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ABSTRACT: In 2020, the Dutch government published 1 500 000 synthetic CPT profiles for use in develop­
ment of the Hollandse Kust (west) Wind Farm Zone, offshore Netherlands. The scale of this approach was novel 
at that time and possibly first-ever. The synthetic CPT profiles were derived from a training data set of 122 actual 
CPTs and ultra-high-resolution (UHR) seismic reflection traces, using machine learning by a convolutional neural 
network. The synthetic CPT profiles were limited to positions along the 162 UHR survey track lines (2D) and 
were limited to cone resistance to a depth of 50 m below seafloor. The UHR track lines were spaced at about 
400 m. This paper explores upscaling the synthetic CPT approach to voxel (3D) models and adding (S)CPT­
based parameters such as shear modulus at small strain Gmax. Future added-value is expected from post-2020 
improvements seen in seismic reflection data resolution, attribute extraction and neural network architecture. 

1	 INTRODUCTION 

Reducing ground risk is important for the development 
of an offshore wind farm. This requires understanding 
of the geological and geotechnical conditions to 
depths in the order of 30 m to 100 m below seafloor 
(BSF), depending of type of support structure for the 
wind turbines. 

The understanding of ground risk is typically 
expressed by a ground model or multiple ground 
models (ISO 2021). These models typically rely on 
integrated interpretation of geological information, 
geophysical (UHR and UUHR multichannel seismic 
reflection) data and geotechnical data (particularly 
cone penetration tests, CPTs. 

Since the 1990’s, there has been increasing focus on 
deriving geotechnical properties directly from geo­
physical data using methodologies developed in the 
oil and gas industry (e.g. Nauroy et al. 1998). More 
recently, trials were made with synthetic CPTs and 
geo technical properties generated by interpolating 
CPT data between investigated locations (Forsberg 
et al., 2017) and using statistical methods and multi-
attribute regression through an artificial neural net­
work (Sauvin et al. 2019). The general approach is 
covered by ISO 19901-10 Marine Geophysical Inves­
tigations (ISO 2021). 

This paper describes the status quo for 2020 and 
explores future opportunities for upscaling the 

synthetic CPT approach. The status quo is presented 
by an example in the public domain (www.offshore 
wind.nl): the Hollandse Kust (west) Wind Farm Zone, 
HKW WFZ (Figure 1), offshore Netherlands (Fugro 
2020a and 2020b). HKW WFZ data acquisition, data 
analysis and advice were largely completed in 2019 
and 2020. The 1 500 000 synthetic CPT profiles were 
generated at no schedule impact. DNV GL (2020) 
sees this cutting edge development as ‘a huge step for­
ward in terms of project area overview with respect to 
geotechnical site conditions and also as a valuable 
tool to improve and understand the correlation 
between future geological, geophysical and geotech­
nical investigations.’ 

2	 HOLLANDSE KUST (WEST) WIND FARM 
ZONE 

The site for the HKW WFZ is located approximately 
53 km from the Dutch coast, covering an area of 
roughly 176 km2 in water depths ranging from 
18 m to 36 m LAT. 

Ground model input mainly included: 
–	 Geological information; 
–	 Geophysical data: multibeam echosounder, side 

scan sonar, magnetometer, sub-bottom profiler 
and 2D-UHR single channel and multi-channel 
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Figure 1. Location of the future Hollandse Kust (west) 
Wind Farm Zone. 

seismic reflection data. The data were acquired 
according to a draft version of ISO (2021); 

–	 Geotechnical data acquired from 57 boreholes 
with sampling and cone penetration testing (CPT) 
to a maximum depth of 90 m below seafloor 
(BSF), 122 seafloor CPTs to a maximum depth of 
56 m BSF, 30 seafloor seismic cone penetration 
test to maximum depth of 56 m BSF, and labora­
tory testing. The data were acquired according to 
ISO (2014). 

The acquired geophysical and geotechnical data 
were integrated into a traditional quasi-3D ground 
model, with seismic reflections tied to geotechnical 
boundaries derived from seafloor CPT and borehole 
information (Figure 2). The ground model comprised 
eight geological soil units, each having a distinct 
seismic character and spatial distribution. 

Figure 2 provides cross sections that illustrate 
how the traditional ground model was enhanced by 1 
500 000 synthetic CPT (cone resistance) profiles and 
associated error predictions to 50 m below seafloor 
(Carpentier et al. 2021). The presented cross section 
has a length of 11 500 m with 4 actual CPTs and 
about 9000 synthetic CPTs to a depth of 50 m. 

The HKW WFZ synthetic CPT profiles were 
derived from a training data set of 122 actual CPTs 
and ultra-high-resolution seismic reflection traces, 
using machine learning by a convolutional neural net­
work. The synthetic CPT profiles were limited to 
positions along the 162 UHR survey track lines (2D). 
The UHR track lines were spaced at about 400 m. 

Figure 3 shows example checks on predictions. In 
general, the predicted and measured net cone resist­
ance values showed reasonably good agreement, par­
ticularly in the upper 20 m BSF. Below 20 m, 
prediction was more trend-type. In addition, a trend-
type prediction also applies to transitional and strongly 
layered (<1 metre scale) soil. It can be concluded that 
the prediction quality for the synthetic CPTs is such 
that added value can be derived to enhance the gen­
eral ground model. The HKW WFZ prediction quality 
is inadequate for geotechnical design. 

Reasons for the observed trend-type predictions 
include data conditioning, resolution of 2D-UHR 
seismic reflection data and limitations in refinement 
of the interpreted geological units. Data conditioning 
was applied by down sampling the CPT data to align 

Figure 2a. Example of integrated interpretation of 2D-UHR multi-channel seismic line, aligning geophysical horizon inter­
pretation to identified geotechnical boundaries from seafloor CPT and borehole data. 
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Figure 2b. Predictions of cone resistance (qn*) from 2D-UHR seismics (colors ranging from orange to purple) plotted 
together with measured cone resistance (black traces) and sleeve friction (red traces). See Figure 2a for comparison. 

with vertical resolution of the 2D-UHR seismic data 
(i.e. sample rate of 0.1 m for prediction input versus 
0.02 m as measured). Down sampling reduces net 
cone resistance effects of soil layering. The reso­
lution of the 2D-UHR seismic data decreases with 
depth. This also affects the ability to identify add­
itional geological units. This effect becomes more 
pronounced below approximately 20 m BSF. 

As expected, training of the convolutional neural 
network showed decreasing prediction accuracy with 
increasing lateral distance between the seafloor CPT 
location and the nearest seismic trace along the 2D­
UHR line. This is particularly significant where the 
correlation distance for spatial soil variability is less 
than the distance between the seafloor CPT location 
seismic trace selected for training. 

Figures 3 and 4 illustrate prediction quality by 
means of a quality indicator per geological unit. It 
can be seen that the lower limits of the quality indi­
cator can provide statistical values for qn 

� that fall 
outside credible ranges for these specific soils. 

3 UPSCALING 

3.1 Opportunities for future added value 

The following opportunities for upscaling are 
discussed: 

– Enhanced geophysical interpretation 
– Improved data pairing for training 
– Impact of technology developments 
– Predictions for multiple parameters 
– Voxel model by geo-statistics 
– Voxel model by 3D geophysics 

Figure 3. Comparison of actual net cone resistance (black 
line) versus synthetic net cone resistance (red line). The red 
halo represents the interval in which predictions are likely 
to fall (5th and 95th percentiles of the error misfit). Other 
colour infills indicate geological units. 
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Figure 4. Statistical values for qn 
� that fall outside credible 

ranges (green box). 

The opportunities can be considered individually. 
However, combinations are expected to lead to 
a step change in added value. 

The following sections discusses potential oppor­
tunities for a time window of 2020 to 2025. 

3.2 Enhanced geophysical interpretation 

Figure 2b Indicates that the synthetic CPTs can 
allow for further refinement of the geological model. 
This, in turn, helps steering future, turbine-specific 
geotechnical data acquisition, increasing safety and 
cost-efficiency. 

For example, light green colours can be seen 
between approximately 40 m and 50 m LAT. These 
strength insights (i.e. trends in net cone resistance) 
may justify refining the geological model at this depth, 
by assigning a new geological soil unit to encompass 
these geotechnical conditions. It should be noted that 
this potential additional geological soil unit could not 
be identified from ‘regular’ seismic data (e.g. seismic 
amplitudes) alone. The example also indicates that 
synthetic CPT results (1) can give further insight into 
potential soil heterogeneity, (2) may aid in identifying 
areas of higher geotechnical uncertainty and (3) can 
identify where geotechnical conditions deviate from 
regional trends. 

3.3 Improved data pairing for training 

Quality of input data is important for success of 
machine learning. 

Attention should be given to accuracy of spatial 
positions of paired data derived for actual CPT 
locations and seismic reflection data points: the 

closer the better. Particularly, logging of spatial 
trajectories of deep CPTs should be considered, 
compared to conventional assumptions for a vertical 
CPT. Seismic reflection survey should consider spe­
cific positioning of the source(s) and specific position­
ing of multiple points along the streamer(s). This is 
particularly important for situations where correlation 
distance for soil spatial variability is limited. 

Mitigation options for pairing of spatially distant 
data can include point-specific matching checks and 
adjustments, using marker points in the profiles. 

3.4 Impact of technology developments 

For marine geophysics, significant technology 
developments are taking place, with high potential 
for added value in de-risking for ground condi­
tions. For geophysical data acquisition, these 
include improvements in acoustic sources and 
streamer control. For processing methodology, not­
able improvements include de-ghosting algorithms, 
multiple removal algorithms and velocity models). 
These improvements will result in opportunities 
for very high resolution data and high quality seis­
mic attributes. 

Fast developments are taking place in neural net­
work architecture. Technology developments for 
marine soil investigation (CPTs, other in situ testing 
and laboratory testing) are expected to be ‘incremen­
tal’, i.e. at a slow pace compared to marine geophys­
ics and neural network architecture. 

3.5 Predictions for multiple parameters 

The HKW WFZ choice for synthetic profiles for 
cone resistance is obvious: input cone resistance 
data are accurate (Peuchen & Terwindt 2015) and 
typically show good correlation with geological 
units and other geotechnical parameters. Shear 
modulus at small strain Gmax is another candidate 
for synthetic predictions. Comments for Gmax are 
as follows: 

–	 Gmax is an important parameter for geotechnical 
design of monopiles used for support of offshore 
wind turbines; 

–	 Gmax is a low-strain soil parameter. Seismic reflec­
tion data are also low-strain and good predictive 
capability would seem obvious; 

–	 Good predictive capability may be impeded by 
higher uncertainties (compared to CPT cone 
resistance) for actual Gmax profiles (Parasie et al. 
2022) required for training a neural network. 
Actual Gmax values are typically derived from 
seismic cone penetration tests. These tests rely on 
time and distance measurements. Data processing 
requires estimates of input soil density. Premises 
include theories on acoustic wave propagation 
and assumptions about heterogenous soil behav­
ing as an isotropic elastic medium. 
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3.6 Voxel model by geo-statistics 

Commonly (2022), visualisation of a ground model 
is by means of 2D cross sections and 2D charts, i.e. 
in pixels. In some cases, 3D visualisation (e.g. 
Figure 5) is implemented, allowing interpretation in 
terms of voxels. Voxel data are typically generated 
by geo-statistics on a soil-unit basis. Synthetic CPTs 
can enhance this approach. 

An important consideration is the volume of data. 
Can the information be made available within tight 
schedules required for energy transition? Can it be 
easily assessed for decision making? 

3.7 Voxel model by 3D geophysics 

ISO 19901-10 Marine Geophysical Investigations 
(ISO, 2021) covers acquisition of 3D UHR seismic 
reflection data. Currently (2022), acquisition of these 
data in the foundation zone (upper 100 m BSF) is 
performed only for occasional offshore wind sites, 
with some indications of growth in applications of 
this technology. The availability of 3D UHR seismic 
reflection data in combination with generation of 
synthetic geotechnical parameters has the potential 
for a step-change in voxel ground models and associ­
ated added value to offshore developments. 

Figure 5. Excerpt of 3D HKW WFZ model in Leapfrog 
(Seequent, 2021) software. 
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