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Abstract

Nowadays, many cities are intending to reduce the use of private vehicles. Governments are
incorporating new mobility services and are adapting their parking policies to promote a
more sustainable mobility, as both strategies are believed to have the potential to reduce
private vehicle use. To understand the effects of these strategies, one needs to be able to
model complex travel behaviour up to a very high level of detail. Owing to their flexibility,
robustness and ability to model travel activity behaviour on an individual level, activity
based travel demand models (ABM) offer a highly suitable methodology for this purpose.

In this paper, we employ this methodology to perform a case study in a metropolitan
region in the Netherlands which surrounds and includes the cities of Rotterdam and The
Hague. This region is of vital economic importance and has a very developed and dense
road network. The population of this region is growing, which motivates the ambition to
improve its accessibility and move towards sustainable mobility. Therefore, the findings of
this study are important to similar regions seeking to do this as well.

After setting up a suitable, calibrated ABM able to perform a comprehensive study on
the effects of new mobility services and parking policy adaptations in the above-mentioned
region, we design seven scenarios to give quantitative answers to policy-related questions on
how altering features can reduce the extent to which private vehicles are used for travel-
ling. These features include the availability of mobility hubs (hubs on neighbourhood level
where sustainable travel modes are linked), the availability of car/bike sharing services, the
availability of ‘Mobility as a Service’ (MaaS) subscriptions, the amount of parking capacity
in the region and the parking costs. We also study what the impact would be of an im-
proved public transport service with lowered public transport travel times to and from the
city centers, and the impact of an improved cycling network infrastructure with significantly
lowered travel times for bike and e-bike travellers.

Based on the case study, we find that the introduction of mobility hubs alone has lim-
ited impact. However, combining this with making sharing services available to the public
through MaaS subscriptions, there is a potential to reduce the number of car trips signifi-
cantly, while the number of trips undertaken by a more sustainable (shared) e-bike increases
as well as the number of so-called multi-modal mode trips (trips undertaken by a combination
of various modes). Furthermore, improving the public transport service and micromobility
network further increases the potential of mobility hubs in terms of making mobility more
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sustainable. We also find that limiting parking capacity and increasing parking costs in the
city centers is especially helpful for the reduction of vehicle use, leading to an improved car
flow.

Keywords: Activity based travel demand modelling; parking; mobility hubs; new mobility services; case
study; Metropolitan region Rotterdam and The Hague

1. Introduction

Globally, we see that many cities, spurred by e.g. the effects of a growing population on the mobility
system, are intending to reduce the use of private vehicles to promote more sustainable mobility and create
a more livable environment. One strategy to achieve this purpose, the study of which recently gained
momentum, is the introduction of new mobility services (NMS) as defined in [1]. As further explained
and studied in that paper, these services refer to private or public transportation services that are mostly
available on-demand and are supported by mobile technology as well as real-time location data. They form
an alternative to privately-owned travel modes; NMS for example include ‘Mobility as a Service’ (MaaS),
which can be thought of as an integration of various modes (even within a single trip) into a single service,
accessible on demand and with a single payment application, obtained via seamless digital planning across
all modes available; see e.g. [2, 3, 4] and references therein. As MaaS provides users with multimodal mode
alternatives, it is believed that it offers a good alternative to private car use [5, 6, 7]. Another promising
example of NMS is formed by the promoted use of mobility hubs. Mobility hubs are hubs at a neighbourhood
level where at least two sustainable travel modes are connected to one another, such as bus stops and train
stations. Here, travellers use one mode to travel from the origin to the mobility hub and then switch to
another travel mode to continue their journey towards their destination, cf. [8, 9]. The third and final
category of NMS that we mention is that of shared mobility services, including the sharing of (e-)bikes and
cars. Due to the increased level of automation and electrification of vehicles, bringing the advent of the e-
scooter, e-bike, micro-car, etc., shared mobility services have generated a great deal of interest worldwide; cf.
[10, 11] and references therein. With shared mobility services, travellers have access to transportation mode
on an as-needed basis, which helps to reduce road congestion. Next to the introduction of NMS, another
strategy to obtain sustainable mobility may be to adapt parking policies in densely populated areas. For
example, increasing parking costs or reducing parking capacity may relieve the use of private cars in city
centers, since travellers may choose different travel modes or choose not to travel to these areas at all; cf.
[12].

Before the actual adoption of NMS and/or adapted parking policies, governments would like to know
their impact. For instance, the Dutch Ministry of Infrastructure and Water management recently sought
to know whether stimulating the use of light electrical vehicles can have positive effects on sustainability,
safety, accessibility and congestion of the Dutch infrastructure [13]. However, obtaining a comprehensive
understanding of how such measures affect our transportation system is not a trivial task, for a multitude of
reasons. First, each travelling individual may react differently to these policies. As a result, one needs to be
able to model complex travel behaviour down to the level of the individual activities of each traveller. Second,
since NMS include novel travel modes which, because of MaaS, may also be used as part of a multimodal
trip, one requires a model that is capable of integrating all these modes and combinations. Third, even
when a model incorporates all the required features, efforts required to do computations based on this
model may be infeasibly high. Fortunately, activity-based demand models (ABMs) offer a highly suitable
methodology for this purpose. With their ability to model a fine level of detail, ABMs allow individual
travellers’ characteristics to be taken into account, so that they are capable of capturing the heterogeneity
of travellers. Furthermore, they are flexible enough to incorporate new modes, and allow for implementations
that are fast enough so that results can be obtained within a reasonable amount of time, especially with
the help of speed-enhancing techniques such as parallel computing [14], the technique of common random
numbers [15] as well as appropriate bundling of travel modes [16]. In this paper, we therefore apply an ABM
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to investigate the effects of NMS and several parking policies. For more information on ABMs, see [17] and
references therein.

There have been multiple studies in the literature on several policies aimed at increasing sustainability
of the mobility system. For example, ABMs have been used to analyse the impact of different policies, such
as car access restriction, bus frequency and dynamic fare, on traffic congestion and air quality [18, 19, 20].
Those studies, however, incorporated only a small number of new modes. Moreover, access and egress
modes are not explicitly modeled, so that multimodal mode trips as a result of MaaS are not considered. In
the study of [9], the access and egress modes have been considered but only for public transport as a main
mode. Other models explicitly considering multimodal modes (that is, trip modes which actually incorporate
a multitude of modes, including access and egress modes) [21, 22] do exist, but even then only limited new
mobility modes or limited combinations of new modes are considered. In this study, we explicitly consider
the entirety of NMS as sketched above. To incorporate NMS in an ABM, we build on previous work [23],
where we have extended ActivitySim [24], an open platform for activity-based travel modeling, to include
multimodal modes as mode choices [23] at a complete tour level. As a result, with this implementation,
travellers can change modes at a mobility hub within a single trip. The travellers can also use sharing
services, such as shared cars, shared bikes or shared e-bikes. To keep the computational burden brought
by these extensions limited, this setup brings, through ActivitySim, the capability of using multiprocessing
of the computer to split up the computations on multiple processing cores. To this end, we draw on the
above-mentioned parallel computing techniques of [14] accelerate the computational speeds of the ABM.

In the remainder of this paper, we first set up an ABM and calibrate it using survey data. This ABM is
then used to conduct a case study to understand to what extent introduction of NMS (including MaaS and
mobility hubs) as well as adaptation of parking policies on capacity, searching time and costs can make the
mobility system more sustainable. It is worth mentioning that in this paper, we mainly use modal split as a
first-order-indicator for the level of sustainability. Other commonly used indicators such as emission levels
or air quality would require additional modelling. We also regard what the impact would be of an improved
public transport service resulting in lowered public transport travel times to and from the city centers, and
the impact of an improved cycling network infrastructure resulting in lowered travel times for bike and e-bike
travellers. For this purpose, we set up seven scenarios for the Metropolitan Rotterdam and Den Haag region
(MRDH) of The Netherlands, which we have selected as our case study area. This region is of economic
importance for the Netherlands (it represents 15% of gross national product in The Netherlands) and its
traffic network is very dense, as witnessed by the fact that the motorway between Rotterdam and Den Haag
is the busiest Dutch motorway [25]. Furthermore, the population in this area is growing, and the region
aims to improve the accessibility and strengthen the public transport network towards a more sustainable
mobility [26]. Since these features are typical for regions e.g. seeking to reduce private vehicle use, we expect
results for this region to be of interest for other regions as well. The questions that we wish to answer in
the case study are the following:

• To which extent do the mobility hubs help to reduce the number of car trips?

• When half of the total population would own a MaaS subscription, to which extent do the mobility hubs
in combination with sharing services contribute to more sustainable mobility in the MRDH region?

• To which extent can an improved cycling infrastructure and public transport service stimulate the
utilisation rate of mobility hubs?

• To which extent would the parking capacity and parking cost affect the car flow in the city centers of
the MRDH region (i.e., the centers of Delft, Rotterdam and The Hague)?

While we answer these questions fully and in detail at a later stage of this paper, we already mention that
mobility hubs alone do not alter car use that much. This changes, however, when MaaS subscriptions become
available. That is, car use then decreases because parking costs at destinations can be avoided. For example,
the car can be parked for free at a mobility hub and less expensive shared services are used to reach the
destination. At the same time, especially the use of e-bikes increases, while the introduction of MaaS also
increases the number of multimodal trips. Next, we will find that improving the infrastructure in favour of
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public transport and micromobility (i.e., bikes and e-bikes) significantly increases the potential of mobility
hubs further, while introducing more stringent parking policies may reduce car flow to a considerable extent.

The rest of this paper is organised as follows. Section 2 describes the ABM that we use for the case study
in more detail and explains the procedure used to calibrate the model. In Section 3, we give a description
of each of the scenarios that we consider to answer the research questions mentioned above, and we provide
model results for each of these. Finally, Section 4 presents detailed answers to these questions and provides
venues for further research.

2. Modelling Approach

In this section, we describe the activity-based modelling approach that we adopt in this paper. In
particular, Section 2.1 provides a detailed description of the ABM as well as its several components. Then,
Section 2.2 describes the choice models and their utility functions underlying the components, after which
we discuss the suitable estimation of coefficients of these utility functions in Section 2.3.

2.1. Model description

The goal of the ABM is to predict a complete activity schedule including travel modes used for every
travelling individual on any given day and given any scenario. This leads to travel demand forecasts specified
per travel mode, which can be used to measure the impact of NMS and parking policies in any scenario. To
create these schedules, our ABM consists of a series of choice components, each of which makes a decision
for every member in a synthesized population of the MRDH-region as obtained in [27]. We describe these
choice components in Section 2.1.1, after which we give separate attention to a choice component customly
coded for this study in Section 2.1.2.

2.1.1. Components of the ABM

The first component of the ABM makes long-term decisions on things such as the selection of school/work
locations for each individual traveller. Once all long-term decisions have been made, the main activity pur-
pose of the day is determined for each traveller (e.g. attend school, go to work) as part of the second
component of the ABM, taking into account the interaction with other household members. Having gener-
ated the main activity purposes, the next choice component of the ABM decides for each person the number
of mandatory tours, i.e., tours resulting from having to go to school and work, as well as the number of
non-mandatory tours, i.e., tours with the purpose of e.g. shopping, visiting an acquaintance or eating in a
restaurant. This decision includes the start time, duration, destination as well as the preferred travel mode
of each of these tours. The choice components hereafter make decisions concerning each tour. More precisely,
the number of trips per tour is determined, as well as the starting times of these trips, the durations, the
destinations and the trip modes.

The implementation that we use for the components is based on ActivitySim [24], but we adopt a
separately coded component for the trip mode choice, which was introduced in [23]. We do this mainly so
as to be able to model multimodal trips alongside the possible unimodal trips that ActivitySim is capable
of processing. This is essential for the modelling of NMS. While doing so, this mode choice component also
makes sure that all modes within a trip make up a consistent combination within a tour. For instance, a
private car cannot be used for an inbound trip if it was not used for the outbound trip, and the mode choice
component takes this into account.

2.1.2. The trip mode choice component

The main advantage of the trip mode choice component is its capability to incorporate a wide variety
of unimodal and multimodal modes, which we will proceed to describe now. First, we include in the model
seven mode categories that represent the seven most commonly used unimodal modes in the Netherlands:
walking (walk), cycling (bike), using an e-bike (ebike), driving a car (car), being a passenger in a car
(cp), demand-responsive transport (drt) and public transport (pt). Each of these modes, which are also
displayed in Table 1, represents a different combination of mode speed, vehicle weight, vehicle space per
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person and passenger capacity, so that the modes form seven categories that together represent more or
less the complete spectrum. For example, while the walking mode represents very slow travel modes, the
bike mode represents travel modes with a speed between 5 and 20 km/h, so that it covers (non-motorised)
scooters as well. At the same time, the e-bike mode is representative for modes with speeds between 20 and
30 km/h, so that it also covers e-scooters. The bike and e-bike modes together represent all micromobility
vehicles. The car mode represents other transportation modes with speeds over 30 km/h (which can be
electric or even autonomous). Meanwhile, car passengers (cp) can ride a private car with someone else from
their household, or use a shared car (such as a taxi). It is worth noting that the bike, e-bike and car modes
represent both private and shared vehicles. The remaining two categories are demand-responsive transport,
which includes minibuses, shared taxis and shuttles with a small passenger capacity. The final category
represents conventional public transport, including bus, tram, metro, and train. The vast majority of new
travel modes brought by NMS falls in one of these categories. We also note that when any of the categories
mentioned in this section except for walk is used as a unimodal mode, it is implicitly assumed that walk
is used as both the access and egress mode. This is a result of the fact that it is always necessary to walk a
short distance to and from, e.g., your bike, car, or public transport stop before and after using these modes.
Therefore, walk is presented as an access or egress mode in Table 1 for all unimodal modes, except for
walk itself. Although one could argue that these should then be considered multimodal modes, we still
regard these as unimodal modes for the purposes of this paper.

Apart from representing all unimodal modes, the choice component can form a wide variety of multimodal
modes within a single trip by combining them. That is, while all unimodal modes assume walking to be
the access as well as the egress mode as mentioned, multimodal modes depart from this assumption in that
for example a mode from the (e)bike category can also form an access and/or egress mode for a mode in
the car category. While it is tempting to include all 7 (access mode)× 7 (main mode)× 7 (egress mode) =
343 combinations as multimodal modes in the ABM, this comes with a huge strain on computational
requirements. It it also unnecessary, since for example the car will hardly ever serve as an access or egress
mode for a main mode from the bike category. The 25 out of 343 combinations that are most likely to be
used are included in the model; cf. [16] for an explanation of how these likely combinations are selected.
Table 1 provides a complete list of the unimodal and feasible multimodal modes

Connecting from one travel mode to another within a trip is done through a mobility hub, which can
accommodate several combinations of preceding and succeeding mode: car and pt, car and bike as well
as car and ebike. The mobility hubs enable an easy transfer between said modes. Thus, for instance,
in the morning, after walking to their car, travellers drive to a mobility hub, park their cars there and
then continue their trip by pt to their final destinations, leading to walk-car-pt as the used multimodal
mode. It is worth mentioning that a mobility hub does not take the order of modes into account: in the
afternoon, the travellers go back to the same mobility hub by pt and then drive their car back home, leading
to pt-car-walk as the used multimodal mode. While planning the trips, the ABM selects mobility hubs
in the following manner. It first selects feasible mobility hubs, meaning that within each origin-destination
zone pair, the mobility hub accommodates the transfer between the two modes and is not farther than 3 km
away from the intended destination if it is to be reached by the bike-mode, while this number reads 10 km
and 20 km in case of the pt and car mode, respectively. Afterwards, the best mobility hubs are selected
by checking which ones lead to the shortest travel distance.

2.2. Utility functions and their structure

All of the components of the ABM mentioned in Section 2.1 make their subsequent choices based on a
discrete choice model. This choice model assigns utilities to all possible alternatives between which a choice
needs to be made according to a utility function. The alternative which happens to have the highest utility
is then chosen. The components in the ABM that we use are all based on multinomial logit or probit models.
In the present section, we zoom in on the structure of the utility functions used in the various components.
This leaves the question of how to estimate the coefficients that appear in the utility functions. We will
leave this question for Section 2.3.
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Type Mode names

Unimodal modes

walk
walk-bike-walk
walk-ebike-walk
walk-car-walk
walk-cp-walk
walk-drt-walk
walk-pt-walk

Multimodal modes
(car as main mode)

walk-car-bike, bike-car-walk
walk-car-ebike, ebike-car-walk
walk-car-pt, pt-car-walk
walk-car-drt, drt-car-walk

Multimodal modes
(cp as main mode)

walk-cp-bike, bike-cp-walk
walk-cp-ebike, ebike-cp-walk
walk-cp-pt, pt-cp-walk
walk-cp-drt, drt-cp-walk

Multimodal modes
(drt as main mode)

walk-drt-bike, bike-drt-walk
walk-drt-ebike, ebike-drt-walk
walk-drt-pt, pt-drt-walk

Multimodal modes
(pt as main mode)

walk-pt-bike, bike-pt-walk, bike-pt-bike

Table 1: List of modes considered in this study.

2.2.1. Multinomial logit model

The components mentioned in Section 2.1.1, except for the customly coded trip mode choice component,
are based on a multinomial logit model. In such a model, the utility Ui,j assigned to any alternative i and
traveller j has the following form:

Ui,j = αi +

N∑
k=1

βi,k,altC
alt
i,k +

M∑
k=1

βi,j,k,travC
trav
j,k + ϵi,j . (1)

Next to an alternative-specific constant αi, this expression includes two sums, each representing the utility
contribution of several attribute values. In particular, the first sum,

N∑
k=1

βi,k,altC
alt
i,k

forms a linear combination of the attribute values Calt
i,1 , . . . , C

alt
i,N that represent N attributes specific to

alternative i, such as travel time and travel cost. Likewise, the second sum

M∑
k=1

βi,j,k,travC
trav
j,k

forms a linear combination of the attribute values Ctrav
j,1 , . . . , Ctrav

j,M that represent M attributes specific to
traveller j, such as age and income. The quality of the model typically depends on the selection of the
right attributes as well as the usage of carefully chosen accompanying coefficients βi,1,alt, . . . , βi,N,alt and
βi,j,1,trav, . . . , βi,j,M,trav. Finally, the utility function includes an error term ϵi,j . For the multinomial logit
model, these error terms are assumed to be independent and Gumbel distributed. This has the advantage
that the error terms do not actually need to be sampled, since under these assumptions a closed-form
expression exists for the probability that an alternative i has the highest utility; cf. [17, Chapter 2].
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2.2.2. Multinomial probit model

Not all components of our ABM implementation, however, follow a multinomial logit model. In the
multinomial probit choice model, the utility function of an alternative i retains the form of (1). However,
the error term ϵi,j is no longer assumed to be Gumbel distributed, but is assumed to be normally distributed
with zero mean and appropriate variance. This makes for the fact that multiple separate error terms can be
incorporated in the model easily, because a sum of normally distributed random variables is again normally
distributed. The Gumbel distribution in the multinomial logit choice model does not have this characteristic.
Because of this, we opt for the customly coded trip mode choice component in Section 2.1.2 to incorporate
a multinomial probit choice model. We do this, because of the fact that multiple error terms are included
in the utility function on a trip level as we see below, but also because one needs to be able to combine
the utilities of trip mode choices in a total utility of a tour mode choice combination. Since this requires
combining multiple error terms too, the ‘addition properties’ of the normal distribution make that this is
facilitated by the multinomial probit choice model, unlike the multinomial logit choice model.

The utility function of the multimodal mode alternatives of the trip mode choice component deserves
additional explanation. The reason for this is that multimodal mode alternatives consist of an access, a
main and an egress mode, rather than just a single mode. In particular, let us denote a multimodal mode
alternative i as a vector (iacc, imain, iegr), where iacc refers to the access mode, imain to the main mode, and
iegr to the egress mode of alternative. Then, the utility Ui,j of multimodal mode alternative i and traveller
j can be expressed as follows:

Ui,j =αimain
+

M∑
k=1

βi,j,k,travC
trav
j,k +

∑
k∈{acc,main,egr}

βik,time(STik +TTik)

+
∑

k∈{acc,main,egr}

βik, cost(Oik + SUik) +
∑

k∈{acc,main,egr}

βik,p-costPik

+
∑

l∈{(iacc,imain),(imain,iegr)}

βwalk,timeTl,transfer + βparkingln(PCimain
) + µi,j + ηi,j . (2)

In the remainder of the current section, we give an explanation of this utility function.

Alternative-specific constant and socio-demographic attributes. The first two terms on the right-hand side
of this equation also appear in (1) and serve similar purposes. That is, αimain

is a constant specific to the
main mode of the multimodal mode alternative i, while the second term represents the utility contribution
of M socio-demographic attributes specific to the traveller, such as age, the number of cars present in the
household, income and composition of the household, et cetera. Note that αimain is assumed to depend
only on the main mode of alternative i. We make this assumption to keep the number of coefficients that
require estimation limited. Incorporation of access and egress modes here requires a study of how to do this
efficiently and how to estimate the resulting new coefficients accurately, both of which are outside the scope
of this paper. It is also worth noting that the attributes which are only specific to the mode choice (and

not to the traveller) are presently not grouped in a single term
∑N

k=1 βi,k,altC
alt
i,k as in (1), but are instead

represented in the remaining, more detailed terms of (2), which are also discussed below.

Attributes dependent on access and egress modes. The next few terms of (2) pertain to attributes that are
very much dependent not only on the main mode, but also the access and egress modes. For example, the
term ∑

k∈{acc,main,egr}

βik,time(STik +TTik)

represents the utility contribution of the searching time (e.g. the time to look up and access an available
shared e-bike) and the travel time undertaken for the access, main and egress modes. The actual searching
time and travel time are given by the attributes STik and TTik , which are weighed through the coefficient
βik,time.
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In a similar vein, the terms∑
k∈{acc,main,egr}

βik, cost(Oik + SUik) +
∑

k∈{acc,main,egr}

βik,p-costPik

represent the utility contribution of the costs of the underlying modes. In particular, this term describes the
operational costs (Oik), start-up costs (SUik) and parking costs (Pik) of the access, main and egress mode.
It is worth noting that when any of the aforementioned properties are not applicable, the corresponding
value is set to zero. For example, we evidently have that Pwalk equals zero, as there is no such thing as
parking costs when walking. An exception to this is the value of PPT, which we assume to be non-zero
for reasons specified at the end of this section. Also, since parking costs are valued differently than the
operational and start-up costs, they are weighed through a separate coefficient βik,p-cost. Furthermore, we
mention that the travel times TT and costs O differ between private and shared vehicles. The answer to
the question which of the two sets of values should be used in any given situation depends on three personal
properties of the traveller, namely possession of a driving license, ownership of a car and possession of a
MaaS subscription. For example, in the case of the car mode, if a traveller does not own a car, inevitably
the attributes pertaining to a shared car are used. Hence, if shared modes can be used, they will be used,
even if a person owns a car and has a driver’s license. In all other cases, the attributes of private cars are
used. For the bike and e-bike modes, a similar mechanism is in place except for the fact that a driver’s
license is not required.

Effects of mode switching. The utility function (2) also contains a term that incorporates the utility ef-
fect of the transfer times as a result of switching from the access mode iacc to the main mode imain, and
as a result from switching from the main mode imain to the egress mode iegr. The first of these trans-
fers we denote by (iacc, imain), while the second is denoted as (imain, iegr). Given this notation, the term∑

l∈{(iacc,imain),(imain,iegr)} βwalk,ttTl,transfer includes these effects in the utility function, where Tl,transfer is the
transfer time of the specific transfer l.

It is important to mention that another distinction between possible transfers can be made. All transfers
within the multimodal modes listed in Table 1 take place at a mobility hub as a car-pt, car-bike or
car-ebike connection, except for the multimodal modes with public transport as a main mode, which we
describe separately at the end of the section. While many transfers (not involving public transport as a
main mode) implied by the multimodal modes in Table 1 can be trivially assigned to any of the three
connection types mentioned above (car-pt, car-bike and car-ebike), we note that transfers involving
the car and demand-responsive transport (drt) are all recorded as a car-pt transfer. At the same time,
transfers between demand-responsive transport and the bike (e-bike) is deemed to be a car-bike (car-
ebike) transfer.

The above distinction is not only made to specify which types of connections a mobility hub is geared
toward, but it also comes in handy for the purpose of determining the actual transfer time. That is, transfers
that qualify as car-pt connections are assumed to take eight minutes, based on [28], while, based on
empirical evidence, we set the transfer times of other connections at five minutes. It is also worth remarking
that all transfers are assumed to be done by walking, which is why we use βwalk,time as a coefficient for the
transfer time. Although one might argue that the value of time for transfers and waiting is higher than that
of walking, there are no data available on this to the best of our knowledge.

Parking capacity. The term βparkingln(PCimain) in (2) models the utility contribution of the parking ca-
pacity (PCimain

) at the destination. Since the difference between say 50 and 100 parking places is much
more profound than between 150 and 200 parking places, the parking capacity is included on a (naturally)
logarithmic scale. It should be noted that the parking capacity is mode-dependent. Since parking capacity
is only an issue when using the car mode, in the case study we set PCcar equal to the number of available
car parking spaces. For all other main modes, we set PCimain = 1, so that the amount of parking capacity
does not influence the associated utility.
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Error terms. What remains in the utility functions are the terms µi,j and ηi,j , which represent the errors
made in computing the utility of the multimodal mode. In line with [29], the first term µi,j is specific to
the mode and traveller. It models the personal preference with respect to a multimodal mode, and is not
resampled whenever the same mode/traveller combination is regarded for a different trip (both within a
tour or across multiple tours), so as to enforce consistency. The second term ηi,j is not only specific to the
mode and traveller, but also to the actual trip. This term models random effects not covered by µi,j , and is
resampled also when the same mode/traveller combination is considered for a different trip. As mentioned
before, both of these errors are assumed to follow a normal distribution with zero mean and appropriately
chosen standard deviation. We choose for a zero mean so as not to interfere with the alternative-specific
constant in the utility function. The standard deviations of the two error terms are chosen equally so
that the standard deviation of the sum of the two terms equals 10% of the average absolute utility. As
mentioned above, the benefit of the errors being normally distributed is that the sum of such errors will
again by normally distributed. This among other things comes handy when adding the utilities of several
trips together to obtain the utility of a complete tour. Then, the error terms corresponding to the complete
tour will again have a normal distribution. The multinomial logit model lacks this characteristic, which is
why the trip mode choice component follows a multinomial probit model.

Utility for multimodal modes with pt as main mode. In the discussion above, we deferred the treatment
of the utility of multimodal modes with public transport as the main mode. These multimodal modes are
different from other multimodal modes, because the transfer from an access mode to public transport and
that from public transport to the egress mode does not necessarily occur at a mobility hub. In fact, they
may occur at any access point to public transport. Multimodal trips involving transfers between public
transport and the bike are especially complicated, because from the input data (which we will discuss in
Section 3.1), we can only extract information on the entire time and cost of the complete multimodal trips,
but not separately per leg of the trip. As a result, the terms in the utility function (2) which describe
the contribution of travel time and cost for these multimodal trips cannot be computed by summing the
contributions of the access, main and egress modes separately, but rather, the utility function is now defined
as follows:

Ui,j =αPT +

M∑
k=1

βi,j,k,travC
trav
j,k + βPT,timeTTi + βPT, costOi + βPT,p-costPi + µi,j + ηi,j . (3)

Note that (3) has many terms in common with (2), which are already explained above. That is, just like
(2), the utility function has an alternative-specific constant αPT as well as the sum

M∑
k=1

βi,j,k,travC
trav
j,k

describing the contribution of all the socio-demographic features, and two error terms µi,j and ηi,j . As
implicated earlier, the terms βPT,timeTTi, βPT, costOi and βPT,p-costPi detailing the time and cost components
do not have separate contributions for the access and egress modes anymore. Also, these terms do not involve
e.g. searching time and start-up costs, since these are not applicable to the main mode of public transport,
as well as its usual access and egress modes, namely walk or bike. It should be noted, however, that (3)
does include a contribution for parking costs. In particular, we assume in this model that PPT = Pcar. While
this may strike as odd, since public transport induces no actual parking costs for travellers, high parking
costs in the neighbourhood may make public transport an attractive alternative for the traveller. Hence,
the associated coefficient βPT,p-cost is positive, unlike βcar,p-cost in (2).

2.3. Coefficients of the utility functions
Now that we have explained the structure of the utility function, we have to estimate suitable values of

the coefficients involved, namely the alternative-specific constant α as well as the β-coefficients that appear
in (1) and (2). We detail this process in this section. More particularly, in Section 2.3.1 we explain how we
select an initial set of values, after which these values are made subject to further calibration and validation
in Section 2.3.2.
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(a) Age distribution of the synthesized populations in the MRDH
region and the Bay Area

(b) Modal splits pertaining to commuting trips in the MRDH region
and the Bay Area

Figure 1: Comparison between the Bay Area and the MRDH region

2.3.1. Estimating coefficients using other regions

Estimating suitable values for the coefficients in the utility function is not a trivial task. Although many
of these parameters can be estimated based on the Dutch survey data OViN/ODiN [30], a lack of information
on e.g. household level remains, such as joined tours of multiple persons within a household. Furthermore,
the number of registered multimodal trips is also too low to estimate the parameters. It has been suggested
in the literature that in such case coefficients can be transferred based on their counterparts from other
regions, which are not too dissimilar from the region studied, cf. [31]. For example, in [32] coefficients
are transferred from an ABM study pertaining to a region, called the Bay Area, surrounding Los Angeles,
California, USA to one pertaining to the region of Berlin, Germany.

Spurred by this approach and inspired by the particular region used, we set out to discover whether it
is possible to transfer parameters found in the study of [33] to our setting. This study includes an ABM
studying a representative part of the above-mentioned Bay Area. The ABM simulates travelling activity on
a weekday to assist policy makers in this region in planning activities. From this point on, when we refer
to the Bay Area, we actually refer to this representative part of it, which covers the cities of San Francisco
and San Mateo.

To see whether the Bay Area is representative enough for the MRDH region, following the suggestions
made in [31], we first compare the demographic information of San Francisco and San Mateo in the Bay
Area, to the cities of The Hague and Rotterdam in the MRDH region. In doing so, we found that the average
number of persons in a household in the Bay Area, namely 2.4, is comparable to its counterpart 2.1 in the
MRDH region. Next, we regard the age distributions of the populations in both areas, which are displayed
in Figure 1a. The age distributions of both areas are quite similar, except perhaps for the fact that the Bay
Area consists of a higher percentage of individuals aged between 25 and 45 years, while the MRDH region
consists of more elderly people. Furthermore, the average number of private cars per household is 1.4 in the
Bay Area, while with 1.7 it is only slightly higher in the MRDH area. As such, one can conclude that from
a demographic point of view, the two regions are similar.

While the demographic similarity between the regions is encouraging, we also compare the travel modes
used by travellers in both areas. Regarding the mode choice of commuting trips, it turns out that the modal
splits of both areas differ significantly. That is, results in [30] and [34], depicted in Figure 1b, show that in
the Bay Area travellers mainly use the car and public transport, while cycling is far more popular in the
MRDH region. In line with conclusions from [31, 35], it is therefore not justified to simply copy all coefficient
values used in [34] for use in the utility functions of our model. Rather, these coefficients can be used as a
basis for further calibration and subsequent validation. We discuss these steps in the next section.
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2.3.2. Calibration and validation of coefficients

In this section, we describe the procedure that we used to further calibrate and subsequently validate the
coefficients transferred from [34]. The starting point of the calibration is a suitably synthesized population as
obtained in [27], which is representative for the MRDH region. These population data are further described
in Section 3.1, as they will serve as input data for the ABM model. For the purpose of calibration, we
select a fraction of 10% of this population, while making sure that this selection remains representative
for the complete population in terms of e.g. the age distribution. We perform the calibration process with
this fraction rather than the complete population, since it relieves the otherwise unfeasible computational
burden. Next to these data, the process of calibration and validation also requires a benchmark, and this role
is fulfilled by the Dutch survey data OViN/ODiN [30] pertaining to the population of the MRDH region.
A description of these survey data, as well as an overview of how these data were processed to act as a
benchmark, is given in Appendix A.1.

The calibration procedure that we use is the one described in [35]. In this procedure, the alternative-
specific constant αi as well as the coefficients pertaining to the travel time (βcar,tt and βPT,tt) and the travel
cost (βcar,cost and βPT,cost) of the car and public transport modes are tweaked so that the output of the
model using the new coefficient values reflects the situation as sketched by the benchmark data well. While in
principle we could have made all coefficients of (2) subject to alteration, we opted to tweak only specifically
these parameters, since these parameters are known to cause the biggest issues with transferability; cf.
[36]. The procedure is iterative: in each iteration, the ABM-model is run with the (10%-fraction of the)
synthesized population data under a current-day scenario, and the output of the model is compared to the
survey data in terms of measures such as modal split, purposes of tours undertaken and departure times
of the trips. Based on this comparison, the above-mentioned coefficients are altered slightly using damping
factors (cf. [37]). This process repeats until the coefficients hardly change anymore.

After undertaking this procedure, as can be seen in Appendix A.2, the model output of the ABM based
on (the fraction of) the synthesized population match sufficiently well with the survey data under the
current-day scenario. As a result, the model is now ready for use in a case study under possible future
scenarios.

3. Case study

Now that we have explained the model, regarded the underlying utility functions and calibrated their
parameters, we proceed with the case study in an effort to answer the questions mentioned in Section 1.
Broadly speaking, we explore whether NMS and parking policies lead to a more sustainable mobility. We
do this by running the ABM model for the MRDH region for the year 2030. We focus on this particular
year, since we will see below that forecasted data on different aspects of the population in this year exists.
In Section 3.1, we first explain the input data of the MRDH region on which the case study is based in more
detail. After this, Section 3.2 defines seven scenarios that we will use in order to address the questions raised
in Section 1 and reach conclusions. Each of these scenarios includes a significant change geared to improve
the sustainability of the mobility, for example the introduction of stricter parking policies, broader use of
MaaS by travellers or the introduction of an improved public transport service. Furthermore, Section 3.3
presents the results obtained by running the ABM model in these scenarios. Finally, Section 3.4 performs a
sensitivity analysis on some parameter models on the model in an effort to make sure that possibly unreliable
estimations do not impact the observations of the earlier sections.

3.1. Input data

As mentioned before, the region which the case study focuses on is the Metropolitan Region Rotterdam
and The Hague in the Netherlands, which has an area of about 1130 km2. The Dutch name for The Hague
is Den Haag, which leads to the commonly used abbreviated term MRDH region.

The first category of data that is relevant for the case study concerns data on the population of the
MRDH region. For this purpose, we use the population data of [27] pertaining to the year 2030 that was
synthesised through a population generator based on data of the Dutch governmental institution Statistics
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(a) The Netherlands consists of 7011 TAZs, 5924 of which represent
the MRDH region.

(b) The Hague, Delft and Rotterdam centers (cyan-blue blocks) and
mobility hubs (red points)

Figure 2: MRDH region in the Netherlands and main city centers

Netherlands (CBS) [38] pertaining to the year 2016. In particular, this synthesised population consists of
2.564.603 individuals spread over a total of 1.223.275 households. The synthesised population data contains
many characteristics of the population on an individual level such as age, possession of private vehicles, etc.
Concerning the age individuals, the data distinguish between five categories. That is, in 2030, 16% of the
synthesized population is younger than 15 years old, while 12% is at least 15 years old, but still younger
than 25 years old. A fraction of 28% of the population is between 25 and 45 years old, and a 23% large
fraction has an age between 45 and 65 years old. The remaining 21% of the population is older than 65
years old.

The second type of data that we rely on is from the V-MRDH 2.6 model in [39], which concerns the land
use of 7.011 pre-specified traffic analysis zones (TAZ) in the entire Netherlands. The number of TAZs in
the MRDH region is relatively high: the region is comprised of 5.924 TAZs. Many of these TAZs cover a
relatively small area, so that the TAZs form a very granular picture of the MRDH region; see Figure 2a. The
land use data report for every TAZ information on the number of employment places (offices, shops, etc.),
number of education places (i.e., schools), the actual area of the TAZ and its urbanisation level (i.e., the
population density), the number of paid and non-paid parking spaces and the average hourly parking costs.
Another relevant piece of input data, which could also in a way be interpreted as land use data, concerns
the locations of the mobility hubs. In this study, we use P+R locations (park&ride) currently already in
place in the traffic infrastructure as well as current train stations as locations of the mobility hubs; cf. [39].
These are depicted in Figure 2b. Each of these mobility hubs may accommodate one or more of the transfer
types mentioned in Section 2.2.2: car-pt, car-bike and car-ebike. Which of these transfer types are
actually available for a particular trip depends on the origin and the destination of this trip: the car-pt
type can only be used whenever the distance undertaken by car would be at least 20 km, and the distance
undertaken by public transport would not exceed 10 km. For the car-bike and car-ebike transfer type,
the former restriction also applies, but there the latter restriction concerns the distance undertaken by bike
or e-bike, and these numbers should not exceed 5 km or 8 km e-bike, respectively, rather than 10 km.

The final category of relevant input data concerns level-of-service data for each possible pair of origin
TAZ and destination TAZ (or simply origin-destination pair). That is, for each possible pair and each of the
seven unimodal travel modes that we consider, we generate travel time, cost and distance for three different
periods over the day (morning peak, evening peaking and off-peak). These characteristics have been derived
using both results in [27] and the values presented in Table 2 on new modes from various sources which are
not specific to the day period. When no sources are mentioned in this table, the values are based on expert
judgement.

12



Name Value Source
Average time to search shared bike 1 min
Price for shared bike e0.00 /min
Start-up cost of shared bike e1.925 OV-fiets
Area where shared bikes are allowed Everywhere
Price shared e-bike e0.30 /min Felyx scooter
Searching time for car sharing 5 min
Price car sharing e0.10 /min Greenwheels
Start-up cost car sharing 0 Greenwheels
The area allowed for car sharing Everywhere
Avg waiting time car passenger for shared vehicle (e.g. taxi) 5 min
Price car passenger in shared vehicle e0.35/min
Start-up cost of car passenger in shared vehicle e3.00 Uber
Area where car passengers in shared vehicle are allowed Everywhere
Price drt per min e0.00/min
Start-up cost drt e3.00
pcu value for drt 0.2 Assumed 5 passengers

Table 2: List of parameters to determine level of service [23]

3.2. Scenario description

We proceed by giving an overview of the scenarios that we consider in the case study, which are sum-
marised in Table 3. As can be seen in the table, the scenarios are cumulative in nature. That is, each
consecutive scenario introduces an additional feature, which we now describe one by one.

1. The first scenario, titled ‘Reference 2030’, is the scenario which acts as a reference. This scenario is
based on the forecast of the population made in [40], while the transport system is similar to today’s
one. In particular, the parking policies assumed are the ones that are in place in the MRDH region
of 2016, and without any shared services or any other form of NMS. Since the forecast anticipates a
relatively strong population and economy growth, this reference scenario will entail a heavily loaded
traffic infrastructure, highly likely leading to many traffic jams. In the next scenarios, we will add
several new features (i.e., new mobility services and parking policies) to this base scenario to measure
the individual impact of each of them to the mobility system, and in particular its sustainability.

2. The second scenario ‘Mobility hubs’ introduces mobility hubs in the MRDH region that allow travellers
to park their cars just outside of the city center, and travel onwards using public transport or private
(e-)bike. As mentioned before, the locations of the mobility hubs are depicted in Figure 2b and parking
at these hubs is assumed to be free.

3. The third scenario ‘MaaS’ adds new mobility concepts to the previous scenario. That is, shared modes
are now available as well as MaaS. The scenario assumes that 50% of the population in each age
category mentioned in Section 3.1 owns a MaaS subscription. As a result, half of the population
has access to MaaS. When a traveller owns a MaaS subscription, this person has access to shared
cars and shared (e-)bikes, which can be picked up and be dropped off at any public parking spot.
Furthermore, the subscription enables the use of a shared taxi, minibus or other shared modes which
are not included in conventional public transport (such as the bus, tram, metro and train). Travellers
possessing a MaaS subscription are assumed to be fully willing to use these shared services, even when
they own a private vehicle. This may be a strong assumption, which is why we will revisit it in Section
3.4. Many travellers in this scenario now have access to a multitude of shared modes, which encourages
these travellers to use multimodal modes to travel from origin to destination.

4. The fourth scenario ‘pt travel time’ improves connections with and within the city centers. That is,
the travel time of public transport to and from the centers of the cities is assumed to be 7.5% faster,
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# Scenario Title Mobility
hubs

Rate of
MaaS
sub-
scription
posses-
sion

Travel
time PT
to/from
city Cen-
ter

(E-)bike
travel
time
to/from
city cen-
ters

Parking
capacity

Extra
parking
searching
time

Extra
parking
cost

1
Reference

2030
No 0%

2
Mobility
hubs

Yes 0%

3 MaaS Yes 50%

4
pt

travel time
Yes 50% -7.5%

5
Micromobility
travel time

Yes 50% -7.5% -20%

6
Center

parking capacity
Yes 50% -7.5% -20% -30% +14 min

7
Center

parking cost
Yes 50% -7.5% -20% -30% +14 min +32%

Table 3: Overview of the scenarios considered in the case study

which can be realised by optimising schedules and implementing technological advances as indicated
by [41].

5. In addition to the improved public transport service to and within the city centers, policy makers
may also consider plans to improve other forms of mobility. To this end, the fifth scenario, which
we call ‘Micromobility travel time’, considers other mobility improvements specifically in the city
of Rotterdam. In particular, in this scenario, the travel times of the bike and e-bike from the three
mobility hubs in and around Rotterdam, which can be used for (e-)bike transfers, to the city center and
vice versa are reduced by 20% compared to the reference scenario. Such improvements may be achieved
by placing strategically located tunnels and bridges. The placement of new bridges and/or tunnels
by the local government is currently being considered; see e.g. the current so-called ’Oeververbinding
project’ [42]. To obtain an idea of the placement of the Rotterdam mobility hubs with respect to the
city center of Rotterdam, we refer to Figure 3a).

6. Next, to observe the effect of reducing parking facilities, the scenario ‘Center parking capacity’ reduces
the total parking capacity by 30% in the city centers of The Hague, Delft and Rotterdam (see Fig-
ure 2b). As a result of the reduced parking capacity, the scenario will also take into account the extra
searching time required to find a parking spot in the city centers. This extra parking searching time
is determined by a volume-delay function based on a study of [43], which is called the BPR-curve; cf.
Figure 3b. That is, the BPR-curve specifies for each I/C ratio (i.e., the intensity/capacity ratio) the
expected searching time. Note that both the intensity and capacity are measured in the number of
vehicles per minute, so that the I/C ratio itself is unitless. In the previous scenarios on average 70%
of the total parking places is occupied in the city centers over time, leading to an I/C ratio of 0.7 and
thus an average parking searching time of close to five minutes. Due to the 30% reduction in parking
capacity from this scenario on, however, the I/C ratio equals one, which according to the BPR curve
leads to a parking searching time that averages around a duration as long as 18 minutes, which is an
increase of 14 minutes when compared to the reference scenario.

7. In the final scenario ‘Center parking cost’, the hourly parking cost in the city centers is increased by
32%. This number is based on the study of [44], which considers the Amsterdam region. In this study
a 25% increase in hourly parking cost from 2020 to 2030 is considered in accordance with the guideline
of the Dutch Ministry of Infrastructure and the Environment, which is tantamount to a yearly increase
of roughly 2.25% (1.25

1
10 ≈ 1.0225). We expect the yearly increase of the parking costs in the MRDH
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(a) The city center of Rotterdam, together with the neighbour-
hoods of Kralingen and Feijenoord as well as the three mobility
hubs.

(b) The BPR curve

Figure 3: Scenarios 5 and 6

region to be a little lower based on historical numbers, which is why we assume a yearly increase of
parking costs of 2% in the MRDH region. As the parking costs in the reference scenario are based on
those which were in place in the year 2016, the assumed parking costs in this scenario are thus 32%
higher with respect to the reference scenario, since 1.022030−2016 ≈ 1.32.

Now that we have specified the input data and defined all scenarios, we are ready to present the results
of our case study.

3.3. Results

Using the ABM implementation as detailed in Section 2, we have simulated the seven scenarios described
in the previous section. A single run, covering the complete MRDH region for a complete week day in one
of the seven scenarios, took about 3.5 hours to run on a server with 128 GB RAM and an Intel Xeon(R)
Gold 5115 2.4GHz CPU. Each scenario has been simulated eight times using the common random number
technology that was explained in [15]. This methodology ensures that the effect of simulation error on the
model output is mitigated and eight runs is sufficient for aggregated indicators as shown in [15]. That is,
each of the results in this section is based on an average of eight simulated values, of which the corresponding
confidence interval is small enough to deduce that the average is not significantly influenced by outlying
samples.

We proceed by discussing the numerical observations concerning the modal split pertaining to the various
scenarios, so as to draw conclusions about the consequences of NMS and parking policies. Figures 4 and 5
graphically summarise the modal splits of the scenarios in several bar charts, where all multimodal modes
are grouped into a single category named ‘multi-modal’. We not only present the modal split based on
all simulated trips (Figure 4), but for reasons that will become clear later, we also plot the modal splits
of several subsets of these trips (Figure 5). For example, Figure 5a represents trips that either originate
or have their destination in a city center (i.e., the city center of Delft, The Hague or Rotterdam), but not
both. Furthermore, Figures 5b and 5c show the modal split of trip movements within the city centers of
Rotterdam and The Hague, respectively. Finally, Figure 5d shows the modal split of trips from the center
of The Hague to the center of Rotterdam and vice versa.

Scenario 1: Reference 2030. Before we treat the differences between the scenarios, we note that the leftmost
bars in Figures 4 and 5, representing the reference scenario in the year 2030 if no NMS or additional parking
policies were to be introduced, already paint a different picture than that of the current-day infrastructure.
For example, Figure 4 shows that in the reference scenario, 13.2% of the trips are made using the e-bike.
This is much higher than the share of e-bike trips undertaken in the MRDH region in 2016, which is 4.3% as
per the OViN/ODiN survey data. This difference can be attributed to the fact that in 2030, expected e-bike
ownership is much higher; cf. [27]. Furthermore, we observe that Figures 5b and 5c shows a very low use
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Figure 4: Bar chart representing the modal split of all simulated trips in the MRDH region under the various scenarios

of multimodal modes in the reference scenario. While this can be explained by the fact that the reference
scenario contains no mobility hubs, eliminating most multimodal modes, it is worth noting that even when
these mobility hubs would be present (as is the case in the other scenarios), these multimodal modes will
still hardly be used. The reason for this is that these mobility hubs would not be located in the city centers,
rendering their usefulness negligible for internal city trips. As mentioned in Section 2.2, multimodal modes
involving pt as a main mode do not require mobility hubs, and these are the multimodal modes that show
up in Figures 5b and 5c. In a similar vein, Figure 5d reveals that no trips are undertaken solely walking or
cycling between the two city centers of Rotterdam and The Hague: the distance is simply too large. Since
we are interested in the impact of NMS and parking policies, we now focus on the difference in modal splits
in between the scenarios.

Scenario 2: Mobility hubs. The orange bars in Figure 4 reveal that if mobility hubs were to be introduced, a
number of car and car passenger trips (equivalent to 0.9% of the total number of trips) become multimodal
mode trips: car users can now park their cars at mobility hubs, so that onward journeys can be made using
another mode. While Figure 5d suggests that, as expected, this shift is largest for trips with large distances,
it should be noted that this shift is rather small in a general sense. Plausible reasons for this could be
the fact that extra travel time needs to be incurred to reach the mobility hubs, while the actual transfer
between modes at the hubs also requires time. Furthermore, the fact that this scenario does not include
shared modes yet also plays a role: to transfer to e.g. a bike mode, travellers have to arrange a private bike
at the mobility hub beforehand or e.g. bring a folding bike the whole trip.

Scenario 3: MaaS. In the third scenario, shared modes such as shared bike services become available, and
50% of the travelling population now has a MaaS subscription. Judging by Figure 4, compared to the
previous scenario introducing mobility hubs, the car and car passenger mode shares combined lose another
3.9% of the total number of trips. At the same time, the share of the e-bike mode increases from 13.3%
to 17.5%, while the multimodal share also grows to 4.2%. Side effects are that there is also a modal shift
from walking (from 20.5% of the total number of trips to 18%) and public transport (from 2.9% of the total
number of trips to 1.9%) to shared modes, which can be negative for the business case of public transport
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(a) Trips originating from a city center with a destination outside
of a city center and vice versa

(b) Trips taking place within the center of Rotterdam

(c) Trips taking place within the center of The Hague (d) Trips originating from the city center of The Hague with a
destination in the center of Rotterdam and vice versa

Figure 5: Bar charts representing the modal split for several subsets of the simulated trips

and can have negative health effects.
These shifts can be explained as follows. In this scenario, shared services are enabled by the presence of

MaaS subscriptions, which makes that a traveller does not necessarily need to own a private vehicle anymore
to use the car, bike or ebike mode. This explains the increased use of ebike, and also the lesser increased
use of bike: travellers can now use (e-)bikes without having them at their disposal at the origin of the trip.
The increased use of e-bikes occurs at the expense of the walking mode: e-bikes can now be used for short
distances. Another attractive feature of this scenario is that shared services offer a wider accessibility to
mobility hubs, which usually allow for parking at reduced or even no cost. This explains why the share of
the multimodal mode increases, while those of car and cp decrease.

Figure 5a shows that the modal split of trips which either originate or have their destination in a city
center shows similar effects. While the shift from the walk to ebike mode is again easily identified, the
shift of car and cp to the use of multimodal modes however seems less profound. This could be explained
by the fact that again the use of mobility hubs may induce longer travel times (see e.g. Figure 2b), which
are unattractive. The next two scenarios address these long travel times.

For trips within the city centers, illustrated by Figures 5b and 5c, multimodal mode trips are necessarily
trips with public transport as the main mode since they do not require mobility hubs as earlier mentioned.
As a result, the share of cp remains largely unaffected by the introduction of MaaS, while the share of
car only increases in this scenario. The reason behind this is that this scenario allows travellers without a
private car to use shared vehicles. Note that the figures could give a slightly exaggerated idea of this increase,
because of the assumption in our model that enough shared vehicles are available for anyone requiring one,
which may not be the case everywhere. Nevertheless, this effect seems to be substantial, especially in the
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(a) Trips undertaken by car (b) Trips undertaken by bike

(c) Trips undertaken by e-bike

Figure 6: Numbers of trips undertaken by car, bike and e-bike (as a unimodal trip or as part of a multimodal trip) for several
distance ranges in scenario 3.

Rotterdam area. The increase is less generous in The Hague, presumably because it is known that the
average number of cars per household is larger there. Furthermore, generally speaking, The Hague imposes
lower parking fees than Rotterdam, so that the benefit of free parking for shared cars is less.

When considering the trips between the two city centers (cf. Figure 5d), we also see a significant increase
of the use of the e-bike and multimodal modes. As the increase of the e-bike mode cannot occur at the
expense of the walking mode since trips between the city center was not used to begin with, the use of the
car and cp drops more significantly with the introduction of MaaS.

Finally, we note that in this scenario, compared to the previous scenario introducing the use of mobility
hubs, the total distance covered by cars increases by 0.9%. Based on Figure 6a, which shows for both the
current and the previous scenario the simulated numbers of trips in several distance ranges undertaken by
car (either for a unimodal trip or as part of a multimodal trip), it seems that this is because under the MaaS
scenario, cars are now used more frequently for trips with longer distances, although the overall number of
trips undertaken by car has decreased. Instead, especially for shorter distances, the bike and e-bike have
largely gained in popularity (cf. Figures 6b and 6c), due to the availability of shared bikes and e-bikes at
the mobility hubs. We conclude that offering shared services decreases overall car popularity, while the bike
and e-bikes modes become more attractive.

Scenario 4: pt travel time. As mentioned above, when travelling by a multimodal mode through a mobility
hub, the travel times may become much longer than when travelling directly using a unimodal mode. There
are multiple reasons behind this; the alternative routing associated with the transfer at the mobility hub, the
actual transfer time and potentially lower travel speeds than that of the car need to be taken into account.
The effect of this is not to be underestimated, which is illustrated by the fact that in the third scenario, the
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average duration of the trips was about 22 minutes longer than the average duration in case all trips were
undertaken by the unimodal car mode.

In an effort to remedy this effect, the fourth scenario assumes public transport services from and to
city centers to be faster. It can be seen in Figure 5a that, as a result of this, the share of the pt mode
only increases from 2.7% to 2.9%. That is, the share of pt trips either originating or having a destination
in a city center (or both) only increases slightly. The effect of the reduced pt travel time in Figure 5d is
more pronounced; the number of trips undertaken by pt between the centers of The Hague and Rotterdam
increases from 8.2% to 9.5%. This difference is in line with other findings in the literature, e.g. [45]. Yet,
also in this case, the increase seems limited. At the same time, however, although the total number of
trips from and to city centers using mobility hubs connecting the car and pt modes remain limited (a few
thousand), this number has remarkably increased by 9%. We thus conclude that a more efficient public
transport system may stimulate the use of mobility hubs.

Scenario 5: Micromobility travel time. As mentioned in Section 3.2, the fifth scenario improves the connec-
tion between the Rotterdam city center and the three surrounding mobility hubs, also in an effort to reduce
the longer travel times induced by the multimodal modes. Figures 4 and 5 hardly show any impact on the
modal split of this scenario. This, however, is not at all surprising, given the fact that this scenario mainly
impacts trips that are only going to or from the Rotterdam city center (but not both). Indeed, the output of
the model shows that, compared to the previous scenario, the total number of simulated daily trips between
Rotterdam city center and the three mobility hubs increases from 7177 to 7313, which is an increase of 1.9%.
For these trips, the usage of both a car and an (e-)bike becomes more attractive, as witnessed by an increase
of transfers between the car and bike modes as well as the car and ebike modes at the mobility hubs
by 8.1% and 1.5%, respectively. At the same time the transfer rate between car and pt at the mobility
hubs is slightly reduced by 1.4%. This is expected since a traveller requires less travel time when using the
bike or the e-bike from or to the three mobility hubs in Rotterdam. Overall, we can conclude that, also in
line with the conclusions of the previous scenario, infrastructure improvements help to stimulate the use of
mobility hubs.

Scenario 6: Center parking capacity. In the next two scenarios the effects of possible parking policies are
studied. As mentioned before, in Scenario 6, the parking capacity in the city centers of Rotterdam and The
Hague has been reduced by 30%. As can be seen in Figure 4, this does not seem to have a very large overall
effect. This is not surprising, since the reduction brought by this scenario only pertains to the city centers.

However, the bar charts of Figure 5 paint a different picture, as all of these pertain to trips at least
partially undertaken in city centers. Indeed, in each of these bar charts, a drop in the use of the car mode
can be observed. More generally, when regarding trips which have an origin or destination (or both) in the
city center, use of the car mode dropped from 25.3% to 22.4%. This reduction implies a parking capacity
elasticity of -0.1, which is consistent with the parking capacity elasticity of the city of Amsterdam, which
is -0.08 as observed in the VMA model [46]. As a result of the decline in using the car mode, the share of
the bike, e-bike and walk modes increases. As a result, it can be concluded that the city centers will be less
attractive for car users and that travellers are more willing to use more sustainable modes. However, there
seems to be no real increase in the use of multimodal modes, perhaps still as a result of the higher travel
time incurred by the use of mobility hubs.

Scenario 7: Center parking cost. Next to the reduction of parking capacity, another obvious measure to
discourage car use in city centers would be to increase parking cost. The seventh scenario therefore increases
parking costs in the city centers by 32%.

While Figure 4 again does not reveal a big impact, Figure 5 shows that this measure reduces the
popularity of the car mode in the city centers even further, but not as much as was the case in the previous
scenario. Compared to the previous scenario, the modest decrease of the share of car trips (partly) in the
city centers from 22.4% to 21.3% implies a parking cost elasticity of (21.3 − 22.4)/32 = −0.03. This is
smaller than the parking cost elasticity of the Amsterdam city center as reported by the VMA model [46],
which is -0.12. The difference in these parking cost elasticities may be explained by the fact that the hourly
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parking cost in Amsterdam is generally much higher than in the city centers of Rotterdam and The Hague.
Furthermore, the limited reduction of car trips in the city centers may occur because the reduction in the
previous scenario was already significant. Yet another reason could be that many working places are situated
in the city centers of Rotterdam and The Hague, so that any increase in parking costs may be compensated
by the employer, leaving the commuting travellers indifferent. We do however see that, just like the previous
scenario, the decrease in car use does again lead to an increase of use of the bike, e-bike and walking modes,
but not necessarily of the multimodal modes.

Furthermore, we mention that the the overall distance undertaken by car, as part of a unimodal car trip
or a multimodal mode trip involving a leg undertaken by car, in this scenario has reduced by 0.4% compared
to the previous scenario. Therefore, we conclude that also the parking cost policy may have a decreasing
impact on car use.

3.4. Sensitivity analysis

In the current study, several parameters, such as the coefficients in the utility functions, have been
estimated on the basis of e.g. survey data. For some of these parameters, however, relevant data have been
lacking, leaving the values of the parameters used possibly unreliable. In this subsection, we perform a
sensitivity analysis on these parameters to see what effect estimation errors this unreliability may have on
the results obtained. Based on the findings, we will conclude that these effects will not significantly alter
the observations of Section 3.3.

3.4.1. Demand-responsive transport

The first parameters to be investigated concern the demand-responsive transport mode. Due to lack of
data on drt modes in [47], the alternative-specific constant αDRT as well as the time and cost coefficients
βDRT,time and βDRT,cost in (2) may be unreliable. To assess the sensitivity of the model results to these
parameters, we have rerun the model for Scenario 3 with different values for these parameters. In particular,
we have first rerun the model where αDRT is now taken to be equal to αPT, the alternative-specific constant
of public transport, while keeping all other parameters the same as before (i.e., ceteris paribus). It should be
noted that αPT is significantly higher than the originally estimated alternative-specific constant for drt, so
that this change effectively makes DRT more attractive. Afterwards, we repeat these experiments with the
time and cost coefficients. That is, we run two experiments with βDRT,time reduced by 10% and 20% (with
the original alternative-specific constant and cost coefficients), respectively, and two more experiments with
βDRT,cost reduced by 20% and 50%, respectively (with the original alternative-specific constant and time
coefficients).

The simulation results show that of the parameters mentioned above, the change of the alternative-
specific constant has the largest impact. In making drt more attractive than we assumed before, the mode
share of the drt mode as a unimodal mode increases from 0.16% to 0.89%. Next to this, while before drt
appeared as part of a multimodal mode in 1.15% of the total number of trips simulated, this is now 1.4%.
While these are relatively large increases, it should be noted that the absolute increases in modal share are
modest, which suggests that large estimation errors in the alternative-specific constant of the drt mode
would probably not affect the effects and trends observed in Section 3.3.

We also find that these observed effects and trends should remain intact in case the time and cost
coefficients would change considerably. That is, we find that if travel time is decreased by 10% or 20%, the
modal share of drt even remains unaffected at 0.16%, while the percentage of the number of multimodal
mode trips including demand-responsive transport only increases by a hundredth of a percentage point in
case of a 10% reduction, and two hundredths in case of a 20% reduction. Likewise, if the travel cost is
decreased by 20% or 50%, the modal share of drt again remains unaffected at 0.16%. Only in case of the
50% reduction, we see an ever so slight change in the multimodal setting; in that case, the share of the
multimodal mode trips including drt increases by three hundredths of a percentage point.

3.4.2. Parking searching time

The second sensitivity analysis that we perform pertains to Scenario 6, where the parking capacity of
the city centers of The Hague, Delft and Rotterdam are reduced by 30%. The extra searching time this
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Figure 7: Equivalent of Figure 4 when a decision between a private and shared car is always made in favour of the private car.

induces for travellers wishing to park their cars is unpredictable. In the results, we have assumed searching
time to increase by 14 minutes, but this assumption was chosen purely on what we deem plausible. As a
result, we have rerun the model on Scenario 6, where we have taken the extra searching time for travellers,
instead of the original 14 minutes, to be equal to 2.5, 5, 10 and 20 minutes, respectively.

These experiments show that changing the parking searching time may have some effect on the modal
split. That is, when rerunning Scenario 6 with the mentioned parking searching times, the simulations report
a share of the car mode in trips from and to the city centers of 24.5%, 24%, 23% and 21.4% respectively.
While mutually these numbers seem quite different, especially since these differences are of the same order
as those encountered between scenarios in Section 3.3, it should be kept in mind that an extra searching
time lower than 10 minutes as a result of capacity reduction is not very plausible. Therefore, we expect the
impact on the findings of Section 3.3 as a result of estimation errors in the extra parking searching time to
be limited.

3.4.3. Ownership of private car and MaaS subscription

In the absence of relevant data, we have assumed from the third scenario onwards that travellers who
are confronted with the choice between a shared car through their MaaS subscription or using their private
vehicle, will always choose for the shared car. Due to the heterogeneity of travellers, however, it is very
conceivable that not all travellers will make this choice, so that one could question this assumption.

It turns out that, for our purposes, the impact of this assumption also appears limited. To show this, we
have rerun the model with the other extreme as an assumption: a choice between a shared car and a private
car is always made in favour of the private car by the traveller. Figures 7 and 8 present the equivalents of
Figures 4 and 5 under the new assumption. As the change of assumption does not play a role in the first
two scenarios, the bars pertaining to these scenarios are unaffected. For Scenarios 3 to 7, we see generally
that the overall share of the multimodal modes is a little lower than before, while the share of the car mode
increases. While this is to be expected, the effects observed in Section 3.3 remain intact in these figures.
For example, we observe in Figure 8a that the share of car trips from or to the city centers is still greatly
diminished by the introduction of the parking policies in Scenarios 6 and 7, even though the private car
should be used more often due to the change of assumption. As mentioned above, Figures 4 and 5 on
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(a) Trips originating from a city center with a destination outside
of a city center and vice versa

(b) Trips taking place within the center of Rotterdam

(c) Trips taking place within the center of The Hague (d) Trips originating from a city center of The Hague with a
destination in the center of Rotterdam and vice versa

Figure 8: Equivalent of Figure 5 when a decision between a private and shared car is always made in favour of the private car.

one hand and Figures 7 and 8 on the other hand represent two extremes while exhibiting the same effects.
Therefore, any assumption regarding the mode choice of travellers having access to both private and shared
cars is likely to show the effects observed earlier, making the earlier-made assumption irrelevant. As a result,
the lack of data on this topic is not an issue.

4. Conclusions and further research

In this section, we round off this paper with a conclusion, explicitly answering the research questions
posed in Section 1, and a discussion on further avenues of research on this topic.

4.1. Conclusion

In this paper, we have conducted a case study situated in the MRDH region in the Netherlands, with
the aim of investigating the impact of strategies that are believed to lead to more sustainable mobility. The
MRDH region is of economic importance to the Netherlands, has a dense road network as witnessed by
the fact that it includes the busiest motorway in the Netherlands and has a growing popularity. Below, we
provide concluding answers to the questions raised in Section 1 for this region, which we believe are also
representative for other regions when considering e.g. the introduction of NMS and parking policies.

The first of these questions concerned the extent up to which mobility hubs reduce the number of car
trips. To this end, we regarded the modal split of the trips in a reference scenario where mobility hubs
are not used, and compared it to the modal split in a scenario where the use of mobility hubs by travellers
is allowed, ceteris paribus. The simulation results following these experiments suggest that especially for
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large-distance trips, there is a modest shift from car trips to multimodal trips. The overall impact of the
introduction of mobility hubs on their own however appears quite limited, which is because of the fact
that the use of mobility hubs induces a longer travel time. This longer travel time is mainly a result of
the fact that travellers do have to stop and transfer at the mobility hub, rather than travelling directly.
Another plausible reason can be found in the fact that when shared modes and MaaS are not available
to the population (yet), privately-owned modes would have to be available at the mobility hubs for the
travellers, decreasing the appeal of the use of mobility hubs. This raises the natural question of what the
impact of mobility hubs is when shared services are actually available, which relates intimately to the next
research question.

That is, the second question in Section 1 considered the extent at which mobility hubs in combination
with sharing services contribute to a more sustainable mobility in the MRDH region in case half of the
population has access to MaaS. The corresponding scenario in the case study reveals that this extent is
rather large: after introduction of MaaS, the share of total trips undertaken as a car driver or car passenger
decreases by an amount which is equivalent to 3.9% of the total number of trips, while the share of trips
undertaken by e-bike or by a multimodal mode increases by about 4.2% and 2.5% respectively. As these
shifts are considerable, one may deduce that the introduction of MaaS would considerably contribute to
more sustainable mobility, in part because it also allows mobility hubs to reach their full potential. It is
however worth noting that especially in city centers, the trips made by walking and public transport will be
less numerous, as MaaS makes it more attractive to use shared (e-)bikes for short distances.

To answer the third question on the extent to which an improved cycling infrastructure and public
transport service can stimulate the utilisation rate of mobility hubs, we have considered two more scenarios
in this case study. In the first of these scenarios, the travel time of public transport is decreased by about
7.5% in the city centers, while in the second scenario, the travel time of micromobility (i.e. bike and ebike)
in the city centers is reduced by 20%. It turns out that in case only the travel time required by public
transport is reduced, the modal split of trips appears to be hardly affected. Nevertheless, the number
of connections made through a mobility hub from the car to public transport (or the other way around)
increases by about 10%. A similar observation can be made when the micromobility travel time is decreased
by 20%. That is, although this hardly affects the modal split, the number of connections between the car
and (e-)bike at mobility hubs increases, partly at the expense of the number of connections between car and
public transport. Taking the latter into account, the reduced micromobility travel time leads to another net
increase of 1.9% of the total number of trips using mobility hubs.

The final question posed in Section 1 concerns the extent to which parking capacity and parking cost
rates affect the car flow in the city centers of the MRDH region. To this end, the case study includes two
scenarios reducing parking capacity by 20% and increasing cost rates by 32% in the city centers. It turns out
that reducing the parking capacity reduces the number of trips undertaken by car from and/or to the city
centers by about 3% (from 25.3% to 22.4%), while increasing the use of more sustainable modes. Especially
when the infrastructure is utilised at a close to critical level, such a small-seeming decrease can improve and
smoothen the car flow to a considerable extent. Furthermore, when increasing parking costs, the percentual
share of car-based modes in the city centers faces another decrease of 1% (from 22.4% to 21.3%) in our
results, improving car flow even further.

Now that these conclusions have been reached, one may wonder to what extent the conclusions reached in
these paper for the MRDH region also apply to other regions. We expect that the conclusions for the MRDH
region paint a representative picture of the potential of the strategies in other regions in the Netherlands as
well, such as the metropolitan region Amsterdam (MRA), which is not far away from the MRDH region.
This is mostly due to the similar urban density (711 dwellings/km2 in the MRA region versus 796 in the
MRDH region) of the two regions, the similar population size (2.5 million versus 2.4 million), a similar
population age distribution as well as a similar annual income; cf. [48] for the MRDH region and [49] for
the MRA region. However, there are differences between the these two regions too. For example, the MRA
region includes the busy airport Schiphol, while the Rotterdam-The Hague Airport in the MRDH region
is much smaller. Furthermore, there are two major cities in the MRDH area, whereas in the MRA many
trips are concentrated in and around Amsterdam. Therefore, in line with [50], a specific case study for the
MRA region may still have an added benefit. For other regions outside of the Netherlands, although it is
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conceivable that similar effects occur, the order of magnitude might differ substantially. Application in other
regions requires estimation of the relevant coefficients in the utility functions and subsequent calibration of
those should be performed based on local survey data, in order to make sure that the difference in region
characteristics do not lead to different conclusions.

4.2. Avenues for further research

We conclude this study by suggesting a number of avenues for further research. First, the model used in
this study may be applied to study the impact of social changes. For instance, due to the covid-19 pandemic,
travellers may now be much more inclined to work at home, heavily altering their daily activity pattern. In
turn, this may lead to different travel behaviour and could thus have implications for the mobility system.
Due to its flexibility, ABM is however geared to take these social changes into considerations, and further
research may thus chart the implications of hybrid working for the infrastructure. Furthermore, the model
may also be used to study other topics, such as the optimisation of the location of mobility hubs for an as
sustainable as possible mobility. Sharing service providers might also benefit from the model, e.g. to see
which vehicle relocation strategies work in their favour and to study their optimal fleet sizes.

Also from a modelling point of view, a number of suggestions may be made. For example, it may be
worthwhile to see whether the utility functions underlying the model can be improved. Currently, the utility
function (2) of a multimodal mode does not take the access and egress mode into account in terms of the
alternative-specific constant and the socio-demographic attributes. By including only the attributes of the
main mode, we can use already known estimations based on unimodal modes, while we expect them to
model the utility reasonably well. Nevertheless, this could be improved upon by also involving the access
and egress modes in these terms of the utility function. Inclusion of the access and egress modes would
entail a comprehensive estimation of the associated coefficients, because no data exist on how the traveller
values the convenience of the access and egress modes in comparison to the main mode. Research in this
direction would be helpful, so that this can be included in future models. We also mention the destination
choice component, where the set of available travel modes is already taken into account (although the
actual mode choice is taken later). The current model only considers the aggregated impact of all available
unimodal modes, whereas the model may be amenable to further refinement by also considering the impact
of available multimodal modes. To this end, one would need to consider the actual impact of the availability
of multimodal modes, data on which is currently lacking.

Another direction of further research concerns certain assumptions we made throughout this paper. For
example, in this paper we assumed that every traveller owning a MaaS subscription is willing to use shared
services in all circumstances. However, this may not always be the case. Despite the fact that we have
concluded in Section 3.4 that a deviation from this assumption, e.g. private cars always being chosen over
shared cars when being presented a choice, does not exceedingly alter the conclusions of the case study, it
may be good to include a more realistic assumption. To this end, research would have to be done on the
willingness of travellers to use shared services offered by MaaS and the impact of MaaS and shared services
on car ownership. Another assumption to be studied concerns the fleet sizes of shared vehicles. Currently,
limiting fleet sizes of vehicles are not taken into account, while doing this would perhaps paint a slightly
more realistic picture. This however requires inclusion of an optimised model for shared services.

Finally, we mention the fact that we have not incorporated feedback from a network assignment model
into the current travel demand model. More particularly, the current case study only predicts the travel
demand in the MRDH region in future scenarios, without taking results from a network assignment model
into account. As a consequence, the current paper observes solely first-order effects, and these observations
may be amenable to improvement. As an example, the car use in city centers may currently be slightly
overestimated since the effect of vehicle congestion as a result of high car travel demand does not have
a dampening feedback effect on this demand. This feedback effect may be incorporated in the future by
connecting the current model to a travel assignment model, which is still in development for inclusion of
multimodal modes and shared vehicle dispatching. A next step would then be to compute the impact on
air quality, noise and spatial usage to get more accurate insights in livability effects.
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Appendix A. Model calibration and assessment

Appendix A.1. OViN/ODiN survey data and its processing

The OViN/ODiN survey data [30] contains data based on a survey conducted among the Dutch popula-
tion of 6 years and older over the period of one year. In total, about 45 thousand respondents registered the
trips that they made during a pre-selected day in that year. Per surveyed individual, the data set contains
data on e.g. the main modes of the trips (so that a picture of modal split can be obtained), the departure
times of these trips and the main purpose of each trips.

For the purpose of calibration and validation, we use the data of the OViN/ODiN survey that pertain to
inhabitants of the MRDH region. We first however process these data. For example, as the ABM considers
a daily simulation of all traffic between 5AM and 11PM, we have taken out trips that, in part or completely,
are undertaken outside of this time frame. Furthermore, the data includes trips that do not make up a
complete tour with other trips in the data. For the purposes of data integrity, we have therefore filtered
out these trips as well. This leaves us with a data set which consists of complete daytime tours with data
on a trip level. Another point of attention is that the survey data includes information on the origin and
destination of the trips on the level of postal code in the Netherlands. However, the ABM model works at
a different granular level, namely on the level of traffic analysis zones (TAZs). In case the postal code area
consists of a single TAZ, the translation of postal code area of TAZ is easily made. However, especially in
the MRDH region, a postal code area may consist of more than one TAZ. In these cases, we assign the most
probable TAZ to the applicable origin or destination. For instance, if the trip purpose is work, the TAZ of
the postal code area having the highest employment number is selected. As for the recorded modes of the
trips, we categorise them in the seven unimodal modes as described in Section 2.1.2.

Next to shaping up the dataset, we also need to label each tour in the data set with a main purpose,
so that these can be compared with the output of the ABM model. However, since survey data is collected
on individual trips, it is not trivial to infer the primary purpose of the complete tour. To remedy this, we
have defined a hierarchy to categorize them. These categories, in an order from high in the hierarchy to low
in the hierarchy, are given by work, school, dropping off or picking up passengers, shopping, maintenance
(e.g. medical visits, bringing car to garage, etc.), social, eat-out and a remainder category which we call
‘other’. Now, if a tour consists of a trip that has a work purpose, work is also considered to be the main
purpose of the complete tour. Otherwise, if the tour involves a school trip, then the tour has school as its
main purpose, and so on.

Appendix A.2. Validation

After the calibration has been performed, we compare different measures of interest to see if the ABM
model has been sufficiently calibrated. We do this by comparing the output of the ABM model, based on the
10%-fraction of the synthesized population in [27] (simulation) to the OViN/ODiN survey data as processed
in the previous section (observation).

First, the simulated average trips per person, namely 3.2, is very close to the observed average of 3.3.
Also the simulated modal split of the trips is quite close to that of the observed modal split, as is graphically
illustrated in Figure A.9a. The correlation coefficient between the simulated numbers of trips undertaken per
mode and their observed counterparts is 0.9995, which indeed supports the observation that the simulated
and observed modal split are comparable. Next, we regard the simulated and observed departure times of
all trips in general, and those of all work trips in particular. We do this, because the work trips form the
most important category of trips. Figures A.9b and A.9c illustrate these simulated and observed departure
times. In particular, the per-hour share of departure times is depicted, where the value represents the start
of the hour. With a correlation coefficient of 0.8963 for all trips and 0.9859 for work trips, the simulation and
observation is again quite nicely aligned, even when observing some differences in the figure. The difference
observed in the hour starting at 5AM can be explained by the fact that observed trips with departure times
just before 5AM are not considered, while the ABM model might schedule such trips right after 5AM.

Finally, we perform a comparison based on the simulated and the observed main purpose split of the
tours, cf. Figure A.9d. The correlation coefficient in this case is 0.9238, again indicating a large similarity.
Judging by the figure, the observed share of school tours is a bit larger than the simulated share. However,
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(a) Modal split of the trips (b) Distribution of the departure times of all trips

(c) Distribution of the departure times of work trips (d) Simulated and observed main purpose split of tours

Figure A.9: Validation Results

according to the CBS report [47], school trips are over-represented in the OViN/ODiN survey data. As a
result, we conclude that the ABM is reliable in this respect.

The OViN/ODiN survey data is however not the only source of data which we can compare our calibrated
model against. In the reference scenario, not including mobility hubs or any form of MaaS, the ABM that we
consider in this paper does in principle not consider multimodal modes. The public transport mode forms
an exception to this, however. Whenever a traveller uses public transport, the ABM does predict whether
(s)he uses walking or cycling as an access and egress mode. Since the OViN/ODiN survey data is known
to have an underrepresented number of trips undertaken by bike (cf. [9]), we have compared the output of
the ABM with results from the study V-MRDH [51], which does include information on this. Table A.4
shows for different periods of the day the access and egress trips undertaken when using public transport
as predicted by our ABM and as concluded by the V-MRDH study. As can be observed from the table, the
numbers match rather well, adding to the reliability of the calibrated ABM.

ABM division V-MRDH division
Morning Peak Off-Peak Evening Peak Morning Peak Off-Peak Evening Peak

walk-pt-walk 48% 46% 61% 51% 42% 58%

walk-pt-bike 12% 24% 21% 7% 23% 26%

bike-pt-walk 31% 24% 10% 35% 31% 9%

bike-pt-bike 9% 6% 8% 7% 4% 6%

Table A.4: Access and egress modes used in multimodal trips with public transport as the main mode for different periods of
the day.

As a final check, we consider the travel time elasticity and the travel cost elasticity of both the car and
public transport modes, as well as the values of time corresponding to these two modes. The time (cost)
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elasticity is defined as the relative increase in percentage of travelled kilometers if the travel time (cost) is
increased by 1%. We compute these numbers for the current-day scenario with our calibrated ABM, and
compare them to values deemed plausible in [45] and references therein. Also this comparison checks out.
The simulated travel time and travel cost elasticities of the private car, being -0.4 and -1.2 respectively,
are within the plausible domains of values (-0.9, -0.2) and (-1.3, -0.3), respectively. Similarly, for public
transport, these elasticities are -0.18 and -0.35, respectively, which again fall in the domains of values
deemed possible for public transport, namely (-0.5, 0.15) and (-1.2, -0.3), respectively. As recommended
by [45], we also check the values of time of the car mode and the public transport as observed by this model.
A value of time represents the opportunity costs of the traveller spent per time unit on his or her journey
undertaken. We note that the value of time may differ between car and the public transport, because time
spent driving may be deemed completely lost, while in public transport it may still be possible to e.g. do
some work. For the two modes, the values of time assumed by our model can be computed by calculating
βcar,time/βcar,cost and βPT,time/βPT,cost, respectively. This results in a car value of time of 9 euro’s per hour,
whereas for public transport this number reads 6.1 euro’s per hour. Again, these values are well within the
plausible ranges reported by [45] and references therein.
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