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Humans and robots are increasingly working together in human-robot teams.

Teamwork requires communication, especially when interdependence

between team members is high. In previous work, we identified a

conceptual difference between sharing what you are doing (i.e., being

transparent) and why you are doing it (i.e., being explainable). Although the

second might sound better, it is important to avoid information overload.

Therefore, an online experiment (n = 72) was conducted to study the effect

of communication style of a robot (silent, transparent, explainable, or adaptive

based on time pressure and relevancy) on human-robot teamwork. We

examined the effects of these communication styles on trust in the robot,

workload during the task, situation awareness, reliance on the robot, human

contribution during the task, human communication frequency, and team

performance. Moreover, we included two levels of interdependence

between human and robot (high vs. low), since mutual dependency might

influence which communication style is best. Participants collaborated with a

virtual robot during two simulated search and rescue tasks varying in their level

of interdependence. Results confirm that in general robot communication

results in more trust in and understanding of the robot, while showing no

evidence of a higher workload when the robot communicates or adds

explanations to being transparent. Providing explanations, however, did

result in more reliance on RescueBot. Furthermore, compared to being

silent, only being explainable results a higher situation awareness when

interdependence is high. Results further show that being highly

interdependent decreases trust, reliance, and team performance while

increasing workload and situation awareness. High interdependence also

increases human communication if the robot is not silent, human rescue

contribution if the robot does not provide explanations, and the strength of

the positive association between situation awareness and team performance.

From these results, we can conclude that robot communication is crucial for

human-robot teamwork, and that important differences exist between being

transparent, explainable, or adaptive. Our findings also highlight the
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fundamental importance of interdependence in studies on explainability in

robots.
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1 Introduction

Increasingly, humans and robots will be working together in

human-agent/robot teams (HARTs). Robots often outperform

humans with respect to rapid, rational, and repetitive decision-

making, thanks to their processing speed andmemory capacity (van

Diggelen et al., 2019). On the other hand, humans are usually still

better at handling uncertainty and unexpected situations. HARTs

make use of this unique combination of abilities.

HARTs can perform tasks where human and robot hardly

depend on each other and can execute their individual actions

independently (Singh et al., 2017). However, HARTs can also

engage in joint activities in which what the human does depends

on what the robot does (and vice-versa) over a sustained

sequence of actions (Johnson et al., 2014). In such joint

activities, the human and robot are interdependent and

effective coordination and collaboration become crucial

(Johnson et al., 2014; Singh et al., 2017).

Several factors are crucial when human and robot are

interdependent, such as mutual trust and understanding;

shared mental models; observability, predictability, and

directability; and transparency and explainability (Klein et al.,

2004; Salas et al., 2005; Johnson et al., 2014; Johnson and Vera,

2019). Unfortunately, many of these factors are still lacking in

contemporary HARTs. For example, robots often demonstrate

poor transparency and explainability, making it hard for human

teammates to properly understand their inner workings,

behavior, and decision-making (Lipton, 2018; Anjomshoae

et al., 2019; Miller, 2019). This, in turn, negatively affects

factors like mutual trust and understanding, eventually

resulting in decreased global team performance (Johnson

et al., 2014; Johnson and Vera, 2019).

Explainable AI (XAI) research, methods, and techniques

emerged as a means of making AI-systems more

understandable to humans (Gunning, 2017). Unfortunately,

the field of XAI is characterized by a plethora of related but

often ill-defined and inter-changeably used concepts like

transparency, interpretability, explainability, and

understandability (Verhagen et al., 2021). We addressed this

issue by proposing a framework that unambiguously defined and

related these concepts in a coherent and concise manner

(Verhagen et al., 2021). This framework makes a distinction

between robot transparency and explainability as different

communication styles, with the former referring to the

disclosure of information and the latter to also clarifying

disclosed information using explanations.

One of the main goals within XAI community and research is

the development of personalized, context-dependent and

adaptive robots (Anjomshoae et al., 2019; De Visser et al.,

2020). So instead of implementing robots characterized by

fixed transparency or explainability, developing robots able to

adapt their communication according to context and intended

user. However, to do this we need to first understand how

different communication styles like transparency and

explainability exactly influence teamwork in different

interdependency conditions. So far, very little work has

examined the influence of interdependence between human

and robot on human-robot teamwork outcomes, let alone the

interaction between communication style and interdependence

(O’Neill et al., 2020).

Therefore, this exploratory study will investigate the effects of

different robot communication styles on crucial HART factors

like team performance, trust, workload, situation awareness (SA)

of the robot, and understanding. We will examine these effects

across two levels of interdependence between the human and

robot (high vs. low). To do this, we conducted a user study in a

simulated environment where human participants collaborated

with a virtual robot during a search and rescue task. The

remainder of the paper is structured as follows. In Section 2

we discuss the relevant literature related to our study. Next, in

Section 3 we describe how we conducted the user study, followed

by the results in Section 4. Finally, we present a discussion and

conclude our work in Section 5.

2 Background & related work

2.1 Interdependence

Interdependence in a team can be due to the relationships

between team members and the task to execute. Four types of

task interdependence have been identified: pooled, sequential,

reciprocal, and team (Singh et al., 2017). Pooled task

interdependence concerns the execution of tasks

independently and without any interaction, whereas in

sequential task interdependence, tasks are performed in a

sequential order and team members have to wait for previous

team members to complete their task. Reciprocal task

interdependence involves team members taking turns in

completing part of the task, while in team task

interdependence, team members execute their individual tasks

concurrently and may execute joint actions (Johnson et al., 2014;
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Singh et al., 2017). These task interdependence types form a

hierarchy representing increasing needs for coordination and

levels of dependence between team members. However, these

task interdependence types are unable to capture the nuances of

close collaboration between humans and robots working jointly

on a task (Johnson et al., 2014). To capture these nuances of close

collaboration, interdependence relationships between team

members are required.

Johnson et al. (2014) define these interdependence

relationships as the set of complementary relationships that

human and robot rely on to manage required (hard) and

opportunistic (soft) dependencies in joint activity. Their

definition highlights the importance of dependencies and joint

activity in interdependence between humans and robots working

as team members. Joint activity is closely related to team task

interdependence and relates to situations in which what the

human does depends on what the robot does (and vice-versa)

over a sustained sequence of actions (Johnson et al., 2014). For

example, when a human-robot team engages in an urban search

and rescue task. Such joint activity gives rise to required (hard)

and opportunistic (soft) dependencies/interdependence

relationships between team members. Hard interdependence

stems from a lack of capacity (e.g., knowledge, skills, abilities,

and resources) required to competently perform an activity

individually (Johnson et al., 2014). For example, an explore

robot/drone during urban search and rescue lacking the

capacity to transport victims. In contrast, soft interdependence

is optional and opportunistic, arising from recognizing

opportunities to be more effective and efficient by working

jointly (Johnson et al., 2014).

These different types of task interdependence and

interdependence relationships (and their combinations) can

give rise to high and low interdependence scenarios for

human-robot teams. For example, when a human-robot

urban search and rescue team allocates the task of exploring

the disaster site to the robot and executing rescue operations to

the human, human and robot may hardly depend on each other

and execute their individual actions independently without

much interaction (i.e., low interdependence). In contrast,

human-robot teams can also engage in joint activities and

actions in which both parties are mutually dependent on

each other and where the human might need to support the

robot (and/or vice-versa) for specific activities (i.e., high

interdependence). For example, the same team can also

explore a collapsed building together where both parties

need to know which team member assessed which room, or

where in case a victim is detected by the robot, the human needs

to provide support with assessing the victim’s health status. So

far, little work has been conducted on the effects of varying

interdependence levels between human and robot on human-

robot teamwork outcomes, and even less on the interaction

between robot communication styles like transparency and

explainability and different interdependence levels.

2.2 Robot communication and human-
agent/robot teamwork

Several studies did investigate the effects of XAI on relevant

human-agent/robot teamwork (HART) factors like trust,

workload, and operator performance (Mercado et al., 2016;

Selkowitz et al., 2017; Wright et al., 2017; Chen et al., 2018).

These studies largely agree that operator performance and trust

in the XAI system increase when it shares more reasoning

information, and without detriment to workload (Mercado

et al., 2016; Selkowitz et al., 2017; Chen et al., 2018). None of

the studies, however, investigated the effects of communication

style on global team performance, or how interdependence

between human and robot affects trust, workload, and

performance. Moreover, in all studies the XAI system served

as an assistant of the human participants rather than as an equal

team member. Our study will fill these gaps by examining the

effects of robot communication style on global team

performance, in HARTs where the robot is an equal team

member, and across different levels of interdependence.

Other works investigated the relationship between robot

information sharing and team performance, using a testbed

(Blocks Worlds for Teams) similar to the one used in our

study (Harbers et al., 2012b,a; Li et al., 2016; Singh et al.,

2017; Wei et al., 2014). The Blocks World for Teams (BW4T)

task is to deliver a sequence of coloured blocks in a particular

order while working together in a team. The task is executed in a

virtual environment containing rooms in which blocks are

hidden, and a drop zone where blocks can be delivered. These

studies have reported mixed results across different conditions.

For example, most of them investigated artificial agent teams

rather than human-agent/robot teams (Harbers et al., 2012b;Wei

et al., 2014; Li et al., 2016; Singh et al., 2017). In addition, almost

all examined the influence of shared mental model components

(goals vs. world knowledge) on performance, rather than

providing more or less reasoning information (Harbers et al.,

2012b; Wei et al., 2014; Li et al., 2016; Singh et al., 2017). For

example, Li, Sun, and Miller showed that in a high

interdependence scenario containing joint actions, sharing

goals was more effective than when the agent shared both

goals and world knowledge with the human (Li et al., 2016).

Harbers et al. did examine the effects of agents explaining their

behavior on human-agent/robot teamwork (Harbers et al.,

2012a). Their results showed that explanations about agent

behavior did not always lead to better team performance, but

did impact user experience in a positive way.

None of the studies in the BW4T testbed examined human-

agent/robot teams across different levels of interdependence

between human and agent, a gap that our study will fill.

Furthermore, most of the discussed studies examined the

influence of shared mental components on team performance.

In this study we are not interested in this distinction, since we

believe both goals and world knowledge are crucial for carrying
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out the task most efficiently. Instead, we will investigate how

different communication styles affect human-agent/robot

teamwork across two levels of interdependence. These

different communication styles give rise to more and less

detailed mental models of the agent, rather than omitting

crucial components like world knowledge or goals.

2.3 Robot transparency vs. explainability

In our previous work we proposed a framework that makes a

distinction between the communication styles transparency and

explainability (Verhagen et al., 2021). This framework addresses

the lack of agreement regarding the definitions of and relations

between the key XAI concepts of transparency, interpretability,

explainability, and understandability. More specifically, the

framework discriminates between robot interpretability and

understandability as passive and subjective system

characteristics concerning user knowledge of the robot. In

contrast, we defined robot transparency and explainability as

active and objective characteristics involved with disclosing and

clarifying relevant information. Transparency was defined as the

disclosure of relevant system elements to users (e.g., robot

decisions or actions), enabling users to access, analyze, and

exploit this disclosed information (i.e., interpret). In contrast,

we defined explainability as the clarification of disclosed system

elements by providing information about causality and

establishing relations with other system elements. Ultimately,

these definitions resulted in the classification of three types of

robots: incomprehensible, interpretable, and understandable. We

argued transparency can make incomprehensible robots

interpretable, and explainability can make interpretable robots

understandable.

The third type of communication style not included in this

framework but under investigation in this study, is adaptive

communication. Miller discussed several factors to consider for

such adaptive communication, such as epistemic relevance with

respect to the user’s mental model, or what has been explained

already (Miller, 2019). In addition to these user factors, a relevant

contextual factor to consider is time pressure. Time pressure can

decrease thorough and systematic processing of information

while increasing selectivity of information processing,

reducing both performance and decision-making quality

(Maule and Edland, 2002; Schreuder and Mioch, 2011).

Therefore, reducing communication frequency of an agent

when time pressure is high seems beneficial to HART

performance and trust, for example by only communicating

the most important information. Unfortunately, the current

implementation and experimental investigation of adaptive

robot communication is limited, even more in the context of

human-robot teamwork (Anjomshoae et al., 2019; De Visser

et al., 2020). Our implemented adaptive style adjusts its

communication based on both relevancy and time pressure.

2.4 Evaluating robot communication in
human-agent/robot teamwork

The discussed studies showed several ways of evaluating XAI

efficiency in a HART context, such as operator - and team

performance, trust in the XAI system/robot, and workload

during the task. Despite these different metrics, there is still a

need for new metrics to assess XAI efficiency, specifically

objective ones (Anjomshoae et al., 2019; Sanneman and Shah,

2020). Sanneman and Shah proposed an objective metric for

assessing XAI effectiveness: the (modified) Situation Awareness

Global Assessment Technique to measure SA of the XAI system’s

behavior processes and decisions (Endsley, 1988; Sanneman and

Shah, 2020), which we will adopt. First, situational information

needs related to AI behavior should be thoroughly defined

according to a process like the Goal Directed Task Analysis

(Endsley, 2017). Next, simulations of representative tasks should

be frozen at randomly selected times, followed by evaluating user

knowledge of these predefined informational needs. The answers

to these questions can be compared against the ground truth state

of the world, providing an objective measure of the user’s SA of

the AI.

3 Methods

To test the effects of different robot communication styles on

human-robot teamwork across different levels of

interdependence between human and robot, an experiment

was conducted. In this experiment, we aimed to investigate

the effect of four different robot communication styles on

trust, reliance, workload, situation awareness, team

performance, human contribution, communication frequency,

and system understanding. Moreover, we aimed to also study

whether interdependence between human and robot had any

influence on this effect.

3.1 Design

The experiment had a 2 × 4 mixed design with

interdependence between human and robot as the within-

subjects independent variable and robot communication style

as the between-subjects independent variable. Interdependence

consisted of two conditions (low and high), robot

communication style of four conditions (silent, transparent,

explainable, adaptive). During the low interdependence

condition, participants hardly depended on their robot

teammate (and vice versa) since the work was split between

the two. In contrast, during the high interdependence condition

the participants and robot were highly dependent on each other

because we removed the work division and added hard

interdependence relationships stemming from a lack of robot
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capacity to carry critically injured adults and distinguish between

kids. Which interdependence condition the participants

completed first was counterbalanced, resulting in two order

conditions.

3.2 Participants

We recruited 72 participants from the different universities’

mailing lists and personal contacts (23 females, 48 males, and one

preferred not to say). Fifteen participants had an age range of

18–24 years old, 56 participants of 25–34 years old, and one

participant was between 55–64 years old. In terms of education,

one participant did some high school without obtaining a

diploma, two participants were high school graduates, two

participants obtained some college credit but no degree, three

participants obtained an associate degree, 15 participants

obtained a Bachelor’s degree, 47 participants obtained a

Master’s degree, and two participants obtained a PhD degree

or higher. With respect to gaming experience, 27 participants

played video games several times a year, 24 participants several

times a month, 12 participants several times a week, and nine

participants played video games on a daily basis. Each participant

signed an informed consent form before participating in the

study, which was approved by the ethics committee of our

institution (ID 1676).

Since each participant teamed up with a robot characterized

by one of the four communication styles and one of the two

interdependence order conditions, it was important to control for

age, gender, education, and gaming experience across the

communication style and order conditions. For gender, we

conducted a Chi-square test of homogeneity while for age,

education, and gaming experience a Kruskal-Wallis test was

conducted. Results showed no significant differences between

communication style conditions for any of the demographic

factors gender (χ2 (6) = 7.29, p = 0.29), age (χ2 (3) = 0.76, p =

0.86), education (χ2 (3) = 0.34, p = 0.95), and gaming experience

(χ2 (3) = 0.31, p = 0.96), indicating that participants were evenly

split over the communication style conditions. Moreover, results

showed no significant differences between interdependence

order conditions for gender (χ2 (2) = 2.95, p = 0.23), age (χ2

(1) = 0.75, p = 0.39), education (χ2 (1) = 2.07, p = 0.15), and

gaming experience (χ2 (1) = 0.21, p = 0.65).

3.3 Hardware and software

To run this experiment we used a Dell laptop, a Virtual

Machine (Ubuntu 20.04.2 LTS), and the Human-Agent Teaming

Rapid Experimentation (MATRX: https://matrx-software.com/)

software, a Python package specifically aimed at facilitating

human-agent teaming research. The Dell laptop was used to

access the Virtual Machine, from which a MATRX world was

launched. This two-dimensional grid world contained and

tracked the information needed to simulate the agents

performing tasks in our environment.

3.4 Environment

To access the MATRX world and control their

corresponding human agent, participants opened a link in

either Chrome or Firefox. In contrast, the experimenter

viewed the world with the so called God agent, making it

possible to perceive everything and start, pause, and stop the

world. We built a world consisting of nine areas, 28 collectable

objects, and at least one drop zone (Figure 1A). Furthermore,

we added an autonomous virtual robot and human agent to

our world, and designed an environment in which these two

agents had to collaborate during a search and rescue task. Two

different worlds were created, one for each interdependence

condition, varying with respect to the drop zone(s) and victim

distribution. The low interdependence world consisted of two

drop zones with four victims each, whereas the high

interdependence world contained just one drop zone with

eight victims.

We created the following eight victim types making up

the world’s collection goal: boy, girl, man, woman, elderly

man, elderly woman, dog, and cat. In addition, we created the

following injury types: critical, mild, and healthy. Injury type

was represented by the color of the victims, where red

reflected critically injured, yellow mildly injured, and

green healthy victims (see Figure 1). Eight of the

28 objects in the world were either mildly or critically

injured and had to be delivered at the drop zone, whereas

the other 20 were healthy.

3.5 Task

The objective of the task was to search and rescue the eight

target victims by inspecting the different areas and dropping

the correct victims on the drop zone in a specific order. During

the low interdependence condition, the retrieval of the eight

victims was equally divided between the autonomous virtual

robot and human agent, across two separate drop zones. This

way, both team members hardly depended on each other and

could execute their individual actions independently. In

contrast, during the high interdependence condition the

eight victims had to be delivered to one shared drop zone.

Consequently, the human’s actions highly depended on what

the robot did (and vice versa) over a sustained sequence of

actions. For both conditions, when all eight victims were

rescued or when the task was not successfully completed

after 10 min, the world and task were terminated and all

objective data logged.
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3.6 Agent types

We added two agents to the world: an autonomous rule-

based virtual robot (called RescueBot) and a human agent

controlled by the participants, using their keyboard.

RescueBot was able to solve the collection task by searching

for the next victim to rescue, keeping track of which areas it

searched and which victims it found and where, and dropping

found goal victims at the drop zone. Both agents could carry only

one victim at a time, detect other agents with a range of two grid

cells, detect other objects like walls and doors with an infinite

sense range, and detect victims with a sense range of only one

grid cell. To avoid ceiling effects resulting from a perfect agent,

RescueBot moved slower than the human agent and traversed

every grid cell during area exploration.

Four different versions of RescueBot were implemented for

the experiment, varying with respect to what, how, and how

much they communicated between communication style

conditions and in capacity between the interdependence

conditions. During the high interdependence condition,

RescueBot lacked the capacity to carry critically injured adults

and distinguish between kids, which added required/hard

interdependence relationships between human and robot.

When a critically injured adult was found by either RescueBot

or the human participant, RescueBot told the participant to pick

it up. When RescueBot found an injured kid, it told the human

participant to visit that area and clarify the gender of the victim.

This way, these hard dependencies required the human and robot

to establish supporting interdependence relationships. It is

important to emphasize that this version of RescueBot did not

wrongly classify kids or unsuccessfully carry critically injured

adults, but rather requested support from its human teammate.

We implemented four different communication styles for

RescueBot: silent, transparent, explainable, and adaptive. The

silent version served as baseline and only disclosed the crucial

decisions to request human assistance in case it needed human

help. In contrast, the transparent version disclosed its world

knowledge/beliefs, actions, decisions, and, in the high

interdependence condition, suggestions. The explainable

version not only disclosed its world knowledge, actions,

suggestions, and decisions, but also clarified them by

providing explanations. This communication style provided

attributive/causal explanations providing reasons (why) for

intentional behavior and actions (Malle, 2004, 2011; Miller,

2019). The provided reasons included world knowledge, goals,

and limitations and adhered to the principles of being simple

(few causes), general, complete, and sound (Miller, 2019). Finally,

the adaptive version of RescueBot adjusted its communication

FIGURE 1
(A) God view of the MATRX world used for this study. The lower left corner of the world shows the drop zone with eight victims to search and
rescue. Next to the drop zone are RescueBot and the human avatar at their starting positions. (B) the chat functionality and buttons used by
participants to communicate. In addition, the different victim and injury types can be seen. Buttons existed for each area and goal victim to search and
rescue.
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based on time pressure and relevancy. In general, after explaining

a certain belief, action, suggestion, or decision X based on a goal,

belief, or limitation reason Y, the agent adhered to only disclosing

X in future situations. Moreover, when time pressure was high

(less than 5 minutes remaining) RescueBot only communicated

the most crucial information. The exact information content for

each of the communication styles can be found in Table 1.

Participants had the ability to communicate to RescueBot via

the buttons shown in Figure 1B. Using these, participants could

share their current and future actions, perceptions, as well as

answers to any of RescueBot’s questions (in the high

interdependence scenario). RescueBot added the shared

information to its memory, and adjusted its behavior

correspondingly. This messaging interface was present in a

similar fashion as shown in Figure 1, so immediately on the

right of the environment. Furthermore, the messaging interface

was the same for both RescueBot and the participant, a chat box/

room consisting of textual messages. Participants only had to

press buttons to share required information such as which areas

they searched or where they found victims. This way, we tried to

decrease workload as a result of having to type messages.

RescueBot’s behavior did not vary between the four

communication style conditions. When RescueBot did not

know the location of the current victim to rescue, it moved

towards the closest unsearched area and explored it. If the

participant told RescueBot it was going to search the same

area, RescueBot moved to the next closest unsearched area to

explore instead. During exploration of the areas, RescueBot

added the location of found victims to its memory. When

participants found victims and communicated this, RescueBot

also added this to its memory. If RescueBot found the current

victim to rescue during area exploration, it first completed

searching the whole area before picking up and dropping the

victim at the drop zone. In case participants told RescueBot they

would pick up the victim instead, RescueBot would start

searching for or picking up the next victim to rescue. If this

victim was already found by the participant, RescueBot would

move to the corresponding area and explore the whole room as it

did not know the exact location. When it found the victim, it

would immediately pick it up and move to the drop zone rather

than searching the rest of the area. During all situations described

above the transparent, explainable, and adaptive versions of

RescueBot communicated their actions, beliefs, decisions and

suggestions using the messages outlined in Table 1.

3.7 Measures

3.7.1 Team performance
We objectively measured team performance during the low

and high interdependence conditions using completion time,

accuracy, and completeness. We transformed completion time to

TABLE 1 The information content for each of the four communication styles. Explainability included both the content under the column
Transparency, plus the explanation under the column Explanation. Underlined messages refer to the only information shared by the silent
baseline. Except for the first two messages, the adaptive communication style dropped the explanations after providing them once. When time
pressure was high, the adaptive version of RescueBot stopped sending the messages with the bold numbers.

Message Transparency Explanation

1 Moving to X to pick up Y

2 Moving to X to search for Y

and because it is the closest unsearched area

3 Searching through whole X because my sense range is limited and to find Y

4 Found Y in X because you told me Y was located here

5 Found Y in X because I am traversing the whole area

6 You should pick up Y in X because I am forbidden to carry critically injured adults

7 Y not present in X because I searched the whole area without finding Y

8 You should clarify the gender

of the injured baby in X because I am unable to distinguish them

9 Going to re-search areas to find Y

and because we searched all areas but did not find Y

10 Picking up Y in X because Y should be transported to the drop zone

11 Transporting Y to drop zone because Y should be delivered there for treatment

12 Delivered Y at drop zone because Y was current victim to rescue

13 Waiting for human at drop zone because previous victim should be collected first

14 I suggest you pick up Y in X because X is far away and you can move faster

X refers to specific area, Y to specific victim
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the percentage of time left to finish the task and calculated overall

team performance as the mean of time left, accuracy, and

completeness. Completion time was converted into the

percentage of time left in order to transform the variable to

the same scale and interpretation as accuracy and completeness

(i.e., expressed in % and with higher values reflecting better

performance). Accuracy reflected the percentage of victims

collected in the correct order, whereas completeness reflected

the percentage of all victims collected. We manually kept track of

accuracy during the task, while completeness was logged

automatically using MATRX.

3.7.2 Situation awareness of RescueBot
Situation awareness (SA) of RescueBot’s behavior processes

and decisions was measured objectively, using the Situation

Awareness Global Assessment Technique (SAGAT) (Endsley,

1988; Sanneman and Shah, 2020). First, we defined the human

informational and SA requirements during the search and rescue

task using the Goal Directed Task Analysis (Endsley, 2017). We

used this analysis to define which information participants

required about RescueBot’s behavior in order to achieve their

respective goals. Next, we formulated eight SAGAT queries for

each interdependence condition, objectively evaluating human

knowledge of this situational information (Endsley, 1988, 2017).

Table 2 shows all queries used during the experiment, for each

interdependence condition.

During both interdependence conditions, the task was

paused twice, and the same eight queries were asked. We took

the average percentage of correctly answered queries as objective

measure of SA. For each query we provided five multiple choice

options, except for query three which was answered by selecting a

location on the map. The answer options were different for each

of the two assessment moments, except for queries four, six, and

seven (low interdependence) because they only had five possible

answer options. Finally, for queries five and eight (low

interdependence) the exact area and victim used in the query

was different for each assessment moment.

3.7.3 Trust
We subjectively measured user trust in RescueBot using the

5-pt Likert trust scale for XAI (Hoffman et al., 2018). This scale

consisted of eight items and measured confidence in and

predictability, reliability, safety, efficiency, wariness,

performance, and likeability of RescueBot. We calculated the

mean of the eight items as the final trust score.

3.7.4 Workload
Workload during the task was measured subjectively using

the raw NASA Task Load Index (NASA-TLX) (Hart and

Staveland, 1988). This consisted of six items evaluated on

scales from 0 to 100 and increments of size five, so yielding

20 answer options. The six items measured mental, physical, and

temporal demand, as well as performance, effort, and frustration.

We calculated the mean of the six items as the final workload

score.

3.7.5 Perceived system understanding
We subjectively measured understanding of RescueBot

using the 7-pt Likert Perceived System Understanding

Questionnaire (van der Waa et al., 2021). This scale

consisted of eight items and measured explainability,

understandability, and predictability of RescueBot. We

calculated the mean of the eight items as the final

understanding score.

3.7.6 Reliance
Reliance was objectively measured using the MATRX

loggers. We defined reliance as the percentage of victims that

were found first by the participant but rescued by RescueBot.

Using the loggers, for each participant we counted how many of

the goal victims they found first. Next, we counted how many of

these victims were eventually picked up and dropped by

RescueBot, and divided this by the number of victims the

participant found first to get the corresponding reliance

percentage.

TABLE 2 The SAGAT queries used during the experiment, for each interdependence condition.

Low Interdependence High Interdependence

Which area(s) did RescueBot search? Which area(s) did RescueBot search?

Which victim(s) did RescueBot find? Which victim(s) did RescueBot find?

Where is RescueBot currently located? Where is RescueBot currently located?

Which action is RescueBot currently executing? Which action is RescueBot currently executing?

Which victim(s) did RescueBot find in area Y? Which victim(s) did RescueBot find in area Y?

Which action will RescueBot perform next? Which victim(s) did RescueBot rescue/drop?

Which of your goal victim(s) did RescueBot find? Which victim(s) is RescueBot unable to carry?

In which area did RescueBot find victim X? Which victim(s) is RescueBot unable to identify?

X refers to specific area, Y to specific victim.
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We defined reliance in this way because it allowed the

inclusion of the silent baseline into the analysis. For example,

we also thought of defining reliance as the percentage of victims

found by RescueBot but rescued by the participant (i.e., reliance

upon RescueBot’s perceptions). However, defining reliance as

such would exclude the silent baseline from the analysis, as it did

not send information about RescueBot’s perceptions. Therefore,

we defined reliance as the percentage of victims found by the

participant but rescued by RescueBot (i.e., reliance upon

RescueBot’s actions), and included the silent baseline into the

analysis.

3.7.7 Human rescue contribution
We measured human rescue contribution using the MATRX

loggers, and defined it as the percentage of goal victims rescued

by the participant.

3.7.8 Human messages sent
Finally, we logged the number of messages sent from

participant to RescueBot to investigate human communication

frequency.

3.8 Procedure

The experiment was conducted in two sessions: an introduction

and experiment session. The introduction session served as a tutorial

aimed at getting the participants familiar with the environment,

controls, andmessaging system, to minimize any learning and order

effects, and to control for the possible influence of gaming

experience. During the tutorial, RescueBot gave the same step by

step instructions to all participants, for example, on how to pick up a

victim and when to send certain messages.

The second part of the tutorial included a trial of the real

experiment. During this trial, the participant collaborated with

the version of RescueBot with which they would also collaborate

during the real experiment (so the silent, transparent,

explainable, or adaptive version). Participants had to search

and rescue six victims on one joint drop zone while

collaborating with RescueBot, so similar to the high

interdependence trial but without any required dependencies

resulting from robot limitations.

After 3 minutes, we paused the trial and introduced the

participants to the SAGAT queries. We explained that during

the real experiment, the task would be paused at random

moments and several queries would be asked related to their

knowledge of RescueBot’s behavior processes and decisions.

Participants were encouraged to make their best guess when

they did not know or were uncertain about the answer, but we

also told them that they could skip a question when they were not

comfortable enough to guess.

After the tutorial, we asked the participants if they were

comfortable enough to start the experiment session or wanted to

re-do the trial. In the experiment session, participants completed

the two interdependence conditions. Which condition the

participants completed first was counterbalanced, resulting in

two order conditions. We controlled for age, gender, education,

and gaming experience across these two order conditions,

resulting in no significant differences between the two

conditions for any of these factors. During both

interdependence conditions we paused the task twice, followed

by the corresponding eight SAGAT queries in Table 2. The first

freeze was at a randommoment between two and 3 minutes after

starting the task, the second freeze a minimum of one and a half

minute later than the first one and a maximum of 2 minutes later.

When participants finished the first task, we presented them

with the Trust Scale for XAI and NASA-TLX. Next, participants

completed the second variant of the task. Again, we paused the

task twice and asked the SAGAT queries. After finishing the

second task, participants again completed the Trust Scale for XAI

and NASA-TLX. Finally, participants filled in the Perceived

System Understanding questionnaire to end the experiment.

The whole study lasted for about 1 hour and was conducted

during an online meeting using either Microsoft Teams, Zoom,

or Google Meet. All survey responses were collected using

Qualtrics.

4 Results

4.1 Learning and order effects

We examined the presence of potential learning and order

effects by testing for differences in dependent variable outcomes

between i) the two experiment order versions (to test for order

effects) and ii) the two time points (to test for learning effects).

Order 1 started with the low interdependence condition followed

by the high interdependence condition, and vice versa for order 2.

Time point 1 included all data from the low interdependence

condition from order 1 and high interdependence condition

from order 2, whereas time point 2 included all data from the

low interdependence condition from order 2 and high

interdependence condition from order 1.

4.1.1 Order effects
We tested for order effects on all the dependent variables

trust, workload, understanding, situation awareness, team

performance, reliance, human rescue contribution, and human

messages sent. When all assumptions were met, we conducted an

independent-samples t-test, if not we conducted a Mann-

Whitney U test. We did not find statistically significant

differences in the outcome scores between the two order

conditions for trust (W = 2147, p = 0.08), reliance (W =

2494, p = 0.70), workload (t (140) = 1.75, p = 0.08), situation

awareness (W = 2412, p = 0.47), team performance (W = 2494,

p = 0.70), human rescue contribution (W = 2562, p = 0.90),
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human messages sent (W = 2444, p = 0.55), or understanding

(W = 2392, p = 0.43). Corresponding descriptive statistics and

plots can be found in the Supplementary Materials.

4.1.2 Learning effects
We tested for learning effects on the objective measures of

situation awareness, team performance, reliance, and human

rescue contribution to examine whether participants

performed the task differently at later time points. When all

assumptions were met, we conducted a paired-samples t-test, if

not we conducted a Wilcoxon signed-rank test. We did not find

statistically significant differences in the outcome scores between

the two time points for situation awareness (t (71) = −0.86, p =

0.39), team performance (W = 1166, p = 0.41), human rescue

contribution (W = 610, p = 0.12), or reliance (W = 1214, p =

0.25). Corresponding descriptive statistics and plots can be found

in the Supplementary Materials.

4.2 Effects of communication style and
interdependence

Here, we report the effects of and interaction between

communication style and interdependence on the dependent

variables. For most of the dependent variables, we employed a

non-parametric rank based method for the analysis of variance

(ANOVA), mainly to deal with violations of the mixed ANOVA

assumption of normality. To this end, we used the R package and

function nparLD (Noguchi et al., 2012) for non-parametric tests

for repeated measures data in factorial designs. This method

defines relative treatment effects in reference to the distributions

of the dependent variables, estimated on mean ranks. Therefore,

relative treatment effects can be considered as generalized

expectations or means. This method does not require

distributional assumptions, is applicable to a variety of data

types, and is robust with respect to outliers and small sample

sizes. For the dependent variables that did meet all assumptions,

we conducted a mixed ANOVA.

4.2.1 Trust
Since there were two extreme outliers and the data was not

normally distributed (p < 0.05) in 2 cells of the design, as

assessed by Shapiro-Wilk’s test of normality, we conducted

the non-parametric rank based ANOVA. Results showed a

statistically significant main effect of communication style (F

(2.92) = 13.40, p < 0.0001, effect size = 0.81) on trust. Pairwise

robust ATS post-hoc comparisons revealed statistically

significant differences in trust scores between the silent

baseline (RTE = 0.23, Mean Rank = 33.30, SD Rank = 27.63)

and transparent (RTE = 0.59, Mean Rank = 84.85, SD Rank =

36.36) (F (1) = 27.39, p < 0.0001), adaptive (RTE = 0.61, Mean

Rank = 88.28, SD Rank = 35.68) (F (1) = 36.43, p < 0.0001), and

explainable (RTE = 0.58, Mean Rank = 83.57, SD Rank = 38.09)

(F (1) = 23.24, p < 0.0001) conditions. In addition, results

showed a statistically significant main effect of interdependence

(F (1) = 18.76, p < 0.0001, effect size = 0.51) on trust, revealing a

significant difference in trust scores between the low (RTE = 0.56,

Mean Rank = 80.69, SD Rank = 41.23) and high (RTE = 0.44,

Mean Rank = 64.31, SD Rank = 40.66) interdependence

conditions. Figure 2A shows the interaction plot of the

relative effects of communication style and interdependence

on trust scores, exact relative treatment effects (RTE) and

corresponding mean ranks can be found in Table 3.

4.2.2 Reliance
Because the data was not normally distributed (p < 0.05) in

most cells of the design, we conducted the non-parametric rank

based ANOVA. Results showed a statistically significant main

effect of communication style (F (2.69) = 3.99, p < 0.025, effect

size = 0.38) on reliance. Pairwise robust ATS post-hoc

comparisons revealed statistically significant differences in

reliance scores between the silent (RTE = 0.39, Mean Rank =

56.32, SD Rank = 45.95) and explainable (RTE = 0.54, Mean

Rank = 77.96, SD Rank = 39.51) condition (F (1) = 4.33, p <
0.05), silent and adaptive (RTE = 0.59, Mean Rank = 86.03, SD

Rank = 37.15) condition (F (1) = 9.06, p < 0.005), and adaptive

and transparent (RTE = 0.48, Mean Rank = 69.69, SD Rank =

37.81) condition (F (1) = 5.01, p < 0.05). In addition, results

showed a statistically significant main effect of interdependence

(F (1) = 104.30, p < 0.0001, effect size = 1.20) on reliance,

revealing a statistically significant difference in reliance scores

between the low (RTE = 0.66, Mean Rank = 95.56, SD Rank =

37.42) and high (RTE = 0.34, Mean Rank = 49.44, SD Rank =

31.00) interdependence conditions. Figure 2B shows the

interaction plot of the relative effects of communication style

and interdependence on reliance scores, exact relative treatment

effects and corresponding mean ranks can be found in Table 3.

4.2.3 Workload
Since all assumptions were met (no outliers, normality,

homogeneity of variances, and homogeneity of covariances), we

performed a mixed ANOVA. Results showed a statistically

significant main effect of interdependence (F (1, 68) = 0.46, p <
0.0005, η2G = 0.024) on workload. A paired-samples t-test was

conducted to determine the effect of interdependence on workload

scores. Results showed that there was a significant difference in

workload scores during high (Mean = 39.40, SD = 16.7) and low

(Mean = 34.50, SD = 15.40) interdependence conditions (t (71) =

-3.87, p < 0.0005, d = 0.46). Figure 2C shows the interaction plot of

the effects of communication style and interdependence on workload

scores, Table 4 shows the descriptive statistics for each combination of

communication style and interdependence.

4.2.4 Situation awareness
Because all assumptions were met we conducted a mixed

ANOVA. Results showed a statistically significant interaction
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between communication style and interdependence on

situation awareness (SA) scores (F (3, 68) = 3.31, p < 0.05,

η2G = 0.057). We analyzed the simple main effect of

communication on SA during each interdependence

condition using a one-way ANOVA. Results showed that

the simple main effect of communication style was

significant during both the high (F (3, 68) = 4.20, p <
0.025, η2G = 0.156) and low (F (3, 68) = 10.60, p < 0.0001,

η2G = 0.318) interdependence conditions. Pairwise

comparisons using a Bonferroni correction revealed

significant differences in SA scores between the silent

baseline (Mean = 18.06, SD = 13.02) and transparent

(Mean = 42.36, SD = 15.69, p < 0.001), adaptive (Mean =

44.10, SD = 17.87, p < 0.0005), and explainable (Mean =

47.12, SD = 22.03, p < 0.0001) conditions when

interdependence was low. When interdependence was high,

FIGURE 2
Interaction plots of the effects of communication style and interdependence on the dependent variables trust, reliance, workload, and situation
awareness. (A) shows the relative treatment effects of communication style on trust across interdependence. The y-axis is the conventional graphical
representation of the non-parametric ANOVA we used. It represents the relative marginal effect of the different communication styles across
interdependence. The higher is the value on the y-axis, the higher is the corresponding trust value/score. Error bars represent the 95%
confidence intervals of the relative marginal effects. (B) shows the relative treatment effects of communication style on reliance across
interdependence. The higher is the value on the y-axis, the higher is the corresponding reliance percentage value/score. Error bars represent the 95%
confidence intervals of the relative marginal effects. (C) shows the effects of communication style on workload across interdependence. The y-axis
represents the mean workload. Error bars represent the 95% confidence intervals of the mean workload scores. (D) shows the effects of
communication style on situation awareness across interdependence. The y-axis represents the mean situation awareness scores. Error bars
represent the 95% confidence intervals of the mean situation awareness scores.
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results showed a significant difference in SA scores between

the silent baseline (Mean = 56.25, SD = 17.83) and only the

explainable condition (Mean = 70.93, SD = 11.13, p < 0.05).

We analyzed the simple main effect of interdependence on

SA for each communication condition using a paired-samples

t-test. Results showed statistically significant differences in mean

SA scores between the high and low interdependence conditions

for the silent (Mean High = 56.20, SD High = 17.80; Mean Low =

18.10, SD Low = 13.00) (t (17) = -10.00, p < 0.0001, d = 2.36),

transparent (Mean High = 59.10, SD High = 18.30; Mean Low =

42.40, SD Low = 15.70) (t (17) = -3.07, p < 0.01, d = 0.72),

adaptive (Mean High = 68.90, SD High = 10.60; Mean Low =

44.10, SD Low = 17.90) (t (17) = -4.68, p < 0.0005, d = 1.10), and

explainable (Mean High = 70.90, SD High = 11.1; Mean Low =

47.10, SD Low = 22.00) (t (17) = -4.84, p < 0.0005, d = 1.14)

conditions. Figure 2D shows the interaction plot of the effects of

TABLE 3 Descriptive statistics for the dependent variables trust and reliance. Values correspond to the data points of the plots in Figures 2A,B.

Variable Communication Interdependence Mean Rank (SD) RTE 95% CI

Trust Silent Low 33.61 (27.13) 0.23 [0.17 0.31]

Silent High 33.00 (28.91) 0.23 [0.16 0.31]

Transparent Low 97.14 (35.41) 0.67 [0.56 0.78]

Transparent High 72.56 (38.15) 0.50 [0.39 0.61]

Adaptive Low 96.19 (27.59) 0.66 [0.57 0.74]

Adaptive High 80.36 (41.55) 0.55 [0.43 0.67]

Explainable Low 95.81 (34.92) 0.66 [0.56 0.75]

Explainable High 71.33 (38.10) 0.49 [0.39 0.59]

Reliance Silent Low 79.58 (49.52) 0.55 [0.41 0.68]

Silent High 33.06 (27.36) 0.23 [0.17 0.31]

Transparent Low 97.08 (26.04) 0.67 [0.58 0.74]

Transparent High 42.31 (26.01) 0.29 [0.22 0.38]

Adaptive Low 109.83 (26.20) 0.76 [0.67 0.82]

Adaptive High 62.22 (30.90) 0.43 [0.34 0.52]

Explainable Low 95.72 (39.29) 0.66 [0.54 0.76]

Explainable High 60.19 (31.65) 0.41 [0.32 0.51]

TABLE 4 Descriptive statistics for the dependent variables workload and situation awareness (SA). Values correspond to the data points of the plots in
Figures 2C,D.

Variable Communication Interdependence Mean (SD) 95% CI

Workload Silent Low 39.35 (18.07) [31.00 47.70]

Silent High 44.60 (18.31) [36.14 53.06]

Transparent Low 34.58 (13.48) [28.36 40.81]

Transparent High 39.21 (15.43) [32.08 46.34]

Adaptive Low 33.93 (16.68) [26.23 41.64]

Adaptive High 36.67 (16.59) [29.00 44.33]

Explainable Low 30.23 (12.59) [24.41 36.04]

Explainable High 37.18 (16.52) [29.54 44.81]

SA Silent Low 18.06 (13.02) [12.04 24.07]

Silent High 56.25 (17.83) [48.01 64.48]

Transparent Low 42.36 (15.69) [35.11 49.61]

Transparent High 59.12 (18.30) [50.67 67.58]

Adaptive Low 44.10 (17.87) [35.84 52.35]

Adaptive High 68.87 (10.55) [64.00 73.75]

Explainable Low 47.12 (22.03) [36.95 57.30]

Explainable High 70.93 (11.13) [65.79 76.07]
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communication style and interdependence on SA scores, Table 4

shows the descriptive statistics for each combination of

communication style and interdependence.

4.2.5 Team performance
Since the data was not normally distributed in most cells of

the experimental design, we conducted the non-parametric rank

based ANOVA. Results showed a statistically significant main

effect of interdependence (F (1) = 76.81, p < 0.0001, effect size =

1.03) on performance, revealing a statistically significant

difference in team performance between the low (RTE = 0.61,

Mean Rank = 87.70, SD Rank = 36.54) and high (RTE = 0.39,

Mean Rank = 57.30, SD Rank = 41.23) interdependence

conditions. Figure 3A shows the interaction plot of the

FIGURE 3
Interaction plots of the effects of communication style and interdependence on the dependent variables team performance, human rescue
contribution, and humanmessages sent (A,B,C). Boxplots of system understanding for each of the communication style conditions (D). (A) shows the
relative treatment effects of communication style on performance across interdependence. The y-axis is the conventional graphical representation
of the non-parametric ANOVA we used. It represents the relative marginal effect of the different communication styles across
interdependence. The higher the value on the y-axis, the higher is the corresponding performance value/score. Error bars represent the 95%
confidence intervals of the relative marginal effects. (B) shows the relative treatment effect of communication style on human rescue contribution
across interdependence. The higher the value on the y-axis, the higher is the corresponding human rescue percentage value/score. Error bars
represent the 95% confidence intervals of the relative marginal effects. (C) shows the relative treatment effects of communication style on human
messages sent across interdependence. The higher the value on the y-axis, the higher is the corresponding number of messages sent by the
participants. Error bars represent the 95% confidence intervals of the relative marginal effects. (D) shows the effects of communication style on
system understanding. The y-axis represents the mean understanding scores. ***p<0.0005. ****p<0.0001.
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relative effects of communication style and interdependence on

performance scores, exact relative treatment effects (RTE) and

corresponding mean ranks can be found in Table 5.

4.2.6 Human rescue contribution
Because the data was not normally distributed in most cells,

we conducted the non-parametric rank based ANOVA. Results

showed a statistically significant interaction between

communication style and interdependence on human rescue

contribution (F (2.95) = 3.03, p < 0.05, effect size = 0.35).

We analyzed the simple main effect of communication on human

rescue contribution during each interdependence condition

using a Kruskal-Wallis test. Results showed that the simple

main effect of communication style was not significant during

both interdependence conditions. We analyzed the simple main

effect of interdependence on human rescue contribution for each

communication condition using the relative treatment effects

test. Results showed a statistically significant difference in relative

treatment effects between the low and high interdependence

conditions for the silent (RTE Low = 0.35, RTE High = 0.72, p <
0.0001) and transparent (RTE Low = 0.37, RTE High = 0.60, p <
0.005) conditions. Figure 3B shows the interaction plot of the

relative effects of communication style and interdependence on

human rescue contribution scores, exact relative treatment

effects (RTE) and corresponding mean ranks can be found in

Table 5.

4.2.7 Number of human messages sent
Since most assumptions of a mixed ANOVA were violated,

we conducted the non-parametric rank based ANOVA. Results

showed a statistically significant interaction between

communication style and interdependence on the number of

human messages sent (F (2.77) = 5.45, p < 0.005, effect size =

0.57). We analyzed the simple main effect of robot

communication style on human messages sent using a

Kruskal-Wallis test. Results showed that the simple main

effect of communication style was not significant during both

interdependence conditions. Next, we analyzed the simple main

effect of interdependence on human messages sent for each

communication style condition using the relative treatment

effects test. Results showed a statistically significant difference

in relative treatment effects between the low and high

interdependence conditions for the transparent (RTE Low =

0.37, RTE High = 0.68, p < 0.0001), adaptive (RTE Low = 0.31,

TABLE 5 Descriptive statistics for the dependent variables team performance, human rescue contribution, and number of human messages sent.
Values correspond to the data points of the plots in Figures 3A–C.

Variable Communication Interdependence Mean Rank (SD) RTE 95% CI

Performance Silent Low 68.58 (43.65) 0.47 [0.36 0.59]

Silent High 41.64 (44.40) 0.29 [0.19 0.43]

Transparent Low 93.47 (30.80) 0.65 [0.54 0.73]

Transparent High 62.03 (36.31) 0.43 [0.33 0.54]

Adaptive Low 89.31 (32.35) 0.62 [0.51 0.71]

Adaptive High 60.61 (38.10) 0.42 [0.31 0.54]

Explainable Low 99.44 (33.23) 0.69 [0.59 0.77]

Explainable High 64.92 (44.73) 0.44 [0.33 0.58]

Contribution Silent Low 50.97 (40.83) 0.35 [0.25 0.48]

Silent High 103.56 (40.31) 0.72 [0.58 0.81]

Transparent Low 53.06 (30.73) 0.37 [0.28 0.46]

Transparent High 86.19 (37.23) 0.60 [0.48 0.70]

Adaptive Low 60.78 (40.97) 0.42 [0.31 0.54]

Adaptive High 73.33 (36.35) 0.51 [0.40 0.61]

Explainable Low 68.97 (40.27) 0.48 [0.36 0.60]

Explainable High 83.14 (34.57) 0.57 [0.47 0.67]

Human Messages Silent Low 72.19 (51.81) 0.50 [0.36 0.63]

Silent High 75.19 (48.71) 0.52 [0.39 0.64]

Transparent Low 53.83 (30.60) 0.37 [0.28 0.48]

Transparent High 98.33 (27.62) 0.68 [0.58 0.76]

Adaptive Low 44.97 (25.57) 0.31 [0.23 0.40]

Adaptive High 88.33 (36.11) 0.61 [0.49 0.71]

Explainable Low 59.11 (43.41) 0.41 [0.29 0.54]

Explainable High 88.03 (36.95) 0.61 [0.49 0.71]
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RTE high = 61, p < 0.0001), and explainable (RTE Low = 0.41,

RTE High = 0.61, p < 0.01, r = 0.56) conditions. Figure 3C shows

the interaction plot of the relative effects of communication style

and interdependence on human messages sent, exact relative

treatment effects (RTE) and corresponding mean ranks can be

found in Table 5.

4.2.8 System understanding
Because the data was not normally distributed in 1 cell of the

design and since there was no homogeneity of variances, we

conducted a Kruskal-Wallis test. Results showed that there were

statistically significant differences in system understanding

between the communication style conditions (χ2 (3) = 48.30, p

< 0.0001, η2 = 0.32). Pairwise comparisons using Dunn’s

procedure with a Bonferonni correction revealed statistically

significant differences in understanding scores between the

silent baseline (Mean Rank = 32.72, SD Rank = 31.51) and

transparent (Mean Rank = 73.83, SD Rank = 36.93) (p < 0.0005),

adaptive (Mean Rank = 89.72, SD Rank = 32.74) (p < 0.0001),

and explainable (Mean Rank = 93.72, SD Rank = 35.59) (p <
0.0001) conditions. Figure 3D shows the boxplots of system

understanding for each of the communication style conditions.

4.3 Predicting team performance

We ran a multiple linear regression analysis to determine

whether we could predict a quantitative outcome of team

performance based on the predictor variables situation

awareness, trust, reliance, workload, and human messages

sent. Moreover, we added experiment version as a predictor to

examine the presence of potential order effects and

interdependence as an interaction term to examine whether

the association between predictors and outcome depended on

the level of interdependence. Next, we used the GVLMA package

to check the linear model assumptions normality,

heteroscedasticity, linearity, and uncorrelatedness of the

model. Since not all assumptions were acceptable, we removed

the five unusual observations (out of a total of 144 observations).

Results showed that the regression model statistically

significantly predicted team performance (F (13, 125) = 7.11,

p < 0.0001, adj. R2 = 0.37). Furthermore, results showed that

only situation awareness (p < 0.0001), workload (p < 0.005),

and human messages sent (p < 0.001) added statistically

significantly to the prediction. When interdependence was low

an increase in SA of 1% was associated with an increase in team

performance of 0.10%, an increase in workload of 1% with a

decrease in team performance of 0.14%, and an increase in

human messages sent of 1 message with an increase in team

performance of 0.29%. When interdependence was high an

increase in SA of 1% was associated with an increase in team

performance of 0.27%, an increase in workload of 1% with a

decrease in team performance of 0.10%, and an increase in

human messages sent of 1 message with an increase in team

performance of 0.70%. Results also showed that the association

between situation awareness and team performance depended on

the level of interdependence (p < 0.05), with team performance

increasing at a higher rate with an increase in SA when

interdependence was high. Figure 4 shows the interaction

plots of the significant predictors. Finally, experiment version

(i.e., order) did not add statistically significantly to the prediction

of team performance.

5 Discussion and conclusion

5.1 Discussion

5.1.1 Trust
The results in Section 4.2.1, Figure 2A, and Table 3 clearly

show that robot communication results in significantly higher

trust in the robot. However, we did not find evidence for higher

trust in the robot when being explainable rather than transparent.

This is not in line with other studies demonstrating how

providing more reasoning information is related to increases

in trust (Boyce et al. (2015); O’Neill et al. (2020). Furthermore, we

observe that trust in the robot significantly decreases when

interdependence is high, which does not correspond with

other studies reporting that increasing interdependence

subsequently increases participant positive affect (Walliser

et al., 2017, 2019; O’Neill et al., 2020). One possible

explanation is that we increased interdependence not only by

removing the work division, but also by adding hard

interdependence relationships stemming from a lack of robot

capacity. Therefore, we believe it is crucial to carefully consider

the details of task interdependence and interdependence

relationships when comparing studies on interdependence in

human-robot teams. For example, two human-robot teams can

be highly interdependent but if one team is characterized by hard

interdependencies stemming from a lack of robot capacity and

the other by hard interdependencies stemming from a lack of

human capacity, it is not surprising when trust in the robot

differs significantly between these two teams. Another possible

reason for this result is that trust is only critical when human and

robot are highly interdependent, and therefore people judge it

more critically. This is in line with the claim that interdependence

relationships are the mechanisms by which relational trust is

established (Johnson and Bradshaw, 2021).

5.1.2 Reliance
For reliance the results show that people rely more on

RescueBot when it provides explanations, as demonstrated by

the significant difference in reliance scores between the

explainable and silent condition, and adaptive and both silent

and transparent conditions. This could be the result of the

specific message/explanation number one from Table 2,
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explaining the reason why RescueBot was moving to a certain

area (to pick up a certain victim). It is possible that when people

received this explanation, they were more inclined to let

RescueBot complete this goal rather than engage in the same

tasks, showing benefits to the coordination of work. The results

further show a significant decrease in reliance during high

interdependence, as clearly visualized in Figure 2B. This could

be explained by the similar significant decrease in trust scores

when interdependence is high. Since trust can impact reliance

upon and use of autonomous AI systems (Parasuraman and

Riley, 1997; Dzindolet et al., 2003; Schaefer et al., 2017), the

decrease in trust during high interdependence might have

resulted in a corresponding decrease in reliance upon

RescueBot to rescue victims found by the human participants.

5.1.3 Workload
Results further show no evidence for an increase in workload

when adding explanations to transparency, which is in line with

the results in Mercado et al. (2016); Chen et al. (2018); Selkowitz

et al. (2017). This indicates that dynamic adaptation based on

workload might not be necessary in this type of task and scenario.

Furthermore, we observe a higher workload when human and

FIGURE 4
Predicted values of team performance based on the statistically significant predictor variables situation awareness (SA), workload, and human
messages sent. Intervals represent the lower and upper bounds of the 95% confidence intervals for the predicted values. (A) shows the predicted
changes in team performance with changes in the predictor variable situation awareness, at both interdependence levels. (B) shows the predicted
changes in team performance with changes in the predictor variable workload, at both interdependence levels. (C) shows the predicted
changes in team performance with changes in the predictor variable human messages sent, at both interdependence levels.
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robot are highly interdependent. This could be due to the

increasing importance of coordination and collaboration

(Johnson et al., 2014; Singh et al., 2017), resulting in more

human effort to stay aware of the robot’s behavior and inform

the robot about own behaviorThis might be the result of the high

interdependence condition having a more difficult task, which

corresponds with earlier work showing how task difficulty is

associated with higher workload (Wright and Kaber, 2005; Fan

et al., 2010; O’Neill et al., 2020). Another possibility is that being

highly interdependent requires more human effort, because it is

crucial to stay aware of the robot’s behavior.

5.1.4 Situation awareness
The results also show how the effects of communication style

on situation awareness depend on the level of interdependence.

More specifically, robot communication results in a significantly

higher situation awareness when interdependence is low.

However, when interdependence is high only repeatedly

providing explanations results in a significantly higher

situation awareness than being silent. One possible

explanation for these results is that during the high

interdependence scenario, the silent baseline did communicate

something: the information related to the required dependencies

(asking for help). However, it seems unlikely that sharing only

this information can account fully for this finding. Therefore,

another possibility is that being highly interdependent increases

SA irrespective of communication style, as it is more necessary to

complete the task well and people, therefore, pay more attention

already. This is also underlined by the significantly higher SA

during high interdependence, observed for all communication

style conditions. As people seem to already pay more or less

attention to their robot teammate depending on interdependence

levels, it is crucial to understand these levels when designing

explanations for any type of future applications. A final

suggestion is that only explainability adds crucial information

required for a higher situation awareness than just being highly

interdependent can already account for.

5.1.5 Team performance
For team performance, we first observe a significant decrease in

performance scores when interdependence is high. This does not

align with other studies reporting how increasing interdependence

subsequently increases team performance (Walliser et al., 2017,

2019; O’Neill et al., 2020). One possible explanation is that

increasing interdependence also increases the need for

coordination and collaboration (Johnson et al., 2014; Singh et al.,

2017), which in turn results in a more challenging and demanding

scenario. This interpretation also aligns with the observed increase in

communication frequency (for all conditions except the baseline)

and higher workload when interdependence is high. Consequently,

this more challenging and demanding scenario could have resulted

in a decrease in performance.

The results further show that in our task and scenario, only

situation awareness, workload, and human messages sent are

significantly associated with team performance. More

specifically, increasing SA, decreasing workload, and

increasing the number of human messages sent are associated

with increases in team performance. In terms of humanmessages

sent, the result can be considered surprising as earlier work

showed that a greater number of team messages shared was

associated with lower team performance (Cooke et al., 2016). It is

also surprising that our results do not show evidence for a

significant positive association between trust and team

performance, as previous works in both human-human and

human-robot teams did (Korsgaard et al., 1995; Zaheer et al.,

1998; Wieselquist et al., 1999; You and Robert, 2018). This

suggests that (in our task and scenario) situation awareness,

workload, and human messages sent are more important to team

performance than trust in the robot. However, when the task and

scenario get more risky, trust in the robot may become more

important (Johnson and Bradshaw, 2021).

We also observe how increasing SA is associated with a

significantly higher increase in team performance when

interdependence is high. All in all, our results provide

valuable insights into the mechanisms driving HART

performance (O’Neill et al., 2020). Based on these results, we

advice to pay special attention to SA, workload, and

communication when designing/developing human-robot

teams, while also accounting for the level of interdependence

between human and robot.

5.1.6 Human rescue contribution
Results further show how the effect of interdependence on

human rescue contribution depends on the communication style

of RescueBot. More specifically, we observe a significant increase

in contribution during high interdependence only when

collaborating with the silent and transparent versions of

RescueBot. Put differently, only participants who did not

receive explanations for robot behavior significantly increased

contribution during high interdependence. This suggests that

interdependence only increases human contribution when the

robot does not provide explanations for its behavior. Therefore,

we speculate explanations are important to the coordination of

work between team members and can diminish the effect of

interdependence on contribution.

5.1.7 Number of human messages sent
Another result of note is the interaction between robot

communication style and interdependence on the number of

human messages sent. Results show how people increase their

amount of messages during high interdependence only when

RescueBot also communicates. This suggests that only people

collaborating with the communicating robots adjust their

communication frequency according to interdependence,
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highlighting a surprising effect of robot communication on

human communication.

5.1.8 System understanding
Finally, we observe significantly higher understanding scores

when RescueBot communicates. However, our results provide no

evidence that adding explanations to transparency results in

significantly higher understanding. This is not in line with

other studies demonstrating how providing more reasoning

information is related to increases in perceived understanding

of the autonomous agent (Harbers et al., 2011; O’Neill et al.,

2020).

5.2 Limitations and future work

5.2.1 Limitations
We identify a few limitations of our study. First, we chose to

conduct the experiment in an online setting as this allowed us to

simplify the task, remove robot-specific capabilities from the

considerations, and keep a safe distance from participants during

the global pandemic. This does mean that we did not have

physical embodiment for our agent, as a robot would have.

This embodiment might influence how much attention people

pay to the agent when it is in sight (Looije et al., 2012). On the

other hand, as many tasks (including search and rescue) would

always incorporate virtual messages due to distance between

team mates, we do not expect it to change our main findings.

Furthermore, our simplified and simulated environment

raises questions about the ecological validity. While this

environment made it relatively easy to program our agents,

environment, task, and communication protocols, it is hard to

determine how well these generalize to real world scenarios.

Currently, state of the art urban search and rescue robots or

drones are not approaching the levels of autonomy and

communication presented in our work. However, we believe

that the rapid developments in the fields of Robotics and

Artificial Intelligence will definitely allow these levels of

autonomy and communication to be achieved.

Another limitation concerns the use of only attributive/

causal explanations providing reasons for intentional behavior

and actions of RescueBot. The absence of large differences

between the transparent, explainable, and adaptive conditions

could be the result of these explanations not adding enough

additional information in our task and scenario. However, we

used this explanation type as they could consistently be provided

with each message sent by RescueBot without increasing message

length dramatically. For example, confidence, contrastive, and

counterfactual explanations could not be provided with each

message (especially confidence explanations) or would increase

message length considerably (contrastive and counterfactual

explanations specifically).

Finally, our mixed design introduced some potential

confounds such as learning and order effects. We actively

tried to address these potential effects by including an

extensive tutorial before participants started with the real

experiment. This way, we tried to ensure all participants had

similar and decent entry levels before starting the real

experiment. We still tested for potential order effects by i)

testing for differences in dependent variable outcomes

between the two experiment order versions and ii) including

interdependence condition order as a predictor in our regression

model predicting team performance. Both analyses did not

provide evidence for the presence of such order effects, as we

did not find significant differences in outcome scores between the

order conditions and order did not add significantly to the

prediction of team performance (see Sections 4.1, 4.3).

Furthermore, we also tested for potential learning effects by

testing for differences in the dependent variable outcomes

between the two time points. Again, our analysis did not

provide evidence for the presence of such effects (see Section

4.1), suggesting our tutorial worked as intended and our mixed

experimental design did not introduce learning or order effects.

5.2.2 Future work
We identify several possible directions for future work. We

did not find large effects of adapting the message content, but this

might still have an effect if done in other ways. Particularly,

personalization by tailoring communication using an explicit

user model and based on factors like user workload, trust in the

agent, or understanding of the system. For example, the system

could model the human using observations and human

communication and adjust its information sharing

accordingly. Other interesting contextual factors to investigate

in future work include adapting information sharing based on

different team member roles (e.g., supervisor vs. assistant) or

team tasks. Another suggestion for future work is to add different

explanation types such as confidence, contrastive, and

counterfactual explanations and investigate their importance

during human-robot teamwork on metrics such as trust and

understanding.

In future work it could also be interesting to add bidirectional

required dependencies to the human-robot team. In our current

task and scenario, only RescueBot lacked capacity resulting in

required dependencies. However, in future work, required

dependencies stemming from a lack of human capacity could

also be added, resulting in required support from RescueBot (e.g.,

with removing obstacles). Furthermore, soft interdependence

relationships could be added, for example when carrying a

victim together would be faster than carrying alone. It would

be interesting to examine how these scenarios affect trust in the

system compared to our scenario of unidirectional required

dependencies. As a final suggestion for future work, it could

be relevant to look into more complex and realistic scenarios and
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environments which more closely resemble the current state of

the art search and rescue robots.

5.3 Conclusion

Our study shows that the distinguished styles of robot

communication result in more trust in and understanding of

the robot, without increasing workload during the task. This

highlights the fundamental importance of robots communicating

their behavior to human teammates during teamwork.

Furthermore, our findings show that robot explanations result

in more reliance upon that robot, and that compared to sharing

nothing, only explainability results in a higher situation

awareness when interdependence is high. This highlights how

robots providing explanations for their behavior can benefit

human-robot teamwork. Finally, results demonstrate that

being highly interdependent decreases trust, reliance, and

team performance while increasing workload and situation

awareness. It also increases human communication frequency

when the robot communicates to its human teammate, human

rescue contribution when the robot does not provide

explanations, and the strength of the positive association

between situation awareness and team performance. This

underlines the crucial importance of carefully considering

interdependence during studies on human-robot teamwork.

Overall, our results show that there are important differences

betweenbeing transparent, explainable or adaptive in communications,

but that the level of interdependence between human and robot is

crucial in determining the exact effect that communication style has on

human-robot teamwork. Our findings highlight the importance of

interdependence on studies into explainability in robots, and provide

an important first step in determining how a robot should

communicate to its human teammates.
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