m innovation
I for life e ——

Memorandum TNO PUBLIEK

Kampweg 55
3769 DE Soesterberg
T P.O. Box 23
° . . 3769 ZG Soesterberg
Jurriaan van Diggelen The Netherlands
www.tno.nl
From
T Haije, JS van der Waa, K Veltman T +3188866 1500
F +31346353977
Subject

TNO 2021 M12516: Connecting Al and HMT innovations: SAIL

Date
22 December 2021

Our reference
TNO 2021 M12516

Contact
T Haije

Direct dialling
+31888661155

TNO PUBLIEK

m innqvation
I . for life I

TNO PUBLIEK Date
22 December 2021

Our reference
TNO 2021 M12516

Page
2/19

1 Introduction

As technology progresses, it integrates continuously with our society in the form of intelligent systems.
As these systems become faster, smarter, and more capable, their tasks also shift from simple tasks
such as vacuum cleaning, to more important and high-risk tasks as often seen in the aviation,
healthcare, and defense sectors. Successful intelligent systems often have some level of autonomy for
completing complex tasks, such that they can exhibit goal-directed behaviour while adapting to the
dynamic world we live in.

A recurring pattern is that there is always a need at some point during task execution where the
autonomous system needs to interact with a human. Furthermore, a team is required for any task of
sufficient complexity or criticality that requires greater knowledge, skill, ability, or redundancy than a
single operator can provide in the available timeframe (Schneider et al., 2021). For instance, safety-
critical tasks require resilience that may not be guaranteed by brittle capabilities of autonomous systems
in the face of dynamic events. In that case human adaptability and ability to understand context is
crucial. Another important reason for human-machine teams is to prevent a responsibility gap caused by
consequences of an autonomous system their actions that acted without a human in the loop.

The human-machine teaming (HMT) paradigm takes this a step further and describes the autonomous
system not as a tool, but as a team member. And for teamwork, communication is key. In fact, many of
the other required capabilities for teamwork have a strong social factor as well (Lyons & Havig, 2014).
For instance, optimal teamwork requires the team members to pro-actively share information and
uphold the situational awareness of the other members, as well as being able to explain their actions.
For each of these capabilities, communication serves as a basis (Wynne & Lyons, 2018). For human-
machine teams this is a major challenge, as humans and autonomous systems have their own internal
representations which may not be understandable for the other.

As such, a primary technical challenge is how to facilitate the communication between humans and
autonomous systems through a kind of middleware that enables and supports effective collaboration on
their joint task. In addition, it should be a solution that can serve as a basis for other social capabilities
that are needed to make the autonomous system (or human) a good team member. Finally, overcoming
this technical challenge would enable humans to collaborate with a range of autonomous systems
types, ranging from complex and extensive systems to simpler Al systems with a more narrow
intelligence, as the social building blocks for teamwork can be provided by SAIL.

This memo describes a solution to this problem in the form of the Social Atrtificial Intelligence Layer
(SAIL). At its core, SAIL acts as a central translation server that reconciles human mental models and
those of autonomous systems. Using SAIL, the human can convey their intentions in a natural way that
are translated to machine comprehensible information via so-called semantic anchors, as well as vice
versa where information from the autonomous system is translated to human comprehensible
information.

TNO PUBLIEK

m innqvation
I . for life I

TNO PUBLIEK Date
22 December 2021

Our reference
TNO 2021 M12516

Page

3/19
The newly developed and implemented version of SAIL, SAIL v2.0 henceforth annotated as just SAIL,
builds on prior TNO-research that led to the development of the concept of SAIL (van der Vecht et al.,
2018). SAIL acts as middleware', sometimes called “software glue”, between human and autonomous
systems, supporting the development of social intelligence that contain the social capabilities needed for
successful human-machine teaming. Compared to the original SAIL, the new iteration as presented
here has been built from the ground up in-house using a bottom-up approach, based on several lessons
learned with the original SAIL. The SAIL translation functionality acts as the foundation for other social
intelligence modules, as to enable the development of use case specific or if possible generic social
intelligence to facilitate human-machine teaming. This differed from the original version where SAIL was
not so much a middleware, but instead acted as a container for interdependent innovations aimed to
facilitate human-machine teaming. SAIL v2.0 can be much more compared to other client-server
frameworks, but specifically developed to support human-machine teaming.

In section 2, this memo elaborates on the background for the need for communication between human
and autonomous systems as part of a team, Al-middleware as a solution, and alternatives used for
comparable problems. The current state of SAIL as developed this year, incorporating the information
management, ontologies and semantic anchors that enable translation between humans and
autonomous systems are described in detail in section 3. Open challenges identified in the past year are
described in section 4, followed by a discussion in section 5 and a conclusion in section 6.

2 Background

Effective human-machine teaming requires a multitude of capabilities from both humans and
autonomous systems, such as observability, predictability and directability (OPD) (Johnson et al., 2014;
Mcdermott et al., 2018). Although there is a plethora of informative literature on what capabilities are
required for HMT, there are little to no documented system architecture solutions that support software
implementations of these capabilities. Research is often performed in isolation where a specific HMT
capability is implemented to suit the needs for a specific task and human-machine team, resulting in
highly specific (software) solutions that are difficult to reuse outside the original use case.

A solution to this issue exists in software engineering in the form of middleware. Middleware “provides
common services and capabilities to applications outside of what's offered by the operating system™,
Translated to HMT terms, middleware can be defined as providing common services and capabilities to
applications incorporating (social) capabilities that the autonomous system or user interface do not
provide. By providing common services and capabilities such as protocols, structure and content for
communication, HMT researchers can focus on creating applications that implement the required HMT
capabilities for successful teaming. In addition, new applications can be added to the middleware, such
that they can be reused and applied in other contexts as well.

In its basis, collaboration between humans and autonomous systems requires knowledge on human
factors as well as on autonomy and multi-agent systems (MAS). Although many system architectures,
including middleware solutions, are available for both research fields, they ultimately fall short when
applied to HMT as they do not take the needs of both human-machine teaming and autonomous
systems into account (van der Vecht et al., 2018).

SAIL aims to fill this gap, by presenting a middleware solution for HMT that provides as fundamental
common service the translation of intent and information between human and autonomous systems.

! https://www.redhat.com/en/topics/middleware/what-is-middleware
2 https://www.redhat.com/en/topics/middleware/what-is-middleware

TNO PUBLIEK

m innqvation
I . for life I

TNO PUBLIEK Date
22 December 2021

Our reference
TNO 2021 M12516

Page

4/19
Doing so, it can streamline development and thus research into HMT. By abstracting some of the
complexity, new software that connects autonomous systems and humans in new ways can be made
more rapidly, robustly, and with more impact by improving reusability of created software.

A limiting factor of middleware in general is that it often has an impact on system performance,
compared to a system developed for the specific needs of a particular use case. In addition, in
middleware that encompasses many applications the complexity might increase as well, especially
when troubleshooting. Finally, middleware such as SAIL still requires changing the autonomous system
in some manner (integrating semantic anchors) and requires a human to specify a proper translation
table usable for communication between team members. A final uncertainty is whether it is possible for
middleware to provide useful services and capabilities relevant to HMT that are truly generic and useful
over many different HMT use cases.

3 The Social Al Layer; SAIL

The latest version of SAIL is an evolution on prior research but shares many similarities with the original
concept as presented in (van der Vecht et al., 2018). The goal of SAIL remains the same in that it
strives to provide a software framework that acts as a social layer between autonomous systems and
humans such that they can optimally perform as a human-machine team. A difference is that SAIL this
year has been re-implemented in-house in the Python programming language with a more
operationalizable focus, as the codebase of the previous SAIL was not maintainable anymore.

As described by (van der Vecht et al., 2018), “a one-size fits all solution for HMT does not exist, as the
types of tasks, humans and autonomous systems is different per context” (p. 3). Although the statement
concerned an entire HMT solution that is generic, it is also valid for the creation of generic social Al
modules itself, as another lesson learned from the original SAIL was that making every social Al module
generic from the onset is extremely difficult and leads to long development times. As such, the new
SAIL takes a bottom-up approach to create a lean, useful framework with a limited well-worked out set
of generic services and functions. As a result, SAIL now offers a generic method for communication
between autonomous systems and humans by providing a communication language, ontology, and
Application Programming Interface (API)? that have been integrated with generic delegation concepts
from human-machine teaming (van Diggelen et al., 2021). Furthermore, other use cases aside from
delegation can be supported as well by adding to the ontology and alter the translation table of SAIL to
fit specific needs.

The targeted domains for SAIL are military, national security, and other users that plan to obtain
autonomous systems and use them in a human-machine team. SAIL can help in providing the substrate
for teamwork between all actors in the team. These target groups profit from a lean bottom-up approach
with little development time to a working human-machine team. Generic functionality can afterwards be
extracted and added to SAIL on a function-by-function basis.

3 API - Wikipedia - https://en.wikipedia.org/wiki/API

TNO PUBLIEK

m innovation
I for life e ——

TNO PUBLIEK Date
22 December 2021

Our reference
TNO 2021 M12516

Page
5/19

This approach is similar to how Team Design Patterns are utilized within projects, and sometimes
generalized to become part of the TNO-wide Design Pattern Library.

b — R

. - .
®
0

% %

Figure 1 Overview of the primary SAIL v2.0 functionality. Which is supporting the communication and translation of
relevant concepts (e.g., tasks, notifications, user profiles, goals, context information, etc.) between humans and
various autonomous systems.

The main functionality of SAIL v2.0 as described above is visualized in Figure 1.

The following subsections describe the most important of those capabilities which form the current
implementation of SAIL: the capability for humans and autonomous systems communicate in a shared
language supported by an ontology targeted to human-machine teaming applications and are linked to
the internals of an autonomous system in the form of semantic anchors. In section 4, more attention is
given to potential future improvements of SAIL’s translation server, as well as potential new social
capabilities in SAIL.

3.1 SAIL Function; Communication

For an HMT to function, communication between all team members should be facilitated, whether
human or machine. SAIL supports this by acting as a centralized mediator for this communication. It
supports the connections of various software components such as the human interface or the API of an
autonomous system. SAIL assumes a single connection per autonomous agent in the team towards the
SAIL server. Think of agents such as an autonomous UGV, a swarm of drones, or a virtual cyber-agent.
Aside from this, SAIL assumes a single connection per user interface, such as a mission planner, a
system dashboard, or a handheld device. Which could imply that multiple humans share a connection to
SAIL if they have the same role and use the same interface. For example, patrolling soldiers with the
same handheld acting as their interface towards their drones. On the other hand, a single human might
have multiple connections as well. For example, a commander having access to the same handheld as
the patrolling soldiers but also access to a mission planner interface. This notion is depicted in Figure 2
below.

TNO PUBLIEK

m innovation
I for life s ———

TNO PUBLIEK Date
22 December 2021

Our reference
TNO 2021 M12516

Page
6/19

I

Social Al
U Module

Ll

SAIL Client SAIL Client SAIL Client

HATCL & SAIL
Communication
protocol

SAIL

SAIL Ontologies

SAIL Client SAIL Client SAIL Client

H
Cha
— aD

Figure 2 An illustration of SAIL. In particular this depicts how several different SAIL Clients can be connected to different
autonomous systems but also various human team members. This allows SAIL to support various user
interfaces. It even allows additional components or modules processing and adding to the data within SAIL,
which other clients can access.

Communication between humans and autonomous systems is supported by SAIL with a communication
protocol, describing rules for the communication flow and data format of messages. The SAIL
communication protocol is based on the HATCL standard (J. van Diggelen, T. Mannucci, M.M.M.
Peeters, B. van der Vecht, 2019). HATCL stands for “Human-Agent Teaming Communication
language”. This protocol consists of several types of communication messages;

- Query: The communication act to ask for all known information about a shared concept (e.g., a
detected person, an online information source or a sensor output). This act is initiated by a team
member looking for information; it is a pull for information.

- Inform: Similar to Query, but different in that this communication act is initiated by a team
member having information that is deemed valuable for another agent; it is a push of
information.

- Request: The communication act to ask for a team member to take a certain action (e.g., to
move to a certain location, to search through an online information source or to activate a
certain Play).

- Subscribe: This is a request for receiving any new information acquired by a team member on
a specific concept. A persistent query of sorts. This act is initiated by one team member,
expecting the receiving member to keep the sender updated.

TNO PUBLIEK

m innovation
I . for life » I

TNO PUBLIEK Date
22 December 2021

Our reference
TNO 2021 M12516

Page
7119

- Propose: The communication act where a team member proposes to alter known information or
for the receiving member to commit itself to uphold a certain agreement (e.g., to send
notifications when detecting people or to ensure it is at a certain position in time).

- Accept/ Reject: Both are responses to a Propose message, respectively signifying that the
receiver will or will not commit to the alteration in information or the proposal to commit to an
agreement.

- Understood / Not-understood: Both are responses to an Inform message, respectively
signifying that the receiver has successfully processed the information or not. The Not-
Understood message is added to support traceability as well as to offer team members a
chance for an alternative.

- Cancel: The communication act to signify a previous message should be ignored as of
receiving this (e.g., to stop sending notifications, to cancel a subscribe, or an action or Play).

Three protocols are defined by HATCL based on these messages; the Inform / Cancel protocol, the
Query protocol, and the Propose / Subscribe protocol.

- Inform / Cancel Protocol: This describes that any Inform or Cancel message should be
followed by either an Understood or Not-Understood message (see Figure 3). SAIL supports
this protocol by automatically sending a Not-Understood on a timeout (e.g., an autonomous
system cannot be reached), or when the message content is not part of the shared ontology
(e.g., the concept of cognitive workload is not a shared concept within the team).

Initiator Participant Initiator Participant

Query

I_

Inform/Cancel

1 Not understood

Not understood [END] ||

[END] L ‘

Reject

' 4

1
1
] |
1 | [END] L 1
I Understood | ! Inform !
1 }
I Understood :
1
[END]|__| |
1 1 [END]
1 I T |
I I 1 |
: Not understood !
. 1
Figure 3 The overview of the Inform / Cancel Protocol. This is in Figure 4 The overview of the Query protocol. The protocol's
large part automated within SAIL based on a timeout Not-Understood and Reject messages are partly
setting and reasoning over the shared ontologies automated by SAIL based on timeout settings and
(which depict what each team member can under- reasoning over the shared ontologies.

stand).

TNO PUBLIEK

m innovation
I . for life I

TNO PUBLIEK Date
22 December 2021

Our reference
TNO 2021 M12516

Page
8/19

- Query Protocol: This protocol describes how should be responded to a Query message (see
Figure 4). On receiving a Query message, it can be replied to with a Not-Understood, Reject or
Inform message. If the latter occurs, the Inform / Cancel Protocol is initiated. The Not-
Understood messages are automated by SAIL similarly as in the Inform / Cancel Protocol; when
a timeout is reached or when the ontology cannot resolve the necessary concept translation.

- Propose / Subscribe Protocol: This protocol mandates that a Propose or Subscribe should be
followed by either a Not-Understood, Reject or Accept message (see Figure 5). The Not-
Understood message is automated by SAIL when communication time-outs or the message
content cannot be translated by the ontologies. Ideally but currently not implemented yet, in the
case of a Propose message the receiver can follow-up on a Reject with a counter Propose
message of its own. This would then also be tracked by SAIL as a negotiation between team
members for future references.

With the adaptation of HATCL, the SAIL messages are defined as well as structured by protocols. The
instantiations of the ontologies described in the next section (see section 3.2) define the potential
content of these messages. This, combined with SAIL’s own reasoning on these ontologies, allows for
the automation of parts of the protocols that can be tedious to track as an autonomous system or HMT
developer. In addition, this automation also reduces the amount of actual communication over all of
SAIL’s connections. For example, a Query that cannot be translated into understandable concepts for
the receiver causes SAIL to immediately send back a Not-Understood message. The Query does not
need to be sent, cutting back on the required communications by half.

Initiator Participant

T
|
I
|
|
Propose/Subscribe |

Not understood

[END] Reject
L

[END]

Accept

[END]

1
Figure 5 The overview of the Propose / Subscribe protocol from HATCL. The Not-Understood
message is automated by SAIL in based on either the timeout settings or when concepts
within the Propose or Subscribe cannot be translated.

TNO PUBLIEK

m innovation
I . for life >

TNO PUBLIEK Date
22 December 2021

Our reference
TNO 2021 M12516

Page

9/19
There are two disadvantages of this communication functionality of SAIL. The first revolving around
SAIL functioning as a centralized server. This makes SAIL more brittle compared to a decentralized
approach. Redundant servers need to be made available in case the original server fails. However, this
might harm data integrity and completeness. Instead, a more decentralized approach where each
software component within the team can act as a server would ensure that as long as there exist team
members within range of each other, their communication and collaboration will be supported.

The second disadvantage of this communication approach is that only parts of the HATCL protocol can
be automated with the use of SAIL’s ontologies. For instance, automation of a proposal acceptance is
difficult, as the only way to know for certain that a proposal was accepted is by an explicit message from
that partner. However, the current reasoning for the Not-Understood messages can also be extended to
Reject messages. This would entail the inclusion of each team member’s current capabilities into SAIL’s
ontology. Subsequently, this allows SAIL to determine whether a proposal is feasible given the intended
receiver. This is similar to current research on an autonomous system’s reasoning about its own
capabilities (e.g., see the SNOW Project*), extended to the team-level.

3.2 SAIL Function; Ontological translation

To let SAIL function as middleware between the human operator and the autonomous systems, SAIL
needs to be able to understand the intentions and meanings of both sides. SAIL does this by using an
ontology and associated database structure to translate concepts. The need for this concept translation
comes forth from the observation that terminology that might be relevant or applicable to an
autonomous system may differ from the natural way a human usually communicates. An example that
illustrates this principle is that humans can communicate that they want to be informed when a person
wearing a specific logo is found. For the autonomous system this would mean that the human wants to
be informed when there is a detection of a human in combination with that specific logo. Another
example could be on vehicle level: an autonomous system has a lot of parameters that a human might
not want to consider when delegating a task. The human might say that they want to search the street
safely, without specifying what that means. The autonomous system may not have a notion of ‘safely’,
but might have a setting that specifies that it needs to keep at least a 1-meter distance of any vehicles.
SAIL can make such translations.

4 https://appl-ai-tno.nl/flagships/snow/https://appl-ai-tno.nl/flagships/snow/

TNO PUBLIEK

)
TNO PUBLIEK

innovation

for life

y |
Date
22 December 2021

Our reference
TNO 2021 M12516

Page
10/19

The SAIL ontology and data structures are based on several earlier developed ontologies. The CD-
ROM ontology which describes out of which components an autonomous system is built and which
capabilities these components (and therefore the autonomous system) can realize (Joris Sijs, 2022).
The Tasking Ontology, which describes how tasks can be decomposed in subtasks and how these
relate to capabilities (Vught & Veltman, 2021). For the delegation element of SAIL, a Play ontology was
developed, which is briefly described below (van Diggelen et al., 2021).

3.2.1 Play ontology
The main structure of the play ontology can be seen in Figure 6, this play ontology is partly based on
the Task Ontology (Vught & Veltman, 2021). In this Figure 6, rectangles represent entities or classes,
diamonds represent the relation between certain entities and oval represent attributes or characteristics

of an entity.

The Goal describes the overall intention of the current mission/assignment. A Goal can be realized by a
Play. A Play describes a manner of execution that is relevant/wished for. So, in a simplistic version, a
Play describes how a certain goal or task can be executed. Therefore, a Play decomposes into one or
multiple PlayTask(s) that specify the desired course of action in more detail. Note that these
PlayTask(s) can be decomposed further (into sub PlayTask(s)). Every decomposition specifies the
course of action in more detail and could even go to the level where very little autonomy or intelligence
is demanded from the autonomous vehicle. Note that while this is possible, this is not necessarily

desirable as it would ignore any intelligence within the autonomous system.

Figure 6 Main elements of the play ontology.

TNO PUBLIEK

Goal

Play

Constraint

PlayTask

décomposes_inj»

PlayTask

m innqvation
I . for life I

TNO PUBLIEK Date
22 December 2021

Our reference
TNO 2021 M12516

Page

11/19
On the lowest level of decomposition, the PlayTask has a semantic anchor, which can link to an
AgentTask, a task that is known and can be executed by the autonomous system. Again, the level
where this semantic anchor lives is dependent on the autonomy and intelligence of the autonomous
system.

It is important to note that a Play does not only describe how a high(er) level intention can be
decomposed into lower-level intentions, it can also express Constraints. Constraints can be used to
limit and guide the freedom of the autonomous system to ensure that the system behaves in the desired
fashion.

3.2.2 Communication protocol

Since SAIL is a piece of software that facilitates the communication of information, a data structure was
developed to build this communication on. In this structure several types of messages were defined as
well as the desired content of those messages. The message types and the way they are supposed to
be used is based on HATCL (J. van Diggelen, T. Mannucci, M.M.M. Peeters, B. van der Vecht, 2019).
Every type of message (see section 3.1: SAIL Function; Communication) has a specific data format that
fits the message type. For example, a DetectionIinform message always contains a label, a confidence,
an image, and a detection ID. By (fully) specifying the information a message contains, the
developer/scientist always knows what to expect and what information is delivered.

The defined message types and their structure are created in such a way that they fit with HATCL (J.
van Diggelen, T. Mannucci, M.M.M. Peeters, B. van der Vecht, 2019), CD-ROM (Joris Sijs, 2022), and
the PlayOntology (Vught & Veltman, 2021).

Advantages of using these fully specified information objects and ontology lie mostly in understanding
and transparency. It is much easier for the developer as all possible information that can be received is
specified, as well as what information is to be sent in return. The ontology facilitates the translation
between autonomous system and operator, by relating human and machine concepts. A potential
downside is that the developer has less freedom to declare anything they want. If, for example, the
developer would like to add the position of the detection, they need to request that information to be
added to the DetectionIinform message, or another message needs to be defined. To somewhat
overcome this issue, a special and more relaxed message type was introduced. This message queries
the knowledge of the autonomous system with the information not specified in the message type in
Python’s pattern-matched keyword arguments. If the information is not present in the knowledge base
the autonomous system ignores it.

3.3 SAIL Function; Semantic anchors

A human-machine team will contain several types of agents from various manufacturers. For the
military, police and other domains it is not feasible to enforce each commercially available agent to be
compatible with SAIL, nor to develop such agents on their own. Instead, SAIL aims to require minimal
changes to these agents, whether they are autonomous systems or cyber agents. Ideally no chances, if
the agents provide a sufficiently detailed API. This is supported through the concept of Semantic
Anchors. They act as a connecting layer between an agent’s provided functionalities and SAIL, similar
as an API but in a more ad-hoc fashion.

TNO PUBLIEK

[for life s ———
TNO PUBLIEK Date
22 December 2021

Our reference
TNO 2021 M12516

Page

12/19
A Semantic Anchors plays the role of utilizing its SAIL connection to share its internal state and
acquired data with the SAIL database for other team members to query or subscribe to (e.g., location,
detections, etc.). In addition, they can receive SAIL messages and if a message and its content is
supported make the additional changes in the agent’s internal state (e.g., to prioritize a certain task, to
go towards a waypoint, etc.).

The concept of Semantic Anchors allows Defense to discuss and specify the functionalities and
capabilities with a manufacturer to support the envisioned human-machine team, but without requiring
full access to the agent’s internals. It differs in this from an API in the sense that a Semantic Anchor can
be specifically tailored to an envisioned usage. It is likely that a Semantic Anchor will make use of an
agent’s API if available. Another added benefit of Semantic Anchors is that they tend to be independent
of each other. Thus, adding more anchors to an agent only expands on its capabilities to collaborate
with its team partners.
Within SAIL we differentiate between various categories of Semantic Anchors;
- Information sharing anchors: These anchors allow SAIL to access information from
the system as well as add or adjust information known to the system.
- Delegation anchors: These anchors allow SAIL to assign tasks, goals, plays,
constraints and similar concepts to the system.

3.4 Current implementation

The current implementation of the SAIL middleware was developed in python 3.6+. A client-server
model® was used. For this a ZEROMQ® implementation was used with a REQ-REP pattern’. This
pattern can be described as follows: the client initiates the communication by sending a request to the
server. The server awaits incoming requests. When the server receives a request, it formulates an
answer belonging to that request (see Figure 7).

For the communication of information several classes were identified in accordance with HATCL. We
differentiate between Responses and Information pushes/requests. A Response is always formulated in
response to another message. Several types of responses (sub classes) were created, the most used
are the Accept (understood and OK) and the NotUnderstood (could not handle the request).

Request #1

Client

Figure 7 Example representation of the client-server model with a REQ-REP pattern.

> https://en.wikipedia.org/wiki/Client%E2%80%93server_model
6 https://zeromq.org/
7 https://zguide.zeromg.org/docs/chapter3/

TNO PUBLIEK

m innqvation
I for life I

TNO PUBLIEK Date
22 December 2021

Our reference
TNO 2021 M12516

Page
13/19

To further specify the meaning of these classes, sub classes we created with a clear usage and

definition. Below is an overview of these message types (note that these classes were highly inspired by

HATCL, see section 3.1, and that this list reflects what is currently implemented, not what is possible):
1. Inform: a data push, when one actor wants to provide another actor with a piece of information.

E.g., a robot may formulate an Inform request when it has detected a human being.

a. Detectioninform: Inform message for a visual detection, containing information about
the label of the detection, the confidence, and an image.

BatteryStatusinform: Inform message of the battery status of an autonomous system.

Locationinform: Inform message of the location of a team member.

Imagelnform: Inform message to send an image to the receiver, no detection required.

PointCloudinform: Inform message used to send information about the point cloud of

the autonomous system, can be used to inform the receiver about the perceived

environment of the actor.

f. SpeechRecognitioninform: Inform message containing the result of speech
recognition, the detected language, the words detected and the confidence of the
algorithm.

g. HeatMaplInform: Inform message containing heatmap information, can be used to
provide insight into where an autonomous system suspects activity or locations it has
recently visted.

h. ConnectionStrengthinform: Inform message containing the strength of the connection
with, for example SAIL or the command-and-control center.

i. PlayIlnform: Inform message indicating the currently active play.

j- Goallnform: Inform message indicating the currently planned for goal.

k. TaskInform: Inform message indicating the current task of a team member.

I. Actioninform: Inform message indicating the current action of a team member.

m. Planinform: Inform message indicating the current plan of a team member

n. Introductioninform: Inform message to announce the availability of a team member for
the current mission.

0. Modelnform: Inform message indicating the current mode of the team member. Can
indicate whether a mission is executed in silent or careful mode for example. This has
effect on the way certain tasks or actions are executed.

2. Proposes: a request where one actor proposes a change of specific information to another
actor. E.g., the human operator may propose to the autonomous system that the label of the
detection is not human, but doll.

3. Queries: a request where one actor queries to another for information. E.g., the human
operator might query the current location of the autonomous system.

a. DetectionQuery: Query message to ask a team member for information about a
specific detection.

b. BatteryStatusQuery: Query message to ask an autonomous system about its current

battery state.

LocationQuery: Query message to ask a team member about its current location.

ConnectonStrengthQuery: Query message to ask a team member about its

connection strength.

PlayQuery: Query message to ask a team member what its current play is.

GoalQuery: Query message to ask a team member what its current goal is.

TaskQuery: Query message to ask a team member what its current task is.

ActionQuery: Query message to ask a team member what its current action is.

PlanQuery: Query message to ask a team member what its current plan is.

ModeQuery: Query message to ask a team member what its current mode is.

oao o

Qo

S >Q o

TNO PUBLIEK

m innovation
I . for life I

TNO PUBLIEK Date
22 December 2021

Our reference
TNO 2021 M12516

Page
14/19

4. Request: a request where one actor asks another to perform a certain action, task, or play.
These requests focus a bit more on delegation. E.g. The human might ask the autonomous
system to start the play “Monitor human being.”

PlayRequest. Request message to start a certain play.

TaskRequest. Request message to perform a certain task.

ActionRequest. Request message to perform a certain action.

ModeRequest. Request message to execute certain tasks and actions in the specified

mode.

5. Subscribe: a request for information, to be informed as soon as anything specific happens.
E.g., the human might subscribe to all detections the autonomous system does, to be
immediately aware that a detection occurred without specifically asking for detections at a
certain moment in time.

a. DetectionSubscribe: Subscribe message indicating that the sender wants to be
informed of all detections (of a specific team member).

b. LocationSubscribe: Subscribe message indicating that the sender wants to be
informed of all location updates (of a specific team member).

QoeoTo

As a rule of thumb for HMT interaction, one SAIL server is implemented and two clients: one for the
autonomous system side, and one for the human side. In correspondence with the server-client model,
the clients initialize communication with the SAIL server. The client sends a message to the SAIL
server, the SAIL server interprets this message and translates it (if needed) before sending it to the
human or autonomous systems side. Below is an example:

In the case the autonomous system has detected a terrorist, it formulates a DetectionInform message
with as receiver the human. The message is sent to the SAIL server, the server translates this message
so the human can understand the message in a language that comes naturally. The translated message
is sent to the human and the human can now see the detection done by the autonomous system and
delegate the autonomous system (if needed) based on this information (see Figure 8).

‘ AS ‘ ‘ SAIL ‘ = e ‘
| Interface

DetectionInfrom
detectlon_lq: laseal2430
label: terrorist
confidence: 0.76
location: 54.32, 24.394%3Cm translates message
image:

e

[~ fJ\/m

Figure 8 Example of the information flow for a Detectioninform that is formulated by an autonomous system, is translated
by SAIL and sent to the human client that visualizes the information in a natural way.

TNO PUBLIEK

m innovation
I . for life >

TNO PUBLIEK Date
22 December 2021

Our reference
TNO 2021 M12516

Page

15/19
The other way around works the same, the human can send a PlayRequest (a message to ask the
autonomous system to start a certain play). This message is sent to the SAIL server and translated so
the autonomous system knows how to handle the request. The translated message is sent to the
autonomous system, who interprets the message and handles it accordingly.

The idea of SAIL was to make it agnostic, in the sense that it is independent of the human operator or
autonomous system, while being specific in required inputs and expected output. This means that the
information objects, the messages, and their content are fully specified. The handling of a received
message is dependent on the actor; therefore, handlers of specific messages can be defined during the
initialization phase.

If for some reason an actor cannot formulate a response to a request, a timeout was added to all
requests. Once the time limit of the timeout is reached, SAIL returns that a timeout was received, while
continuing with any other open requests. This ensures that SAIL does not lock on a request that cannot
be answered.

4 Open challenges

Not all functions are present in SAIL, many are still envisioned. Here we introduce several still open
challenges and envisioned functionalities and offered services.

4.1 Envisioned Function; Traceability

When working with autonomy, it is vital that when needed you can understand what led to a certain
decision the autonomous system makes, this is called traceability. When an autonomous system
decides to start its monitor play, the human operator may want to gain insight into what triggered this
decision. This can be done by monitoring the detections of the autonomous system, or by tracking the
communication. Especially with multiple actors, it might be interesting to see where the event chain
originated.

SAIL can help support traceability by persistently storing the communicated concepts and known
information. As SAIL works as middleware, it receives all communicated concepts and information
before translating the information and sending it to the receiver. Because of this characteristic SAIL can
monitor information flows without requiring additional functionalities. Furthermore, all messages and
decisions can also be traced back to the originating actor.

Traceability is not yet part of SAIL in its current form. Although the communication and information flows
in SAIL are sufficient, several challenges need to be addressed first for SAIL to support the envisioned
traceability. For instance, tracing back an external origin of an event might become more difficult (e.g., a
sunset makes the detection rate much lower, causing the system to miss a nearby child playing), as not
all external events/concepts are mapped into the communication protocols and ontologies defined. In
addition, traceability requires extra effort with regards to interaction design to prevent an information
overload of the human due to the large amount of possible traced information. Concepts such as drill-
down if needed from DASH (van Diggelen et al., 2021) where a user initially receives abstract
information and can request more detailed information when needed, are relevant when determining
how traceability should be supported by SAIL.

TNO PUBLIEK

m innovation
I . for life >

TNO PUBLIEK Date
22 December 2021

Our reference
TNO 2021 M12516

Page

16/19
4.2 Envisioned Function; Centralized team Al
For SAIL to fulfill its role as a social Al layer between the human operator and autonomous systems, it
should support collaboration with multiple autonomous systems and humans at the same time. Section
3.1 of this memo described how SAIL is technically able to do this by allowing connections between
multiple humans and autonomous systems simultaneously. However, for teamwork of larger teams with
multiple robots to be effective and efficient, a conceptual change in collaboration might be needed.

The primary issue in tasking or requesting information in a team with multiple team members is finding a
suitable team member to ask. Who is capable and available? In the current SAIL implementation finding
out this information is left to the human. However, a more efficient solution would be if the human can
request some team member to complete the task, and let SAIL find the most suited one. In this manner
the human — and GUI and HMT innovations it relies on — only has to think in terms of tasks they want to
delegate and let SAIL do the rest.

For SAIL to support this capability, it requires a centralized team Al that can receive such a message
addressed to multiple or all team members and mediate within the team who will execute the task. In its
most rudimentary form, the centralized team Al could use a brute-force approach, where the message is
forwarded to each team member until one accepts. However, this effectively shifts the effort from the
human sending the message to the other team members who each must interpret the message, see if
they are capable and available, and reply.

More efficient methods would incorporate the knowledge of the team members’ capabilities and/or
availability into the centralized team Al, such that it is able to make a more educated guess in finding
the best suited actor for the task.

How to extract the information on capabilities and availability of team members in a human-machine
team are active fields of research. For instance, gathering knowledge on the capabilities of team
members is similar to current research on an autonomous system’s reasoning about its own capabilities
(e.g., see the SNOW Project?), extended to the team-level. Other research has the creation of mental
models within a team as focus which incorporates team member availability and capabilities (Schadd,
M.P.D., Schoonderwoerd, T. A. J., van den Bosch, K., Veltman, H.J., Visker, O.H., Haije, T. 2021).

The unique challenge of this potential SAIL function is finding an efficient method for identifying team
members’ capabilities and availability. If the method is too high-effort for team members, it might
degrade task and total team performance more than just using the brute-force approach. On the other
hand, there might be a preference towards making the work of a single human team member as easy
as possible, even if that would result in more work for other team members.

4.3 Envisioned Function; pluggable SAIL modules

In the original vision for SAIL, focus was placed on the modular structure of the software framework,
enabling developers to mix and combine several generic social Al modules living inside SAIL, as to
provide the optimal social intelligence for the needs of that specific human-machine team.

Several example social functionalities for such modules could be measuring cognitive workload, human
awareness, human attention, or a module for the specification of work agreements.

8 https://appl-ai-tno.nl/flagships/snow/

TNO PUBLIEK

m innqvation
I . for life I

TNO PUBLIEK Date
22 December 2021

Our reference
TNO 2021 M12516

Page

17/19
This pluggable social intelligence concept is still particularly useful and is also already largely supported
by the current SAIL implementation as presented in this memo. SAIL allows any number of clients to
connect to its server and specify a name. As such, it is possible to connect social Al modules to SAIL
via their own client. An example of what this setup could look like can be seen in Figure 2. A social Al
module that measures cognitive workload may be connected to SAIL as a SAIL client, subscribe to the
information it needs to calculate the cognitive workload (e.g., a camera steam or number of tasks), and
make its information available to other clients. The human client, which may be a graphical user
interface, can then subscribe to all information it requires from SAIL, including information from
autonomous systems, as well as from social Al modules such as the cognitive workload module.

Although this functionality is supported in theory, testing in practice remains to make sure it all works as
intended. Due to the lean and bottom-up approach to SAIL this was not possible yet to test in the
current iteration of SAIL.

4.4 Other potential functions

Aside from the envisioned functions described above, another set of functions are envisioned which
require more thought before they can be developed. These include a persistent SAIL memory, a team
planner as part of the centralized team Al, and role-based permission management as part of SAIL. In
this section these early ideas are shortly explained.

The persistent SAIL memory would be akin to a buffer for all information that passes SAIL. In this way,
the case where tens of SAIL modules request the same information does not cause a flood of
information requests to one specific autonomous system, as the information is buffered in SAIL (for a
certain specified duration) greatly reducing the requests a human or autonomous system must deal
with.

The second idea is that of extending the proposed centralized team Al with a multi-agent planner. Using
such a multi-agent planner, the proposed centralized team Al could distribute tasks within a single Play
over multiple systems, considering the capabilities, availability, and planning for the autonomous
systems.

Finally, an interesting extension could be to extend SAIL with a permission management system. Within
HMTs there may exist differences in hierarchy and roles, thus introducing the need for
permission/access management. This also relates to the concept of meaningful human control as
permission management may restrict specific actors from performing specific tasks without input from
others such as to enforce a human-in-the-loop for situations. Secondly, a permission management
system with roles is also advantageous for traceability, where more easily can be traced who performed
what decisions and if it matched protocol or not.

5 Discussion

In human-machine teams, people collaborate with autonomous systems to achieve a common team
goal. It is argued that successful teamwork relies on social capabilities, with at its core the capability for
communication and mutual understanding. This memo presents SAIL as a middleware solution for
social intelligence capabilities within HMTs. However, aside from the technical requirements embedded
and presented as part of SAIL in this memo, there is a need for policy requirements to be taken into
account as well.

TNO PUBLIEK

m innqvation
I . for life I

TNO PUBLIEK Date
22 December 2021

Our reference
TNO 2021 M12516

Page

18/19
An innovation such as SAIL both guides and is guided by the policy of the primary stakeholders and
users, which for SAIL are the primary TNO DSS clients that aspire to incorporate autonomous systems
in their organization in the form of a human machine team. Rich discussions sparked on topics such as
meaningful human control over autonomous systems for defense, with much literature and policy
recommendations (Horowitz & Scharre, 2015; ROFF, 2015). As such, the policy and organizational
requirements for future HMT is an actively developing field for clients such as defense or national
security, and should be taken into account in the further development of SAIL. Think of functionalities
such as supporting traceability (see Section 4.1, and de Sio & van den Hoven, 2018), or supporting
setting (international) standards on the development of autonomous military systems.

Aside from the technical and organizational requirements, some attention should go to the operational
requirements as well. As the technical back end to support and enable an HMT, is it necessary for SAIL
to provide a solution that is robust, redundant, and secure.

6 Summary and conclusion

Human machine teaming (HMT) requires the capability for humans and autonomous systems to
communicate following a clear procedure, send messages that encode their intent, tasks or other
information relevant to human machine teaming, and understand each other’s intent through some form
of translation. In addition, the solution should support teams with varying number of teammates, and be
easily applicable to autonomous systems used by defense, national security, and other interested users
for this technology. In this memo a second iteration of the Social Artificial Intelligence Layer (SAIL) is
presented as a solution to the aforementioned requirements for successful human machine teaming.
SAIL functions as middleware that serves generic services and functions for the HMT, such as providing
a clear communication protocol, a communication message specification, and ontology targeted
towards the generic HMT concepts of task delegation. Furthermore, the interchangeable ontology and
other SAIL configuration makes it useful for a great number of other use cases as well.

The second iteration of SAIL has been built using a bottom-up in-house development style, ensuring
that it can be quickly applied and adapted by users. Furthermore, a number of open challenges have
been identified that came from policy, operational and technical requirements not yet implemented by
SAIL. As a response, future functions with theoretical solutions have been described to envision how
SAIL can be extended in the future to tackle challenges such as supporting traceability, delegation to
multiple autonomous systems, and supporting the integration of other social capabilities required for
HMT. As such, SAIL provides the thrust for the boat that is the human-machine team to propel forward.
Now it only waits for a gust of wind to propel the HMT to new places.

7 References

de Sio, F. S., & van den Hoven, J. (2018). Meaningful human control over autonomous systems: A
philosophical account. Frontiers Robotics Al, 5(FEB), 1-14.
https://doi.org/10.3389/frobt.2018.00015

Horowitz, M. C., & Scharre, P. (2015). Meaningful human control in weapon systens: A primer. Working
Paper, 2-16.

J. van Diggelen, T. Mannucci, M.M.M. Peeters, B. van der Vecht, J. van der W. (2019). HATCL
Specification. TNO Report.

Johnson, M., Bradshaw, J. M., Feltovich, P. J., Jonker, C. M., Van Riemsdijk, M. B., & Sierhuis, M.
(2014). Coactive Design: Designing Support for Interdependence in Joint Activity. Journal of
Human-Robot Interaction, 3(1), 43. https://doi.org/10.5898/jhri.3.1.johnson

Lyons, J. B., & Havig, P. R. (2014). Transparency in a human-machine context: Approaches for
fostering shared awareness/intent. Lecture Notes in Computer Science (Including Subseries

TNO PUBLIEK

m innqvation
I . for life I

TNO PUBLIEK Date
22 December 2021

Our reference
TNO 2021 M12516

Page

19/19
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8525 LNCS(PART 1),
181-190. https://doi.org/10.1007/978-3-319-07458-0_18

Mcdermott, P., Dominguez, C., Kasdaglis, N., Ryan, M., Mitre, I. T., & Nelson, A. (2018). Human-
Machine Teaming Systems Engineering Guide. The MITRE Corporation.
https://www.mitre.org/publications/technical-papers/human-machine-teaming-systems-
engineering-guide

ROFF, H. and M. R. (2015). Meaningful Human Control , Artificial Intelligence and Autonomous
Weapons. Article 36, 1-6.

Schadd, M.P.D., Schoonderwoerd, T. A. J., van den Bosch, K., Veltman, H.J., Visker, O.H., Haije, T.
(2021). I'm afraid | can’t do that, Dave. Getting to know your buddies in a human-agent team. In
Review, 6-7.

Schneider, M., Miller, M., Jacques, D., & Peterson, G. (2021). Exploring the Impact of Coordination in
Human-Agent Teams. In Journal of Cognitive Engineering and Decision Making (Vol. 00).

van der Vecht, B., van Diggelen, J., Peeters, M., Barnhoorn, J., & van der Waa, J. (2018). Sail: A social
artificial intelligence layer for human-machine teaming. Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
10978 LNAI(September), 262-274. https://doi.org/10.1007/978-3-319-94580-4_21

van Diggelen, J., Barnhoorn, J., Post, R., Sijs, J., van der Stap, N., & van der Waa, J. (2021).
Delegation in Human-Machine Teaming: Progress, Challenges and Prospects. January, 10-16.
https://doi.org/10.1007/978-3-030-68017-6_2

Vught, W. Van, & Veltman, K. (2021). Ontology specification RVO KMAS WP3. TNO Report, June.

Wynne, K. T., & Lyons, J. B. (2018). An integrative model of autonomous agent teammate-likeness.
Theoretical Issues in Ergonomics Science, 19(3), 353-374.
https://doi.org/10.1080/1463922X.2016.1260181

TNO PUBLIEK

