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ABSTRACT:

In 2020, the Dutch government published 1 500 000 synthetic CPT profiles for use in develop-

ment of the Hollandse Kust (west) Wind Farm Zone, offshore Netherlands. The scale of this approach was novel
at that time and possibly first-ever. The synthetic CPT profiles were derived from a training data set of 122 actual
CPTs and ultra-high-resolution (UHR) seismic reflection traces, using machine learning by a convolutional neural
network. The synthetic CPT profiles were limited to positions along the 162 UHR survey track lines (2D) and
were limited to cone resistance to a depth of 50 m below seafloor. The UHR track lines were spaced at about
400 m. This paper explores upscaling the synthetic CPT approach to voxel (3D) models and adding (S)CPT-
based parameters such as shear modulus at small strain G,,,,. Future added-value is expected from post-2020
improvements seen in seismic reflection data resolution, attribute extraction and neural network architecture.

1 INTRODUCTION

Reducing ground risk is important for the development
of an offshore wind farm. This requires understanding
of the geological and geotechnical conditions to
depths in the order of 30 m to 100 m below seafloor
(BSF), depending of type of support structure for the
wind turbines.

The understanding of ground risk is typically
expressed by a ground model or multiple ground
models (ISO 2021). These models typically rely on
integrated interpretation of geological information,
geophysical (UHR and UUHR multichannel seismic
reflection) data and geotechnical data (particularly
cone penetration tests, CPTs.

Since the 1990’s, there has been increasing focus on
deriving geotechnical properties directly from geo-
physical data using methodologies developed in the
oil and gas industry (e.g. Nauroy et al. 1998). More
recently, trials were made with synthetic CPTs and
geo technical properties generated by interpolating
CPT data between investigated locations (Forsberg
et al., 2017) and using statistical methods and multi-
attribute regression through an artificial neural net-
work (Sauvin et al. 2019). The general approach is
covered by ISO 19901-10 Marine Geophysical Inves-
tigations (ISO 2021).

This paper describes the status quo for 2020 and
explores future opportunities for upscaling the
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synthetic CPT approach. The status quo is presented
by an example in the public domain (www.offshore
wind.nl): the Hollandse Kust (west) Wind Farm Zone,
HKW WEFZ (Figure 1), offshore Netherlands (Fugro
2020a and 2020b). HKW WFZ data acquisition, data
analysis and advice were largely completed in 2019
and 2020. The 1 500 000 synthetic CPT profiles were
generated at no schedule impact. DNV GL (2020)
sees this cutting edge development as ‘a huge step for-
ward in terms of project area overview with respect to
geotechnical site conditions and also as a valuable
tool to improve and understand the correlation
between future geological, geophysical and geotech-
nical investigations.’

2 HOLLANDSE KUST (WEST) WIND FARM
ZONE

The site for the HKW WFZ is located approximately
53 km from the Dutch coast, covering an area of
roughly 176 km2 in water depths ranging from
18 m to 36 m LAT.

Ground model input mainly included:

— Geological information;

— Geophysical data: multibeam echosounder, side
scan sonar, magnetometer, sub-bottom profiler
and 2D-UHR single channel and multi-channel
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Figure 1. Location of the future Hollandse Kust (west)
Wind Farm Zone.

seismic reflection data. The data were acquired
according to a draft version of ISO (2021);

— Geotechnical data acquired from 57 boreholes
with sampling and cone penetration testing (CPT)
to a maximum depth of 90 m below seafloor
(BSF), 122 seafloor CPTs to a maximum depth of
56 m BSF, 30 seafloor seismic cone penetration
test to maximum depth of 56 m BSF, and labora-
tory testing. The data were acquired according to
1SO (2014).

The acquired geophysical and geotechnical data
were integrated into a traditional quasi-3D ground
model, with seismic reflections tied to geotechnical
boundaries derived from seafloor CPT and borehole
information (Figure 2). The ground model comprised
eight geological soil units, each having a distinct
seismic character and spatial distribution.

Figure 2 provides cross sections that illustrate
how the traditional ground model was enhanced by 1
500 000 synthetic CPT (cone resistance) profiles and
associated error predictions to 50 m below seafloor
(Carpentier et al. 2021). The presented cross section
has a length of 11 500 m with 4 actual CPTs and
about 9000 synthetic CPTs to a depth of 50 m.

The HKW WFZ synthetic CPT profiles were
derived from a training data set of 122 actual CPTs
and ultra-high-resolution seismic reflection traces,
using machine learning by a convolutional neural net-
work. The synthetic CPT profiles were limited to
positions along the 162 UHR survey track lines (2D).
The UHR track lines were spaced at about 400 m.

Figure 3 shows example checks on predictions. In
general, the predicted and measured net cone resist-
ance values showed reasonably good agreement, par-
ticularly in the upper 20 m BSF. Below 20 m,
prediction was more trend-type. In addition, a trend-
type prediction also applies to transitional and strongly
layered (<1 metre scale) soil. It can be concluded that
the prediction quality for the synthetic CPTs is such
that added value can be derived to enhance the gen-
eral ground model. The HKW WFZ prediction quality
is inadequate for geotechnical design.

Reasons for the observed trend-type predictions
include data conditioning, resolution of 2D-UHR
seismic reflection data and limitations in refinement
of the interpreted geological units. Data conditioning
was applied by down sampling the CPT data to align

W

sd

2DUHRMCS " f

5° 16208000
o §

AT TPTHTT Subres 22075 o] Avolhsie_Seoh3 3500 008 Parel | VS W05, /el 23 5n i Do Procemsed St A1

Figure 2a. Example of integrated interpretation of 2D-UHR multi-channel seismic line, aligning geophysical horizon inter-
pretation to identified geotechnical boundaries from seafloor CPT and borehole data.
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Figure 2b. Predictions of cone resistance (qn*) from 2D-UHR seismics (colors ranging from orange to purple) plotted
together with measured cone resistance (black traces) and sleeve friction (red traces). See Figure 2a for comparison.

with vertical resolution of the 2D-UHR seismic data
(i.e. sample rate of 0.1 m for prediction input versus
0.02 m as measured). Down sampling reduces net
cone resistance effects of soil layering. The reso-
lution of the 2D-UHR seismic data decreases with
depth. This also affects the ability to identify add-
itional geological units. This effect becomes more
pronounced below approximately 20 m BSF.

As expected, training of the convolutional neural
network showed decreasing prediction accuracy with
increasing lateral distance between the seafloor CPT
location and the nearest seismic trace along the 2D-
UHR line. This is particularly significant where the
correlation distance for spatial soil variability is less
than the distance between the seafloor CPT location
seismic trace selected for training.

Figures 3 and 4 illustrate prediction quality by
means of a quality indicator per geological unit. It
can be seen that the lower limits of the quality indi-
cator can provide statistical values for ¢, that fall
outside credible ranges for these specific soils.

3 UPSCALING

3.1 Opportunities for future added value

The following opportunities for upscaling are
discussed:

Enhanced geophysical interpretation
Improved data pairing for training
Impact of technology developments
Predictions for multiple parameters
Voxel model by geo-statistics

Voxel model by 3D geophysics
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Figure 3. Comparison of actual net cone resistance (black
line) versus synthetic net cone resistance (red line). The red
halo represents the interval in which predictions are likely
to fall (5™ and 95™ percentiles of the error misfit). Other
colour infills indicate geological units.
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Figure 4. Statistical values for g,*that fall outside credible
ranges (green box).

The opportunities can be considered individually.
However, combinations are expected to lead to
a step change in added value.

The following sections discusses potential oppor-
tunities for a time window of 2020 to 2025.

3.2 Enhanced geophysical interpretation

Figure 2b Indicates that the synthetic CPTs can
allow for further refinement of the geological model.
This, in turn, helps steering future, turbine-specific
geotechnical data acquisition, increasing safety and
cost-efficiency.

For example, light green colours can be seen
between approximately 40 m and 50 m LAT. These
strength insights (i.e. trends in net cone resistance)
may justify refining the geological model at this depth,
by assigning a new geological soil unit to encompass
these geotechnical conditions. It should be noted that
this potential additional geological soil unit could not
be identified from ‘regular’ seismic data (e.g. seismic
amplitudes) alone. The example also indicates that
synthetic CPT results (1) can give further insight into
potential soil heterogeneity, (2) may aid in identifying
areas of higher geotechnical uncertainty and (3) can
identify where geotechnical conditions deviate from
regional trends.

3.3 Improved data pairing for training

Quality of input data is important for success of
machine learning.

Attention should be given to accuracy of spatial
positions of paired data derived for actual CPT
locations and seismic reflection data points: the

closer the better. Particularly, logging of spatial
trajectories of deep CPTs should be considered,
compared to conventional assumptions for a vertical
CPT. Seismic reflection survey should consider spe-
cific positioning of the source(s) and specific position-
ing of multiple points along the streamer(s). This is
particularly important for situations where correlation
distance for soil spatial variability is limited.
Mitigation options for pairing of spatially distant
data can include point-specific matching checks and
adjustments, using marker points in the profiles.

3.4 Impact of technology developments

For marine geophysics, significant technology
developments are taking place, with high potential
for added value in de-risking for ground condi-
tions. For geophysical data acquisition, these
include improvements in acoustic sources and
streamer control. For processing methodology, not-
able improvements include de-ghosting algorithms,
multiple removal algorithms and velocity models).
These improvements will result in opportunities
for very high resolution data and high quality seis-
mic attributes.

Fast developments are taking place in neural net-
work architecture. Technology developments for
marine soil investigation (CPTs, other in situ testing
and laboratory testing) are expected to be ‘incremen-
tal’, i.e. at a slow pace compared to marine geophys-
ics and neural network architecture.

3.5 Predictions for multiple parameters

The HKW WFZ choice for synthetic profiles for
cone resistance is obvious: input cone resistance
data are accurate (Peuchen & Terwindt 2015) and
typically show good correlation with geological
units and other geotechnical parameters. Shear
modulus at small strain G, is another candidate
for synthetic predictions. Comments for G, are
as follows:

— Guay 1s an important parameter for geotechnical
design of monopiles used for support of offshore
wind turbines;

— Gpay 1s a low-strain soil parameter. Seismic reflec-
tion data are also low-strain and good predictive
capability would seem obvious;

— Good predictive capability may be impeded by
higher uncertainties (compared to CPT cone
resistance) for actual G,,,, profiles (Parasie et al.
2022) required for training a neural network.
Actual G, values are typically derived from
seismic cone penetration tests. These tests rely on
time and distance measurements. Data processing
requires estimates of input soil density. Premises
include theories on acoustic wave propagation
and assumptions about heterogenous soil behav-
ing as an isotropic elastic medium.
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3.6 Voxel model by geo-statistics

Commonly (2022), visualisation of a ground model
is by means of 2D cross sections and 2D charts, i.e.
in pixels. In some cases, 3D visualisation (e.g.
Figure 5) is implemented, allowing interpretation in
terms of voxels. Voxel data are typically generated
by geo-statistics on a soil-unit basis. Synthetic CPTs
can enhance this approach.

An important consideration is the volume of data.
Can the information be made available within tight
schedules required for energy transition? Can it be
easily assessed for decision making?

3.7 Voxel model by 3D geophysics

ISO 19901-10 Marine Geophysical Investigations
(ISO, 2021) covers acquisition of 3D UHR seismic
reflection data. Currently (2022), acquisition of these
data in the foundation zone (upper 100 m BSF) is
performed only for occasional offshore wind sites,
with some indications of growth in applications of
this technology. The availability of 3D UHR seismic
reflection data in combination with generation of
synthetic geotechnical parameters has the potential
for a step-change in voxel ground models and associ-
ated added value to offshore developments.
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Figure 5. Excerpt of 3D HKW WFZ model in Leapfrog
(Seequent, 2021) software.
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