs in the North Sea region. Insights 

from all work lines have been integrated in a Roadmap and Action Agenda for offshore system 

integration at the North Sea.

The last two years of research has yielded a series of 12 reports on system integration on 

the North Sea. These reports give new insights and perspectives from different knowledge 

disciplines. It highlights the dynamics, opportunities and barriers we are going to face in the 

future. We aim that these perspectives and insights help the offshore sectors and governments in 

speeding-up the transition.

We wish to thank the consortium partners, executive partners and the sounding board. Without 

the active involvement from all partners that provided technical or financial support, knowledge, 

critical feedback and positive energy this result would not have been possible.  
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Executive summary 
Digitalization in relation to offshore energy systems is a topic of interest in the context of North Sea 
Energy (NSE) program. This report presents an overview on how digitalization can result in cost and 
emission reductions in the offshore energy sector. To this aim, nine digitalization technologies are 
reviewed and the potential barriers towards its implementation are highlighted. To showcase the 
potential benefits of a future NSE digital twin, simple examples based on possible components of such a 
digital twin are presented. A simplified case study using a dynamic simulator framework (TNO's 
PyDOLPHIN) illustrates the gains in optimizing component sizing and operational strategies, whereas a 
second example using AI methods highlights the importance of forecasting system boundary conditions 
(e.g., electricity demand) under uncertainties. Finally, the benefits and necessary steps to deploy digital 
innovations for the NSE are discussed using three reference scenarios. In particular, it is highlighted how 
digitalization will play a key role to achieve efficient operations, for predictive maintenance, and for how 
autonomous vehicles will assist in inspections, repairs, installation and decommissioning of assets such 
as wind turbines. This study was done as a part of WP5 logistics of the NSE 4 program but since the 
scope of the work was broader than only digitalization of the logistics and services, it was decided to 
deliver a separate report on this topic.  
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1 Introduction 
 
The fourth industrial revolution is witnessing the use of various forms of digital technologies to manage 
industrial assets today (Porter & Heppelmann, 2015). First used at the Hanover Fair in 2011, the term 
‘Industrie 4.0’, captured the attention of industrialists and governments worldwide. The objective of 
Industry 4.0 is to achieve a higher level of productivity and operational through automation and 
digitalization. It can be seen as a stimulus for several digital technologies, such as, big data, cloud 
computing, smart sensors, machine learning (ML), robotics, additive manufacturing (AM), artificial 
intelligence (AI), virtual reality (VR) and the Internet of Things (IoT). According to the report from 
McKinsey (Caylar et al., 2015), these digital technologies have high potential to significantly increase 
production productivity by 45–55% in technical professions. It integrates people, machines, and data, 
thus creating more efficient workflows. 
 
According to Caylar et al. (2015), digitalization is to use automated processes and digital technologies to 
gather data in order to improve business outcomes. Øydegard (2017) pointed out the potential of 
digitalization in offshore wind through improved connectivity, efficiency, scalability, time savings, and 
cost savings for offshore wind systems operations. To the question: "How are you using digitalization to 
cut costs?", Edward Wagner, GM of Sentient Science responded: 
 
“Digitalization is about getting information from the assets that we have, and using that information to drive 
the cost of energy downwards. Once you have digital information you can do supply chain integration, you can 
lower the cost of financing, you can improve O&M, but you have to be able to use the data to your advantage. 
This is a data driven application, we think only by having that data, simulating, doing what-if studies, and 
making sure you get it right before you actually climb that turbine to do work. Make sure you do it in a digital 
environment so you make sure you get it right before you do it (WindPowerMonthly, 2016).” 
 
Subsequently, Michael Lewis, E.ON Climate & Renewables GmbH responded: 
 
“For us digitalization is all about getting the right data so that we understand how our turbines are performing, 
how we can improve that performance, both in the short run and in the long run. And digitalization will allow 
us to have the right data, in the right time, in the right format so we can drive improvements in costs and 
performance (WindPowerMonthly, 2016).” 
 
In this report, we will consider several digital technologies with the potential to support the offshore 
energy sector. Such technologies will be first reviewed in Chapter 2, where we provide definitions, 
examples from various sectors, and summarize the main barriers for digitalization. In Chapter 3 we 
discuss the first step towards a digital twin of the North Sea Energy system, providing an example of how 
a digital twin technology can be already used within the NSE context. In Chapter 4, we discuss promising 
digital innovations for the North Sea Energy system, highlight the opportunities for the integration of 
various technologies and the associated benefits. Conclusions are drawn in Chapter 5, where directions 
for future work are provided with the goal of fully achieving the Industry 4.0 revolution in the North Sea 
energy system. As a part of the activities, two workshops were organized together with the partners of 
the NSE program to identify the opportunities of digital technologies in the North Sea and the outcome 
of the workshops can be found in the appendix. 
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2 Digitalization potential for the North 
Sea 

 
In this chapter, section 2.1 intends to review different digitalization technologies that could support the 
offshore energy sector and leading to possible cost and emission reductions. Barriers to digitalization are 
also briefly reviewed in section 2.2.  

2.1 Digitalization technology review 

This work will highlight the potentials of the following digitalization technologies: 
• Digital twin 
• Big data analytics 
• Immersive technologies 
• Industrial Internet of Things 
• Robotics and automation 
• Sensors 
• Additive manufacturing 
• Cybersecurity 
• Data sharing 

 
Figure 1: Schematic overview of the digital technologies highlighted in this report. 
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2.1.1 Digital twin 

 
Broadly defined, a digital twin is a virtual representation of a physical object, asset or process. It can be 
used to gain new insights into the behaviour of such a system and to enhance performance. Typically, 
the components of a digital twin are (combinations of) models, data, computational methods, connection 
to the database and APIs, and possibly visual representations of the asset (e.g., CAD drawings). Models 
can be analytical, based on factsheets, physics-based, data-driven or based on machine-learning/AI. Data 
can be in various format (time-series, tables, logs) containing manufacturer specs, historical info, real-
time values from sensors.  
 
Depending on the level of integration with the physical asset, e.g., the flow of data to/from it, it is possible 
to distinguish between digital model, digital shadow, and digital twin (see Figure 2). A digital copy is not 
directly coupled with the physical counterpart. In a digital shadow the automatic data flow is only to the 
physical asset, without feedback. In a digital twin the loop of data exchange is complete. The scope of 
these digital technologies can vary from design of the asset, with digital models that can also be used 
before the physical counterpart exists, to real-time monitoring and control. Digital twins can be employed 
not only for diagnostics but can also allow to move towards predictive and prescriptive analytics, 
therefore achieving more difficult yet more valuable tasks (see Figure 3). The possibility of achieving 
different level of analytics (from descriptive to prescriptive) depends on the availability, accuracy and 
predictability of the models within the digital twin. Typical challenges for deploying the digital twin 
technologies are data management and security. In addition, processing speed and end-to-end visibility 
(clearly indicating the actions to the human operator, when the control is not fully automatized) are 
crucial for real-time decisions. Solutions to these challenges can be found in other digital technologies 
(such as cybersecurity) that will be also reviewed in this report. 
 

 
Figure 2 Differences between a digital model, a digital shadow and a digital twin is the data flow to/from the 
physical asset (Seppälä, 2020). 
 



NSE 2020-2022 | 5.2 Digitalization of North Sea Energy systems 7 of 40 

 

 

 
Figure 3 Gartner Analytics Ascendency model (Gartner, (2012), drawn from Schaap, (2020)). The more the sophistication 
of the digital twin the more the opportunities to execute tasks in the top right of the chart. 

 
Within the current NSE project, variants of the digital twin technology (starting from the simpler digital 
model to a complete digital twin) can find a key role to achieve the goals defined in several work packages. 
For example, WP 1 of NSE 4 program focuses on the identification of energy hubs and the study of the 
required infrastructures. Once the most promising solutions have been identified, the use of digital 
models can further assess design feasibility and convenience. By taking into account different physical 
and economical aspects of the system, simulations of the system under consideration can be used to 
identify how to optimally size and connect different components in order to guarantee security of supply 
and to reduce investment and operational costs for all the operators involved. Such simulations can also 
quantify component and system efficiencies under dynamic loading, representing a way to assess the 
robustness of the design against possible (uncertain) scenarios. Different asset configuration layouts can 
be also simulated to compare, e.g. an offshore single large platform versus multiple smaller ones, or 
different ways of routing pipes and electrical cables. In the design phase, a digital model of the entire 
system, able to describe the physical response of the different commodities and the techno-economical 
necessities of the different operators, will allow to minimize the costs for all the actors involved and 
ensure the desired system performance.  
 
Using the dynamic modelling capabilities of the digital twin for system integration will benefit also WP 6, 
that focuses on system mapping and modelling. Connections with WP 6 can be made both during the 
design phase to consider what-if scenarios or during operations to visualize the status of the system 
within the interfaces developed in WP 6. Moving from design purposes to monitoring during operations, 
a digital twin (or initially just a digital shadow) can be of use within WP 3 that focuses on safety, integrity 
and reliability. After calibration, the digital twin will be able to simulate the ‘healthy’ behaviour, that is in 
absence of any malfunctioning, of the entire system (or a specific individual component). Therefore, 
during operations, using the actual conditions as input, the digital twin will output the expected system 
behaviour. The digital twin output can be then compared with the real system behaviour measured by 
sensors, and the difference between the two can be an indicator of malfunctioning. Several AI techniques 
for anomaly detection can be coupled with the digital twin and a workflow for triggering warnings in real-
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time can be deployed to assist the operator in ensuring the safety and integrity of the system (Poort et 
al. 2020). Such tasks can be extended also to predictive maintenance. Similarly, the digital twin, informed 
by the sensor data, can be used within the context of optimally control the system, moving therefore 
from predictive to prescriptive analytics. For this purpose, the digital twin should be coupled with AI 
models for smart decision-making and optimizing future operations. Given the large importance of wind 
farms in the North Sea energy system, of particular interest it would be the ability of forecasting the wind 
power production and how the associated uncertainty propagates throughout the asset lines. Enhancing 
a digital twin with AI for forecasting under uncertainties can ensure reliable operations of the entire 
system, and therefore be beneficial for all the parties involved. 
 
Apart from the digital twin of the energy systems, the development of digital twin for monitoring the 
ecology of the North Sea (WP4) and the logistics vessels trips (WP5) can assist in minimizing the impact 
of activities in the North Sea on the ecology and environment.  

2.1.2 Big data analytics 

 
Big data (BD) refers to voluminous sets of data.  Data analysts attempt to extract meaningful insights 
from raw data that will be useful for decision making in different applications in industry. The term ‘Big 
Data’ defines the first characteristic of this method and that is the size of the available data set . There 
are other characteristics related to the data which make it viable to be classified under BD. IBM refer 
these characteristics as three Vs:  volume, variety, and velocity (Dietrich et al., 2014). However, more 
recent articles have added two more Vs: veracity and value (Nguyen, 2018).  
 
The amount and type of data collected and recorded in many industrial processes has greatly expanded, 
making meaningful extraction of BD a big problem. Equinor recently made operation data from the Volve 
Field on the Norwegian continental shelf public in order to help with BD learning challenges (Tunkiel et 
al., 2018). The total set of data for the Volve field production from 2008 to 2016 comprises of around 
40000 files. The complete collection, which includes data from geophysical interpretations, the 
GeoScience OW Archive, seismic, well log, production, reservoir models, and real-time drilling data, is 
roughly 4,206 Gigabytes in size. Data on wind, weather, and the real-time performance of around 25,000 
turbines worldwide is now being acquired and reviewed, according to Vestas (Chartron et al., 2018). 
Digitalization, according to Vestas, will aid in more exact weather predictions. Improvements in weather 
forecasting and analysis are one of the primary potential for O&M offshore wind cost reductions before 
2025, according to IRENA (2020). In terms of risk assessments, Villani et al. (2018) advocates research 
collaboration projects on weather forecasts and artificial intelligence. In addition, digitalization and BD 
analysis can aid in the monitoring of vital key performance metrics. Chartron and Haasis (2018) suggested 
a technique for collecting pertinent data and analysing logistics inefficiencies during offshore wind park 
projects in order to discover improvement opportunities. 
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Several studies have been conducted in order to better plan offshore logistics activities, forming a 
blueprint for big data and real-time decision making analysis. For the installation phase, several decision 
support and simulation tools have been developed (Vis and Ursavas, 2016). More research has been done 
to optimize the vessel fleet throughout the O&M phase (Hu and Yung, 2020) and to use BD to improve 
offshore wind farm maintenance (Sperstad et al. 2016).  
 
Adoption of big data analytics necessitates significant capital investments and concerted efforts at all 
levels of the enterprise, legal system, and government. Although the offshore energy industry is used to 
processing large amounts of data, combining BD analytics with existing systems presents a number of 
technological and non-technical hurdles. The use of current software tools and hardware computer 
platforms to efficiently deploy BD technologies is one of the technical obstacles. There is currently no 
perfect model of BD employment that promises a high profit enhancement while working within time 
and budget limits. The operation of the BD system also generates a number of challenges related to 
functionality, security, and maintenance. Cybersecurity, as a potential digitalization technology, will be 
presented in section 2.8. Collaboration amongst departments and parties to deploy and operate the BD 
system efficiently is another nontechnical challenge. Because of the breakdown in communication 
between the IT department and others, any issue, including such password resetting to access personal 
accounts of field workers, might take a long time to resolve. Implementation raises concerns at a higher 
level of innovation management, such as standards, data privacy, data ownership, and intellectual 
property rights. 
 
Within the current NSE project, big data analytics can find a widespread use within the different work 
packages. In WP1, a big data approach can be applied to data from hubs, including time-series, design 
data in text and images, GIS data of locations of the assets, including cables and pipelines. In WP2, it can 
be discussed if and how big data should/could be applied to different documents within the NSE system, 
for example the use of Natural Language Processing (NLP) to derive context from legal data. Regarding 
WP3, AI can be applied to big data regarding asset/component reliability (both sensor data and simulation 
data), regulations, standards and guidelines. Similarly, in WP4 ecology data, such as emission data for 
LCA, could benefit from AI/big data methodologies. Furthermore, these technologies will be key for 
improving logistics (WP5), where there is abundant data related to vessels, ship manufacturing 
information, emission, scheduling and traffic. Finally, it could be possible to explore connections with AI 
and the NSE atlas developed in WP6. 

2.1.3 Immersive technologies 

 
Virtual Reality (VR), Augmented Reality (AR), and Extended Reality (XR) are names that are frequently 
used interchangeably, but their inherent technical differences, limitations, and application prospects must 
be better understood. These technologies, combined together, are pushing boundaries in terms of how 
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we generate and consume information, allowing consumers to be engaged in a virtual world rather than 
simply watching it on a 2D screen. As a result, the term “immersive technology” is sometimes used to 
combine them all together. Immersive technologies, according to Gartner (Tan, 2019), include the 
utilization of information in the form of text, visuals, audio, and other virtual upgrades that are merged 
with real-world items in real time. 
 
Immersive technology will allow for a seamless transition between the actual and virtual worlds, allowing 
for visuals to be superimposed over real-world objects like cables or fluids inside a turbine or an oil rig. 
Workers getting knowledge on how to replace a specific component simultaneously looking at the real 
system in need of repair is an example of this (Rüßmann, et al., 2015). They (2015) also discuss virtual 
training, wherein maintenance personnel are trained in various scenarios using a realistic databased 3D 
environment and augmented-reality glasses. Through virtual-representation as well as the ability to 
modify parameters and retrieve operational data plus maintenance instructions, operators will have a 
greater level of contact with machines using immersive technology. This appears to be an extension of 
simulation, with the most significant distinction being real-time data and the immersive effect of having 
this information in front of your eyes than on a screen. Microsoft HoloLens (Evans et al., 2017) allows 
for a multi-monitor experience, allowing users to quickly transitioning from a conventional working 
environment to a full sight of a turbine, for example, to learn, train, or control the turbine, and to also 
explore 3D in 3D. GE employs this technology in conjunction with a digital twin to illustrate that smart 
data on the company's products does not require being on site to make intelligent judgments (Wu et al. 
2019). In the offshore wind sector, not having to go offshore to inspect, acquire data, or map conditions 
unless it's absolutely necessary is an attractive and economical solution. By properly utilizing this 
technology, one can ensure that you will be more prepared and that you will have completed all of your 
work obligations before travelling overseas. Another example is the Rolls-Royce Unified Bridge (Levander, 
2016), a human-machine interface for ship operations that aims to minimize the operator's mental 
workload, improve workflow efficiency, and lessen the likelihood of accidents involving crew, vessels, or 
installations. One of the link of these immersive technologies with the current activities of the North Sea 
is the training of the operators or simulating the situations in which safety measures need to be practiced.  

2.1.4 Sensors 

 
Sensors embedded in components are nothing new; they are devices that are intelligent enough to 
recognize when something is faulty and have analytical capabilities. Blade sensors, vibration sensors, 
other embedded sensors, for example, are smart sensors that could recognize faults in an offshore system 
using data processing algorithms (Hall et al., 2013). With the use of sensors that collect data on a 
continuous basis via interconnectivity, the Industry 4.0 phase of industrial development makes things 
"smart." 
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According to Øydegard (2017), increasing the use of sensors on support transport vessels would result 
in a higher level of autonomy, which would improve workability, turbine availability, and fuel efficiency. 
Offshore wave conditions typically result in a 'grey' region in the operating window for Crew Transfer 
Vessels (CTV) between 1.2m and 2m of substantial wave heights. The probability of such marginal 
weather window occurring, according to BMO offshore (Dewan and Asgarpour, 2016), is projected to be 
30%. External vessels are paid to perform in this narrow operating window, however due to a lack of 
vessel performance data for marine control, a best-practice 'no-go' decision is made at substantial wave 
heights exceeding 1.2m. During this weather window, it is expected to see a 25% increase in deployment. 
Furthermore, according to BMO offshore, vessels are frequently cruising at maximum speed to maximize 
technicians' work time. Technicians are anticipated to return to port after working less than 12 hours on 
65 percent of days. In certain cases, vessel speeds might be reduced from 25/26 knots to 20 knots. The 
resulting fuel consumption can only be reduced on the inbound and return legs; the outgoing leg cannot 
be reduced. As a result, a sensor that alerts the crew when it's time to slow down might save money on 
fuel. In addition, new developments in the sensors to measure gas quality, leakages and process 
conditions when an integrated energy system will be operated, will provide new insights to the operators 
of the production and transport systems to track and monitor the system behaviour in real-time and 
detect anomalous behaviour in time. New sensor developments are required to ensure an efficient and 
reliable operation of the energy systems.  

2.1.5 Internet of things 
 

 
 
Meola (2016) describes the Internet of Things (IoT) as a network of internet-connected items that can 
collect and exchange data via embedded sensors. IoT allows for significant data collection, enhanced 
connectivity, as well as the extension of digitization, digitalization, and connectivity to previously 
analogue jobs, processes, and operations. According to Iansiti and Lakhani (2014), there are three key 
qualities that explain why the IoT is altering enterprises. To begin with, unlike analogue communications, 
digital signals may be sent flawlessly. Digital signals, on the other hand, can be repeated forever. Lastly, 
once the network infrastructure investment has been made, it can be transmitted to the incremental 
consumer at no cost. 
 
In 2012, GE coined the term Industrial Internet to differentiate between the industrial and consumer 
levels of IoT (Leber, 2017). The Industrial Internet of Things (IIoT) or the Industrial Internet, according to 
GE, can be thought of as connecting equipment and devices in industries where even more is at stake, 
or where breakdowns and unscheduled downtime might result in life-threatening or high-risk situations. 
According to IBM (Dietrich, 2014), intelligent machines, facilities, fleets, and networks are converging 
with advanced analytics, predictive algorithms, and automation. These linked machines can teach, for 
example, offshore system operators how to boost productivity or identify a failure before it happens, 
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allowing different units to collaborate to support better intelligent design, operations, maintenance and 
safety. According to Inductive Automation (Vavra, 2016), IIoT may considerably increase 
interconnectivity, productivity, scalability, time savings, and cost savings for offshore enterprises via 
predictive maintenance, greater reliability, and operational efficiencies. 
 
IoT allows for the identification of every individual good throughout a supply chain, allowing for end-to-
end visibility by quickly reporting both item status and condition in offshore logistics (Tadejko, 2015). 
Shipment, inventory, warehousing, quality assurance, maintenance, security, safety, and reverse logistics 
procedures all benefit from this capacity. Monitoring the status of products in transit (e.g. temperature, 
humidity) using IoT technologies (e.g. radio frequency identification system) can help with delivery 
scheduling. The usage of telematics-enabled vehicles can boost the transfer vessels and personnel 
(Andersson & Jonsson, 2018). IoT improves item traceability across the supply chain, making it easier to 
identify suppliers who are accountable for quality issues (Georgakopoulos et al., 2016). It reduces time 
by easing item identification and improving order picking routing, resulting in improved warehouse 
operations and inventory accuracy. Thefts, shrinkages, and unlawful efforts to access restricted areas are 
all detected by IoT (Fan et al., 2015). Devices can detect driver fatigue levels or signal warehouse 
employees mistakes/errors, for example, and IoT improves working conditions by improving safety (i.e. 
minimizing errors). Georgakopoulos et al. (2016) stated that IoT can also help employees perform better 
by offering task suggestions. IoT warns retailers of inventory levels and replenishment times in inventory 
planning. At the same time, IoT technologies improve consumer happiness by allowing them to follow 
their orders in near real time. Organizations can also give more tailored logistics services by using the 
digital trace and locational data of items via IoT. Furthermore, real-time data on product and asset usage 
enables for more effective reverse logistics planning and predictive maintenance (Ben-Daya et al., 2017).  

2.1.6 Additive manufacturing 

 
Additive manufacturing, also known as additive, digital, or fast manufacturing, can create objects that has 
been digitally designed as a three-dimensional model (Rogers et al., 2016).  3D printers can use recycled 
materials to create high-quality goods with the least amount of trash and materials (Pakkanen et al., 2017). 
By diminishing the scope and scale advantages of conventional production methods, 3D printing 
technology can achieve mass customisation (Sasson & Johnson, 2016). On 3D printing, there are two 
different perspectives: the first is that 3D printing is a revolution that will cause traditional production 
techniques to be disrupted (Mohr & Khan, 2015). On the contrary to disrupting the traditional production 
methods, 3D printing would only enhance the existing methods (Sasson & Johnson, 2016). Regardless of 
the differences, both arguments agree that 3D printing will have a substantial impact on the global value 
chain and logistics operations. 
 
3D printing would allow for localized production close to offshore sites and is predicted to eliminate 
some supply chain stages (e.g. second-tier suppliers). Such localized and portable production will enable 
businesses to enter areas that are currently closed to them due to logistical constraints, such as long 
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distances and risks (Sasson & Johnson, 2016). Furthermore, due to shorter lead times and the potential 
to deliver higher levels of customization, localized production will improve logistical service quality. 
Furthermore, 3D printing-enabled near-sourcing (i.e. localized production) is predicted to lower shipping 
costs, safety stock levels, and import/export logistics expenses. Decentralization of distribution facilities 
and warehouses will reduce the requirement for inventory of semi-finished and finished goods; instead, 
raw materials feeding 3D printers, such as plastic, metal, and ceramic, would require inventory. This 
transition will reduce the number of stock keeping units required (Rogers et al., 2016), lowering inventory 
carrying costs, eliminating assembly activities (i.e. lowering handling costs), and cutting the number of 
vendors engaged directly (i.e. decrease sourcing costs). 
 
In three ways, 3D printing technology will improve the efficiency and efficacy of reverse logistics 
operations. Firstly, involving customers in the design and production stages will reduce product returns. 
Secondly, the reduced trash generated by 3D printers will lessen the requirement for garbage collection 
and processing (Sorkun, 2018). Lastly, on-demand 3D printed spare parts decrease inventory-carrying 
costs while reducing customer wait times. Mercedes-Benz Trucks, for example, now uses 3D-printed 
spare parts for this reason. Similarly, the start-up Fast Radius has set up a 3D printing facility near UPS 
to facilitate faster product returns (Ryan et al., 2017). 

2.1.7 Robotics and automation 

 
Organizations are investing in automation and robots as a result of increased competitiveness and 
technological advancements. In industrial automation applications, a robot is described as an 
automatically controlled, reprogrammable, multipurpose programmable electromechanical device that is 
either fixed in situ or mobile (IFR, 2018). Automation is speeding up as the fourth industrial revolution 
unfolds. Robots begin to interact and communicate with other devices, materials, and industrial 
components in smart factory systems. 
 
The benefits of utilizing specialized robotics for maintenance were suggested in Made Smarter (Maier, 
2017).  As an example, wind turbine blades are difficult to access. Øydegard (2017) investigated the use 
of autonomous vessels and drones for inspection and access.  Stein (2018) looked into the use of 
Unmanned vehicles for inspection activities in the maritime environment. He claims that this innovation 
lowers costs and increases the efficiency and safety of operations. A further contribution by Stein (2018) 
expanded on the usage of the United States in maritime and port security operations. Inspection that 
would prevent staff transfers on the offshore ports, and therefore avoiding the typical CTV or helicopter 
transport would be cost effective. Similarly, minor replacement parts or tools are transferred from the 
installation vessel deck to turbine nacelles. A missing tool or spare part during installation can cause 
delays. A technician must climb from the installation vessel deck to the nacelle to deliver a spare part or 
tool to the top of a turbine, which takes roughly 20 minutes in an elevator or a minimum of 30 minutes 
climbing. Such operations can be carried out by the unmanned vehicle in a matter of minutes. 
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According to the International Federation of Robotics (Klump et al., 2021), 2.1 million new automation 
robots will be in operation around the world by 2021, reflecting a 14 percent annual growth rate between 
2018 and 2021. Robotics installation rates are 10% in Europe, 13% in the United States, and 16% in Asia. 

2.1.8 Cybersecurity 

 
Cybersecurity is currently receiving a lot of media attention, and its importance will only grow as more 
of the industry and the world population become digital. It is critical that software connected to the 
discussed digital technologies has a high level of safety and security built in it. For example, in order to 
build cloud technology, there must be confidence in the cloud solution's safety and integrity. Increased 
connectivity across assets and the system, as a result of step two of the digitalization method, may result 
in isolated cybersecurity solutions between the systems. This could allow weaknesses to be exploited, 
necessitating the allocation of extra resources to this activity in order to prevent cyberattacks and 
accidents. Avoiding any intrusion into these cyber systems would need to be a top focus at the highest 
levels of the architecture, where machines may make decisions and have increasing control. If the 
scenarios and estimates for offshore wind's rising part of the entire energy mix come true, a cyberattack 
that causes a shutdown or disconnection from the grid might have serious implications. Throughout the 
digitalization process and beyond, cybersecurity would need to be maintained and developed. 
 
The maritime space's esoteric nature, along with a general sea blindness in which the maritime space is 
badly undervalued and often disregarded, makes it an ideal target for cyberattacks. Due to the lack of 
continuous surveillance and speedy response, the chance of being caught in the maritime sector is far 
lower than on land. There have been instances where port records have been altered to conceal full oil 
tankerloads. Ships can, in other words, call at a port, load up with cargo, and then leave with no record 
of the transaction. The energy industry must be proactive in creating strategies to reduce the scope of 
crime, particularly theft, that could occur within the marine domain, given the range of criminality that 
could occur. A cyberattack on OT in the ICS on a ship in the energy sector, or on the operation of an 
offshore plant, might cause major problems. An operational strike could include anything from causing a 
ship to use more fuel to shutting down the electricity on a vessel or rig to pressurizing a pipeline to the 
point of rupture. Ports have also become a major source of worry. While many of the systems at a port 
are vulnerable to IT attacks—and there have been numerous cases of both ransomware and virus 
incidents, the OT at ports is rapidly becoming a target for hackersIn June 2020, for example, the OT 
systems of Iran's Shahid Rajaee Port were targeted, causing maritime turmoil and halting tanker 
flow.   According to a related analysis conducted by Lloyds of London, insurance firms would be unable 
to cover the costs connected with a breach of OT systems in fifteen Asian ports, with a potential damage 
of $110 billion. 
 
The energy sector must be aware that indiscriminate cyberattacks could have a negative impact on its 
maritime assets at any time. An offshore rig or an entire offshore wind farm could be shut down by a 
ransomware or malware attack, for example. To mitigate and respond to threats, protocols and response 
mechanisms are required. Companies that have gone through similar crises can teach us a thing or two. 



NSE 2020-2022 | 5.2 Digitalization of North Sea Energy systems 15 of 40 

 

 

While the energy and maritime sectors are notoriously competitive, security is not an area where any 
legitimate player gains from competition. 

2.1.9 Data sharing 

 
Data sharing is a cornerstone of digitalization, and some ways of exploiting data sharing have already 
been discussed in the previous sections. In this section, we focus on innovative technologies that allow 
data from different parties to be harnessed without compromising privacy and confidentiality. Two 
examples are multi-party computation (MPC) and federated learning (FL). In MPC, data are shared, 
whereas in FL insights are obtained without sharing data. Secure MPC consists in using advanced 
cryptographic techniques to enable computations on sensitive data from multiple parties, without sharing 
or revealing this data. Key aspects are to maintain privacy (private inputs remain private) and to guarantee 
correctness of the output. Nowadays, a collection of cryptographic techniques is becoming more mature 
(homomorphic encryption, secret sharing, garbled circuits, zero-knowledge proofs, …) and the optimal 
solution will depend on the application scenario. Federate learning (FL) is a machine learning technique 
that trains a model across multiple decentralized devices holding local data, without sharing the data. The 
model is trained locally based on own data that will not be exchanged with the other parties. The model 
parameters from the local models are instead exchanged and the global model can be updated. All users 
can then benefit from the updated model.  
 
More broadly, synthetic data generation can also be part of the data sharing process. First of all, shared 
databases can be enhanced by new data which are generated by appropriate machine learning algorithms, 
such as generative adversarial networks (GANs), that allow to construct variational models. Such models 
can then be used to generate new datapoints based on different input parameters that can be 
representative of different operating conditions not contained in the initial dataset. The augmented 
dataset can be then shared and used by different parties. Alternatively, each party could perform the 
synthetic data generation locally and provide the synthetic datasets to the other parties, in order to share 
representative information of the local data but maintaining the privacy of the original data.  
 
Within the current NSE project, data sharing can find a prominent role in the activities defined in several 
work packages (WPs). For example, data security and sharing regulations should be considered in WP 2 
that focuses on society, governance & communication. Both MPC and FL are technologies that should 
be considered and requirements for the applications within NSE should be defined before deployment. 
Defining efficient, reliable and secure procedures of data sharing during operations can be key to ensure 
optimal offshore logistics, that is the focus of WP 5. Synergies between data sharing and visualization 
tools can be also investigated within WP 6, that focuses on system mapping and modelling. The 
developed ATLAS tool can be connected to a system of data sharing as a first step towards an illustration 
tool to be used during operations and potentially connected with a digital twin framework as well. 
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2.2 Barriers to digitalization 

This section examines the barriers towards the implementation of digitalization in the offshore energy 
sector. A comprehensive literature review, followed by discussions with industry experts, identifies seven 
most prominent challenges, which are: 

2.2.1 Value-chain integration 
In order to accomplish the seamless integration of different digital technologies, Caylar et al. (2015) 
investigated the challenges of reducing barriers between various organizational units. The issue gets 
considerably complex when multiple companies along the value chain need to integrate. Pérez-Lara et al. 
(2020) stress the significance of close collaboration among value-chain partners as well as horizontal 
value-chain integration. Dalenogare et al. (2018) argue that the lack of IoT integration in an Industry 4.0 
scenario is another reason why most enterprises fail. They argue that the non-technical challenges that 
the IoT (and subsequently digitalization) faces still require workers with the necessary knowledge and 
abilities. According to Breunig et al. (2016), many businesses acknowledge that they lack the necessary 
knowledge or skills to fully utilize the digital technologies.  

2.2.2 Ensuring data quality 
Four characteristics of good data are consistency, completeness, correctness, and redundancy (Chen et 
al., 2014). Organizations would need to be networked in the fully realized big data era, which would 
generate enormous amounts of data that are impossible to test for completeness and data integrity due 
to their complexity and variety. Consequently, there is also a greater possibility of making a mistake. 
Additionally, when data is shared among many contributors and changed frequently, it becomes 
extremely challenging to maintain data consistency and integrity. Considering organizations will be much 
more networked than they were in the past, ensuring high data quality will remain as a major challenge. 

2.2.3 Security breaches 
Concerns regarding the dangers and risks of data sharing among value-chain partners are raised by 
interconnectivity (Geissbauer et al., 2016). Breunig et al. (2016) examine fear among enterprises of losing 
their data to third-parties in addition to their worries about cyber-security. Given that Lee and Lee (2015) 
see hackers as one of the potential issues with IoT adoption, security breaches would be a serious 
concern. 

2.2.4 Low technology maturity  
The potential for instability while deploying unproven, early-stage digital technologies is presented 
by Lee and Lee (2015). Although there are now more untested digital technologies, there may be an 
imbalance in some technologies with regard to standards, privacy issues, and data security. According to 
their study, even though this might not seem like a major concern in a disconnected environment, it might 
have a significant effect on a centralized network of technology. 

2.2.5 Lack of standards, regulations and certifications 
According to Schröder (2016), the absence of defined standards and regulations causes small and 
medium-sized businesses (SMEs) to have reservations about adopting digital technologies. According to 
Schröder, SMEs find it challenging to participate in networks and activities that create value because 
there are no standards in place. Additionally, as technology develops, authorities and legislators struggle 
to protect the interests of customers even when they cannot keep up with the rapidly changing 
technology and its widespread effects. Authorities must therefore quickly adapt to the evolving 
technological breakthroughs in order to comprehend what they are regulating (Schwab, 2017). In 
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addition, standardization of data currently is under development and this will be an additional barrier for 
the organizations to deploy digital technologies. 

2.2.6 High investment 
Organizations seeking to implement digital technologies must commit to double their estimated annual 
capital spending for the coming five years, according to Geissbauer et al. (2014). To achieve 
digitalization goals, this not only calls for a re-engineering of current strategies, but also for a large 
investment. In addition, Kache and Seuring (2017) support this claim by adding that large investments in 
people, processes, and technology are needed at both the corporate and supply chain levels. Breunig et 
al. (2016) claim that despite the significant financial requirements, most organizations are still reluctant 
to participate in R&D connected to digitalization. The productivity gains and financial advantages of 
investing in digital technologies have always been contested (Caylar et al., 2015). It is challenging to make 
a trustworthy estimate of the economic benefits of digital business due to the productivity paradox in 
technology implementation. 

2.2.7 Job market 
According to Schwab (2017), organisational digitalization would increase inequality and may disrupt the 
job market. Conflict will result from the market's division into low-skill/low-pay and high-skill/high-pay 
sectors (Schwab, 2017). Additionally, it is asserted that digitalization will increase inequality by 
strengthening the gap between those who depend on digital technology and those who depend on 
labour, while benefiting intellectual property owners and their shareholders. 
 

Table 1 – Summary of the main potential barriers to digitalization. 

Potential barriers Challenges Technology focus/solution 

Value-chain integration Stakeholder collaboration, 
physical and digital integration 
of infrastructures 

Sensors, Industrial IoT, Data sharing 

Ensuring data quality Define, acquire, exploit 
meaningful data 

Sensors, Industrial IoT, Big Data 
analytics, Digital twin 

Security breaches Protect data and protocols Cybersecurity, data sharing 

Low technology maturity Advance low-TRL solutions, 
scale-up pilot projects 

All 

Standards and regulations Identify common frameworks in 
fast-evolving technologies 

All 

High investment High investment needed, 
demonstration of added value 
in integrated chain 

All 

Job Market Lack of digital skills All 
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3 Towards a NSE digital twin: case study 
In this section, some of the main components that would lead to one of the digital technologies proposed 
before, a NSE digital twin, will be showcased. A technology description of how a digital twin could be 
used is given, followed by a MVP (minimum viable product) via a case study is presented. This MVP aims 
to highlight the advantages of the combination of digital technologies even for a very simplified system.  

3.1 NSE Digital Twin technology description 

A North Sea Digital Twin (or a collection of Digital Twins for each asset) can be composed of several 
different technologies. Figure 4 shows an example of a digital twin for a system comprised of green 
hydrogen production via electrolysis connected to a wind park. On the left side of the graph, it can be 
observed that four elements act together in this example:  
• Dynamic physical modelling: a modelling framework can be used to create a digital copy of an 

existing/future asset, to calculate the dynamics at system/component/subcomponent level when 
connecting different energy sources, conversion, transport and storage options. An example used in 
the case study of the next section is TNO’s PyDOLPHIN simulator. 

• Automated systems to provide flexible, robust and user-friendly ways of testing multiple 
configurations and setpoints for exploration and knowledge-gathering purposes.  

• Model enhancement and validation via experimental data. In addition to traditional calibration 
techniques, data-driven/AI models can be used for flexible calibration.  

• Optimization/control algorithms for design and operational purposes, allowing for smart decision-
making purposes that can be tailored to a plant or larger assets, such as a multi-commodity system 
connected to a network.  

 
Depending on the level of fidelity and the integration with other elements (such as hardware/EMS 
systems), different levels of digital twins can be constructed. Ideally, this collection of digital twins, being 
tailored to each specific problem, should be able to communicate with each other. A standard modelling 
language, such as TNO’s Energy System Description Language (ESDL), could be used for this purpose. 
 

 
Figure 4: Representation of a Digital Twin for the North Sea, with TNO's PyDOLPHIN as a simulator, assisted by AI 
models for smart decision-making and optimization. 
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3.2 Dynamic physics simulator (digital model): PyDOLPHIN 

In the following case study, TNO’s PyDOLPHIN physics-based simulator will be used to model the 
different component and their interactions. PyDOLPHIN is a framework that allows to perform 
simulations of multi-commodity assets and obtain energy flows, efficiency, load factors and constraints 
at component and system level. In addition, it can be customized to perform techno-economical 
calculations (CAPEX, OPEX, LCOE, LCOH). The reason to use a dynamic simulator is that static 
modelling/optimization of assets that contain variable energy sources, transport, storage and conversion 
elements can lead to suboptimal/infeasible design and/or operation. Figure 5 shows a simplified example 
of an infeasible asset design. In this case, only averaged supply and demand (left) were considered, 
obtaining an optimum sizing of the different components. However, in practice, the dynamic nature of 
supply/demand combinations depleted the H2 storage in less than 9 months (right plot). Hence, despite 
the asset line was found suitable using static calculations, the dynamic simulations showed how it was in 
fact inadequate.  
 

 
Figure 5: Example of asset design considering only static efficiency and supply/demand averages. A dynamic simulation 
that explicitly consider the variability in supply/demand and component dynamic efficiency/responses shows that the 
designed asset line is in fact not suitable (the storage gets depleted and therefore security of supply is not guaranteed). 

 
Dynamic modelling in these situations becomes relevant even in exploratory phases. Figure 6 shows the 
use of PyDOLPHIN in the same case, optimizing the sizing of different components, with the goal of 
minimizing CAPEX while keeping the H2 storage levels between min/max bounds and as close to the 
initial point at the end of a 1-year simulation. The boundary conditions are the same wind power curve, 
with three demand curves which share the same mean demand but different levels of variability. For 
static modelling, the three optimum designs would be identical, as no variations would be considered. 
However, it can be observed how the digital copy of a potential optimum system can show variations in 
CAPEX of up to 58% depending on the demand dynamics. In addition, for the case with the highest 
variations, even an oversized system with respect to the baseline case will likely not work for a longer 
period of time: the H2 storage was close to be depleted after a single year. A different type of asset or 
boundary conditions would then be needed (e.g., combining a smaller battery or aiming to provide H2 in 
peak-shaving). A digital copy with fast and accurate modelling can provide insights in current assets (for 
operational purposes) and future ones (for design problems).  
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Figure 6: Optimum results obtained by PyDOLPHIN of the same system using three different demand profiles, for a fixed 
wind power curve. 

3.3 Case study definition 

To illustrate some capabilities of a future digital twin of an energy system in the North Sea, a simplified 
design optimization problem is considered. Figure 7 shows the configuration tested, for different 
boundary conditions. The design optimization problem comprises 2 types of assets/actors, which could 
theoretically act either independently or together. The actors are two wind farm operators (1.5 and 0.5 
GW, respectively) and two new electrolysis plant operators, with a maximum of 800 MW for the two 
electrolyzer systems. It is assumed that both wind farm operators act together, with a similar assumption 
for the electrolysis operators. Platform(s) are considered to be available, with sufficiently close 
electrolysis systems to the wind power. The wind power profile corresponds to 2017 simulations of a 
North Sea wind farm in TNO’s FarmFlow tool. Electricity prices are scaled ENTSO-E prices from 2017 to 
reflect 2022 projections, and hydrogen prices are a synthetic curve with periodicity of 1 week.  
 

 
Figure 7: Configuration tested 

 
The goal of the optimization problem is to find the optimum electrolyzer capacity to maximize the 
combined profit of selling electricity and hydrogen, given the fixed wind farm configurations. The profit 
is calculated based on wind farm costs corresponding to values given for Hollandse Kust West in Lensink 
and Pisca (2019) and projected PEM electrolysis values in 2022, with a 1-week period synthetic 
sinusoidal curve. This study aims to provide a qualitative overview of the effects of different price 
dynamics and asset operation on the optimum design, highlighting that different boundary conditions 
and projections can lead to very different systems as well. The cases that have been run aim to model 
the effect of several digital technologies and collaboration: optimum design via digital twin physical 
modelling, smart production/operation and combination of several actors vs a single actor.  
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3.4 Results 

In this section, the results for different tests of the system are shown. In the graphs and tables, the 
optimum configurations are shown. Unless explicitly specified, the baseline case to be compared with is 
an electrolyzer set to the mid-range of the allowed capacities (425 MW). 

3.4.1 Optimum design via accurate physical modelling (digital model) 
The first digital technology that is showcased is the physics-based digital copy of potential new systems. 
By using models that take into account the dynamics of multi-commodity energy assets, optimum 
configurations can be found that can withstand the constraints of a variable power source, such as 
offshore wind. Figure 8 shows the results of optimum electrolyzer sizes with respect to H2 prices. In this 
set of simulations, the asset logic is set to produce and sell as much hydrogen as possible to minimize 
electrolyzer start-ups/shut-ins. It can be seen that the optimum size can be widely different depending 
on the boundary conditions, and that for this specific set of cases, the variation is quite steep. Due to 
this, it can be highlighted the importance of having accurate models that represent the different parts of 
the system, including its boundary conditions.  
 

 
Figure 8: Optimum electrolyzer sizes with respect to H2 prices for a fixed electricity prices dataset. Area of each icon 
scaled to the capacity/production per case. 

 
Table 2 shows the profit gain via optimum design and accurate modelling of the system. It is observed 
that the gains, even in a simple system, can be significant, being around 4% at the lowest and highest H2 
prices tested. It should be noted that there are certain conditions where a baseline design is good enough, 
and no profit is gained via a posterior sizing optimization, as shown for a mean H2 price of 2.9 EUR/kg. 

Table 2: Profit gain via optimum sizing design for multiple H2 prices. 

H2 mean price [EUR] Optimum electrolyzer size [MW] Profit gain via optimum design [%] 

2.0 50 4.0 

2.9 425 0.0 

4.0 800 4.2 
 
A digital twin of the system with the ability of predicting performance for a wide array of operating 
conditions can also provide information about future levels of efficiency of the components. Figure 9 
shows efficiency distributions for the optimum electrolyzer size in each of the cases. It can be observed 
that due to the mismatch in scale between wind farm size (2 GW) and electrolyzer (50-800 MW), it 
operates at a slightly lower efficiency than its optimum (closer to 0.70). This optimum is obtained at a 
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lower load. Future systems with novel configurations, such as in-turbine electrolysis and very large-scale 
plants could potentially be controlled to lower the energy losses associated with the conversion process. 
 

 
Figure 9: Efficiency distributions for optimum electrolyzer sizes. The asset logic consists in always producing as much H2 
as possible. 

3.4.2 Smart production/operation gains 
In this section, different ways of operating an existing asset are explored. The previous baseline case is 
compared with a smart production strategy. Figure 10 illustrates how the term is defined in this simplified 
case. In the bottom plots, the price per kW of electricity and hydrogen are shown. With the previous 
strategy (produce and sell as much H2 as possible), there are several instances where it is not the most 
profitable option. Instead, an automated system that can provide insight of which technology to 
produce/sell and allocate the different energy sources can result in an improvement of the profit 
obtained. In particular, the left plot of Figure 10 shows an improvement of 19% in the effective mean 
price per kW of the commodity sold via smart production.  
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Figure 10: Effect of smart production in effective selling price for mean H2 price of 2.0 EUR/kg (left) and 4.0 EUR/kg 
(right). 

The effect of the most profitable commodity per time step is also reflected in the optimum configurations 
found by the optimizer. Table 3 shows this effect. For the case of a mean H2 price of 2.9 EUR/kg, the 
optimum electrolyzer size almost doubled. With this specific set of boundary conditions, as seen in Figure 
9, a larger electrolyzer can operate at higher efficiency levels for the same input power. Two columns are 
present in the profit gain. The first one refers to the baseline case of 425 MW. For the case of 2.0 EUR/kg, 
the baseline case configuration, operated in a smart production setting, was almost 4% more profitable 
than if always producing H2. For the optimum design, the largest gains were obtained for 2.9 EUR/kg. 
The cases of 2.0 and 4.0 EUR/kg had already very small and large capacities, respectively, and operating 
them differently did not result in significant profit gains.  

Table 3: Profit gain via smart production for existing (baseline) and new optimum designs for multiple H2 prices. 
 

Optimum electrolyzer size [MW] Profit gain via smart production [%] 

H2 mean price [EUR] Produce H2 Smart production Baseline design [%] Optimum design [%] 

2.0 50 50 3.8 0.4 

2.9 425 800 1.3 2.3 

4.0 800 800 0.1 0.2 
 

3.4.3 Demand/pricing forecast accuracy: AI forecasting under uncertainties 
To effectively perform smart production/operation, the accuracy of the demand and market prices needs 
to be sufficient. Figure 11 shows an example of ENTSO-E day-ahead load predictions. In the dataset 
analysed (years 2015-2021), the forecasting error (MAE) was around 10%. These errors are propagated 
to market models, as well as errors in supply predictions based on seasonality trends and weather 
forecasts. Due to the marginal characteristics of the electricity market, the propagation of these errors 
can result in very large deviations in pricing.  

 
Figure 11: Examples of ENTSO-E day-ahead load predictions. Forecasting error is around 10% (RMSE=12%, MAE=10%) 
for the dataset analyzed (years 2015-2021). 

 
A digital technology that can provide additional gains in this respect is AI forecasting under uncertainties. 
These are AI models that are able to predict point estimates of future supply/demand/energy prices and 
uncertainty estimations based on past trends, weather forecasts and also anomalies (e.g., extreme weather 
conditions, grid congestion in certain geographical areas, etc.). Figure 12 shows an example of a study by 
TNO in applying this technology to the electricity demand of the Netherlands. It can be observed that 
the MAE is around 2-2.3% in predictions for the next week and the next month.  
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Figure 12: AI predictions of electricity demand of the Netherlands a week and a month ahead. MAE (proportional) and 
RMSE of less than 3% in both cases. 

 
In addition, when using daily predictions, 96.4% of the points predicted are in the 95% predictive intervals. 
This means that the uncertainty estimates are well calibrated, not too narrow (less than 95% of the points) 
or too wide (closer to 100%). The AI uncertainty techniques provide dynamic estimates: that is, they can 
not only predict global uncertainties, but also when it is expected to have largest uncertainties. This can 
be relevant for cases such as the imbalance market or for weekly/seasonal balances, as a signal to have 
power/H2 storages ready if necessary for potential excesses/deficits of energy.  

3.5 Conclusions and a potential digital twin roadmap 

3.5.1 Conclusions of test cases 
This section highlighted the use of multiple digital technologies in a simple example of a multi-commodity 
asset located in the North Sea. Three main technologies have been shown: physical modelling via a digital 
copy of an asset, smart production and operation, and forecasting under uncertainties. One of the 
simplest examples has been shown, to highlight that even for a very small number of actors/components, 
digital technologies can provide significant benefits. The main results from this study are:  
• Optimum design via physical modelling/digital copy: accurate modelling of the physical components 

of the system can provide up to around 4% of profit gains in 2 of the 3 cases tested. The dynamic 
interactions between wind power and electrolyzer could be captured, allowing to understand if the 
asset components are operating at the expected efficiency levels. In a more complex case shown in 
the introduction of the digital copy, it was observed how static modelling might suggest an infeasible 
configuration in practice, and how dynamic modelling provides results that can vary up to 58% in 
their CAPEX. 
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• Smart production and operation: In this section, it was shown how significant improvements in the 
asset logic can be made via smart production and operation. In particular, it was shown how the 
effective mean selling price per kW of a commodity could be raised by 19% by the combination of 
physical modelling of the system with the smart operation. This could result in profit gains of up to 
3.8% in the baseline configuration of H2 prices of 2.0 EUR/kg (existing asset) and up to 2.3% for 2.9 
EUR/kg in the optimum configuration (optimum future asset). In other sets of boundary conditions, 
the differences were significantly smaller/negligible.  

• Forecasting of power and pricing via AI under uncertainties: the importance of accurate and robust 
models to predict demand and pricing was shown, and its connection with smart production and 
operation. AI models to predict electricity demand and associated uncertainties were showing, 
decreasing the error from public forecast (ENTSO-E) from 10% to 2-2.3%. When using daily 
predictions for the following month, the model covered 96.4% of the points in the 95% predictive 
intervals, showing its robustness in multiple conditions.   

3.5.2 Towards a digital twin roadmap and connections with other NSE WPs. 
The effort to build a collection of digital twins for the future North Sea assets can start now. A possible 
roadmap to achieve it could be:  
 
• Phase I, North Sea Digital Model: Construct connections between multiple assets and boundary 

conditions, combining physical modelling technologies such as PyDOLPHIN with AI technologies for 
forecasting, optimization and control (variational optimization, Reinforcement Learning). Validate 
these models and enhance them using lab-scale experiments and/or limited amount of field data. 
Data collaboration and sharing for joint profit gains. 
- Non-real time, longer time scale problems. Novel configurations and assets (1-year to 30-year time 

horizons). Optimum sizing, connections and geographical locations. Operational setpoints for 
weekly/seasonal balance. Optimum storage (electricity, H2, etc.) design and allocation. Test 
setpoints for current/future asset states.  

 
• Phase II, North Sea Digital Shadow: Auto-update models using real-time data. Automatic setpoint 

generation via real-time optimization algorithms. Anomaly detection. Degradation calculations. Alert 
systems for operators.  
- Real-time operator support: real-time decision-making suggestions, for problems such as 

fast/slow-response component dynamics, hourly/daily balancing, the imbalance market. 
Automatic calibration and adapting signals when to perform maintenance or inspections.  

- The additions of sensors, big data, data sharing and cybersecurity technologies will provide 
additional accuracy and insights to the digital shadow.  

 
• Phase III, North Sea Digital Twin:  Full integration with the physical asset, acting as an EMS (Energy 

Management System), closely integrated with the hardware. Digital operation, with a human-in-the-
loop for supervision. Automatic control and short/long-term real-time planning.  
- Real-time digital operation: AI operation for a wide range of time scales. Automatic market bidding 

depending on present/future conditions. Pre-emptively design logistic pathways for 
maintenance and support.  

- Development of data sharing technologies will be key to enable an optimum, fair and federated 
decision between different actors in the North Sea. 

 
These three phases will be linked with three potential digital innovations for the North Sea in the next 
section.  
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Figure 13: Connections of a North Sea Digital Twin with other NSE Work Packages. 

 
Finally, Figure 13 shows the connections of a North Sea Digital Twin with other Work Packages of the 
North Sea Energy project. It can be observed that a Digital Twin could provide synergies with each of 
the WPs, as its nature goes from exploratory, long-term purposes to operational, short-term operation, 
maintenance, logistics, etc. As mentioned in Section 2, multiple digital twins are expected to be created 
and interconnected, tailoring them to each specific application.  
 
The communication of these digital twins is expected to be developed via a standard language such as 
ESDL. A common communication language will allow to perform analyses with high-level system 
optimization tools (OPERA), network, multi-commodity systems (AURORA/Multi-Commodity Grid 
Simulator) and detailed physical, asset properties design and operational optimization (PyDOLPHIN). This 
will provide a rich ecosystem to future energy system operators, policymakers and other stakeholders.  
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4 Digital innovations for the North Sea 
In this section, we consider three possible innovations based on combinations of the digital technologies 
reviewed above, to be deployed in the future North Sea Energy system. As summarized in Table 4, we 
proposed digital solutions for different goals and different time horizons. 

Table 4 – Proposed innovations for the digitalization of the North Sea Energy system. 

Goal Challenges Innovation Technologies Barriers Horizon for 
technology 
readiness 

Efficient 
design, 
production 
and 
operations 

Dynamic 
supply/demand, 
component 
response, capacity, 
ramp-up time, 
fluctuating prices 

Trusted 
digital twin 

Digital twin, Sensors, 
Industrial IoT, Data 
Sharing, 
Cybersecurity 

Integration, 
Data quality, 
Security 

Short-
term 

Predictive 
maintenance 

Asset/component 
degradation, 
Logistic planning 
of maintenance 

Smart 
detection of 
anomalies 
and 
degradation  

Big Data Analytics, 
Sensors, Industrial 
IoT, Data sharing 

Integration, 
Data quality, 
Technology 
maturity 

Medium-
term 

Autonomous 
inspection 
and repairs 
of offshore 
assets 

Inspection, 
maintenance & 
repair in harsh 
weather 
conditions. 
Reduce emissions. 

Autonomous 
vessels 

Sensors, Robotics 
and automation  

Technology 
maturity, 
Economical, 
Standards and 
regulations 

Long-term 

 

4.1 Trusted digital twin for efficient design, production and operation 

Problem statement: Several challenges will be encountered when designing and operating future 
offshore energy systems. These includes the need to match highly dynamic supply and demand; to handle 
the different responses in the integrated system that will feature components with various capacity and 
associated ramp-up time; and to optimize production, conversion, storage, transport and export in a 
market with highly fluctuating energy prices. Not addressing these challenges might result in large profit 
losses, inability to guarantee security of supply, inefficient usage of the system (ranging from power 
curtailment due to unnecessary power production to dynamic bottlenecks along the asset line when 
operation conditions do not suit component responses), until faster component degradation and failure 
when operations are outside the safe regime. 
 
Proposed solution: A trusted digital twin is the proposed digital innovation to achieve efficient and robust 
operations. Recent developments in such technology will allow to deploy this solution in the short-term. 
Already in the design phase of the future energy system of the North Sea employing a digital twin can 
be beneficial to identify a design that is robust to the future challenges. The digital twin will consist of 
physics-based (similar to what has been showcased in the previous section) and AI models, and it will 
leverage the (real-time) data acquired from sensors placed throughout the asset line and integrated via 
IoT platforms. It will be able to simulate both the dynamics of the system components and their 
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interactions, and the variations in the boundary conditions (e.g. changing wind, fluctuating demand, 
forecasting market prices). It will feature control and optimization algorithms, and it will exploit the 
measured operating conditions and its capabilities to simulate what-if scenarios, to indicate optimal set-
points and operational strategies. This technology can start in the design stage by creating virtual models 
of potential new systems. These virtual digital models will be based on data from historic/existing 
components and technology/market developments to define potential operational constraints, 
bottlenecks and optimizations. Once a configuration is built, this digital copy can develop into a digital 
twin. The challenge in the development phase of this innovation will be to demonstrate that the 
information from the digital twin can be trusted by the stakeholders and value chain. Models will be 
calibrated to obtain output with an accuracy sufficient for the desired operations. Possibly, the results 
should be made interpretable so that operators can better understand and trust the digital twin. The 
outcome of the digital twin should also be accompanied by the level of confidence/uncertainty on the 
prediction, such that tasks concerning risk-assessment can be made straightforward. Lastly, in case of 
data sharing between the partners the trusted digital twin should allow for a secure data or insight sharing 
between parties. 
 
Furthermore, computational tasks need to be achieved within a certain time compatible with the 
requirements of operations, for example when real-time decisions are crucial. All these requirements 
might be sector-specific and therefore it will be necessary to develop common frameworks when looking 
at the North Sea Energy system. Understanding which sensor data can be used, how frequent and 
accurate the data needs to be, will be necessary steps to tailor the digital twin. 
 
Potential barriers: Specific barriers to optimal deployment of the trusted digital twin are data availability, 
quality and physical/digital integration. Exploiting sensors and technological advancements in the 
Industrial Internet of Things will allow to acquire and make use of meaningful data in real-time. When 
considering a digital twin for the entire North Sea Energy system, it will be crucial to have a data sharing 
framework that will allow mutual gain from information sharing while maintaining privacy. Finally, the 
digital twin must be protected from outside threats, and cybersecurity technologies can overcome this 
barrier. 
 
Expected benefits: Efficient and robust design and operations will guarantee security of supply, maximize 
profits and avoid unsafe operations, therefore preserving components integrity and extending system 
run lifetime. The trusted digital twin can be a driving force to accelerate system integration and 
collaboration within the North Sea. 

4.2 Smart detection of anomalies and degradation 

Problem statement: The detection of anomalies and degradation is a process that is usually performed 
reacting to the data available after inspections/sensor data show certain patterns. Typically, 20-25% of 
the LCOE for an offshore wind park goes to operations and maintenance. Harsh weather conditions 
accelerate component degradation and failures. Current rule-based or pure physics-based models can be 
either too inaccurate or computationally inefficient to predict these effects in real-time.  
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Figure 14: Schematic overview of a configuration for smart prediction of anomalies and degradation using digital 
technologies 

 
Proposed solution: Figure 14 shows a schematic overview of the proposed digital innovation for a future 
North Sea that aims to shift from reactive to predictive maintenance. It consists in combining 
technologies such as Artificial Intelligence, high-fidelity/fast physics (such as CFD or other simplified 
approaches) and sensor, inspection data, key degradation parameters and an assessment of the system 
performance could be performed in (nearly) real time. A potential workflow of this system would be:  
• Sensor data, integrated in each wind turbine, would be connected to a centralized location in the 

wind park (industrial IoT). 
• Sensor data is sent to the central processing system, where AI/data-driven algorithms analyse if the 

data received (power produced with respect to setpoint and weather conditions) is potentially 
anomalous. The system raises a potential anomaly flag if needed (Big Data analytics).  

• A physics-based digital twin (such as the one shown in the previous section) calculates the 
theoretical power output for different degradation scenarios. This data is compared with the sensor 
data obtained, and a real-time system prediction of the degradation state and potential evolution is 
given. This could serve to give key performance indicators such as degradation phase, remaining 
lifetime, etc. 

• If desired, this system could be coupled with an optimization/control algorithm to change the 
operating setpoint to adapt to the degrading system.  
Additional considerations to this digital innovation are: 

• The AI systems could be continuously updated based on the latest system data obtained.  
• Several wind parks/operators could collaborate to the development of the AI algorithms, which 

would have a larger pool of data to be trained with (Secure Data Sharing). 
• This system could be coupled with maintenance algorithms/route planning, for smart logistic 

maintenance, potentially encompassing several stakeholders to take advantage of synergies. 
 
Potential barriers: Sensor placement difficulties (costs, location and maintenance) should be investigated. 
Data from sensors/inspections should be of sufficient quality to be used by AI algorithms. Research 
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should be dedicated to identify the optimum sensor placements and minimum requirements on data (type, 
amount, frequency, accuracy) needed by a specific AI method for the predefined task. 
 
Expected benefits: Reduction of downtimes via proactive maintenance. Better understanding on 
parameters that affect degradation/failure, which can lead to more fit-for-purpose designs (such as blade 
treatments). Data library to be used for future asset configurations (e.g., design wind farm taking into 
account previous degradation patterns). A better prediction of degradation and failure will also enable 
an improved planning of the O&M services and logistics.  

4.3 Autonomous inspection and repairs 

Problem statement: The anticipated expansion of offshore wind in the North Sea will present a number 
of difficulties, including the need for cost and emission reductions. Offshore wind turbine rotors are 
growing in size, which is causing the blade tip speeds and forces to rise. Damage to the blades result in 
decreased aerodynamic yield, increased load on the drive trains, and grid outages. Blade inspection is not 
only costly and risky, but also time-consuming, resulting in downtime, and it can only be done under 
specific circumstances (feasible weather, the presence of technicians, etc.).  
 
One of the biggest problems for wind turbines in the offshore environment is leading edge erosion (LEE), 
which is a result of several meteorological conditions (water, salt, soil), as well as damage from 
precipitation (rain, hail). LEE poses serious operational, maintenance, and economic challenges. 
 

 
 
Proposed solution: Drone-based automated sensor and coating systems are suggested as a way to 
improve inspection and repair procedures. The basic idea is:  
 
• A drone platform equipped with a remote sensing sensor module can be used to find and assess the 

LEE of on-site rotor blades.  A CTV (Crew Transfer Vehicle) is used to deploy the drone from a 
module close to an offshore wind turbine. In order to do remote sensing, the drone will hover in front 
of the turbine blades. It will then land on the leading edge (LE) of the blade, lock itself to the LE, and 
move along its length. 
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• An automated leading edge protection (LEP) solution for the repair of LEE will be 
deployed concurrently to solve blade erosion damage.   The drone would have to come into touch 
with the blade for both the steps. 

 
Potential barriers: Current drone designs and controls are not robust, stable and safe enough to operate 
in challenging offshore conditions. Further research and pilot projects in this regard would be useful to 
identify the limiting weather conditions for operations. 
 
Expected benefits: A major part of the manual work for inspections may be done considerably more 
effectively and safely by autonomous drones for LEE and structural damage inspection, including for 
leading edge maintenance. Potential cost savings might be achieved through improved production 
efficiency and lower O&M expenses, which translates to an annual O&M cost and emission reduction. 
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5 Conclusions 
 

 
Figure 15 – Illustration of the future North Sea Energy system empowered with the three digital innovations 
proposed in this report. A digital twin will allow efficient operations, AI will be used for anomaly detection and 
predictive maintenance, inspections and repairs will be executed in an autonomous fashion. 

 
In the first part of this report, nine major digital technologies (Digital twin, Big data analytics, Immersive 
technologies, Industrial Internet of Things, Robotics and automation, Sensors, Additive manufacturing, 
Cybersecurity, Data sharing) have been reviewed and their benefits in the context of offshore energy 
system have been highlighted. Potential digitalization barriers associated to economic aspects, system 
integration, data quality, security, technology maturity, standards and regulations, and job market have 
been described. 

 
A case study with a simplified system, as a first step in the definition and application of a digital twin in 
the  North Sea, has been presented. The use of three main technologies were described: digital copy via 
physical modelling, smart production/operation strategy, and AI forecasting under uncertainties. It was 
shown how these technologies can provide fit-for-purpose asset design and operations taking into 
account the physical components, supply/demand and market prices. These digital technologies will help 
to increase profits and the resilience of the system against highly dynamic, difficult-to-predict conditions. 
A roadmap of the different steps and potential applications of digital twins in the North Sea was shown, 
towards real-time integration and autonomous/operator-assisted operation.  
 
A trusted digital twin will be of paramount importance to achieve efficient operations in the 
interdependent NSE system. This system will face several challenges both due to the variable dynamics 
of supply/demand and market conditions, and the complexity associated to system integration given the 
dynamic responses of the different components. Security of supply and profit maximization will be the 
reward in case of a successful digitalization process. In addition, proactive maintenance will be crucial to 
reduce downtimes and to avoid failures. Anomaly detection and predictive maintenance will be 
performed by centralized AI algorithms that can exploit sensor data and can be linked to digital twins to 
monitor in real-time malfunctioning and to forecast the degradation state of each component. The 
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success of these innovations will depend upon further research on optimal sensor placing, on the 
identification of algorithm- and task-dependent requirements for data quality, and on data sharing 
protocols. In the deployment phase, attention should be paid to assess cybersecurity threats. Finally, in 
a farther future, inspections and repairs of critical components that must be performed in harsh weather 
conditions, such as for offshore wind turbines, will be executed in an autonomous fashion. The use of 
drones will allow safer, more effective and profitable solutions for maintenance. Such innovation will be 
boosted by additional research on control algorithms for drones and on digital solutions to exploit sensor 
data. Similar approach will be advantageous for decommissioning of existing infrastructure and for new 
installation. 
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Appendix A    
Digitalization workshop summary 
In tandem with the activities of the NSE programme, a webinar/workshop was organized by TNO to 
present and discuss the challenges to be addressed in the future North Sea Energy area, and their vision 
on the main digital innovations that can help solve these challenges. The workshop combined the 
presentation of these challenges and innovations with a number of polls to get feedback and opinions 
from the audience, which consisted of a wide array of parties connected to larger NSE value chain 
(including asset/grid operators, service providers, and knowledge institutes both from within and outside 
of the NSE consortium). 
 
The challenges that had been identified were divided into three topics corresponding to the different 
phases of the energy asset/system lifetime: 
• Design challenges, including the future evolution of supply and demand, changes in subsidies, taxes 

and the cost of technologies, the phase out of old technologies and introduction of new ones, and 
the sizing and placement of energy system assets and equipment. 

• Operation, maintenance, and services challenges, including the dynamic supply of future energy 
sources, fluctuating demand and energy prices, whether component can respond to such changes 
(including ramp-up time) and have the capacity to do so, how to anticipate and react to component 
degradation or failures, and the planning of maintenance logistics. 

• Decommissioning challenges, including the estimation of asset end-of-life, the economic trade-offs 
between removal versus re-use, organizing the logistics of decommissioning, and reducing the impact 
on ecology and environment (through recycling of materials) of such activities. 

 
During the workshop, three digital innovations were presented that could aid in solving some of these 
challenges. These three innovations were: digital twin technologies, AI and machine learning modelling, 
and data sharing. Through examples from other industries, and previous projects within TNO, these 
innovations were introduced and explained in more detail.  
 
During the second half of the workshop, TNO’s vision of a digital twin of the future that combined 
different aspects of the three innovations was presented. The digital twin would combine data sharing 
technologies such a secure multi-party computation and federated learning with AI modelling techniques 
such as explainable and transparent data-driven artificial neural networks and agent-based optimization 
with the goal of enabling parties in the NSE area to safely share data and leverage it to support the five 
sections of the NSE programme: design and integration, operation and maintenance, services and 
logistics, ecology and environment, and decommissioning and abandonment. 
 
After the presentation, the audience was asked for their opinions on specific problems that could benefit 
from the presented innovations and digital twin concept, which were later assigned to the five aspects 
listed above. Based on this, it was found that for now challenges are mainly related to design, operation 
and maintenance, and logistics of the energy system, mainly due to the fact that these are the issues that 
are most practical and pressing at the current time (e.g. decommissioning is for most parties further away). 
Example problems include: logistic vessel planning, data availability, reliability and security, energy 
supply/demand as well as weather forecasting, and asset performance and maintenance planning. 
 
After the discussion, the workshop was closed out with the presentation of a number of possible case 
studies that could be tackled with the present parties in future projects, including: a multi-party data 
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sharing and federated learning pilot for logistics planning, improved system and energy asset modelling 
using A/machine learning models, agent-based optimization of supply/demand management or 
system/asset design, application of explainable and transparent AI, and the development of models for 
designing, operating, and maintaining the future energy system. 
Finally, the audience was again given the possibility to provide their own opinions, and were asked to list 
challenges they were currently facing or expected to face in the future that could potentially be solved 
through AI techniques. The answers were again grouped based on the five aspects of the NSE 
programme listed previously. These example challenges are listed below: 
• Design and system integration: offshore grid design, design for decommissioning, defining/ 

determining facility availability, zero-emission natural gas production, optimization of meshed grids 
for power and hydrogen transport, minimizing maintenance or inspection requirements over the 
design life, optimum sizing and location of storage units (or other assets), using existing assets versus 
placing new ones (including re-use of pipelines for hydrogen or CO2 transport). 

• Operation, maintenance, services, and logistics: sharing logistics between wind and gas, frequency 
prediction for planned and unplanning maintenance, vessel and helicopter planning optimization, 
smart planning of maintenance engineers for different assets, autonomous inspection/maintenance 
vehicles, insurance of data quality and analysis of inspection data. 

• Ecology and environment: understanding wildlife activity in planning new installations, risk of CO2 
leakage from abandoned wells being re-used for carbon storage. 

• Decommissioning and abandonment: decommissioning planning across the interconnections of the 
bigger system, degradation predictions in combinations with maintenance and operational costs, well 
P&A project performance, and taking into account wildlife migrations in the planning of 
decommissioning. 

 
Based on the outcomes of the initial workshop, a follow-up discussion was held for the same audience 
in which TNO presented three more detailed case studies that could be worked out in potential future 
follow-up projects: 
• Supply-demand matching in an integrated North Sea Energy system, which focussed on initial 

activities for the development of a digital twin of the North Sea including data sharing, fast AI models, 
and dynamic optimization of supply and demand. This case study could possibly be integrated with 
the NSE Atlas, focussing on the Energy Hubs identified in the NSE programmes. 

• Energy system design using AI. This case study was aimed more at the design of an integrated energy 
system, including the sizing and placing of assets under certain constraints and dealing with multiple 
objectives (reducing costs, minimizing negative ecological/environmental impact, and designing for 
re-use and decommissioning). 

• Offshore logistics optimization. A case study aimed at optimizing offshore energy logistics and 
reducing costs and emission through the sharing of data between parties. 

 
After the case studies were presented, the audience was given the chance to give their thoughts and 
opinions on them, and were asked to indicate their potential interest in the cases. From this it was found 
that interest lay mostly with the design and logistics cases, as they were at the current time the most 
relevant and addressed the most pressing challenges (supply-demand matching was as of yet less 
interesting as the system itself was not yet in place, so improving management of it was not yet as 
relevant as the other challenges). 
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