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Abstract: Complexity of engine control systems is continuously growing due to an increased
number of subsystems and the need for robust performance. For traditional map-based as
well as state-of-the-art model-based approaches, this will lead to unacceptable development
costs and time for future engines. Parametrization of the embedded models using supervised
learning regression methods can immensely reduce the number of calibration parameters and
hence the calibration effort. However, a methodology for performance assessment of different
promising data-driven modelling methods for engine control development is currently lacking. In
this paper, a systematic methodology that assesses model inaccuracy, and also implementation
aspects such as calibration effort and computational complexity is introduced. This method
is applied to assess the potential of Supervised Learning (SL) methods for parametrizing the
feedforward controller of a modern diesel engine air-path controller. Using requirements analysis
and the specified performance criteria, two regression methods were selected: artificial neural
networks (ANN) and support vector machines (SVM). After careful data selection and model
training, performance is compared with the benchmark controller, which uses a physics-based
model. From simulation results, it is shown that a 97% reduction in the number of calibration
parameters with both regression models can be realized. For a standard test cycle, cumulative
engine out NOx emissions with regression based controllers are close to the allowable inaccuracy
of 10% compared to the benchmark controller. Among the two methods, ANN shows the best
performance for the studied performance criteria of inaccuracy, number of calibration parameters

and computational complexity.
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1. INTRODUCTION

To reduce pollution, the diesel engine has to adhere to
strict emission norms being imposed by the regional leg-
islation bodies. This transformation includes introducing
more sensors, actuators and newer technologies e.g. air-
path and the fuel-path (Eriksson and Nielsen, 2014). These
technologies help to achieve the demand torque while
reducing emissions and fuel consumption (Eriksson and
Nielsen, 2014). For these technologies, traditional feedback
and feedforward controllers are used, which increase the
number of subsystems and complexity of the engine control
system.

The air-path control in a diesel engine has been identified
as a complex and challenging control problem (Eriksson
and Nielsen (2014)). Traditionally, these feedforward con-
trollers consisted of 2-D maps, wherein the actuator posi-
tion is determined based on the engine speed and torque
values. The effort to generate maps exponentially increases
as the number of actuators and sensors increase in the
diesel engine. To tackle this challenge a more recent trend
towards model-based controllers is observed, see Criens
(2014). However, with the rise in the number of actuators
and complexity of the controllers, the model-based ap-
proach requires a large amount of data to develop accurate
models. These steps are bound to exponentially increase
the calibration effort of such controllers (Mancini et al.
(2014), Willems (2017)). This will result in unaccceptable
development time and costs. Therefore, the calibration
effort for future engine control systems has to be dramat-
ically reduced.

A comprehensive review of Machine Learning (ML) meth-
ods for modelling, optimisation, diagnosis and control of
internal combustion engines by Aliramezani et al. (2022)
suggests that the calibration effort of complex engine sub-
systems can be reduced using Supervised Learning (SL)
methods. This is in line with Garg et al. (2021), which
identified parametrization of controllers using SL methods
as an important first step to reduce the calibration effort
as well as automation of the calibration process using re-
inforcement learning. This review paper further highlights
that most of the literature do not attempt to study the
impact of ML-based methods on system performance, cal-
ibration effort and computational requirements. Addition-
ally Aliramezani et al. (2022) also identified a need for a
benchmark studies to compare different ML for engine con-
trol methods with real world implications such as required
data size, training time, prediction accuracy and required
memory size. Parametric methods have been developed
in e.g. Eriksson and Nielsen (2014) using physics-based
approximations to develop regression models of embedded
turbocharger maps in model-based feedforward controller
for air-path control system. Gaussian Process Regression
model has been applied to approximate the steady-state
feedforward controller for air-path control (Aran and Unel,
2018). For approximation of MPC control policy for diesel
engine air-path control, multi-layer perceptron (Moriyasu
et al. (2019), Peng et al. (2022)) and long short-term mem-
ory recurrent networks (LSTM-RNN) (Peng et al., 2022)
are applied. For feedback control of air-fuel ratio in spark-
ignition engine, recurrent neural networks (RNN) have
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been applied to estimate air-fuel ratio, which can be used
as a virtual sensor (Zhang et al., 2007). From these studies,
however, it is difficult to determine the actual potential of
data-driven methods to reduce control calibration effort.
Typically, the focus is only on the model accuracy while
the comparison with other methods is lacking.
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Fig. 1. Systematic method for performance comparison

To address these challenges, the main contribution of
this work is the introduction of a systematic method for
performance comparison of data-driven methods in en-
gine controls development applied in steady state engine
calibration, as illustrated in Figure 1. Clear performance
criteria are specified, which Wiﬁ assist control experts to
select the most promising method for their control prob-
lem. Also, it helps to understand the existing trade-offs
between performance and implementation aspects. The
method is applied to assess the performance of two types
of supervised learning (SL) regression models compared to
the benchmark physics-based model for a Diesel air path
boost controller.

2. DIESEL ENGINE AIR-PATH BOOST CONTROL

2.1 Engine specification

The engine considered for this study is a Euro-5 passenger
car Diesel engine. The air-path system consists of a twin-
turbocharger with a high pressure exhaust gas recircula-
tion (EGR) system. The twin-turbocharger, consisting of
high-pressure (HP) and low-pressure (LP) stages, are each
equipped with a wastegate valve and a compressor bypass
to control the intake manifold pressure p;. To understand
if the calibration effort can be reduced using SL methods,
this study focuses on HP turbocharger operation region.
Additionally, an intake throttle valve is used to maintain
the pressure difference across the intake and exhaust man-
ifolds dp above a minimum threshold. The HP EGR valve
controls the EGR mass flow.

2.2 FEngine control

High-level control objective  The engine control system
aims to realize the driver’s torque demand Mc gen, With
minimal fuel consumption BSFC while meeting safety
and tailpipe emission targets. On the engine level, this is
achieved by a coordinated air-fuel path control. To demon-
strate the potential of SL methods to reduce calibration
effort, we focus on air-path boost control system, which
requires significant control development effort. Figure 2
illustrates the total air path control scheme. The focus of
this study, the feedforward controller (Cy), computes the

nominal control inputs up = [tgwg Uotn U] for the
wastegate, intake throttle and compressor bypass:

Air path feedforward controller  The studied model-based
feedforward control aims to track the specified reference for
the boost pressure 7p2. Figure 3 shows the breakdown of
the benchmark feedforward controller. The desired settings
for the control inputs u* = [uf), uf,, uf]" are determined
based on observer q and measurement y information:

q= [T3 P4 mc mem APIC P1 prg]T

Y = Wpas YTy s Yps Yrivasr] -

Fig. 2. Air path control scheme, where R is setpoint
generator, C'yy, Cyy feedforward and feedback con-

trollers, P engine model and O observer

where T3 is the exhaust gas temperature, p,4 is the pressure
after the turbine, 71, represents the mass flow through
the HP compressor calculated based on the fress air flow
rate Y,,,, Mem 1S exhaust manifold gas mass flow rate
computed usingrivy, Apjc represents the pressure drop
across the intercooler and p; and yr, represents the pres-
sure and temperature upstream of the HP compressor.
The term Ap,,, denotes the pressure difference across the
wastegate valve. The model-based feedforward controller
is centered around a physics-based turbocharger model.
As illustrated in Table 1, this approach requires large
number of maps and parameters to be calibrated to en-
sure optimal functionality of the feedforward controller
in different operating conditions and engine combustion
modes. To ensure safe engine operation, rule-based logics
are used in addition to these models. The calibration of
such large number of parameters requires large expert
effort and development times. Among the different models
in the feedforward controller, the calibration of the com-
pressor and turbine models requires the largest calibration
effort. Therefore, as a starting point, these two models
are parametrized using SL regression methods, which is
discussed in the next section.

Table 1. List of calibration parameters in

the benchmark air-path feedforward controller.

Each element of look-up table is considered as
one parameter.

Number of

Calibration parameter Type of map

parameters
Compressor model
Heat capacity of air cp(Th) 12
Compressor efficiency map Ne(Me, Te) 494
Exponential function for
pressure ratio calculation f) 120
Compressor acceleration parameter ac(Ne) 12
Compressor speed map Ne (e, me) 256
Turbine model
Turbine mass flow m¢(Nt,r, Tt) 720
Pressure ratio m¢(Pe, Nt,r) 720
Turbine map high and low limits constants 12
‘Wastegate model
Linearization w0, wg (Awg, t) 9
TI‘:; ]’lq "‘dp Mem Apuwg 74172 Yps — Ypa
PP
1 vV v v v v v
Y| N, N} Throttle || Uth,0
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Fig. 3. Scheme of the air-path boost feedforward controller.
The focus of this paper is highlighted in blue.

3. SYSTEMATIC METHODOLOGY FOR
CONTROLLER PARAMETRIZATION

In this study, supervised learning (SL) regression models
are applied, which have the following structure:
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Yi = f(Wi, ¢4(X3)) (1)

where the prediction Yj is a function of a vector of model
parameters W; and ¢; is the non-linear basis function. The
index i = {c, t} refers to the compressor or turbine model.
In the development of these data-driven models, five main
steps can be distinguished:

(1) Raw data generation using a mean value engine
simulation model. This model is developed and vali-
dated using experimental engine data;

(2) Data pre-processing for selection of model inputs
X and outputs or labels Y;

(3) Model selection using multiple performance crite-
ria;

(4) Model training and validation to determine the
model parameters W for the selected SL methods and
evaluate model performance on a validation data set;

(5) Controller performance testing to compare the
system level performance of engine out NOx emissions
for the regression based controller with the bench-
mark controller on a test cycle.

3.1 Data generation

Typically, the engine control systems are calibrated for
steady state performance initially. To further improve the
performance of the control systems, transient factors are
considered. In this study, only the first stage of steady-
state engine operation is considered. Figure 4 shows the
variation in the engine torque demand and engine speed
as per the steady state design of experiments (DOE)
generally used in automotive industry to calibrate engine
controllers. The steady state approximation of worldwide
harmonized light-duty vehicles test cycle (WLTC) is used
as a test dataset to evaluate the performance of the
controller on an independent dataset. Additionally, the
engine out NO, emissions performance of the developed
regression models are compared with benchmark physics-
based controller.

1

Accuracte training points:
Steady state DoE
Testing points:
¢ WLTC steady state
——Max torque curve

Normalized Engine Torque|-]

0 0.25 0.5 0.75 1
Normalized Engine Speed [-

Fig. 4. Engine speed and torque distribution for model
training and testing.

3.2 Data pre-processing

The selection of statistically significant inputs and outputs
of the regression model is one of the key steps in the data
pre-processing. First, the outputs Y of the compressor
and turbine models are selected. With these outputs, the
inputs X to the regression models are identified. First,
available inputs are identified from the raw data. Next,
statistical significance of each input for predicting the out-
puts are calculated using the Spearman correlation (Zheng
and Casari, 2018). This is used as a criteria to determine
the necessary inputs. A Spearman correlation of £1 in-
dicates the nput is statistically significant and a value
of 0 indicates no significance of the input. In this study,
the inputs with Spearman correlation greater than 0.75
are considered as statistically significant and selected. The
selected inputs are ensured to be easily measured/observed
for data collection.

For the compressor model, the desired outputs are com-
pressor power, speed and efficiency Y = [P. N, n.]7. The

significant inputs for the compressor model are found to
be X = [yp2 Tp2 p1 T1 |7 In a similar way, the desired
outputs of the turbine model are exhaust manifold demand
pressure, turbine mass flow and reduced speed Yy =
[Yps 1e Ni]T. Note that the turbocharger speed Ny, is
added to detect for abnormal values in steady state data
collected. The significant inputs for the turbine model are
found to be X¢ = [rap Ypo Pe T3 Pa betrt Mrem Yps Ne|T,
where by denotes the switch for boost control. To im-
prove the learning capabilities of the regression mod-
els, the inputs and outputs are scaled using a standard

scalar based on the standard deviation and mean of the
signal values.

3.8 Model selection

A wide range of SL regression methods can be found
in literature, which can be used to predict quantitative
continuous outputs (Bishop, 2006). These include meth-
ods such as, multiple linear regression, artificial neural
networks (ANN) and kernel based methods. To select
the most promising methods from the results established
in the literature, five criteria that impact engine control
development time and costs are identified:

(1) Model prediction inaccuracy = (1 — R?)+(|emaa,il/Ys)
) Number of calibration parameters = 6y;/6,

) Input dimensions = length(X)

(2
(3
(4) Computational complexity = (%) + (tt—bl)
(5

) Tool chain availability

The prediction inaccuracy of various regression methods
is assessed by also studying the results of such methods
in fields of thermodynamics (Raghunatha Reddy et al.,
2020; Ahmad et al., 2018) and tribology (Ikpambese and
Lawrence, 2018). These sources were considered due to
the scarcity of comparative studies of data-driven methods
for the specific case of engines. Note that the prediction
accuracy of such models are typically expressed by the
the coefficient of determination R? in literature. In ad-
dition to the R? value, in this study, the relative maxi-
mum absolute deviation (|emas|/Y:) is also considered,

where €400 = max(f/i —Y;). This performance metric
indicates the region of the deviation in predictions. Iden-
tifying this region helps to improve, if required, the model
performance in the region of deviation.

An important indication for the required calibration effort
is the number of calibration parameters. For SL regression
methods, only the hyper-parameters need to be tuned
before training the model. The hyper-parameters 6, are
tuning parameters that control the pattern learning capa-
bilities of such regression models. These parameters are
usually tuned by a human expert before running the opti-
misation loop to learn the model parameters W. The total
calibration effort of SLL models involve data generation,
data pre-processing and model training and validation.
The maximum reduction in calibration effort using regres-
sion models is achieved by parameterizing the models used
in the current model based approach. The input dimen-
sions is the number of inputs that the model is capable
of handling. For example, a few regression models face
the curse of dimensionality with increase in the number
of inputs, see Bishop (2006) for more details. Compu-
tational complexity is defined as the sum of normalized
memory requirements i.e., size(M;) and normalized time
requirements i.e., ¢;, of the supervised learning (i = {sl})
and benchmark (i = {b}) models, respectively. For initial
selection, worst case memory and time requirement of
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the prediction algorithms were obtained from the studies
of Pedregosa et al. (2011).

A total of 13 methods were chosen from literature. These
methods were rated and two methods were identified
as most suitable for this study: Artificial Neural Net-
works (ANN) and Support Vector Machines (SVM). From
literature, it is evident that SVM and ANN models have
relatively high accuracy. However, SVM models are com-
putationally more expensive than the ANN models. Thus,
a comparison between two different models of high accu-
racy with high and low computational complexity is found
interesting for this study.

3.4 Model training

Artificial Neural Network (ANN): ANN is a paramet-
ric SL regression method capable of accurately learning
complex non-linear patterns between multiple inputs and
multiple outputs. The model architecture i1s designed by
choosing the number of hidden layers and the number
of neurons in each hidden layer. This choice fixes the
parameters W to be learnt. The prediction equation of

the p'" output for a one hidden layer feedforward ANN is,

n n
. 2 1
gp=0 Zw;]) h (Z w;i)xi) (2)
j=0 i=0

where n is the number of neurons in the hidden layer,
activation function ¢ = 1 for regression, h is the activa-
tion function, w € W are the weights and biases. The
superscripts (1) and (2) denote the input and the hidden
layer respectively. Furthermore, i denotes the number of
inputs to the model and j denotes the number of neurons
in the hidden layer. In this study, the activation function
of Rectified Linear Unit (ReLU) is selected. The total
model parameters W of the ANN model are learnt by
minimising the error function between the true and the
predicted values as follows,

N
. EENIPR N 1 2
rr\l)%,nj(W,e) = min §BW W + - 321 e (3)

Where, model error e = Y — Y, Y denotes the vector
of all the p predicted outputs 7,, and W denotes the
vector of all weights and biases. The network represented
by equation (2) is intitalized with random weights W and
then the optimum weights are obtained by minimizing the
error between the predicted value and the actual label.
This optimization problem is a non-convex problem and
is solved using a stochastic gradient descent algorithm
with momentum, since it has the advantage of being
computationally less expensive than other algorithms and
helps move out of saddle points (Bishop, 2006). Finally,
to prevent model over-fitting to the training data, a L2
regularisation term [ is used to modify the cost function.
See Bishop (2006) for more detailed information on the

hyper-parameter tuning and optimization algorithms of
the ANN model.

Support Vector Machines (SVM):  SVM methods are
kernel-based methods and learn patterns between multiple
inputs and single output. These kernel-based methods do
not rely on fixing a model architecture before the model
training. In SVM, a subset of the training data is stored
in the memory for making predictions. Such methods are
referred to as non-parametric methods (Bishop, 2006). In
this study, the Radial Basis Function (RBF) kernel is
used based on the results of a sensitivity study among
RBF, Matern 3/2 and 5/2 and exponential kernels. The

RBF Kernel has low complexity and is also infinitely
differentiable. This RBF kernel is given by:

—\|X—wn|\2)
X, x0) = (X)¢(xa) " = o (4)
where X denotes the stored input support vectors and x,

is the input vector in query. Then, the p!» SVM model
output is described by:

N
Jp = Wpndp(Xn) +bp (5)

=1
The support vectors for the SVM model are obtained by
solving the following optimization proble%:

1
min J(w,e) = min _ —wlw+C Z Lc(en) (6)
w,b,€,€ w,b,€,§ 2

n=1

where:

if le] <e
otherwise

Le(e) = { -,

€n = ?)n(Xn) —Yn

subject to

:gn —Yn <€+ En

Un —Yn = €+ &

&6 >0foralln=1...N
The loss function L. introduces sparseness and reduces
memory required to store the support vectors (Bishop,
2006). Additionally, slack variables & are introduced, which
indicate the distance to the decision boundary 4, — yn.
These characteristics of the optimisation problem make
it a convex optimisation problem and is solved using
the sequential minimal optimisation algorithm. When this
problem is converted to its dual form using the concept of
Lagrange multipliers and its Karush-Kuhn—Tucker (KKT)
conditions are solved, we obtain:
N

Wp.n = Z()\n,l - )\n,Q)QSP(Xn) (8)
n=1

which shows that the weights w,,, required for a single
output p are only a function of the Lagrange multipliers
An and the kernel chosen and not of any model architec-
ture (Bishop, 2006). The dependency on training data im-
plies that the SVM method faces a challenge with memory
requirement as it is directly proportional to the number of
inputs. Thus with large number of inputs, the memory
complexity rises significantly.

To reduce the memory complexity, a chained approach
is proposed in this study where output of one model is
input to the next, as shown in Figure 5. The structure
for the chained model are again determined by using the
statistically significant outputs for each model. The SVM
models are trained using a b-fold cross-validation to reduce
the model over-fitting.

Inputs Outputs
[9p |

[7p2]

Ne | Ne P | B

VU/'J Model Model

p1 | Te

T | Model

me i NQ'

Fig. 5. Chained SVM models for the compressor outputs.
A similar approach is followed for the turbine model.

Hyperparameters ~ The 10 hyperparameters 64ny and
their values for the selected ANN model are mentioned
in Table 2. Similarly, the four hyperparameters 6gy s for
the SVM model are listed in Table 3. Since SVM model
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Table 2. List of ANN model hyperparameters

Hyper s . Compressor Turbine
S1 no. parameter Description model value model value
No. of neurons

1 n per layer 14 15

2 m No. of hidden layers 1 1

3 h Activation function ReLU ReLU
4 a Learning rate 0.0035 0.005

5 ¥ Momentum 0.9 0.9

. Data Split

6 Sdata (Training/Validation) 90/10 90/10
7 A Regularization factor le-4 le-4

8 Nmb Minibatch size 5 1

9 fa Drop-out factor 0.2 0.2

10 Ne No. of epochs 48 3

Table 3. List of SVM model hyperparameters

SI no. Hyperparameter Description
1 ﬁ Characteristic length
2 Box-constraint
3 € Margin parameter
4 b bias

can only predict one output at a time, a total of 24
hyper-parameters are required for the six models that are
required in the controller. On the contrary, the ANN model
can predict multiple outputs and hence requires 20 hyper-
parameters to be tuned for the two models. The most
commonly used methods to tune the hyper-parameters of
a SL regression model are the grid search and the random
search (Bergstra et al., 2013). However, these two methods
suffer from extremely lar%e search space and a possibility
of repeating points in the region of poor performance.
To avoid these drawbacks, a Bayesian optimisation based
framework (Bergstra et al., 2013) is used for SVM and
trial-and-error approach for the ANN model.

4. RESULTS AND DISCUSSIONS
4.1 Model validation

For the applied two SL regression methods, the perfor-
mance on an independent test set is compared for three
performance criteria described in section 3.3: model pre-
diction inaccuracy, number of calibration parameters and
computational complexity. The results are compared for
the following models:

(1) Benchmark (physics-based model),
(2) SVM individual models,

(3) SVM chained models

(4) ANN models.

The performance of these models are calculated by com-
bining the prediction of the compressor and turbine models
at a system level on the test dataset. Overall model inac-
curacy is only determined for turbine model outputs Y;.

Impact of SL model Figure 6 shows the trade-off be-
tween the model prediction inaccuracy and the number of
calibration parameters. A significant reduction of at least
97% in the number of calibration parameters compared
to the benchmark model is achieved with all the three
regression models. The engine control development process
consists of control system design, experimentation, mod-
elling, control calibration and validation. This significant
reduction directly implies reduction in the required expert
effort and development times for control calibration. A
mariinal reduction in calibration parameters is observed in
the ANN model compared to the SVM models. The fully
connected feature of the ANN model helps to learn the
desired patterns better than the SVM model. Furthermore,
the ANN model shows the best overall performance based
on these criteria. This observation strongly recommends
that the interaction between the different inputs play a
crucial role in predicting the desired outputs.

Additionally, the trade-off between inaccuracy and compu-
tational complexity is shown in Figure 6. The SL models
are implemented in the MATLAB Simulink environment
and all computations are performed on a standard laptop

with 16 GB of RAM, Intel i7-9750 processor running at
2.60 Ghz. The SVM model with best validation loss is at
least 34 times computationally more expensive than the
benchmark model due to the higher memory requirement
of the SVM model and the non-linear RBF kernel. The sig-
nificantly larger memory requirement of SVM model com-
pared to ANN model makes it less suitable choice for real-
time implementation on the Engine Control Unit (ECU).
On the other hand, the ANN models are found to be 20%
computationally less expensive than the benchmark model
due to simplicity of the ReLU activation function and
significantly small number of model parameters.

Impact of training dataset size  The amount of the train-
ing dataset is directly proportional to the number of ex-
periments. The training dataset size was varied and the
impact on the three performance criteria was evaluated
for the SVM model. The dataset size was reduced until the
validation error begins to increase. The maximum possible
reduction in dataset size was 55%, which causes a decrease
of 15% in accuracy of the SVM chained model with a
benefit of 3.7% computational complexity as shown in Fig-
ure 6. This trade-off between accuracy and computational
complexity is acceptable with the reduced dataset because
the system inaccuracy i.e., cumulative NOy emissions over
the test cycle are within the target inaccuracy of £10%.
This observation suggests that underlying patterns can be
learned with the right distribution of the dataset.

4.2 Controller performance testing

Figure 7 shows the normalized cumulative engine out NOx
emissions on the WLTC for the benchmark controller (in
black). The overall deviation with the ANN model and
SVM chained model is 9.75% and 10.15%, respectively.
These deviations are close to the allowable inaccuracy of
10% compared with the benchmark controller, where the
maximum deviation is due to the transients between 700-
800 [s] of the cycle. The system-level accuracy is acceptable
for the regression methods, despite the significant predic-
tion inaccuracy of 0.35 in ANN and 0.44 in SVM chained
model. The inaccuracies in the individual model trained
models on wastegate position is marginal implying that the
deviation in reference tracking performance with respect
to the benchmark model is within acceptable limits.

1

0.8

0.6

0.4

0.2 —— Benchmark model
ANN model
——SVM Chained model
0 500 1000 1500
Time[s|

Normalized cummilative NOx [-]

Fig. 7. Comparison of normalized WLTC cumulative en-
gine out NOx emission of SL models and benchmark.

5. CONCLUSIONS AND FUTURE RESEARCH

In this study, a systematic method is introduced to assess
and compare the performance of different SL methods
for engine control development. The essential part of this
method is the specification of selection criteria for not only
model accuracy, but also for overall system performance,
computational complexity, and calibration effort. These
methods are successfully applied to the diesel engine air
path control problem to assess essential criteria for real-
world implementation. Based on the proposed selection
criteria, two promising SL methods are selected: ANN
and SVM. The results of the systematic comparison are
summarised in Figure 8. Compared to the benchmark
feedforward controller, which uses physics-based models,
the following conclusions are drawn:
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Fig. 6. Trade-offs of model inaccuracy.

e 97% reduction in calibration parameters is achieved
for both SL models, which reduces expert effort
and development costs. However, a trade-off between
inaccuracy and computational complexity through
model selection is necessary to match the current
state-of-art ECU’s.;

e Model inaccuracy of both regression models is mod-
erate, but acceptable. The model inaccuracy metrics
are 0.35 for the ANN model and 0.44 for the best
SVM model. These inaccuracies translate to devia-
tions close to the allowable engine out NOx deviation
of 10% on the system level;

e ANN model has lower computational and memory re-
quirements than the benchmark. In contrast to ANN,
the SVM chained model has larger computational
complexity owing to the complex non-linear kernel
and the memory requirement;

e Both SL models can handle models with large input
dimensions. However, for the SVM method increased
input dimensions go hand in hand with increased
memory requirements;

C omputational Benchmark

ANN
SVM chained

Complexity

Tool chain
availability
(100-Available)

Input dimensions

Number of calibration
Accuracy
parameters

Fig. 8. Comparison of the selected ANN and SVM-based
controller with the benchmark controller.

Based on this assessment, it is concluded that the (para-
metric) ANN model overall performs better than the (non-
parametric) SVM model for the studied case. Future
research concentrates on further improving the under-
standing of the trade-offs (inaccuracy-calibration effort-
computational complexity) for the ANN model. Especially,
to specify the minimal required training data set and the
required model complexity. In order to assess the practical
relevance of the ANN-based air path controller, its poten-
tial to efficiently cover multiple engine operating modes is
interesting. Moreover, parameterized controllers are suit-
able to be combined with adaptive control algorithms to
reduce development times by automated calibration using
on-line learning or over the cloud updates to deal with
system uncertainties e.g. component ageing.
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