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A B S T R A C T

Application of high-strength steels in the maritime and offshore industry is currently limited by
rules governing the ratio of the yield to tensile strength (the Y/T ratio). To better understand
the physical basis for these rules, the nature and extent of the plastic stress/strain field in
the vicinity of a stress concentration (a circular hole) in a structure made from high-strength
steel are analyzed. This is done through analytical models of the stress field and the extent of
plasticity in the vicinity of a hole based on classical methods. These analytical methods are
validated through FEA models that are in turn validated by published experimental data. This
paper concludes that a high Y/T ratio leads to a lower plastic SCF and a higher local strain in
the vicinity of a hole. The extent of the plastic zone is not affected by different values of Y/T
ratio for different values of 𝜎𝑛𝑜𝑚∕𝜎𝑦.

1. Introduction

Over the years, new, high-strength (𝜎𝑦 > 550 MPa) and ultra high-strength (𝜎𝑦 > 780 MPa) steels have found their way into the
maritime and offshore industry in applications such as jack-up structures, submarines, mooring chains, pipelines, pipe-lay towers,
lifting appliances and icebreakers [1,2]. These steels are attractive because they are stronger and therefore require less material
to achieve the same result: a safely designed structure. The introduction of high-strength steels also brings challenges with respect
to rules because limits are set for the yield to tensile strength (Y/T) ratio to ensure structural safety [3–5]. For example, the Y/T
ratio is restricted to a maximum of 0.94 for steel grades with yield strengths between 420 and 960 MPa in [3–5]. But in practice,
such high-strength steels are sometimes delivered with higher Y/T ratios than deemed acceptable by the rules. This problem is
further exacerbated by steels that have higher-than-specified yield stresses, resulting in higher overall strength but also a higher
Y/T ratio. Several failure modes have been identified in which the yield to tensile strength ratio plays a role [6]. All of these failure
modes require further development in order to understand the impact of high yield to tensile strength ratios on safety. The purpose
of this paper is to focus on one of those specific modes, specifically the concentration of stresses and strains in the presence of a
stress concentration. Understanding the influence of yield to tensile strength ratio can help to give the basis for more scientifically-
grounded rules. Specifically, this paper focuses on the stress field in stress/strain concentrations around holes in steel structures to
ultimately find the effect of the Y/T ratio on the tendency of steels with a high Y/T ratio to concentrate stresses and strains. This has
tremendous practical value because nominal design stresses are often 2/3 of the yield stress [4,7,8], but it is well-known that the
stress concentration factor in an elastic structure is 3 [9]. This leads to the conclusion that yielding is likely present in the vicinity
of circular holes at nominal stresses far below the design stress.
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Nomenclature

𝜖 Strain
𝜖𝑒𝑛𝑔 Engineering strain
𝜖𝑙𝑜𝑐𝑎𝑙 Local (true) strains acting in the angular (𝜃) direction at the hole
𝜖𝑝𝑒𝑎𝑘 Peak (true) strain acting in the angular (𝜃) direction at the hole, at 𝜃 = 𝜋∕2 and 𝑟∕𝑎
𝜖𝑡𝑟𝑢𝑒 True strain
𝜖𝑢,𝑒𝑛𝑔 Engineering ultimate stress
𝜖𝑢,𝑡𝑟𝑢𝑒 True ultimate stress
𝜖𝑦,𝑒𝑛𝑔 Engineering yield strain
𝜖𝑦,𝑡𝑟𝑢𝑒 True yield strain
𝜖𝑦 Yield strain
𝜎 Stress
𝜎𝜃 Stress acting in the angular (𝜃) direction at circular hole
𝜎𝑒𝑛𝑔 Engineering stress
𝜎𝑛𝑜𝑚 Nominal applied stress
𝜎𝑡𝑟𝑢𝑒 True stress
𝜎𝑢,𝑒𝑛𝑔 Engineering ultimate stress
𝜎𝑢,𝑡𝑟𝑢𝑒 True ultimate stress
𝜎𝑦,𝑒𝑛𝑔 Engineering yield stress
𝜎𝑦,𝑡𝑟𝑢𝑒 True yield stress
𝜎𝑦 Yield stress
𝜃 Angular coordinate at circular hole
𝑎 Radius of circular hole
𝐸 Young’s modulus
𝑒 Euler’s number
𝐸𝑠 Secant modulus
𝐸𝑠,∞ Secant modulus far away from the stress concentration
𝐾 Strength coefficient of the Hollomon law
𝑛 Strain hardening exponent of the Hollomon law
𝑅 Shift of the elastic stress field to accommodate the plastic stress field
𝑟 Radial coordinate at circular hole
𝑟𝑝 Radius at which the analytical elasto-plastic stress distribution transitions from purely elastic behavior

to yielding (the extent of the plastic zone)
𝑟𝑦 Radius at which the classical elastic stress distribution at a hole exceeds the yield stress
SCF Stress concentration factor
Y/T Yield to tensile strength ratio, based on engineering stress

Stowell analytically described the plastic stress concentration around a circular cutout in an infinite plate under uniform tension
or an incompressible material [10]. The stress concentration described by Stowell is not directly related to the Y/T ratio. The
uthors are unaware of any prior studies in which the influence of the Y/T ratio is analyzed for the tendency to develop strain
ocalizations in the vicinity of circular holes at nominal stresses below and above the design stress.

This work will develop elasto-plastic analytical models that relate the Y/T ratio to the stress/strain field for a circular cutout
nder uniform tension based on of Stowell’s work. Analytical models are preferred for their ease of use and potential for giving
nsights into general trends. The analytical models will be validated with numerical models.

The analytical treatment is described in Section 2, where the plastic stress/strain distribution occurring around a hole given by
towell [10] is developed to find the dependence of the stress distribution on the Y/T ratio using the equation of Leis [11], together
ith an estimate for the extent of the plastic zone inspired by Irwin [12]. Then, the numerical model is discussed in Section 3,
hich includes its validation against experimental data and the validation of the analytical methods. Section 4 gives a parametric

tudy based on this analytical model, to assess the influence of yield strength and Y/T ratio independently from each other. Finally,
conclusion is drawn in Section 5.
2
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2. Elasto-plastic analysis of a circular cutout using an analytical model

In this section, the existing relationship for the stress field around a circular cutout [10], originating from the classical elastic
olution, is updated to include the Y/T ratio. This is done by assuming the Hollomon hardening rule [13] and applying a known
elationship between the hardening rule parameters and the Y/T ratio [11].

.1. Development of the plastic SCF

Analytical relationships describing the stress concentration factor (SCF) are available [10,14,15]. However, an analytical
elationship between the SCF and the Y/T does not exist. This section shows how this relationship could be found by first relating
he Y/T ratio to the strain hardening exponent 𝑛 as shown in Leis [11], then updating the analytical SCF expressions to be expressed

in terms of 𝑛, and finally using the relationship between 𝑛 and Y/T to relate the SCF to Y/T.
To obtain a relationship between Y/T and 𝑛, Leis [11] first assumes a material law as given by Hollomon (Eq. (1)) [13].

𝜎𝑡𝑟𝑢𝑒 = 𝐾 ⋅ 𝜖𝑛𝑡𝑟𝑢𝑒 (1)

Here, 𝜎𝑡𝑟𝑢𝑒 is the true stress, 𝜖𝑡𝑟𝑢𝑒 is the true strain, and 𝐾 and 𝑛 are material constants. When Eq. (1) is substituted into the
Considère condition [16]:

𝜎𝑡𝑟𝑢𝑒 =
𝜕𝜎𝑡𝑟𝑢𝑒
𝜕𝜖𝑡𝑟𝑢𝑒

(2)

The true strain at the onset of necking is found:

𝜖𝑢,𝑡𝑟𝑢𝑒 = 𝑛 = ln(1 + 𝜖𝑢,𝑒𝑛𝑔) (3)

Where the subscript 𝑢 indicates the strain corresponding to the ultimate stress. Therefore, the engineering strain corresponding
o the ultimate stress is:

𝜖𝑢,𝑒𝑛𝑔 = 𝑒𝑛 − 1 (4)

Rewriting Hollomon’s law using the Considère condition [16] results in an expression for the strength coefficient, 𝐾, given
n Eq. (5).

𝐾 =
𝜎𝑢,𝑡𝑟𝑢𝑒
𝑛𝑛

(5)

Substituting Eq. (5) into Eq. (1) and evaluating at the resultant equation at the yield point gives:
𝜎𝑦,𝑡𝑟𝑢𝑒
𝜎𝑢,𝑡𝑟𝑢𝑒

= (
𝜖𝑦,𝑡𝑟𝑢𝑒
𝑛

)𝑛 (6)

The relationships for converting true stress and strain into engineering stress and strain are:

𝜎𝑡𝑟𝑢𝑒 = 𝜎𝑒𝑛𝑔 ⋅ (1 + 𝜖𝑒𝑛𝑔) (7)

𝜖𝑡𝑟𝑢𝑒 = ln(1 + 𝜖𝑒𝑛𝑔) (8)

The Y/T ratio is typically stated in terms of engineering stress and strain, so the Y/T ratio is:

𝑌
𝑇

∶=
𝜎𝑦,𝑒𝑛𝑔
𝜎𝑢,𝑒𝑛𝑔

= 1
1 + 𝜖𝑦,𝑒𝑛𝑔

⋅ (
𝑒 ⋅ ln(1 + 𝜖𝑦,𝑒𝑛𝑔)

𝑛
)𝑛 (9)

Eq. (9) was developed by Leis [11] and is referred to hereafter as the Leis equation.
Hollomon’s power law tends to under-predict the yield stress in roundhouse stress–strain curves and certainly in stress–

strain curves with Lüder’s plateaus. As the stress–strain curves for high-strength steels have roundhouse stress–strain curves, the
under-prediction is limited.

The classical elastic solution of the SCF of a circular cutout in an infinite plate under far-field tension is given in Eq. (10) [14].
𝜎𝜃
𝜎𝑛𝑜𝑚

= 1
2

(

1 + 𝑎2

𝑟2
− (1 + 3𝑎4

𝑟4
) cos 2𝜃

)

(10)

Stowell updated Eq. (10) into an analytical approximation of the plastic solution of the SCF for a circular cutout under uniform
ension shown in Eq. (11).

𝜎𝜃
𝜎𝑛𝑜𝑚

= 1
2

(

1 + 𝑎2

𝑟2
−

𝐸𝑠
𝐸𝑠,∞

⋅ (1 + 3𝑎4

𝑟4
) cos 2𝜃

)

(11)

Where 𝑎 is the radius of the hole, 𝑟 is the distance from the center of the hole, 𝜃 is the angle relative to the tensile axis, 𝐸𝑠 is
the secant modulus, 𝜎𝜃 is the stress in the 𝜃-direction, and 𝜎𝑛𝑜𝑚 is the nominal stress. The nominal stress is calculated with the gross
cross-section of the specimen, without taking the discontinuity into account. Fig. 1 is a schematic representation of the hole and
3

geometric parameters. The far-field secant modulus 𝐸𝑠,∞ is equal to the Young’s modulus 𝐸, since no global yielding is assumed.
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Fig. 1. Circular cutout subjected to uniform tension.

By definition, the secant modulus is the stress divided by the strain, so the secant modulus for Hollomon’s law is:

𝐸𝑠 = 𝐾 ⋅ 𝜖𝑛−1 (12)

Solving Hollomon’s law for 𝜖 and substituting into Eq. (12) gives:

𝐸𝑠 = 𝐾 ⋅ ( 𝜎
𝐾
)
𝑛 − 1
𝑛 (13)

Assuming that the yield point occurs at the intersection of the linear elastic region and Hollomon’s equation:

𝐸 ⋅ 𝜖𝑦 = 𝐾 ⋅ 𝜖𝑛𝑦 (14)

Eq. (14) results in an unique expression for the strength coefficient:

𝐾 = 𝐸 ⋅ (
𝜎𝑦
𝐸

)1−𝑛 (15)

When Eq. (15) is substituted into Eq. (13) and normalized by 𝐸, the ratio 𝐸𝑠∕𝐸 is found:

𝐸𝑠
𝐸

= ( 𝜎
𝜎𝑦

)
𝑛 − 1
𝑛 (16)

Substituting the definition of the Stress Concentration Factor (SCF) (i.e. the ratio of the local stress to the nominal stress) into
Eq. (16) yields:

𝐸𝑠
𝐸

= (𝑆𝐶𝐹 ⋅
𝜎𝑛𝑜𝑚
𝜎𝑦

)
𝑛 − 1
𝑛 (17)

Substituting this ratio into the Stowell equation in Eq. (11) results in Eq. (18).

𝑆𝐶𝐹 = 1
2

⎛

⎜

⎜

⎝

1 + 𝑎2

𝑟2
− (𝑆𝐶𝐹 ⋅

𝜎𝑛𝑜𝑚
𝜎𝑦

)
𝑛 − 1
𝑛 ⋅ (1 + 3𝑎4

𝑟4
) ⋅ cos 2𝜃

⎞

⎟

⎟

⎠

(18)

Eq. (18) gives the distribution of the SCF with varying coordinates (𝑟, 𝜃), for given material properties 𝜎𝑦 and 𝑛, at different
levels of applied loading 𝜎𝑛𝑜𝑚. Since the peak stresses and strains which are of interest occur at the cut along 𝜃 = 𝜋∕2, the analyses
and discussion in the subsequent sections are applied to that cut. This is done by making the substitution 𝜃 = 𝜋∕2 and then solving
the implicit equation for the SCF numerically. Applying Eq. (9) gives this elasto-plastic SCF as a function of the Y/T ratio. Finally,
to describe the region where the material is expected to be linear elastic and where the extent of the plastic zone theoretically
terminates, the shift in the classical elastic stress field as described in Section 2.3 is applied.

2.2. Local strain

Substituting Eq. (12) and 𝐸𝑠,∞ = 𝐸 into Eq. (11) gives the stress field in terms of strain:

𝜎𝜃 = 1
(

1 + 𝑎2
2
−

𝐾 ⋅ 𝜖𝑛−1𝑙𝑜𝑐𝑎𝑙 ⋅ (1 + 3𝑎4
4
) cos 2𝜃

)

(19)
4
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Solving for the local strain and evaluating at location 𝜃 = 𝜋∕2 and 𝑟∕𝑎 = 1, as the highest strain occurs at this point, results
in Eq. (20).

𝜖𝑝𝑒𝑎𝑘 = (( 1
2
⋅ 𝑆𝐶𝐹 − 1

2
) ⋅ 𝐸

𝐾
)

1
𝑛 − 1 (20)

2.3. Estimation of the plastic zone size

As described in Section 2, in order to express the stress distribution in a form which uses the strain hardening exponent 𝑛 and 𝜎𝑦
as the only material parameters (without 𝐸𝑠 or 𝐾) (Eq. (18)), so that this could then be related to Y/T through Leis (Eq. (9)) [11],
the Hollomon curve was used together with the assumption that the curve passes through the yield point on the linear elastic
stress–strain line (Eq. (14)). This results in a material behavior which below yielding has, instead of a linear elastic behavior, a
curved relation resulting in over-prediction of those pre-yield stresses. The resulting elasto-plastic stress distribution is hence one
which is applicable for the plastic region but which over-predicts stresses for the elastic region. This section describes the method
used to approximate the extent of the plastic zone over which the preceding Hollomon-based derivation applies, given by the radius
𝑟𝑝 along 𝜃 = 𝜋∕2, at which the behavior switches between linear-elastic and plastic. Once this location is found, it is known that for
radii 𝑟 past this point, the behavior is simply that of the classical elastic solution (Eq. (10)), which is shifted to line up with 𝑟𝑝 to
give a continuous distribution.

Inspired by fracture mechanics, the extent of the plastic zone is estimated by finding how wide the plastic zone would have to
be in order to have the same net force as the equivalent elastic strain field [12]. In this portion of the analysis, an elastic-perfectly
plastic material is assumed. The elastic-perfectly plastic solution gives a conservative upper bound of the extent of the plastic zone,
and the suitability of this assumption is discussed together with the results in Section 4. Fig. 2 shows the load that needs to be
redistributed. Here, 𝑟𝑦 is the radius over which the elastic solution is greater than the yield strength, 𝑟𝑝 is the extent of the plastic
zone necessary to maintain force balance, 𝜎𝜃 is the stress in the 𝜃-direction along the 𝜃 = 𝜋∕2 axis, and 𝜎𝑦 is the yield stress.

The expression for 𝑟𝑦 can be found by setting the 𝜎𝜃 into the elastic solution (Eq. (10)) equal to the yield stress and assuming
𝜃 = 𝜋∕2.

𝑎
𝑟𝑦

=

√

√

√

√−1
6
+ 1

3

√

−23
4

+ 6 ⋅
𝜎𝑦
𝜎𝑛𝑜𝑚

(21)

From there, force balance can be used to find 𝑟𝑝. This can be found by:

𝜎𝑦 ⋅ 𝑟𝑝 = ∫

𝑟𝑦

0
𝜎𝜃𝑑𝑟 (22)

Solving Eq. (22) for 𝑟𝑝 gives:
𝑟𝑝
𝑎

=
𝜎𝑛𝑜𝑚
𝜎𝑦

⋅ (
𝑟𝑦
𝑎

− 1
2
⋅
𝑎
𝑟𝑦

− 1
2
⋅ ( 𝑎
𝑟𝑦
)3) + 1 (23)

Assuming that the extent of plasticity is given by Eq. (23) (which is larger than Eq. (21)) means that the plastic solution will no
onger transition smoothly to the elastic solution at the edge of the plastic zone. Therefore, the elastic stress field will be shifted so
hat it is continuous with the edge of the plastic zone. This will be accomplished by replacing 𝑟 in Eq. (10) with 𝑅:

𝑅 = 𝑟 − (𝑟𝑝 − 𝑟𝑦) (24)

The concept of 𝑅 as a new origin for the elastic solution which has been shifted to accommodate the plastic stress field is
emonstrated in Fig. 2.

. Numerical validation of the plastic SCF solution

In this section, the analytical plastic SCF solution is validated by comparison with a finite element analysis (FEA). The FEA model
s made with Ansys 2020 [17], and it is compared with tensile tests performed on an S960 steel in [18], for both the situations
ith and without a hole. Toward that end, the material model is first discussed, followed by the development and experimental
alidation of the numerical model. The model is then modified to be more comparable to the theoretical model, and the results are
hen compared with the theoretical model itself.

.1. Material model

Local strains beyond the necking strain will be possible in this model, so the true stress–strain relationship beyond the onset
f necking in a standard tensile test is needed. The traditional methods of correcting engineering stress and strain to true stress
nd strain cannot be applied beyond the onset of necking, so an inverse engineering approach will be used. In this approach, The
aterial’s true stress–strain curve as described by the Hollomon law (Eq. (1)) is used as an input to the finite element model of

he tensile test, from which an engineering stress–strain curve (based on gage length) is obtained and used for comparison with
he experimental engineering stress–strain curve obtained from [18]. The parameters 𝐾 and 𝑛 of the Hollomon law are iteratively
hanged until there is a 5% match between the experimental and finite element engineering stress–strain curves. This engineering
tress–strain curve obtained from FEA based on the calibrated 𝐾 and 𝑛 parameters is shown in Fig. 3, alongside the experimental
5

esults from [18]. The material properties and fitting parameters are given in Table 1.



Marine Structures 84 (2022) 103205S.F.P.M. Obers et al.
Fig. 2. Schematic of the plastic zone near the hole, compared to the elastic solution and perfectly plastic solution.

Fig. 3. Standard tensile test engineering stress–strain curve S960 — plain steel specimen; experimental results from [18].

Table 1
S960 material properties and fitting parameters.

Value Unit

Steel grade S960 [–]
Young’s modulus 210 [GPa]
𝜎𝑦,𝑒𝑛𝑔 1084 [MPa]
𝜎𝑢,𝑒𝑛𝑔 1191 [MPa]
Y/T 0.91 [–]
𝐾 1490 [MPa]
𝑛 0.055 [–]
6
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Fig. 4. Tensile test specimen with a thickness equal to 8 mm.
Source: from [18]

Fig. 5. Numerical model with a thickness equal to 8 mm.

3.2. Numerical modeling and validation

The calibrated material properties, found by reverse engineering of the tensile test (without hole) as described in Section 3.1,
are applied to the simulation of a tensile test containing a 16 mm circular hole (Fig. 4), involving the same steel from the same test
database [18]. The applicability of this calibrated material model to the situation with a hole is verified in Section 3.3 below by
comparison with the corresponding experiment.

Having established its validity based on this experimental comparison, the finite element model could then be used to make
comparisons against predictions given by the analytical model described in Section 2 above, when applied to the same situation of
a circular hole of 16 mm diameter. Since the analytical model is based on a plate with an infinite width, when making comparisons
with the analytical model, the width and length of the finite element specimen are scaled up, while maintaining the size of the
circular hole and the specimen thickness. The appropriate amount of scaling is determined by the balance between computational
times and achieved level of agreement between the theoretical and numerical results. Hence, the width of the ligaments and the
total length are here scaled by a factor of six (Fig. 5), resulting in an FEA specimen with a total length of 2400 mm and total
width at the gauge section of 400 mm. The scaling changed the width-to-hole-diameter ratio from 5 in the experiment to 25 in the
subsequent simulations, which was a substantial improvement.

The specimen is simulated using Ansys 2020 software, with SOLID187/SOLID186 (quadratic hexahedron and tetrahedron)
elements (Fig. 5). The element size near the hole was 0.5 mm, representing 16 elements over the thickness. A refined, unstructured
mesh extended in the width direction to an 𝑟∕𝑎 ratio of approximately 1.6, then transitioned to a more coarse mesh. A remote
displacement is imposed on the end of the specimen in the longitudinal direction. One side of the specimen is fully clamped, and
the other is fully clamped except for the degree of freedom in which the displacement was imposed. A minimum mesh size of 2 mm
was used, and it was shown to calculate a peak stress within 1% of a finer mesh.

3.3. Experimental validation

Simulating the geometry shown in Fig. 4 and calculating an engineering strain with a gauge length of 100 mm, centered on
the hole, results in the engineering stress–strain curve shown in Fig. 6. This figure shows the similar behavior for the experimental
data obtained from [18], and an overestimation of the stress–strain behavior approximately equal to 5% is observed. The 0.2%
offset yield stresses obtained from the experimental and finite element results for this holed geometry are 1129 MPa and 1190 MPa,
7

respectively, and the ultimate stresses are 1169 MPa and 1217 MPa, respectively.
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Fig. 6. Standard tensile test engineering stress–strain curve S960 — specimen with circular cutout of 16 mm; experimental data from [18].

Fig. 7. SCF as function of normalized nominal stress for S960 with Y/T = 0.91 — analytical versus numerical.

3.4. Comparison between analytical and numerical model

In this section, the equations from Section 2 are compared to the calibrated numerical models. The ligaments from the specimen
shown in Fig. 5 were scaled from 32 mm up to 192 mm in order to more closely approximate the infinite plate theory that Eqs. (11)
and (19) were based on. Eq. (18) is compared with the finite element results for S960 steel in Fig. 7. This figure shows a constant
SCF of 3 until 𝜎𝑛𝑜𝑚∕𝜎𝑦 equals 1/3 for the theoretical elastic solution [9]. The elastic SCF for the numerical solution is less than the
theoretical value of 3 due to the finite width. Up to a value of 𝜎𝑛𝑜𝑚∕𝜎𝑦 of 1/3, the material behaves elastically. After this point,
the plastic SCF decreases due to redistribution of strain. This decrease in plastic SCF is well captured by the analytical Stowell
approximation. An elastic-perfectly plastic solution in which no hardening occurs is also presented in Fig. 7. The perfectly plastic
solution (Y/T = 1) is derived from the observation that the maximum stress is the yield stress, so the SCF is given by 𝑆𝐶𝐹 = 𝜎𝑦∕𝜎𝑛𝑜𝑚.

A comparison is made between Eq. (20) and the FEA results of the local strain at location 𝜃 = 𝜋∕2 and 𝑟∕𝑎 = 1, in Fig. 8. The
strain hardening exponent in Eqs. (18) and (20) is varied to show the influence. The analytical formulation is able to approximate
the strain behavior relatively accurately. The inconsistency in the numerical solution when 𝜎𝑛𝑜𝑚∕𝜎𝑦 is 0.36 is not shown in the
analytical solution, which causes a systematic overestimation. The strain hardening exponent equal to 0.055 corresponds to the real
material, the other exponents are used to show the parametric dependence.

The perfectly plastic solution approach from Section 2.3 combined with Eq. (18) can be used to approximate the behavior of
the stress field as a function of 𝑟∕𝑎. The result is shown in Fig. 9. The solutions of normalized nominal stress are shown for 𝜎 ∕𝜎
8
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Fig. 8. Normalized local strain as function of normalized nominal stress — analytical versus numerical.

Fig. 9. Numerical and analytical solution elasto-plastic transition over width of the S960 specimen.

values equal to 0.1, 0.4, 0.5, and 0.6. Since the theoretical elastic stress concentration factor for a circular cutout is equal to 3, this
is also shown in the figure. The numerical elastic solution when 𝑟∕𝑎 = 1 is equal to 2.9 due to the finite width, which is located
at 𝑟∕𝑎 = 30 in the FEA model. Higher normalized nominal stresses tend to give better agreement between analytical and numerical
solutions. As shown in the figure, the shift in the extent of the plastic zone is taken into account.

4. Results

Eq. (9) and (15) were used to convert chosen Y/T ratios and yield strengths into combinations for 𝐾 and 𝑛 and vice versa. These
𝐾 and 𝑛 values were then converted into stress–strain curves for use in Ansys. To assess the influence of the Y/T ratio, the numerical
model is used to examine Y/T ratios equal to 0.6, 0.86, 0.91, and 0.96, which include a value more representative of lower strength
steels (0.6, corresponding to a Grade A steel), two that are representative of high-strength steels (0.91 and 0.96, corresponding to
a nominal yield strength greater than S690), and one in between.

The yield strength is kept constant at a value of 976.25 MPa. A comparison of the stress fields for different Y/T ratios is shown
in Fig. 10. All curves overlap for the 𝜎𝑛𝑜𝑚∕𝜎𝑦 = 0.11 condition because each material still behaves elastically at this level of loading,
so the Y/T ratio has not yet had an effect. A decrease in the plastic SCF with an increase in the Y/T ratio is shown in this figure for
𝑟∕𝑎 = 1 and 𝜎𝑛𝑜𝑚∕𝜎𝑦 = 0.45. After the transition to the elastic solution, the global equilibrium causes an opposite trend. A normalized
nominal stress of 0.67 shows the same trend. This example with 𝜎 ∕𝜎 = 0.45 shows that the extent of the plastic zone seems not
9
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Fig. 10. Numerical solution of elasto-plastic transition over width of specimen with Y/T = [0.6 0.86 0.91 0.96] [–] and 𝜎𝑦 = 976.25 MPa.

Fig. 11. Numerical solution of SCF as function of normalized nominal stress with varying Y/T.

to be affected by the Y/T ratio. The transition point from plastic into elastic is located at the same value for 𝑟∕𝑎. This observation,
based on numerical results, helps to justify the estimation made in Section 2.3 that a perfectly plastic model can be used. As a result
of global equilibrium and plastic redistribution, the SCFs in the plastic zone are higher for a lower Y/T ratio, while the SCFs in the
elastic zone are conversely lower for a lower Y/T ratio.

Using the same numerical simulation and plotting SCF as a function of normalized nominal stress at location 𝑟∕𝑎 = 1 and 𝜃 = 𝜋∕2
results in Fig. 11, which clearly shows that increasing Y/T leads to a decrease in plastic SCF. The perfectly plastic solution for Y/T
is also shown to indicate the lower bound.

Extracting the peak strain as the output of the numerical model for a varying Y/T leads to Fig. 12. This figure shows that
increasing the Y/T ratio leads to an increase in the normalized peak strain. Quantifying the local strain influenced by the Y/T ratio
at 𝜎𝑛𝑜𝑚∕𝜎𝑦 = 0.67, the design limit of Bureau Veritas, DNV-GL, and Lloyd’s Register [7,8,4], leads to a decrease in plastic SCF equal
to 8.5% and a 9.4% increase in local strain, for an increase in Y/T from 0.6 up to 0.87.

At the location 𝑟∕𝑎 = 1 and 𝜃 = 𝜋∕2, information can be extracted about the influence of the yield strength, as shown in Fig. 13.
This figure clearly shows that the yield strength does not have a significant effect on the plastic SCF. Therefore, the effect of the
yield strength on the local strain will be insignificant as well.
10
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Fig. 12. Numerical solution of normalized local strain as function of normalized nominal stress with varying Y/T ratio.

Fig. 13. Numerical solution of SCF as function of normalized nominal stress with varying yield stress.

5. Conclusion

The paper presents a method to analytically approximate the stress/strain field of an infinite plate under tension with a circular
hole with a nonlinear plastic material model. A validation study shows that the analytical model approximates the elasto-plastic
behavior of high-strength steel with a circular cutout very well. The lower bound of the plastic SCF can be approximated in a
theoretical way with the elastic-perfectly plastic solution. The SCF, local strain, and SCF as a function of the specimen’s width can
be accurately approximated. From the results, it can be concluded that increasing the Y/T ratio leads to a decrease in the plastic
SCF for a circular cutout under uniform tension. Moreover, an increase in the Y/T ratio leads to an increase in the local strain and
has no effect on the extent of the plastic zone for the materials included in the parametric study. Also, the extent of plastic zone is
not affected after increasing the Y/T ratio. An increase in Y/T ratio from 0.87 up to 0.94 leads to a decrease in plastic SCF equal
to 2.4% and an increase in local strain equal to 2.8% for a normalized nominal stress equal to 𝜎𝑛𝑜𝑚∕𝜎𝑦 = 0.67. An increase in yield
strength does not have an effect on the plastic SCF and therefore also does not have an effect on the local strain. Therefore, a Y/T
larger than 0.94, which is the limitation according to rules [3–5], results in a marginally increased local strain, which gives a small
increase of risk for ductile failure.
11



Marine Structures 84 (2022) 103205S.F.P.M. Obers et al.

t

A

a
V
w
k

R

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This research is the result of an M.Sc. thesis project that was undertaken as part of the Joint Industry Research Program known
s HYSt: High Y/T Steel. The authors are grateful for the funding provided by the consortium of companies consisting of Bureau
eritas Marine & Offshore SAS, Damen Schelde Naval Shipbuilding BV, Huisman Equipment BV, Lloyd’s Register EMEA, POSCO, as
ell as the Topconsortia voor Kennis en Innovatie (TKI). The authors would like to thank ir. E. Romeijn for providing indispensable
nowledge on the application of ultra high-strength steels and guidance throughout the project.

eferences

[1] Billingham J, Sharp JV, Spurrier J. Research report 105 - Review of the performance of high strength steels used offshore. United Kingdom: HSE Books;
2003.

[2] Billingham J, Healy J, Bolt H. High strength steels - The significance of yield ratio and work-hardening for structural performance. United Kingdom:
Energy Institute; 1997.

[3] Lloyd’s Register. Rules for the manufacture, testing and certification of materials. London: Lloyd’s Register; 2021.
[4] Lloyd’s Register. Code for lifting appliances in a marine environment. London: Lloyd’s Register; 2021.
[5] DNV-GL. Rules for classification: Ships: Part 2 materials and welding. Oslo: DNV-GL; 2021.
[6] Wong WJ, Walters CL. Failure modes and rules related to the yield-to-tensile strength ratio in steel structures. In: ASME 2021 40th international conference

on ocean, offshore and arctic engineering. American Society of Mechanical Engineers; 2021, http://dx.doi.org/10.1115/omae2021-61995.
[7] Bureau Veritas. NR526 rules for the certification of lifting appliances onboard ships and offshore units. Neuilly-sur-Seine: Bureau Veritas; 2021.
[8] DNV-GL. DNVGL-ST-0378 offshore and platform lifting appliances. Edition July 2019. Oslo: DNV-GL; 2020, amended October 2020.
[9] Timoshenko S, Goodier JN. Theory of elasticity. New York: McGraw-Hill Book Company, Inc.; 1951.

[10] Stowell EZ. Technical note 2073: Stress and strain concentration at a a circular hole in an infinite plate. 1950.
[11] Leis BN. Influence of yield-to-tensile strength ratio on failure assessment of corroded pipelines. J Press Vessel Technol 2005;127(November):436–42.
[12] Irwin GR. Plastic zone near a crack and fracture toughness. In: Sagamore research conference proceedings, vol. 4, Syracuse, NY; 1961, p. 63–78.
[13] Hollomon JH. Tensile deformation. Trans Metall Soc AIME 1945;162:268–90.
[14] Kirsch EG. Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre. Z Ver Dtsch Ing 1898;42:797–807.
[15] Neuber H. Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law. J Appl Mech 1961;28(4):544–50.
[16] Considère A. Mémoire sur l’emploi du fer et de l’acier. Annales Des Ponts Et Chaussées 1885;9:574–775.
[17] Ansys. Ansys mechanical 2020 R1 (20.1). 2020.
[18] Hradil P, Talja A. Research report VTT-R-04741-16 ductility limits of high strength steels. VTT Technical Research Centre of Finland; 2016.
12

http://refhub.elsevier.com/S0951-8339(22)00044-2/sb1
http://refhub.elsevier.com/S0951-8339(22)00044-2/sb1
http://refhub.elsevier.com/S0951-8339(22)00044-2/sb1
http://refhub.elsevier.com/S0951-8339(22)00044-2/sb2
http://refhub.elsevier.com/S0951-8339(22)00044-2/sb2
http://refhub.elsevier.com/S0951-8339(22)00044-2/sb2
http://refhub.elsevier.com/S0951-8339(22)00044-2/sb3
http://refhub.elsevier.com/S0951-8339(22)00044-2/sb4
http://refhub.elsevier.com/S0951-8339(22)00044-2/sb5
http://dx.doi.org/10.1115/omae2021-61995
http://refhub.elsevier.com/S0951-8339(22)00044-2/sb7
http://refhub.elsevier.com/S0951-8339(22)00044-2/sb8
http://refhub.elsevier.com/S0951-8339(22)00044-2/sb9
http://refhub.elsevier.com/S0951-8339(22)00044-2/sb10
http://refhub.elsevier.com/S0951-8339(22)00044-2/sb11
http://refhub.elsevier.com/S0951-8339(22)00044-2/sb12
http://refhub.elsevier.com/S0951-8339(22)00044-2/sb13
http://refhub.elsevier.com/S0951-8339(22)00044-2/sb14
http://refhub.elsevier.com/S0951-8339(22)00044-2/sb15
http://refhub.elsevier.com/S0951-8339(22)00044-2/sb16
http://refhub.elsevier.com/S0951-8339(22)00044-2/sb17
http://refhub.elsevier.com/S0951-8339(22)00044-2/sb18

	The effect of the yield to tensile strength ratio on stress/strain concentrations around holes in high-strength steels
	Introduction
	Elasto-plastic analysis of a circular cutout using an analytical model
	Development of the plastic SCF
	Local strain
	Estimation of the plastic zone size

	Numerical validation of the plastic SCF solution
	Material model
	Numerical modeling and validation
	Experimental validation
	Comparison between analytical and numerical model

	Results
	Conclusion
	Declaration of competing interest
	Acknowledgments
	References


