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A B S T R A C T   

Structural components in corrosive environments such as pipelines, bridges, aircrafts, and turbines are imposed 
to stress corrosion. A stress corrosion model for pit growth should a) accurately consider the electrochemistry of 
the corrosion process, b) properly deal with the moving interface between solid and electrolyte, and c) effectively 
incorporates the synergism between corrosion and mechanical field at the interface. In Part II, the influence of 
mechanical loading is added to the approach described in Part I. Part II investigates the model’s capabilities of 
simulating stress corrosion via a set of numerical examples of corrosion pitting which include experimental 
validation and uncertainty quantification of model parameters and properties.   

1. Introduction 

The first attempts to theorize the synergism between corrosion and 
mechanical stress may be traced back to the works of Scully [1–3]. 
Turnbull [4] gave a model of corrosion cracking assisted by environment 
which combined empirical models with mechanistic influences. Sier-
adzki and Newman [5] also proposed a model with the emphasis on 
transgranular crack propagation. Since stress corrosion is a multiscale 
(from atomic to millimeter scale) phenomenon, distinguishing the 
mechanisms of interaction between stress and corrosion [6] makes the 
modeling process much clearer. A common modeling approach of stress 
corrosion at microscale is direct consideration of influence of mechan-
ical stresses on the rate of corrosion by Gutman’s formula [7,8]. In this 
approach, the electrochemistry of the corrosion pit front is coupled with 
the change of surface energy density caused by the stresses. The 
approach adopted in this paper uses a simple one-way coupling of the 
corrosion rate to mechanical load. 

Part II utilizes the same approach of the moving corrosion front (i.e. 
combining FEM with the level-set method) as in Part I. It also adds the 
important influence of the mechanical field of the solid domain on 
corrosion pit growth to the approach. Part II of this paper, similar to Part 
I, focuses on more extensively demonstrating capabilities of the model 
proposed by Dekker et al. [9] in simulating stress corrosion. First of all, 
sensitivity analyses of system response quantities (SRQs) of interest such 
as pit depth to finite element mesh size and nonlinear solution time step 

size are performed for an example problem. Then, uncertainty quanti-
fication (UQ) of model parameters (e.g. the nonlocal length scale and the 
applied electric current) or model properties (e.g. the formula of scalar 
strain measure related to plasticity/ dislocation) or both is conducted. 
Experimental validation is included for those example problems for 
which experimental measurements are available. 

2. Corrosion kinetics 

Kinetics of corrosion is explained in Part I. Thus, this section deals 
with the influence of a mechanical field on corrosion. 

2.1. Influence of electric overpotential on corrosion 

The influence of electric overpotential can be incorporated in the 
electric current surface density as in the following equation 

jn = j0
nγoverpot (1)  

where j0n is the open-circuit (or exchange) electric current surface density 
which depends on the characteristics of the metal surface in interaction 
to the electrolyte and γoverpot is the overpotential multiplier which, for 
example, can be calculated by the Butler-Volmer equation [10]. How-
ever, in this paper, the overpotential-induced electric current surface 
density, j0nγoverpot, is directly applied to the specimen in the numerical 
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examples. Thus, the electric overpotential is not explicitly modeled. 

2.2. Influence of mechanical load on corrosion 

As pointed out in the introduction section, Gutman [7,8] proposed 
two contributing factors to the electric current surface density related to 
mechanical stresses: elastic stresses and plastic deformations. From 
thermodynamic laws, he concluded that only the part of the elastic 
deformation energy that changes material volume can contribute to the 
electric current surface density. This part is directly related to hydro-
static stresses and takes the following form as a modification multiplier 
to the electric current surface density 

γelastic = exp
(
|σh|VM

RT

)

(2)  

where σh is the hydrostatic stress, VM is the molar volume of metal, R is 
the gas constant, T is the absolute temperature, and ∣ ∣ is the absolute 
value operator. Furthermore, Gutman, based on the theory of elastic 
dislocations, proposed the contribution of plastic deformations to the 
electric current surface density as another multiplier 

γplastic =
eeq

ε0
eq
+ 1 (3)  

where eeq is a scalar strain measure related to plastic deformation and/or 
dislocations occurred in the material and ε0

eq is an equivalent elastic 
strain at the onset of the elastic-to-plastic change of material state. The 
overall influence of mechanical field is defined as 

γmechanical = γelastic γplastic (4)  

where γmechanical is the mechanical multiplier. 
To consider the influence of the mechanical field on the corrosion, 

the mechanical multiplier (4) should be multiplied to equation (1): 

jn = j0
nγoverpotγmechanical. (5)  

By using equation (5), we assume a one-way influence of mechanical 
field on corrosion. 

3. Behavior of material under cyclic loads 

This section presents the behavior of a solid material under cyclic 
loads according to the Chaboche model [11]. 

3.1. Material plasticity framework 

It is assumed that the total strain is small and can additively be 
decomposed into elastic and plastic strain: 

ε = εe + εp (6)  

where ε, εe, and εp are the total, elastic, and plastic strain tensor, 
respectively. In addition, in this contribution, the hyperelasticity [12] 
and hyperplasticity framework [13] are utilized to model the mechan-
ical behavior of the material. That is, a free energy potential scalar 
function is employed to derive mechanical and thermodynamic forces 
and a plastic flow potential scalar function is used to derive the rate of 
plastic strain and internal states: 

σT =
∂Ψ
∂εe, χ T =

∂Ψ
∂β

, R =
∂Ψ
∂ζ

(7)  

and 

ε̇p
= λ

∂Υ
∂σT, β = − λ

∂Υ
∂χ T, ζ = − λ

∂Υ
∂R

(8)  

where Ψ = Ψ(ε, εp, β, ζ) is the free energy potential, ϒ = ϒ(σ, χ, R, εp, β, 
ζ) is the plastic flow potential, σ is the stress tensor, χ is the internal 
force tensor, R is the isotropic force scalar, β is the internal deformation 
tensor, ζ is the isotropic deformation scalar, λ is the plastic flow scalar, 
the superscript symbol T indicates the transpose operator, and the dot 
symbol over a quantity indicates the time derivative of that quantity. 
According to the conventional theory of plasticity, the growth of plas-
ticity in the material occurs following the KKT1 conditions 

λ̇ ≥ 0, fy ≤ 0, λfy = 0 (9)  

where λ̇ is the plastic flow rate and fy = fy(σ, χ, R, εp, β, ζ) is the yield 
scalar function. 

3.2. Chaboche model 

It is more convenient to explain the Armstrong-Frederick type plas-
ticity model first since the Chaboche model is a generalization of this 
model in order to incorporate different mechanisms involved in cyclic 
plasticity. In the Armstrong-Frederick type plasticity model [14], the 
free energy and plastic flow potential function are 

Ψ =
1
2
εe : C : εe +

1
2

k1β : β + W (10)  

and 

Υ = fvM +
1
2

k2

k1
χ : χ (11)  

where C is the fourth order tensor of Hooke’s stiffness, k1 and k2 are the 
linear and nonlinear scalar kinematic hardening coefficients, respec-
tively, fvM is the von Mises yield function (see A for details and 
formulation), 

W = Q∞

(

ζ +
1
b
(exp( − bζ) − 1)

)

(12)  

is the isotropic free energy potential, Q∞ is the ultimate added stress of 
isotropic hardening, and b is the exponential growth coefficient of the 
added stress of isotropic hardening. By substituting the specified equa-
tions of free energy and plastic flow potential (i.e. equations (10) and 
(11)) into equation (7), we obtain 

σ =
1
2
(C : εe + εe : C) (13)  

χ = k1β (14)  

R = Q∞(1 − exp( − bζ)). (15)  

In addition, substituting equations (10) and (11) into equation (8) gives 

ε̇p
= λ̇N (16)  

β̇ = − λ̇H (17)  

ζ̇ = − λ̇B (18)  

where N, H, and B are the plastic strain, the internal deformation, and 
the isotropic deformation flow direction, respectively (see A for details 
and formulation). Equations (13) to (18) hold for a 3D problem. It 
should be noted that a problem in a 1D or 2D spatial space is a special 
case of a 3D problem, which requires imposing special conditions on the 
problem formulation. For example, for a 2D plane strain or plane stress 
condition, the strains or stresses are required to be zero in the out-of- 
plane direction, which necessitates using the appropriate Hooke’s 

1 Karush-Kuhn-Tucker 
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stiffness matrix for plane strain or stress condition C̃ as well as 
substituting the modified total strain ̃ε and modified plastic strain ε̃p for 
total and plastic strain, respectively: 

ε∼ = L(ε) (19)  

εp
∼

= L(εp) (20)  

where L is a linear transform function for the plane strain or stress 
condition such that 

a =

⎛

⎝
axx axy axz
ayx ayy ayz
azx azy azz

⎞

⎠↦L a∼ =

⎛

⎝
axx axy 0
ayx ayy 0
0 0 (axx + ayy)ϖ

⎞

⎠ (21)  

where a is a second order tensor in a 3D spatial space with orthogonal in- 
plane axes x and y and an out-of-plane axis z, ϖ is a multiplier equal to 
0 and − ν∕(1 − ν) for a plane strain and plane stress condition, respec-
tively, ν is the Poisson’s ratio, and the tilde symbol ~ over a quantity 
indicates that quantity is modified corresponding to plane strain or 
plane stress condition. These modifications are the reason why ε̇p∕λ̇ is 
not equal to N in general and must not be substituted for N, or the other 
way around, in the governing equations of plasticity. 

Another point of attention is that the deviatoric part of the internal 
force and internal deformation tensors, in some publications, are used 
instead of these quantities themselves, or they are assumed to be 
deviatoric tensors. The deviatoricity of these quantities are mathemat-
ically assessed in B. A mathematical proof is also given in the appendix 
which shows that these quantities are deviatoric with the employed free 
energy and plastic flow potential in this paper. However, it is advised by 
the authors to use the internal force and internal deformation tensors 
(and not their deviators) in the governing equations because they may 
not be deviatoric for other problem conditions. 

Chaboche model [11,15] incorporates different influencing mecha-
nisms of cyclic plasticity by superposing different responses of internal 
forces into a single one: 

χ =
∑

m
χ m (22)  

where χm is the internal force caused by the mth cyclic plasticity 
mechanism. In this work, the internal forces and internal deformations 
caused by different plasticity mechanisms are assumed to have the same 
mathematical form expressed by equations (14) and (17), respectively, 
but with different coefficients (i.e. different k1 and k2). 

3.3. Calculation of quantities influencing corrosion 

According to equation (5), two mechanical quantities influence the 
electric current surface density: the hydrostatic stress σh and the scalar 
strain measure related to plastic deformation and/or dislocation motion 
eeq. The hydrostatic stress is 

σh =
1
3
σkk (23)  

and two different definitions of the scalar plastic strain measure are used 
in this research. The first measure is the equivalent dislocation strain 
suggested by Dekker et al. [9]: 

ėeq = sgn(χ : ε̇p
)ε̇p

eq (24)  

where sgn is the sign function: 

sgn(a) =

⎧
⎨

⎩

− 1, a < 0
0, a = 0
+1, a > 0

, (25)  

ε̇p
eq is the equivalent plastic strain rate 

ε̇p
eq =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2
3
ε̇p

: ε̇p

√

, (26)  

and eeq≥ 0. This measure is useful when the cyclic load generates 
dislocation pile-ups that increase material resistance to corrosion. The 
second measure is proposed here as 

eeq =

⎧
⎪⎪⎨

⎪⎪⎩

εp
eq, εp

eq < eth,1

eth,1, eth,1 ≤ εp
eq ≤ eth,2

0, eth,2 < εp
eq

(27)  

where eth,1 and eth,2 are parameters to be calibrated by experimental 
data. Equation (27) is applicable for both monotonic and cyclic loads by 
which dislocations are generated, dislocation pile-ups are formed, and 
finally dislocations move away from the corrosion surface. The equa-
tions (24) and (27) are used for cyclic and monotonic loads, respectively, 
in two different numerical examples in Section 4. 

The physical tip of a corrosion crack, pit, or notch (either in its 
initiation or its growth period) is located on boundaries of finite ele-
ments, which means that the stresses and strains at the tip area are 
approximated indirectly from the nearest integration points. The 
drawback of this local calculation is that the tip experiences highly 
concentrated values and sharp changes from element to element, which 
is not observed in experiments. To mitigate this localization, a nonlocal 
approach of the mechanical field which influences the electric current 
surface density is proposed in [9] and is adopted in this paper. Thus, the 
local quantities in equations (23), (24), (26), and (27) are substituted by 
their nonlocal alternatives only for calculation of γelastic and γplastic. 

The nonlocal alternative of a local quantity q is defined as 

qnonloc(xA) =

∫

Ωw(x; xA,Λ) q(x) dΩ
∫

Ωw(x; xA,Λ) dΩ
(28)  

where xA is the spatial position vector of point A, x is the spatial position 
vector of a point in the domain of integration, Ω is the whole spatial 
domain of problem, w is the weight function, and Λ is the vector of 
parameters of the weight function. The weight function used in this 
contribution is 

w(x; xA,Λ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γ

(

r
lw

)2

w , 0 ≤
r
lw

≤ 1

0, 1 <
r
lw

(29)  

where r = ‖x − xA‖ is the Euclidean distance from point A, Λ = [γw, lw]
T, 

lw is the nonlocal length scale, and γw is the exponent basis which is 
chosen to be 0.001 for all numerical examples of Section 4. 

4. Numerical examples 

This section is designated for validation and uncertainty quantifi-
cation of the stress corrosion model explained in the previous sections. A 
hybrid control scheme without passivation is adopted in the numerical 
examples. This scheme is defined by two rules: a) the activation control 
condition is imposed to all interface points at the start of simulation and 
to every interface point added (because of the interface motion) at the 
start of each time increment of the numerical solution and b) the 
diffusion control condition (or the activation control condition) is 
imposed to the interface points with concentrations equal to (or less 
than) the saturation concentration at each time increment of the nu-
merical solution. It should be noted that the applied electric current 
surface density and the mechanical field do not influence the dissolution 
of metal ions in the diffusion control condition. Furthermore, in each 
numerical example, an overpotential-induced electric current surface 
density is applied and kept constant during the simulation (i.e. a 
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galvanostatic condition for the applied electricity is assumed). 

4.1. Example 1— Pencil test with axial load 

In this numerical dissolution test, a steel electrode in an aqueous 
NaCl solution is subjected to axial loads exerted by displacements on its 
exterior surface. Figure 1 shows a schematic view of the test set-up and 
the dimensions of the specimen. 

The pencil electrode is covered by an epoxy resin so that dissolution 
occurs only in the cross sectional area of the top of the electrode. The 
other end of the electrode is connected to a wire in order to conduct the 
electric current away from the corrosion interface and to measure the 
total electric current. 

An initial depth of 21μm is set, while c = 0 is assumed at the top of 
the computational electrolyte domain ΓE,F. An overpotential-induced 
electric current surface density equal to 1.0 mA∕mm2 is applied to the 
specimen. The specimen is modeled in a two-dimensional space with 3- 
noded triangular isoparametric finite elements subjected to the plane 
stress condition. Regarding the mechanical boundary conditions, the 
specimen is fixed at the bottom, and the exterior left and right surfaces of 

the electrode are restrained by roller supports in x direction and are 
allowed to freely move in y direction. A linearly increasing displacement 
in y direction is imposed to the roller supports in order to model the axial 
load: 

usup =

[
0

0.0005 y

]

(30)  

where usup is the applied displacement. Additionally, the specimen is 
free in the out-of-plane direction. εp

eq is used as the scalar plastic strain 
measure, and the evolution of the depth of the pencil electrode (i.e. the 
deepest point of the interface) in time is the SRQ of interest in this nu-
merical example. The values of the model parameters are listed in  
Table 1. 

Mesh and time step size sensitivity analyses of the model are carried 
out. Figure 2(a) shows the corrosion depth of the specimen in time for 
the time step size δtime-step = 1.0 s and for six mesh sizes δmesh ∈ {0.5, 
1.0, 2.0, 4.0, 6.0, 8.0}μ m. It is observed that the depth of the interface is 
insensitive to mesh sizes smaller than 2μ m. To assess the time step size 
sensitivity, Figure 2(b) presents the corrosion depth for δmesh = 1.0μ m 
and for three time step sizes δtime-step ∈ {0.1, 1.0, 4.2} s. Figure 2(b) 
evidently depicts negligible sensitivity to the time step sizes. The depth 
is growing almost linearly (i.e. the interface velocity is almost constant) 
according to Figure 2. This is anticipated from the results of the model 
which uses a constant applied electric current surface density as well as 
the linear form of support displacements. It also expresses that the 
nonlocal length scale is large enough to overcome the discontinuities of 
stresses and strains caused by the finite element mesh type and size. 

In order to better understand the motion of the corrosion front (i.e. 
the interface) and the influence of mechanical load on it, the contour 
map of metal ion concentration in the electrolyte domain and the me-
chanical multiplier in the solid domain are illustrated in Figure 3. It is 

Fig. 1. The schematic view of the set-up of the pencil 
test with axial load example: (a) The specimen is a 
prismatic pencil electrode with a rectangular cross 
section. It is covered by an epoxy resin around its 
exterior surface in order to solely allow dissolution 
from its top. The electric current caused by the anodic 
dissolution flows out of the specimen via the wire at the 
bottom of the specimen. (b) The pencil specimen is 
fixed at the bottom, restrained in x direction on its 
exterior left and right surfaces, and free in the out-of- 
plane direction. The axial load is exerted by the sup-
port displacement usup which is linearly increasing from 
0μ m at the bottom to 0.1μ m at the top.   

Table 1 
Model parameters used in the pencil test with axial load example.  

F = 96485.3 C ⋅ mol− 1 E = 200 × 103 MPa 
R = 8.314 J ⋅ mol− 1 ⋅ K− 1 ν = 0.29 
z = 2.19 σy = 117 MPa 
cS = 143.0 × 10− 6 mol ⋅ mm− 3 Q∞ = 87 MPa 
csat = 4.22 × 10− 6 mol ⋅ mm− 3 b = 9 
cinit = 0.0 mol ⋅ mm− 3 k1 = 35.2 × 103 MPa 
D = 0.85 × 10− 3 mm2 ⋅ s− 1 k2 = 300 
T = 293.15 K lw = 4μ m  

Fig. 2. Mesh and time step size sensitivity analysis of the depth evolution in the pencil test with axial load example: (a) the depths converge to a certain value as the 
mesh sizes decrease to below 2μ m. (b) the depth of specimen in time shows negligible sensitivity to the time step sizes. 
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Fig. 3. The pencil test with axial load at the initial configuration in the subfigure (a), at times t = 10, 100, 200, 300, 400, 500 s in the subfigures (b) to (g), and their 
zoomed-in views in the subfigures (h) to (m), respectively. The contour maps of the local value of the metal ion concentration c and the mechanical multiplier 
γmechanical are shown in the electrolyte and solid domain, respectively. The solid bold black line indicates the interface. Because of symmetry of the problem with 
respect to y axis, only the right half of the specimen is shown. 
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observed in the figure that a) the interface motion is faster in the area 
close to the loading surface of the specimen (i.e. the area with large 
mechanical multiplier), b) the size of the region with high mechanical 
multiplier is small in comparison to the whole specimen size, c) the size 
of the flat surface on the top middle of the specimen is reducing in time 
due to the faster progressing front caused by the localized mechanical 
multiplier at the loading surfaces of the specimen, and d) discontinuities 
in the local mechanical multiplier exist because of the nonuniform mesh 
configuration but can be overcome by the nonlocal quantities. It should 
be noticed that the contour maps of the figure show local values, but the 
corrosion rate and consequently the interface motion are intensified 
based on the nonlocal values of the hydrostatic stress and the scalar 
plastic strain measure on the interface surface as described in Section 
3.3. 

4.2. Example 2— Two-dimensional corrosion pit growth test with 
mechanical load 

This example, like the pencil test with axial load, is designed to 
simulate the dissolution of metal into an aqueous NaCl solution in a two- 
dimensional corrosion pit subjected to mechanical loads. See Figure 4 
for a schematic illustration of the specimen. 

An initial semi-circular corrosion pit with a radius of 50μ m is located 
at the top center of the solid specimen. The boundary condition on top of 
the pit is assumed to be c = 0. Two-dimensional 4-noded rectangular 
isoparametric finite elements are used together with a plane stress 
condition. The specimen is fixed at its left edge while the right edge can 
rigidly move by means of roller supports under an angle θsup = 80◦ . The 
applied load Papp with magnitude 18 N is exerted on the right edge in the 

same direction as the roller supports. Because of applying cyclic loads to 
the specimen, equation (24) is used to calculate the scalar plastic strain 
measure eeq. It is worth noting that this eeq will automatically be equal to 
εp

eq in case of constant loads. The SRQ of interest is chosen to be the 
topology evolution of the interface. The focus is on the notch which 
grows at the interface area where high values of the mechanical multi-
plier occur during the simulations. The values of all parameters are the 
same as those in Table 1 except D = 0.575 × 10− 3 mm2 ⋅ s− 1, 
T = 288.15 K, and k1 = 52.8 × 103 MPa. 

The influence of three parameters: a) the nonlocal length scale lw, b) 
the overpotential-induced electric current surface density j0nγoverpot, and 
c) the applied load is assessed in the simulations. The applied loads are 
explained in Figure 5. 

The first set of simulations is performed with j0nγoverpot =

1.0 mA∕ mm2, lw = 4μ m, and all of the applied load types. Figure 6 
illustrates the contour maps of metal ion concentration and mechanical 
multiplier in the electrolyte and solid domain, respectively. It also 
visually presents a comparison of the interface and notch evolution of 
the specimen for different load types. The notch initiates from the 
bottom-right region of the interface where the mechanical multiplier is 
localized. At t = 39 s, the notch in CyL0.5 has started to rapidly grow, 
but the notches in the other two load types are almost the same. t = 96 s 
is the time when the deepest point of the notch reaches diffusion control 
in CyL0.5. Around t = 122 s, the interface in ConL starts to grow 
neighboring notches (say, left and right notch). This occurs because two 
points on the interface will have almost the same highest mechanical 
multiplier. At t = 149 s, the left notch in ConL is deeper than the right 
notch although its mechanical multiplier is smaller. In addition, the 
notch in CyL0.5 is shaped like a plate because of the diffusion control 
condition. At t = 186 s, the notch in CyL0.1 is close to reaching the 
diffusion control condition where the notch in CyL0.5 is mostly growing 
in the regions with activation control. Additionally, the left notch of 
ConL is growing deeper than CyL0.1. In summary, a) notch growth oc-
curs in a localized region of the interface in comparison to the interface 
size, b) ConL, in a short time interval after the start of the test, has 
mechanically influenced a larger but less localized region of the inter-
face than CyL0.1, c) ConL has started to grow neighboring notches one of 
which finally becomes dominant, and d) the mechanical multiplier 
magnitude and localization of CyL0.5 is higher than those for the other 
load types, which causes both a sharp and fast notch growth and a fast 
switching to the diffusion control condition that finally slows down the 
fast growth of the corrosion front. 

The second set of simulations is designed to quantify the uncertainty 
in the nonlocal length scale. The simulations are done for lw ∈ {4, 8, 
12}μ m, j0nγoverpot = 1.0 mA∕ mm2, and all of the applied load types. The 
evolution of the interface is presented in Figure 7. The evolution of the 
interface in these figures demonstrates that a) the notch starts from 
almost the same location for all lw, b) a larger lw makes the notch shape 
more blunt and the notch growth slower, c) a larger lw causes a later 
switch to diffusion control at the bottom of the notch, and d) unlike 
using lw = 4μ m which forms two notches in ConL, using lw = 8 or 12μ m 
yields only one notch because of a more uniform distribution of the 
mechanical multiplier on the interface surface. 

The last set of simulations of this numerical example assesses the 
influence of electric current surface density on the notch topology.  
Figure 8 draws the interface and notch for lw = 4μ m, j0nγoverpot ∈ {0.5,
1.0} mA∕ mm2, and all of the applied load types. It can be observed from 
the figure that a) the depth of the notch is not linearly dependent on the 
electric current surface density, b) a smaller electric current surface 
density postpones the switch to diffusion control at the bottom of the 
notch, and c) the two notch in ConL form for all values of the electric 
current surface density. 

Fig. 4. The schematic view of the two-dimensional pit growth test with me-
chanical load. The initial semi-circular corrosion pit is located in the middle top 
of the metal solid specimen. The solid domain is fixed at its left edge and can 
freely move by a rigid body displacement in an angle of θsup at its right edge. 
The force Papp is applied in the direction with an angle of θsup, too. 

Fig. 5. The loads applied in the two-dimensional pit test with mechanical load. 
In order to start the loading of specimen from zero, the ‘Initialization Load’ 
applies to constant and cyclic loads. 
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4.3. Example 3— C-ring test 

The C-ring test is a test provided by the Chinese standard GB/T 
15970.5–1998 for stress corrosion of metals and alloys [16]. See  
Figure 9(a) for the geometry and dimensions of the specimen. Dai et al. 
[16] have experimentally investigated stress corrosion of Q345R steel by 
this test and have reported pit/crack length evolution which is utilized 
for calibration and validation in this numerical example. In the test, a 
constant displacement is exerted to the specimen by a bolt passed 
through the 6 mm-diameter hole, and the specimen is immersed into 
hydrofluoric acid. The experimental results by Dai et al. [16] show that 
the free corrosion weight loss of the specimen is almost constant, which 
is an appropriate characteristic for the assumption of constant 
overpotential-induced electric current surface density in this paper. 

An initial semi-circular pit on top of the ring with a radius of 
approximately 7.0μ m is assumed where c = 0 at its top surface. A finite 
element model is used with two-dimensional 4-noded rectangular 

isoparametric finite elements under the plane stress condition. The 
specimen is hinged at its left and is roller at its right where it is allowed 
to freely move in x direction (see Figure 9(b)). A constant displacement 
in x direction, usup, is imposed to the roller support in order for the initial 
maximum circumferential stress σt to be 0.55σy and 0.80σy in two 
separate experiments in correspondence to [16]. Based on the experi-
mental observations of [16], the scalar plastic strain measure eeq is 
proposed here to take the form of equation (27). Additionally, the 
overpotential-induced electric current surface density is set approxi-
mately equal to 0.23 mA∕ mm2 in accordance with the average free 
corrosion in the first four hours of the experiment. A power law 
constitutive model is used for the material behavior of the steel ac-
cording to Cui et al. [17]. Although the power law material model is a 
plasticity model used for monotonic (and not cyclic) loads, it is imple-
mented with two minimal changes in the Chaboche model: a) assuming 
k1 = 0 implies χ = 0 which means no cyclic behavior mechanism is 
involved and b) using the following equation for the isotropic free 

Fig. 6. Zoomed views of the corrosion pit and the notch at its bottom in the two-dimensional corrosion pit growth test with mechanical load example for different 
load types at selected times. Contour maps of the metal ion concentration and the local mechanical multiplier are illustrated in the electrolyte and solid domain, 
respectively. The solid bold black line indicates the interface in the contour maps. The notch initiates from the bottom-right region of the interface and grows faster as 
time proceeds. 
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energy potential 

W = σy

(
ε0

eq

N + 1

((

1 +
ζ

ε0
eq

)N+1

− 1

)

− ζ

)

(31)  

where N is a parameter which can be calibrated from the data of a tensile 
test and ε0

eq is assumed to be equal to σy∕E. Here, the SRQ of interest is 
the depth of the corrosion pit. The parameters of the model are the same 
as in Table 1 except csat = 5.1 × 10− 6 mol∕ mm3, ν = 0.25, σy 
= 535 MPa, N = 0.073, and lw = 50μ m. 

The length of the pit reported in [16] is defined as the vertical 

difference between the deepest point of the pit and the initial non-
corroded surface. Therefore, the pit length can be divided into two 
lengths: the vertical difference a) between the deepest point and top of 
the pit, called ‘pit depth’, and b) between the top of the pit and the initial 
noncorroded surface, called ‘surrounding corrosion length’. According 
to the experimental observations in [16], the surrounding corrosion 
length grows faster than the pit depth in a time interval from the start of 
each experiment, called ‘time interval I’. This interval is followed by an 
interval in which the growth speed of the two lengths are comparable, 
called ‘time interval II’. Afterwards, the pit develops much faster than 
the surrounding corrosion, called ‘time interval III’. Based on finite 

Fig. 7. Zoomed views of the interface in the two-dimensional corrosion pit growth test with mechanical load example for different load types and nonlocal length 
scales at t = 186 s. As expected, the smaller the nonlocal length scale, the faster the notch grows. 

Fig. 8. Zoomed views of the interface in the two-dimensional corrosion pit growth test with mechanical load example for different load types and overpotential- 
induced electric current surface densities at t = 186 s. As expected, the larger the electric current surface density, the faster the notch grows. 

Fig. 9. The C-Ring test set-up: a) geometry and dimensions in mm [16] and b) computational geometry and boundary conditions.  

A. Fayezioghani et al.                                                                                                                                                                                                                          



Materials Today Communications 33 (2022) 104210

9

element simulations of the C-ring, the speed of the surrounding corro-
sion is assumed to be constant and spatially uniform on a large surface 
(in comparison to the pit size) of the specimen around the pit. Thus, only 
pit growth in the time interval II and III are simulated and assessed. 

The pit depth is plotted versus time for the two loading cases in  
Figure 10. As pointed out above, the constant surrounding corrosion 
speed is assumed to be 0.450 and 0.238μ m∕ min for σt = 0.80σy and 
0.55σy, respectively. Furthermore, the nonlocal length scale as well as 
parameters for the scalar plastic strain measure are calibrated based on 
the experimental results related to σt = 0.80σy: eth,1 = 0.0035 and eth,2 
= 0.0280. Then, they are validated for the experimental results related 
to σt = 0.55σy. The figure shows that the simulations are in good 
accordance with the experimental data. In addition, the numerical re-
sults depict that the proposed strain measure can appropriately be 
employed to model the accelerating and decelerating experimental pit 
depth growths. 

5. Conclusions 

Numerical examples have been designed in Part II to demonstrate the 
performance of the stress corrosion model developed in [9]. Overall, it 
can be concluded from the numerical results that a) the stress corrosion 
model is not sensitive to mesh and time step size for the simulated cases, 
b) the employed nonlocal formulation has successfully overcome local 
discontinuities caused by mesh type and size, c) there is uncertainty in 
the nonlocal length scale which should be quantified, where the results 
can be compared to experimental data, and d) the scalar plastic strain 
measure should include the influence of plastic deformations and/or 
dislocations on the activation energy of corrosion for the problems under 
investigation. Regarding the simulation results of the pencil test with 

axial load, the model gives a linear depth evolution which is anticipated 
from the governing equations and its linear loading. The simulation 
results of the two-dimensional pit test with mechanical load emphasizes 
the significance of selecting a proper value for the nonlocal length scale. 
It also shows a nonlinear interface evolution with respect to the applied 
electric current. From the C-ring test simulation results, it is observed 
that the proposed scalar plastic strain measure is successful in de/in-
tensifying the pit depth in order to fit numerical results to experimental 
data. 

It is finally noted that localized corrosion may be caused by material 
dissolution assisted by mechanical field and by the rupture of a passiv-
ated film on the interface [18]. A model which includes the first 
component is assessed in this paper. However, the second component is 
not covered here but can be incorporated in the current stress corrosion 
model by introducing interface elements at the common surface be-
tween each solid and electrolyte element. By using the interface ele-
ments, it will be possible a) to model the electrochemical behavior of the 
film and b) to model plasticity of the film and to calculate the me-
chanical history (e.g. stress and strain) of the film. The interface ele-
ments condense the electromechanochemical mechanisms related to the 
interface (e.g. passivation process and the film rupture). 
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Appendix A. von Mises yield function, plastic strain, and internal states 

The von Mises yield function is 

fvM =
̅̅̅̅̅̅̅̅̅̅̅̅̅
3J2(α)

√
− κ (A.1)  

where 

α = σ − χ (A.2)  

is the overstress tensor, 

κ = σy + R (A.3)  

is the total isotropic stress, σy is the yield stress of virgin material, 

J2(a) =
1
2
aDev : aDev (A.4) 

Fig. 10. The pit depth evolution in the C-ring test example. The numerical 
depths show good accordance to experimental data. Note that the numerical 
curves start from the time interval II. 
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is the second invariant of the deviator of tensor a, aDev is the deviatoric part of (or the deviator of) the second order tensor a: 

aDev = a − aHyd, (A.5)  

aHyd is the hydrostatic part of the second order tensor a: 

aHyd
ij =

1
3
akkδij, (A.6)  

δij is the Kronecker delta: 

δij =

{
1, i = j
0, i ∕= j

}

, (A.7)  

and: is the double-dot operator between two nth order tensors b and c such that 

b : c = b…klclk…. (A.8) 

Considering the von Mises function (A.1) as the yield function and substituting equations (10) and (11) into equation (8) gives the following flow 
directions for the employed Chaboche model 

N =

̅̅̅
3
2

√
αDev

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αDev : αDev

√ , (A.9)  

H = −

̅̅̅̅
3
2

√
αDev

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αDev : αDev

√ +
k2

k1
χ , (A.10)  

and 

B = − 1. (A.11)  

Appendix B. Assessing the deviatoricity of tensor quantities in the Chaboche model 

Any second order tensor a can be decomposed into two parts, namely deviatoric and hydrostatic part: 

a = aDev + aHyd (B.1)  

with the definitions presented in equations (A.5) and (A.6). One of the properties of this decomposition is that a cannot be decomposed further in this 
sense. To clarify this property, we should decompose aDev and aHyd in the same way as in the decomposition of a. For the deviatoric part, 

aDev =
(
aDev)Dev

+
(
aDev)Hyd (B.2)  

where 

(aDev)
Hyd
ij =

1
3

aDev
kk δij =

1
3

(

akk −
1
3
allδkk

)

δij =
1
3

(

akk −
1
3
all⋅3

)

δij =
1
3
(akk − all)δij = 0  

which is written in the compact form as 
(
aDev)Hyd

= 0, (B.3)  

and thus 
(
aDev)Dev

= aDev −
(
aDev)Hyd

= aDev. (B.4)  

And, for the hydrostatic part, 

aHyd =
(
aHyd)Dev

+
(
aHyd)Hyd (B.5)  

where 

(aHyd)
Hyd
ij =

1
3

aHyd
kk δij =

1
3

(
1
3
allδkk

)

δij =
1
3

(
1
3
all⋅3

)

δij =
1
3
(all)δij = aHyd

ij  

which, again, is written in a compact form as 
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(
aHyd)Hyd

= aHyd, (B.6) 

and thus 
(
aHyd)Dev

= aHyd −
(
aHyd)Hyd

= 0. (B.7)  

Therefore, the single-step decomposition of a second order tensor a is proved by substituting equations (B.3) and (B.4) into (B.2) as well as equations 
(B.6) and (B.7) into (B.5). 

The deviatoricity of a second order tensor a is defined as a = aDev or aHyd = 0. In other words, a is deviatoric if and only if 

tra = tr(a) := akk = 0 (B.8)  

where tra = tr(a) is the trace of a. Because the trace of a is a linear combination of components of a, 

dtra

dt
= trda

dt
(B.9)  

In addition, it is worth noting that tra(t) = 0 implies trȧ(t) = 0 while trȧ(t) = 0 implies tra(t) = ca where ca is a constant scalar. We will use these properties 
in the proof of deviatoricity of the internal force and deformation tensor. 

Consider the equation of internal deformation rate (17) and substitute equation (14) and the equation of internal deformation flow direction (A.10) 
in it: 

β̇ = λ̇

( ̅̅̅̅
3
2

√
αDev

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αDev : αDev

√ − k2β

)

(B.10)  

then take the trace of both sides of equation: 

tr(β̇) = λ̇

( ̅̅̅̅
3
2

√
tr(αDev)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αDev : αDev

√ − k2tr(β)

)

(B.11)  

By using the properties (B.3) and (B.9), we obtain 

dtrβ

dt
= λ̇
(
− k2trβ

)
(B.12)  

and, by solving this ordinary differential equation, trβ will be 

trβ = a exp(− k2λ) (B.13)  

where a is a constant which, for example, should be determined according to an initial condition. The conventional condition of a mechanical 
plasticity problem is that plastic strain and all other internal deformations and forces are zero quantities for the virgin state of a material (i.e. when λ is 
zero). Hence, this condition leads to a = 0 in equation (B.13), which means that trβ is zero regardless of the plastic state of the material (i.e. regardless 
of magnitude of λ). Thus, β and consequently χ are deviatoric quantities in the employed equations of free energy and plastic flow potential. 

Now, consider the equation of plastic strain rate in a 3D spatial space (16) and substitute the equation of plastic flow direction (A.9) in it: 

ε̇p
= λ̇

( ̅̅̅̅
3
2

√
αDev

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αDev : αDev

√

)

(B.14)  

Obviously, ε̇p is deviatoric because of existence of the only tensor αDev in the right hand-side of (B.14). Thus, according to the mentioned plasticity 
condition of the virgin state of a material, εp will also be deviatoric. However, in a 2D plane strain or stress condition, we should use ε̃p = L(εp) (instead 
of εp) whose trace is not zero in general: 

tr
(

εp
∼)

= tr(L(εp)) = (1 + ϖ)(εp
xx + εp

yy). (B.15)  

Thus, ε̃p is not necessarily deviatoric in the plastic strain or stress condition. 
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