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a b s t r a c t 

Ground-level ozone is a critical atmospheric pollutant, and high concentrations of ozone can damage human 
health, affect plant growth and cause ecological harm. Traditional chemical transport models and popular ma- 
chine learning models have difficulty in predicting ozone concentrations, especially in times with high concen- 
trations. We proposes a clustering-based spatial transfer learning Multilayer Perceptron (SPTL-MLP) to predict 
ozone concentration at the target observation station for the next three days. We use k-means clustering algorithm 

to find similar stations and train them together to get a base model for spatial transfer learning. For practical 
applications, a weighted loss function has been designed with an extra emphasis on reducing prediction errors 
of high ozone concentrations. Evaluation using historical data of stations in Germany shows that our SPTL-MLP 
model has a smaller error (reduced by 9.13%) and higher prediction accuracies of ozone exceedances (improved 
by 8.21% and 16.9%) compared to MLP (without spatial transfer). The results demonstrate the effectiveness of 
the SPTL-MLP in the short-term ozone forecast. It can be used for timely warning of ozone exceedances and help 
governments to detect air quality. 
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. Introduction 

Tropospheric ozone is an air pollutant that is detrimental to hu-
an health and plant growth ( Fang et al., 2013 ). Long-term exposure

o high ozone concentrations increases the risk of respiratory disease
nd death ( Sicard et al., 2019 ). For the protection of human health,
he European Union’s (EU) air quality directives and the World Health
rganization (WHO) guideline both set thresholds for maximum daily
-hour 𝑂 3 mean concentrations (EU: 120 𝜇g/ 𝑚 

3 , WHO: 100 𝜇g/ 𝑚 

3 ). Ac-
ording to EU, the number of days with an ozone concentration exceed-
ng 120 𝜇g/ 𝑚 

3 should not be more than 25 days per calendar year. It is
ecessary to make short-term ozone forecasts such that timely warnings
r measures can be issued. 

In the presence of sunlight, tropospheric ozone is produced by chem-
cal reactions between oxides of nitrogen (NOx gases) and volatile or-
anic compounds (VOCs) ( Lu et al., 2019 ). The formation of tropo-
pheric ozone is described through the following reaction. 𝑁𝑂 2 is pho-
odissociated by sunlight to generate atomic oxygen (1), which com-
ines with 𝑂 2 to create 𝑂 3 (2). VOC oxidizes 𝑁𝑂 emitted by combustion
o 𝑁𝑂 2 , the precursor of ozone. 

𝑂 2 + ℎ𝜐 → 𝑁𝑂 + 𝑂 (1)
∗ Corresponding author. 
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 + 𝑂 2 + 𝑀 → 𝑂 3 + 𝑀 (2)

eanwhile, at nighttime and in the vicinity of large emissions of NO
e.g., power plants), ozone will react with 𝑁𝑂 2 and form nitrate radical
 𝑁𝑂 3 ) in reaction 3 ( Finlayson-Pitts and Pitts Jr, 1993 ). 

 𝑂 2 + 𝑂 3 → 𝑁 𝑂 3 + 𝑂 2 (3)

Changes in meteorological conditions such as incoming solar radi-
tion, temperature and humidity will affect the production of ozone.
eanwhile, wind speed, wind direction, boundary layer height, etc.
ill also affect the advection processes related to ozone and change the
zone concentration. Besides, a crucial factor that affects ozone concen-
ration is the emission of ozone precursors. The majority of emissions are
aused directly by human activities (e.g., industrial, agricultural, etc.)
nd can vary dramatically over a short time, which increases the diffi-
ulty of short-term ozone forecasting. It should be noticed that ozone
epletion in the stratosphere can also affect the tropospheric ozone.
lthough the ground-level ozone can hardly be affected by the slow
xchange of air across the tropospheric-stratospheric border, it can be
ffected by the radiation and climate changes caused by stratospheric
zone depletion ( Williamson et al., 2019 ). 
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Fig. 1. Distribution of air quality stations in Germany. 
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Chemical transport models (CTMs) are often used to predict short-
erm ozone concentration ( Sharma et al., 2017 ). Meanwhile, data as-
imilation (DA) methods are used in most of those studies to optimize
he initial or boundary conditions. Curier et al. (2012) used LOTOS-
UROS chemical transport model and an Ensemble Kalman Filter (EnKF)
o assimilate ground-level ozone concentrations over Europe. It is found
hat LOTOS-EUROS sometimes underestimates the ozone daily maxi-
um. Ryu et al. (2019) used the WRF-Chem driven by the Rapid Re-

resh (RAP) forecasting system and the Global Forecast System (GFS)
orecasts to simulate ozone for the next day over the Contiguous United
tates (CONUS). The RAP data assimilation can reduces ozone forecast
rrors at the first 3 forecast hours due to the improvements in the cloud
orecast skill during the initial forecast hours. However, it also turns
o overpredict the ozone concentration and gives more frequent false
larms. 

Previous studies have also discussed the limitation of CTMs and DA
ethods. The results are uncertain due to the error in meteorological

orecasting (temperature, wind, humidity, etc.) ( Hu et al., 2019 ). Be-
ides, it was found in previous model validation and intercomparison
tudies that CTMs have uncertainties and errors (uncertainties in emis-
ions, meteorological parameters, etc.) that will affect the prediction of
ir pollutants ( Otero et al., 2018 ). 

Recently, machine learning (ML) methods have been used to pre-
ict short-term ozone concentration ( Cheng et al., 2021; Wang et al.,
022 ). Instead of simulating complex atmospheric physical and chem-
cal processes, data-driven machine learning models make predictions
f ozone concentrations based on data itself. Zhan et al. (2018) used a
andom forest (RF) model to predict the daily maximum 8-h average
zone concentration (MDA8) in China. Feng et al. (2019) compared the
erformance of the traditional atmospheric model (WRT coupled with
MAQ) and multiple machine learning models (Multi-layer Perceptron
MLP), Random Forest, Recurrent Neural Network (RNN), etc.) by pre-
icting the surface MDA8 in Hangzhou. RNN performs the best among
ll machine learning models considered and has less error than the tra-
itional atmospheric model. Besides, a hybrid model based on convo-
utional neural networks and long short-term memory (CNN-LSTM) is
tilized to estimate MDA8 for the next day in Beijing City ( Pak et al.,
018 ). CNNs can extract the inherent features of huge amounts of air
uality and meteorological data, and LSTMs will capture the long-term
ependencies of the input time series data. 

Unlike traditional chemical transport models, machine learning
odels are not restricted by resolution and can better solve local prob-

ems (e.g., one-station ozone prediction). Meanwhile, traditional models
equire a pollutant emission inventory to simulate air pollution, which is
ostly to create and must be updated regularly. Machine learning models
o not require an emission inventory, nor do they need the simulation
f complex physical and chemical processes ( Feng et al., 2019 ). It will
ake much less time and resources to train the ML models. 

However, problems with machine learning ozone prediction models
annot be ignored. First, the response of the machine learning model to
zone changes is slow ( Sayeed et al., 2020 ). Typically, the model un-
erpredicts when the true concentration suddenly increases and over-
redicts when it suddenly declines. Meanwhile, it is difficult for ma-
hine learning models to capture extreme situations, such as ozone ex-
eedances. Because high ozone concentration can harm human health,
ccurate prediction of high ozone concentration is essential for provid-
ng early warning. However, due to the relatively small amount of high-
oncentration ozone observation data, it is difficult to train machine
earning models to predict such events accurately ( Gong and Ordieres-
eré, 2016 ). 

Transfer learning is a machine learning method that learns the tar-
et task through the transfer of the knowledge from a related task that
as already been learned ( Torrey and Shavlik, 2010 ). Transfer learn-
ng is currently widely used in the field of natural language processing
 Weiss et al., 2016 ), but it is rarely used in air pollution prediction.
a et al. (2019) used temporal transfer learning to transfer the knowl-
2 
dge from smaller temporal resolutions to larger temporal resolutions to
redict PM2.5 in one day and one week. Fong et al. (2020) used transfer
earning to predict PM2.5 at the target station based on the pre-trained
STM model for PM10. For stations that lack data, Ma et al. (2020) also
roposed a transfer learning-based stacked bidirectional long short term
emory (TLS-BLSTM) network to predict air quality 1 h ahead. 

This paper proposes a spatial transfer learning model to predict
zone concentration for the next one and three days in Germany. To
educe the prediction error, we do the clustering for all stations in Ger-
any to find similar stations. The cluster in northern Germany is taken,

nd one multi-station model is trained based on all stations in the same
luster. Spatial transfer learning ozone forecast models are trained for
arget stations based on the multi-station model, and the experimental
esults show that it can reduce the prediction error of ozone. To improve
he prediction accuracy of ozone exceedances, a weighted loss function
as been designed to ensure smaller errors in high ozone concentration
ata. With the weighted loss function, our transfer learning model can
ffectively improve the prediction accuracy of ozone exceedances. 

We start in Section 2 by describing the data processing and anal-
sis. Related machine learning methods and evaluation criteria in
ur research are illustrated in Section 3 . Section 4 shows the result
f clustering and comparison of the different ozone forecast models.
ection 5 shows the conclusion of the paper. 

. Data description and analysis 

.1. Data collection 

The data we used contains two parts: Air pollution data and me-
eorological data. The air pollution data is from German Environment
gency (Umweltbundesamt, UBA). We used the data from 2014 to 2018

or the experiment. 199 observation stations can provide the ozone and
itrogen oxides data we need at the same time. Figure 1 shows the dis-
ribution of the stations in Germany. 

The meteorological data we used is from German Meteorological Ser-
ice (Deutscher Wetterdienst, DWD) ( Bollmeyer et al., 2015 ). It provides
ourly reanalysis data over Europe with the grids of 6km 

∗ 6km resolu-
ion. The reanalysis is based on DWD’s operational NWP model COSMO
COSMO-REA6). We selected 6 meteorological factors (Rain, Incoming
olar Radiation, Relative Humidity, 10m Wind Direction, 10m Wind
peed and 2m Temperature) and the grid cell value of the grid cell in
hich station was located is taken. The details of interpolation is de-
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Fig. 2. Amounts of hourly ozone concentration. 

Fig. 3. Amounts of MDA8 data. 
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Table 1 

Statistical characteristics of centroids of different clusters. 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

𝑀𝑒𝑎𝑛 67.69 65.71 66.41 80.05 59.31 
𝑆𝑡𝑑 30.08 26.30 33.79 26.79 31.72 
𝑀𝑖𝑛 1.901 2.37 0.99 4.68 0.44 
25% 47.10 49.05 42.80 62.75 37.84 
50% 66.26 65.29 65.08 76.68 57.03 
75% 86.22 80.52 88.23 95.04 77.44 
𝑀𝑎𝑥 176.59 177.22 183.80 190.30 200.29 

t  

i  

a  

o  

T  

1  
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t  
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d
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c  
cribed in Section 2.2 . After that, we selected the data from 2014 to
018 in the corresponding 199 stations for experiments. 

.2. Data interpolation and processing 

We first need to interpolate the missing data in the air pollution
ata set. For ozone data, the highest missing rate for a single station is
3.19% and the average missing rate across all the stations is 2.72%.
or 𝑁𝑂 𝑥 data, the highest missing rate for a single station is 13.59%
nd the average missing rate is 2.17%. We use the temporal nearest-
eighbor interpolation method to interpolate data. Missing values are
lled by the nearest value in the same time series (same station) with
ython package ‘Scipy’ ( Virtanen et al., 2020 ). 

As mentioned in Section 2.1 , it is necessary to obtain the meteoro-
ogical data of each station from the grid cell data. For each station, we
rst find the nearest grid point and use the data from the grid point as
he data for the target station. L1 norm is used to calculate the distance.
n addition, since we want to detect the ozone exceedances of MDA8,
e need to convert hourly data into daily data. We calculate MDA8 for
zone data and the daily mean value for meteorological data and 𝑁𝑂 𝑥 .

.3. Data analysis 

We first use bar plots to show the distribution of ozone data from all
tations. We use intervals of 10 𝜇g/ 𝑚 

3 in Figs. 2 and 3 plot the dis-
3 
ribution of hourly ozone and MDA8. We can see that hourly ozone
s concentrated in the range of 0–10 𝜇g/ 𝑚 

3 (nighttime concentrations)
nd 50–60 𝜇g/ 𝑚 

3 . The number of samples decreases with increasing
zone concentration when the ozone concentration is above 60 𝜇g/ 𝑚 

3 .
here are only a few cases where the ozone concentration is higher than
00 𝜇g/ 𝑚 

3 . Similar behavior appears in Fig. 3 , with the difference that
he peak occurs around 70 𝜇g/ 𝑚 

3 . For MDA8, the amount of low concen-
ration ozone data ( < 10 𝜇g/ 𝑚 

3 ) is greatly reduced since the nighttime
oncentrations will not appear in 8-h max, which always takes place
uring the day. 

We selected a representative station DEBB029 (Schwedt, suburban,
ee Table 2 ) to analyze the temporal pattern of ozone concentration. We
an first find the periodicity through autocorrelation of ozone concen-
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Fig. 4. Autocorrelation of hourly ozone concentration. 

Table 2 

Station Information. 

Station code Lat Lon station name station type 

DEBB007 51.46 13.53 Elsterwerda suburban 
DEBB021 52.40 13.05 Potsdam-Zentrum urban 
DEBB029 53.06 14.29 Schwedt (Oder) suburban 
DEBB032 52.15 14.64 Eisenhuttenstadt suburban 
DEBB053 52.56 14.01 Hasenholz (Buckow) rural 
DEBB055 52.42 12.55 Brandenburg a.d. Havel suburban 
DEBB064 51.75 14.33 Cottbus urban 
DEBB065 52.19 12.56 Lutte(Belzig) rural 
DEBB066 51.90 14.06 Spreewald rural 
DEBB067 52.61 12.89 Nauen suburban 
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ration in Figs. 4 and 5 . The autocorrelation of hourly ozone reaches
 peak every 24-time steps, which matches the daily periodicity. How-
ver, no apparent periodicity of MDA8 can be found from autocorre-
ation analysis. The daily data will not be affected by solar radiation
nd temperature changes during the day and night. Meanwhile, MDA8
s mainly influenced by the daily maximum temperature, which has no
bvious periodic (synoptic scale weather) pattern in the short term. 

.4. Data transformation 

In machine learning, we consider ozone prediction as a time se-
ies prediction problem, which requires us to reconstruct the data
 Bontempi et al., 2012 ). Without loss of generality, the time series fore-
ast model can be summarized in Eq. (4) 

 𝑡 + 𝑑 = 𝑓 ( 𝑌 𝑡 , 𝑌 𝑡 −1 , ⋯ , 𝑌 𝑡 − ℎ +1 ) + 𝜀 (4)

here { 𝑌 1 , 𝑌 2 , … 𝑌 𝑡 + 𝑑 } is the time series, ℎ is the number of time-steps
sed as predictors, 𝑑 is the time-step ahead we want to predict and 𝑓 is
he forecast model. 𝜀 is the irreducible error. 

In the forecasting setting, the training data should be reconstructed
nto a [( 𝑡 − ℎ + 1) ∗ ℎ ] input matrix in Eq. (5) and a [( 𝑡 − ℎ + 1) ∗ 1] out-
ut vector in Eq. (6) . 
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𝑌 𝑡 + 𝑑−1 

⋮ 
𝑌 ℎ + 𝑑 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
(6) 

In our experiments, the input of the model can be divided into two
arts. The first part includes historical air pollution data, while the sec-
nd part contains both historical and feature reanalysis meteorological
ata. The machine learning model can be represented by the following
quation 

 𝑡 + 𝑑 = 𝑓 ( 𝑀 𝑡 + 𝑑 , 𝑀 𝑡 + 𝑑−1 , ⋯ , 𝑀 𝑡 − ℎ 1 + 𝑑+1 ; 𝑋 𝑡 , 𝑋 𝑡 −1 , ⋯ , 𝑋 𝑡 − ℎ 2 +1 ) + 𝜀 (7)

here 𝑀 is the meteorological data, 𝑋 is the air pollution data and 𝑂 is
DA8. 𝑑 is the time-step ahead we want to predict, while ℎ 1 and ℎ 2 are

umber of time-steps data used as input. 𝑓 is the forecast model and 𝜀
s the irreducible error. 

. Methods and evaluation 

.1. Clustering 

Clustering is a fundamental task in data mining that is used mostly as
n unsupervised learning method ( Rokach and Maimon, 2005 ). Cluster-
ng is the process of dividing a data set into different clusters according
o a specific criterion (e.g., distance), so that data with similar proper-
ies will be grouped together. Unlike classification, the goal of clustering
s not to predict the categories of the data but to discover a new set of
ategories. The structure of clustering can be represented as follows 

 = 

𝑘 ⋂
1 
𝐶 𝑖 (8)

 𝑖 

⋂
𝐶 𝑗 = ∅ 𝑓𝑜𝑟 𝑖 ≠ 𝑗 (9)

here 𝐶 𝑖 is a subset of dataset 𝑆. Any instance in 𝑆 belongs to one and
nly one subset. 

In our experiments, we need to divide all stations into different
roups and provide a basis for spatial transfer learning. Here we choose
he k-means algorithm for clustering ( Franklin, 2005 ). In the k-means
lgorithm, we first select the centroids of k clusters. Then we calculate
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Fig. 5. Autocorrelation of MDA8. 
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Fig. 6. Multilayer Perceptron. 
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he distance to the k cluster centroids for each sample and assign it to
he cluster with the smallest distance. We recalculate the cluster cen-
roids and all distances until a stop condition is reached (e.g., number
f iterations). The k-means algorithm has a low time complexity and
s also suitable for clusters of different sizes and shapes. Besides, the el-
ow method is used to determine the k-value. It is based on the idea that
ne should choose a number of clusters so that adding another cluster
oes not give much better modeling of the data ( Bholowalia and Ku-
ar, 2014 ). We use Python library scikit-learn( Pedregosa et al., 2011 )

or the k-means algorithm and elbow method. 

.2. Multilayer perceptron 

Multilayer Perceptron (MLP) is a class of feed-forward artificial neu-
al network (ANN) that consists of a system of interconnected neurons
 Gardner and Dorling, 1998 ). It represents a nonlinear mapping between
nput and output. MLP generally includes three different layers: one in-
ut layer, one or more hidden layers, and one output layer. Each layer
onsists of one or more neurons. The input layer passes the inputs to
he network and does not perform calculations. In the hidden layer and
he output layer, the nodes have weights and activation functions. Each
eural layer receives information from the previous layer and passes it
n to the next layer after processing. In MLP, neurons in each layer are
ully interconnected with neurons in the next layer, while neurons in
he same layer are not connected to each other. The structure of MLP
an be seen in Fig. 6 . 

.3. Transfer learning 

Transfer learning is a machine learning approach where a pre-trained
odel is reused in another task ( Tan et al., 2018 ). The goal of trans-

er learning is to improve the model performance in the target task
y transferring the information from the source task ( Torrey and Shav-
ik, 2010 ). It is usually used when the sample size is insufficient or the
odel is too complex. Transfer learning enables the target model to gain

nowledge before training, which gives the model a better initial perfor-
ance. Compared to training the model from scratch, transfer learning

an significantly reduce the time required for model training. Most im-
ortantly, when there is insufficient information in the target domain
5 
insufficient amount of data), it can transfer knowledge from the source
omain to the target domain and improve the model performance. 

In our research, we use network-based deep transfer learning to op-
imize the model. We use Python library Keras ( Gulli and Pal, 2017 )
ith the TensorFlow backend ( Abadi et al., 2015 ) for all deep learning
odels. A multi-station MLP model based on the data from all stations

n the same cluster is trained and used as a base model. The first few
ayers of the base model are treated as a feature extractor; the features
earned from the multiple similar stations are retained by the structure
nd parameters of the front layers. The remaining layers are treated as
 predictor and need to be retrained with the data from the target sta-
ion. Our framework will provide additional information from similar
tations and a better initial state for the model in the target station. The
tructure of transfer learning is depicted in Fig. 7 . 

.4. Evaluation criterion 

We use root mean squared error (RMSE) ( Chai and Draxler, 2014 )
nd coefficient of determination ( 𝑅 

2 ) to evaluate the forecast model.
here are two different thresholds (100 𝜇g/ 𝑚 

3 and 120 𝜇g/ 𝑚 

3 ) of ozone
xceedances and we use them both to evaluate the prediction accuracy
PA100 and PA120) of ozone exceedances. The result of the machine
earning model will be compared with the result for the free run (no bias
orrection, no data assimilation) of chemical transport model LOTOS-
UROS ( Manders et al., 2017 ). Ozone concentrations are extracted from
n operational simulation of air quality with LOTOS-EUROS model for
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Fig. 7. Network-based transfer learning. 
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018 (CAMS) at observation locations. The resolution of the simulation
s 0.1 x 0.1 degrees. 

. Experiment and analysis 

.1. Clustering 

In this section, we cluster the stations based on the statistical char-
cteristics of the ozone data and the geographic location of each station.
here are 9 input features for each station. For all 199 stations where
zone data exist from 2014 to 2018, we first calculate seven statistical
haracteristics of MDA8 for each station: mean, maximum, minimum,
tandard deviation, first quartile, second quartile, and third quartile.
t the same time, the longitude and latitude of the stations are used
s two additional features. Although stations already have category la-
els, these labels are mainly based on the geographic location (e.g., ur-
an, suburban, rural, etc.). Our clustering study focuses on the statistical
haracteristics of the ozone data, which can help us find stations with
imilar ozone pollution and provide the basis for our transfer learning
tudy. We also use location information as an additional feature so that
tations in the same cluster could have similar emission sources and
eteorological conditions. 

We use k-means algorithm to cluster the stations based on the above
eatures. To reduce the influence of different numerical ranges of the
eatures, we first normalize the data so that the mean of a single feature
s 0 and the variance is 1. We also need to set the number of clusters
k), which is selected by elbow methods. When the number of clusters
xceeds the actual number of groups (optimal number of clusters), the
dded information drops dramatically. The position of the bend (knee)
n the figure is considered an indicator of the appropriate number of
lusters. As shown in Fig. 8 , there is an inflection point at k = 5, so we
et the number of clusters to 5. 

The results of the clustering are shown in Fig. 9 . It can be seen that
he clustering result is influenced by the topographic distribution: Clus-
ers 1, 2, and 5 are located in the plains of central, northern, and western
ermany, respectively; Cluster 3 is located in the mountainous region
f southern Germany. The stations in Cluster 4 are mainly located near
6 
he mountainous regions of Germany’s southwestern and southeastern
orders. 

In order to better compare the difference of ozone between different
lusters, we compared the centroids of all 5 clusters. Table 1 shows that
he average annual ozone value is significantly higher at the southern
nd southwestern borders (Cluster 4) and lower in western Germany
Cluster 5). It might be caused by variations in average annual temper-
tures in different regions. The ozone peak in cluster 5 is much higher
han in other clusters due to the dense population and relatively warm
ummer conditions in western Germany. Owing to the colder winters
n southern Germany, the lower quartile and median of ozone in clus-
er 5 are noticeably lower. Besides, the statistical characteristics of the
zone data are similar for most of the stations in middle and eastern
ermany (Cluster 1–3), and the fluctuation of ozone gradually increases

rom north to south, which also fits the pattern of temperature fluctua-
ions in eastern Germany throughout the year. 

.2. 1-Station model 

.2.1. Model performance 

In our experiments, we first investigate the performance of different
eural networks to select the base model for spatial transfer learning.
LP, the most frequently used fully connected neural network, is com-

ared to CNN-LSTM ( Pak et al., 2018 ) and S-BLSTM ( Ma et al., 2020 ),
wo recurrent neural networks that perform well in recent ozone pre-
iction studies. In Cluster 1, ten stations with the starting code ”DEBB ”
ere selected for testing (see Table 2 ). Based on the data of a single

tation, MLP, CNN-LSTM and S-BLSTM are used respectively to predict
DA8 for the next day. The data from 2014 to 2017 are used as training

ata, and the data in 2018 are used to test. 
We need to determine the input time step length of input data ℎ 1 and

 2 in Eq. (7) . To simplify the model, we use the same values for ℎ 1 and
 2 and use ℎ to represent them. From 1 to 7, we gradually increase the
ength of the input time step and study the effect on the prediction re-
ults by cross-validation. We found that when ℎ > 3 , further increasing
he input time step does not have a significant impact on the prediction
esults. From the autocorrelation analysis in Section 2.3 , the autocorre-
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Fig. 8. Graph of Sum of Square Error (SSE) with different 
number of clusters. 

Fig. 9. Different clusters based on k-means algorithm for all German stations. 
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Table 3 

Result of MLP with different 𝛼 values at station DEBB029. 

𝛼 RMSE 𝑅 2 PA( > 100 ) PA( > 120 ) 

0 11.73 0.82 69% 65% 

2 11.96 0.83 77% 69% 

4 12.47 0.82 77% 67% 

6 13.09 0.81 81% 69% 

8 14.18 0.79 85% 79% 
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ation coefficient of the ozone concentration time series does not change
ignificantly after the time step interval exceeds 5. We choose ℎ = 5 in
he following experiment. 

A number of hyperparameters of the neural network model needs to
e determined before model fitting. For each set of inputs, we use all
 elements as features, including 2 air pollution elements and 6 meteo-
ological elements. Relu function is selected as the activation function,
nd Adam is selected as the optimizer. The structure of the forecast mod-
ls should be determined though cross-validation. The MLP contains two
ully-connected layers. The CNN-LSTM contains two CNN layers and two
STM layers, and the B-LSTM contains three Bidirectional LSTM layers.
ach hidden layer contains 100 neurons. An output layer containing one
euron is added after the hidden layers of each model. 

For practical applications, we designed a weighted loss function with
n extra emphasis on reducing prediction errors of high ozone concen-
rations ( Jafari et al., 2019 ). We are more concerned with high ozone
7 
oncentrations because of their greater impact on human health and
lant growth. Therefore, we give more importance and a higher weight
o high concentration ozone data during the model training process. The
oss function is shown in equation 10 and the hyperparameter 𝛼 will be
etermined through cross-validation. 

 ( 𝑦 ) = 𝑒 𝛼∗ 𝑦 ∗ ( 𝑦 − 𝑦̂ ) 2 (10)

y adjusting the weight term 𝛼, we can adjust the weights of different
oncentrations of ozone data to further optimize the model. The result
ith different 𝛼 values can be seen in Table 3 . 

When 𝛼 is 0, the loss function is the standard mean square error,
nd we consider all ozone data equally important. We can find that al-
hough the overall error of the model is low (RMSE is 11.52), it tends to
nderestimate high concentrations of ozone, which is a common prob-
em and has been reported in previous studies ( Fong et al., 2020; Ma
t al., 2022 ). As 𝛼 value becomes larger, the weight of the error of high
zone concentrations becomes higher. When an appropriate 𝛼 is cho-
en, we can slightly sacrifice the overall error to improve the prediction
ccuracy of high ozone concentrations. When 𝛼 is 2, the prediction ac-
uracy of ozone exceedances is improved to 77% and 69%, despite the
ncrease in RMSE (11.96). As the value of 𝛼 keeps increasing, the model
rror improves further, while the model tends to overestimate ozone
oncentrations. 

Table 4 shows the prediction performance of three deep learning
odels and the LOTOS-EUROS, where station DEBB029 is selected for

llustration in this section and the other stations will be further evalu-
ted in Section 4.3.2 . The weight term 𝛼 is decided by cross-validation
or different models. In terms of RMSE and 𝑅 

2 , the performance of the
hree ML models is similar and is slightly better than LOTOS-EUROS.
owever, in terms of prediction accuracy of ozone exceedances, espe-
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Fig. 10. Prediction of ozone concentrations in the summer of 2018 by different models. 

Table 4 

Result of different models on station DEBB029. 

Model RMSE 𝑅 2 PA( > 100 ) PA( > 120 ) 

MLP 11.96 0.83 77% 69% 

CNN-LSTM 11.48 0.84 81% 61% 

S-BLSTM 11.23 0.85 75% 65% 

LOTOS-EUROS 12.6 0.81 81% 74% 
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ially for ozone exceedances over 120 𝜇g/ 𝑚 

3 , all machine learning mod-
ls are much worse than LOTOS-EUROS. It suggests that 1-station ma-
hine learning models can predict overall trends in MDA8 but have dif-
culty predicting extreme cases, such as ozone exceedances. Figure 10
hows the predicted results for the summer (July-August-September) of
tation DEBB029. Overall, LOTS-EUROS performs the best in predicting
igh-level ozone concentration, while all three machine learning models
end to underestimate ozone concentrations in the summer. However,
one of the models mentioned above were able to predict the peak ozone
ccurred in early July. Compared to general conditions (low/medium
zone), the number of high ozone days (especially for exceedances) is
uch lower ( Ma et al., 2022 ). It makes it challenging to learn the rela-

ionship between ozone and meteorological conditions. 
In our experiments, MLP and LSTM models performed similarly in

zone prediction. Unlike general time series forecasting problems, the
nput data in our experiments include future meteorological data, mak-
ng the air pollution data and meteorological data at each time step not
orrespond perfectly, which adds difficulty to the training of LSTM. In
ddition, the data analysis in Section 2.3 shows that there is no obvious
emporal pattern in the short-term MDA8, which makes it difficult for
he model to find the temporal correlation in the time series. It prevents
STM from exerting its greatest advantage. Besides, the MLP converges
aster and requires less training time. Therefore, we use MLP instead of
STM in the later experiments. 

.2.2. Feature importance 

The feature importance of all input is ranked via permutation im-
ortance ( Galkin et al., 2018 ). When a single feature value is randomly
huffled, the importance values are calculated by the decrease in a model
core (RMSE in our case). A larger decline in the score indicates that the
8 
eature is more important to the output. In our research, we consider the
nput features at each time step separately to detect the temporal depen-
ence in the forecast model. Our input features, according to Eq. (7) ,
ontain two parts: (1) meteorological data (T,SWR,RH,RAIN,WD,WS)
n the future time step (t+1); (2) meteorological and air pollution data
 𝑂 3 , 𝑁𝑂 𝑥 ) in the historical time step (t,t-1,t-2,...) (Fig. 11) . 

The profiles of feature importance are similar but feature ranks can
iffer for the ten stations tested (see Table 2 ). Temperature T(t+1),
hortwave radiation SWR(t+1), and relative humidity RH(t+1) for the
uture time step, and ozone 𝑂 3 (t) for the current time step, are rated
n the top five for all ten stations. Regarding the sensitivity of data at
ifferent time steps, the latest data have the most significant impact
n the future ozone concentration. The meteorological features of the
oming time steps and the latest ozone data are critical. 

In terms of different features, T, SWR, and RH have more impact on
zone concentration ( Mao et al., 2020 ). Wind speed and direction data
ill influence future ozone in our model ( Wang et al., 2017 ). However,

hey are significantly less critical than meteorological features such as
he temperature since we currently consider only individual stations and
o not introduce spatial correlation. Rain data have almost no effect on
zone prediction due to the small fluctuations and the inclusion of rel-
tive humidity as input. Although 𝑁𝑂 𝑥 is a vital ozone precursor, his-
orical 𝑁𝑂 𝑥 data can hardly affect the model’s predictive performance.
t could be due to the rapidly changing anthropogenic NOX emissions
 Bae et al., 2020 ). 

.3. Spatial transfer learning model 

.3.1. Multi-station model 

In this section, we trained a multi-station 1-day ozone forecast model
sing machine learning methods. Training with multiple stations can in-
roduce more data into the model and avoid the problem of underfitting.
t also gives the model additional information about the spatial correla-
ion between different stations. To reduce the bias introduced by station
ifferences, we use the data from all stations in Cluster 1 to train a gen-
ral MLP model first. A total of 59 stations are included in Cluster 1,
here each station contains 1826 sets of daily data. We use the data

rom 2014 to 2017 of all stations as the training and validation set and
he 2018 data as test data. To evaluate the applicability of the model,
e selected data from different stations as the test set. 
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Fig. 11. Top 20 most important features of station DEBB029. 

Table 5 

Error analysis of results from 1S-MLP, RF, CNN-LSTM, MS-MLP, SPTL-MLP and LOTOS-EUROS. The observations in 2018 are taken as references (True values). 

Criteria Methods Station Code Mean 

DEBB007 DEBB021 DEBB029 DEBB032 DEBB053 DEBB055 DEBB064 DEBB065 DEBB066 DEBB067 

RMSE 1S-MLP 13.07 12.51 11.96 12.4 12.9 12.87 13.11 13.44 12.52 12.34 12.71 
RF 12.25 12.49 10.95 11.74 11.84 11.86 12.43 11.89 11.54 11.79 11.88 
CNN-LSTM 13.29 12.51 11.48 12.64 13.25 12.64 12.36 12.39 11.72 12.02 12.43 
MS-MLP 11.87 11.64 10.93 11.39 11.52 11.28 11.76 12.49 11.13 11.65 11.57 
SPTL-MLP 11.59 12.35 11.43 11.58 11.48 11.33 11.86 11.69 10.99 11.21 11.55 
LOTOS-EUROS 14.06 12.73 12.6 12.61 13.52 12.44 13.17 13.23 12.73 13.18 13.03 

𝑅 2 1S-MLP 0.85 0.86 0.83 0.85 0.81 0.82 0.83 0.86 0.80 0.85 0.84 
RF 0.87 0.86 0.86 0.86 0.84 0.85 0.84 0.88 0.86 0.86 0.86 
CNN-LSTM 0.84 0.86 0.84 0.84 0.80 0.83 0.84 0.87 0.85 0.86 0.84 
MS-MLP 0.88 0.88 0.86 0.87 0.85 0.86 0.85 0.87 0.85 0.86 0.86 
SPTL-MLP 0.88 0.85 0.85 0.87 0.85 0.86 0.85 0.88 0.87 0.87 0.86 
LOTOS-EUROS 0.83 0.85 0.81 0.84 0.80 0.84 0.82 0.85 0.82 0.83 0.83 

PA (100) 𝑎 1S-MLP 85% 75% 77% 88% 80% 78% 78% 80% 70% 80% 79% 

RF 80% 68% 73% 79% 71% 76% 71% 78% 70% 73% 74% 

CNN-LSTM 86% 70% 81% 88% 81% 82% 73% 80% 75% 85% 80% 

MS-MLP 75% 72% 74% 69% 73% 71% 69% 73% 73% 72% 72% 

SPTL-MLP 88% 85% 83% 88% 85% 86% 85% 85% 86% 85% 86% 

LOTOS-EUROS 84% 86% 81% 81% 78% 79% 82% 81% 84% 80% 82% 

PA (120) 𝑏 1S-MLP 77% 65% 69% 81% 63% 67% 69% 62% 65% 69% 69% 

RF 57% 65% 69% 53% 75% 67% 49% 62% 48% 50% 60% 

CNN-LSTM 79% 50% 65% 86% 75% 66% 63% 62% 61% 70% 68% 

MS-MLP 60% 62% 70% 75% 79% 62% 63% 62% 77% 58% 67% 

SPTL-MLP 80% 83% 82% 84% 83% 76% 83% 76% 81% 75% 80% 

LOTOS-EUROS 65% 81% 74% 63% 87% 76% 69% 57% 71% 73% 72% 

𝑎 Prediction accuracy of ozone exceedances with 100 𝜇g/ 𝑚 

3 threshold; 𝑏 Prediction accuracy of ozone exceedances with 120 𝜇g/ 𝑚 

3 threshold 
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There are some hyperparameters about neural networks that need to
e determined before model fitting. We still set the length of the input
ime window to 5. For each set of inputs, we use all eight elements
s features. MDA8 for the next day is used as the output. In different
xperiments, the number of layers varies from 1 to 5 and the number
f neurons in each layer is set to 50, 100, 150, and 200, respectively.
ased on the results of the 5-fold cross-validation, we choose a 4-layer
eural network with 50 neurons per layer as the configuration of our
eural network. Without loss of generality, we set 𝛼= 0, i.e., the regular
SE loss function. We repeat the experiment 10 times and calculate

he average of the predicted results. The result performance of different
odels for the ten stations is shown in Table 5 . 

We conclude that the trained multi-station model (MS-MLP) is ca-
able of predicting the ozone concentrations for different stations in
he same cluster. The MS-MLP has smaller errors compared with the 1-
s  

9 
tation model (1S-MLP). The RMSE of the MS-MLP is smaller than that of
he 1S-MLP at all tested stations, and it is able to capture the ozone trend
etter (larger 𝑅 

2 ). However, for the prediction of ozone exceedances at
ndividual stations, MS-MLP is not only much inferior to LOTOS-EUROS
ut also worse than the 1S-MLP model. Such as discussed earlier, the
xtreme events (i.e., ozone exceedances) are hard to predict. Training
he neural network using a larger data set from multiple stations seems
o strengthen the behavior of trying to optimize for the average cases
ince extreme events have an even lower share in the total input data
hen data from multiple stations are combined. 

.3.2. Spatial transfer learning model 

In this section, we use network-based transfer learning for spatial
ransfer to train models applicable to individual stations. The multi-
tation model is used as the base model. Ten stations selected in Cluster
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Fig. 12. A comparison of the temporal variation of MDA8 from the SPTL model and the observation in 2018 at station DEBB029. 
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 are used to test the effect of spatial transfer. The data from 2014 to
017 is used to train the model, and the 2018 data is used for the test.
e will conduct 1-day and 3-day MDA8 predictions for each station, re-

pectively. To evaluate the prediction performance of our transfer learn-
ng model, we compare our model with two different machine learning
odels that are used in the latest ozone prediction studies: Random For-

st ( Zhan et al., 2018 ) and CNN-LSTM ( Pak et al., 2018 ). The prediction
erformance of S-BLSTM ( Ma et al., 2020 ) is similar to that of CNN-
STM, so the results are not included. All machine learning models are
ompared with the 1-day forecast result of LOTOS-EUROS. 

Different local models that are applicable to different stations are
rained through spatial transfer. In the training process of the Spatial
ransfer Multilayer Perceptron (SPTL-MLP) model, one new parameter

s the number of frozen layers extracted from the base model. It deter-
ines how many layers of the base model need to be retained. In our ex-
eriment, the number of frozen layers is set from 1 to 4 and up to 4 MLP
ayers are added to the new model after frozen layers; each of them con-
ains 100 neurons. The parameters of the model, including the weight
erm of the loss function, are fine-tuned per station. Table 5 shows the
erformance of the 1-day forecast in the ten stations by different models.
esides, although the geographic characteristics were not considered as
n input in our model, retraining the models with specific meteorolog-
cal features at the target stations implicitly incorporates the geograph-
cal differences of the stations. It ensures that the prediction accuracy
ill not be significantly affected by geographical characteristics (e.g.,
ltitude). It is noticed that the model performances are not affected by
he original station type (Urban, Suburban and Rural, see Table 2 ). 

In terms of RMSE and 𝑅 

2 , all machine learning models perform bet-
er compared to LOTOS-EUROS, and MS-MLP and SPTL-MLP perform
he best. Most machine learning models perform poorly for the predic-
ion accuracy of ozone exceedances due to the insufficient high ozone
ata. Compared to 1S-MLP, SPTL-MLP has a much smaller error (re-
uced by 9.13%) and higher prediction accuracies (improved by 8.21%
nd 16.9%) based on the mean values of ten stations. It implies that spa-
ial transfer learning can retain additional information from the multi-
tation model and transfer it to the target model, which could signif-
cantly improve the prediction performance of MDA8. Meanwhile, re-
raining based on data from the target station ensures that the transfer
earning model can improve the prediction skills for the local problem.
10 
enerally, SPTL-MLP outperforms all other models, including the tra-
itional CTM. It indicates that SPTL-MLP can be used for MDA8 pre-
iction in German (see Appendix A) to make timely warnings of ozone
xceedances. 

Figure 12 shows the detailed predictions for station DEBB029. The
emporal variation of MDA8 during the 2018 predictive period is shown
n the left, and the scatter plots between observation and prediction of
DA8 are illustrated on the right. It can be seen that the predicted ozone

oncentrations of all machine learning approaches are in relative good
greement with the observations. Compared to LOTOS-EUROS, the ma-
hine learning approaches are more accurate in predicting ozone trends
or the beginning and end of 2018, while they tend to underestimate
zone peaks in the middle of the year (especially in the summer). The
oor performance of LOTOS-EUROS in the winter may be due to the
ncreased uncertainty of the boundary conditions, which do not affect
achine learning models. Among all machine learning models, the pre-
iction result from SPTL-MLP exhibits better agreement with the obser-
ation, while it can also capture more ozone peaks during the summer.
t should be noticed that although machine learning models tend to un-
erestimate peak ozone concentrations, there are some cases of over-
stimation of the high ozone concentrations in the summer. Machine
earning models have difficulty in responding on time to the sudden
rop in ozone concentrations following a peak ozone occurring in sum-
er, resulting in a potential overestimation in the next few days. For all
achine learning prediction methods, it can be seen that overestimation

ccurs after the peak ozone at the end of July. 
The same framework can also be used to predict MDA8 for the next

hree days. First, data of all stations in Cluster 1 are used to train the
-day forecast multi-station model, which is used as the base model
or spatial transfer learning. Then, we retrain the model with spatial
ransfer for each station and adjust the model parameters by cross-
alidation. Since we do not have the three-day prediction results for
OTOS-EUROS, we only show the result of machine learning models.
he average of all stations is shown in Table 6 . We can find that the
odel performance of SPTL-MLP is better than others, especially for the
rediction accuracy of ozone exceedances (81% and 75%). It suggests
hat the spatial transfer can also be used for 3-day ozone concentration
redictions, although the result is not as accurate as the 1-day forecast
odel. 
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Table 6 

3-day forecast result of different models on ten stations. 

Model RMSE 𝑅 2 PA( > 100 ) PA( > 120 ) 

MLP 13.08 0.82 72% 63% 

CNN-LSTM 12.95 0.81 70% 55% 

RF 12.71 0.83 65% 49% 

SPTL-MLP 12.46 0.84 81% 75% 
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. Conclusion 

This paper proposes a methodology framework with spatial transfer
earning to predict daily ozone concentration (MDA8) for the next three
ays. The data from 2014 to 2018 from stations in Germany are used to
est the models. The main contribution of this study can be summarized
s follows: (1) the multi-station model based on clustering is used as
 base model, which will provide additional information for the target
tation while reducing the bias caused by differences between stations.
2) the spatial transfer learning models can improve the prediction per-
ormance of MDA8 for the next three days. With a proper weighted loss
unction, SPTL-MLP can get accurate results for the prediction accuracy
f ozone exceedances, which is difficult for both CTMs and ML mod-
ls. (3) Compared to traditional chemical transport models, the transfer
earning model is not limited by grid resolution. Given the base model,
he model training and prediction require extremely little time (less than
ne minute), making it simple to update for varied scenarios. Although
he effect of substantial emission changes and special events (e.g., traffic
eduction due to COVID-19 lockdown) are not considered in our model,
egular retraining could be made to bring the model forward to the more
ecent regime. 

To improve the prediction performance of MDA8 for the local prob-
em, we trained the 1-station model by spatial transfer based on the
ulti-station model, which is trained by all stations in the same clus-

er. The SPTL-MLP model has smaller errors than LOTOS-EUROS and
ther machine learning models (including 1-Station MLP). It indicates
hat spatial transfer learning can retain the information from the multi-
tation model (information from other similar stations) and transfer it to
he 1-station model. With the weighted loss function, the SPTL-MLP is
ble to predict ozone exceedances accurately. The proposed methodol-
gy framework could be used for MDA8 prediction in German, including
11 
ewly established air quality monitoring stations with limited data (see
ppendix B), to help government and policymakers to detect ozone pol-

ution. 
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ppendix A. A case study of cities in other clusters 

To show the generalisability of proposed methods, cities located in
ifferent clusters were selected to test the prediction performance. In
his section, we selected four cities to evaluate the model: Berlin (Clus-
er 1), Hamburg (Cluster 2), Munchen (Cluster 3), and Koln (Cluster 5).
ased on the results of clustering (Section 4.1), we first trained four dif-
erent multi-station (MS) models for Cluster 1, 2, 3, and 5, respectively.
he parameter settings are the same as in Section 4.3.1 . For the four
ested cities, four different spatial transfer learning multilayer percep-
rons (SPTL-MLP) were trained based on different MS models. 1-station
LPs were trained separately to investigate the improvement of transfer

earning (see Section 4.2.1 ). The data from 2014 to 2017 is used to train
he model, and the 2018 data is used for the test. 

Figures A.1 , A.2 , A.3 , A.4 shows the prediction performances of
ransfer learning models for different cities. The predicted ozone concen-
rations of both machine learning approaches are in relative good agree-
ent with the observations, while the SPTL-MLP can better capture the

zone peaks in summer. It suggests that the proposed clustering-based
patial transfer learning model could be used to improve the prediction
erformance of MODA8 𝑂 3 in whole German. 
Fig. A.1. Berlin (Cluster 1). 
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Fig. A.2. Hamburg (Cluster 2). 

Fig. A.3. Munchen (Cluster 3). 

Fig. A.4. Koln (Cluster 5). 
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ppendix B. Impact of the time length of input data 

In previous studies, spatial transfer learning has been used for ozone
rediction, which aims primarily to improve model performance for new
tations with insufficient data ( Ma et al., 2020 ). The input of their model
ontains only ozone data and is only used for one-hour ozone forecasts.
ue to the differences in model application, input parameters, and fore-
ast length, we did not compare the two transfer learning methods. How-
ver, it is mentioned in the study that the time length of the input data
as an impact on the effect of transfer learning. For the target station, the
nfluence of transfer learning decreases as the time length of the input
ata increases. In our research, we also analyze the impact of the size of
nput data on transfer learning. Table B.1 shows the results of MLP and
PTL-MLP with different amounts of training data, where 2014/1/1 is
he starting date, while the different end dates make the lengths of the
nput data different. 

Table B.1 

RMSE of different time lengths on transfer learning at station DEBB029. 

Cutoff point (start: 2014/1/1) 2014-7-1 2015-1-1 2016-1-1 2018-1-1 

MLP 16.88 14.5 13.15 11.96 
SPTL-MLP 15.10 13.19 12.04 11.43 
Improvement 10.55% 9.03% 5.70% 4.43% 

We can find that the improvement of transfer learning for MLP grad-
ally decreases as the length of the input data increases. The improve-
ent of spatial transfer is the largest (10.55%) with six months of input
ata and the lowest (4.43%) with four years of input data. It suggests
hat our spatial transfer learning model can be utilized to improve short-
erm ozone forecast accuracy for newly established air quality monitor-
ng stations with little observed data. However, to ensure the prediction
erformance of ozone exceedances, we still need a certain length of his-
orical data to train the model due to the insufficient high-level ozone
ata. 
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