
DR 5.1: PAL Technical Architecture and Software

Architecture

Mario Fumagalli, Bert Bierman, Bernd Kiefer, Joost Broekens, Yiannis
Demiris, Mark Neerincx

Mixel, Italy; Produxi, The Netherlands; DFKI, Germany; Delft University of Tech-

nology, The Netherlands; Imperial College, United Kingdom; TNO, The Nether-

lands

〈m.fumagalli@mixelweb.it〉

Project, project Id: EU H2020 PAL / PHC-643783
Project start date: March 1 2013 (48 months)
Due date of deliverable: March 1 2016
Actual submission date: March 8, 2016
Lead partner: Mixel
Revision: final
Dissemination level: PU

1

Ref. Ares(2016)1168061 - 08/03/2016

Technical and Software Architecture Fumagalli et al.

1 Tasks, objectives, results 4
1.1 Actual work performed . 4
1.2 Description of logical architecture . 4

2 List of PAL Software modules 7

3 Description of the software modules 8
3.1 PAL Control . 8
3.2 PAL Inform . 8
3.3 DB Manager . 8
3.4 Interaction Manager . 9

3.4.1 Interaction with overall system . 9
3.4.2 Internal Structure . 9

3.5 Child Agent Model . 10
3.6 Action Selection . 11
3.7 Question Generator . 12
3.8 Goal Manager . 13
3.9 Behavior Manager . 13

3.9.1 Make the (virtual) NAO look lively 13
3.9.2 The gesture generation . 13

3.10 NAO Connector . 15
3.11 MyPAL App . 16
3.12 Main Section . 16
3.13 Time Line . 17
3.14 Quiz . 19
3.15 Games . 19
3.16 Message Dispatcher . 19
3.17 Speech Recognition . 20

References 21

4 Annexes 22
4.1 Message Description . 22

A Message Description 23

EU H2020 PAL (PHC-643783) 2

Technical and Software Architecture Fumagalli et al.

Executive Summary

This document represents the first deliverable of WP5 and describes the PAL
architecture of the IT infrastructure and of its main software modules. The
software development is driven by the user requirements analyses of WP1
package. The challenging goals of the PAL project, described and defined in
the deliverable DR 1.2, require a sophisticated and complex mechanism of
several interacting software modules, developed by a multidisciplinary
team working in research centers located in different European coun-
tries.

The main goals of WP5 have been:

1. Design of the overall IT architecture capable to fulfill the user
requirements

2. Identification of the software modules that compose the PAL IT
infrastructure

3. Design of the main data flows among the software modules

4. Identification of the teams and leaders in charge of the devel-
opment of each software module of the PAL project (i.e., allocation of
responsibilities).

This information is provided in the deliverable DR 5.1. Following this
step, the design of each software module has been addressed. Since the
modules have tight and frequent interactions and several interdependencies,
periods of integration have been planned and executed, in which the devel-
opment teams have been working closely together, in the same physical site,
quickly testing ideas and different approaches. To provide the AI based,
high level PAL-support and human-machine interactions, a solution based
on a sophisticated reasoning mechanism has been defined and implemented
by the identification of three main components interacting with each other:

• Interaction Manager: a module, based on a dialogue model and
ontology, to establish the child-PAL interactions;

• Child model Agent: a module tailoring the possible actions based
on the analysis of his estimated emotions and sentiments;

• Adaptive Action Selection Model: a module, based on HAMMER
able to select an appropriate action to propose to the child or to use
to interact with the child.

Since the PAL Architecture requires several hardware devices and soft-
ware modules connected, one with the other, and frequently exchanging
data, an ONLINE and REAL-TIME solution has been adopted. To ex-
change data among the several software modules a “message dispatcher”
approach has been chosen.

EU H2020 PAL (PHC-643783) 3

Technical and Software Architecture Fumagalli et al.

1 Tasks, objectives, results

1.1 Actual work performed

In the PAL project a sophisticated reasoning mechanism is being developed
that consists of three components: an action proposing component, an action
prioritising component and an action selection component. This is a solution
to the difficult problem of having a smart agent architecture that needs to
cope with different types of data and different types of reasoning to interact
with a child in a flexible manner. It is also a solution to the practical
problem of having three work packages (WP2, 3, 4) work on action selection
at different levels of abstraction. Instead of separating responsibility over
the three work packages based on levels of abstraction for the actions (e.g.,
strategic actions related to goal setting in WP2, low level actions related
to behaviours in WP3 and medium level actions related to dialogs in WP
4), we decided that a better way to integrate work in these work packages
was to focus on the type of information and reasoning that went on in the
technologies developed in these packages. As such, work package 2 focusses
on high-level modelling of the childs cognitive-affective processes so that
model-based predictions can be made regarding what the child wants and
feels. These predictions are used to prioritise action selection developed in
work package 3. Further, work package 3 can optimize action selection based
on data gathered over time regarding the effectiveness of proposed actions
in terms of child sentiment and learning goals (e.g. play a quiz when the
kid is at home and feeling good). The actual actions are proposed in work
package 4, since this work package focusses on the dialog with the child and
has control over what actions should be possible for the robot and its avatar
to select at any moment in time.

1.2 Description of logical architecture

The logical architecture needs to enable the following things (see also Figure
1):

• Control of both the Real NAO (i.e. the robot) and the Virtual NAO
(i.e. the avatar) through a common interface that enables mood mod-
ulation in the same way. This is needed to establish consistency in
the behavior of the NAO as perceived by the children (a secondary
benefit is that it facilitates testing applications on a virtual and real
platform as well as facilitates reuse of games and apps). This means
the virtual NAO needs to implement a physical NAO motor controller
simulation layer so that the BehaviorManager can also be connected to
the virtual NAO (A NOAConnector was developed to connect to Real
NAO). NAOs are modules just like all other apps. A NAO registers

EU H2020 PAL (PHC-643783) 4

Technical and Software Architecture Fumagalli et al.

Figure 1: PAL’s IT Architecture. Note that the MyPal App contains a
virtual NAO module to visualize robot behavior when the physical NAO is
absent.

itself and can then be controlled by the system. For simplicity we for
now assume only one NAO is present at one time.

• A common action/percept interface that allows modules to register
the actions and percepts they have available (such as diary start, di-
ary end, diary goto, NAO wave, NAO look at, NAO say, etc. for ac-
tions and e.g. multiple choice input, speech to text input, text input,
cam input, as inputs). Speech input should also be an input module
that registers particular percept types. Modules can access input and
output without involvement of the PAL agent logic but need to do so
through the central message passing mechanisms (the nexus), so that a
databse agent can listen to all messages and stores these in a database.
Further, the nexus could notify the PAL agent logic of changes/data
available. Modules can’t access the database by themselves. So in
essence by registering modules a PAL environment is created that can
be seen by the different modules (including the PAL logic agent) sim-
ply as a set of available actions/percepts that can be used (i.e., the
system has a changing “morphology”). An ontology for this environ-
ment/morphology is being developed. Modules should be able to get
for example a list of action types they need implemented before be-
ing able to run (e.g., a card-game needs NAO point at, NAO look at,
NAO say, NAO happy, NAO sad from the PAL environment, if not,
it can’t run)

The current PAL environment consists of the following modules (see also
Figure 2): Nexus, ActionSelector, InteractionManager, ChildModelAgent,
BehaviorManager, NAOConnector, PALControl, QuestionGeneratorQuiz-

EU H2020 PAL (PHC-643783) 5

Technical and Software Architecture Fumagalli et al.

Figure 2: PALs IT Architecture. Note that the MyPal App contains a
virtual NAO module to visualize robot behavior when the physical NAO is
absent.

Logic and MyPALApplication. Note that as QuizLogic could be interrupted
by a dialog with the kid. The QuizLogic is seen as part of the overall AI
system. It is true that the quizlogic itself could be run without the 3 AI
modules for the PalActor, but it needs to be able to cope with interruptions,
and thus is managed by the Pal Actor.

EU H2020 PAL (PHC-643783) 6

Technical and Software Architecture Fumagalli et al.

2 List of PAL Software modules

Table 1: PAL software modules.

SW
Code

NAME Device DeveloperPerson in
Charge

Work
Pack-
age

SW01 PAL Control PC (Browser) TUD Joost Broekens WP2
SW02 PAL Inform PC (Browser) TUD Joost Broekens WP2
SW03 DB Manager PAL Server DFKI Bernd Kiefer WP5
SW04 Interaction

Manager
PAL Server DFKI Bernd Kiefer WP2

SW05 Child Agent
Model

PAL Server TUD Joost Broekens WP2

SW06 Action
Selection

PAL Server IMP Yiannis Demiris WP3

SW07 Question
Generator

PAL Server PROD Bert Bierman WP5

SW08 Goal
Manager

PAL Server TUD Joost Broekens WP2

SW09 Behaviour
Manager

PAL Server PROD Bert Bierman WP5

SW10 NAO
Connector

NAO PC
Controller

PROD Bert Bierman WP5

SW11 MyPAL App Tablet/Smartphone
/PC (Browser)

MXL Diego Fumagalli WP5

SW12 NAO Avatar
Manager

Tablet/Smartphone
/PC (Browser)

MXL Diego Fumagalli WP5

SW13 Time-Line Tablet/Smartphone
/PC (Browser)

MXL Diego Fumagalli WP5

SW14 Quiz Tablet/Smartphone
/PC (Browser)

MXL Diego Fumagalli WP5

SW15 Games Tablet/Smartphone
/PC (Browser)

MXL Diego Fumagalli WP5

SW16 Message
Dispatcher

PAL Server PROD Bert Bierman WP5

SW17 Speech
Recognition

External Service DFKI Bernd Kiefer WP4

EU H2020 PAL (PHC-643783) 7

Technical and Software Architecture Fumagalli et al.

3 Description of the software modules

3.1 PAL Control

This SW module is the application that will be used by doctors and care-
givers to manage the:

• Personal data of each child

• Read all the timeline data generated by each child by using the My-
PalApp

• Insert the personal goals of each child

• Review progress and goals performed by each child

• Interact with the DB Manager and PAL Actor module

A detailed description of this module is provided in the WP2 deliverables.

3.2 PAL Inform

This SW module is the application that will be used by parents to overview
the status and the (allowed) data of their child. More in particular the
parents will be able to:

• Review some of the personal data of their child

• Read some of the timeline data generated by their child by using the
MyPalApp

• Review progress and goals performed by their child

A detailed description of this module is provided in the WP2 deliverables.

3.3 DB Manager

We decided to use a custom solution as Database Manager, namely an RDF
[1] Store with Forward Chaining Reasoner build at DFKI. It provides its
services through the TECS infrastructure, which is used throughout the
system, and provides several ways of access, i.e., as a web service and directly
as remote procedure call (RPC) service. An extension to make it available
via the event passing mechanism, which most of the modules currently use,
is planned.

The advantage of using an RDF store is that it not only provides database
functionality, but also a convenient way to represent and store the *form*
of the data content as an OWL [5] ontology. In this way, the database can
also serve as a central reference point for the data representation of content
shared between modules.

A more detailed description of the underlying module (HFC) [3] can be
found in the D4.1 report of work package 4.

EU H2020 PAL (PHC-643783) 8

Technical and Software Architecture Fumagalli et al.

3.4 Interaction Manager

The multimodal interaction manager analyses natural language coming from
the user, and generates natural language and gestures for the robot resp.
its virtual replacement, the avatar. The generation is based on incoming
stimuli, like speech or text input, or high-level action requests coming from
some strategic planning component, or any other sensor input, if available.
The goal is to create engaging interactions with the users that support the
currently active high-level goals.

3.4.1 Interaction with overall system

The interaction manager will get several input types from the nexus, the
ones currently foreseen are: input from automatic speech recognition (ASR)
or typed natural input, user parameters, like name, age, hobbies, etc. but
also more dynamic ones like mood or health data, and also triggers from
high-level planning. All these inputs are stored as RDF data, based on an
ontology developed as part of the interaction manager, and available to all
other partners as a data format specification. When new data is added, a set
of declaratively specified reactive rules will propose dialogue moves or other
actions and send these proposals to the action selection mechanism that is
provided by WP3. The selection mechanism eventually selects one of the
proposed actions and sends it back into the nexus. If the proposed action
results in dialogue acts, these are turned into verbal output and gestures
with the help of a multimodal generation component, which also retrieves
parameters from the RDF database to adapt the generation to the users
likings and also the PAL systems needs.

3.4.2 Internal Structure

As shown in Figure 3, the interaction manager consists of the RDF store,
which also contains the functionality to store incoming data in the format
specified by the ontology, thereby making it readily accessible for other
components. The second major component is the rule processor for the
dialogue management rules, which generates proposals for actions when new
incoming data arrives. The rules not only use the new data, but also the
interaction history stored in the RDF database to take its decisions. The
last two parts are a robust natural language interpretation module (not
explicitly shown in the picture), which turns spoken or written utterances
into dialogue acts, possibly with an intermediate step that involves a more
elaborate semantic format, and a multimodal generation component, which
turns outgoing dialogue acts into natural language utterances and gestures.
The linguistic resources that are necessary for these components are also
maintained by WP4.

EU H2020 PAL (PHC-643783) 9

Technical and Software Architecture Fumagalli et al.

Figure 3: Interaction Manager structure.

3.5 Child Agent Model

The main task of the child model is to provide predicted child state informa-
tion when this information is not (yet) available from the child. Currently
the child model focusses on predicting the current emotional state of the
child. The cognitive reasoning simulation of the child model is implemented
in the agent programming language GOAL [2]. The emotion simulation is
based on the belief-desire theory of emotion (BDTE) [4], a cognitive emotion
theory that simulates 7 basic emotions, namely, happy, unhappy, hope, fear,
surprise, disappointment and relief. An implementation of BDTE has been
made that can be used to simulate emotions in a GOAL agent program.

In this first prototype the child model only listens to the quiz responses
of the child. More specifically the model stores how often the child provided
correct or incorrect responses. Based on this information the model makes
an estimate. It assumes the child will find performing well on the quiz
to be desirable. This is based on the presumed desire of the child to be
knowledgeable. Therefore, the better the child performs on the quiz, the
more positive the resulting emotional responses will be. The model allows
for other goals, such as learning goals related to self-management, to be
included in the reasoning mechanism, but for this first prototype that had
not yet been incorporated (see also Figure 4).

For this first prototype the main goal was to have a complete imple-
mentation based on a psychological theory, and to have this implementation
interface with the rest of the PAL agent system as provided by work package
3 and 4. Currently the child model publishes user state information to the

EU H2020 PAL (PHC-643783) 10

Technical and Software Architecture Fumagalli et al.

Figure 4: Data Flow between the ChildModel and the Nexus .

nexus and this information is picked up by the action selection mechanisms
developed in work package 3 that can then use it do decide upon. Con-
cretely, the user emotional state information is used to determine whether
the program should continue the quiz. If the emotional state is positive
then the activity is continued, otherwise the action selection mechanism will
suggest to stop the quiz. The main task of the child model is, as mentioned,
is to provide predicted user state information when this information is not
(yet) available from the child.

Finding enough input data and validation mechanisms to improve the
child model is a part of future work. An example method to gather ad-
ditional input data for verification of the models predictions is to use the
information of a sentiment mining module or the emotions reported by the
child in the diary.

3.6 Action Selection

The Action Selection Module of the PAL Project is based on the HAMMER
architecture, which is a versatile, parallel, distributed, and hierarchical ar-
chitecture for action selection developed at Imperial College London. This
architecture executes concurrently, on a multi-threaded infra-structure, sev-
eral models that assess the quality of the different potential actions suggested
by the Natural Multimodal Interaction Module (WP4) and with respect to
the childs cognitive-affective state provided by the Child Model (WP2).

The main advantage of running concurrently several models is, first, to
combine the abilities of the different models like in a council of expert, which
is known to improve the average quality of the decisions and, second, to allow
the architecture to explore simultaneously several alternatives and thus to
rapidly select the ones that fit the best to the user preferences. Moreover, by

EU H2020 PAL (PHC-643783) 11

Technical and Software Architecture Fumagalli et al.

using models with online learning features, the architecture is able to follow
the changes in the users preferences. Each interaction with the child will
allows the PAL system to gather data, which can be used to progressively
improve the models employed in the Action Selection Module.

Thanks to these different properties, the Action Selection module will
be able to quickly select actions, and in the same time to personalize and
to adapt these decisions according to the user preferences and its evolution
over the time (see also Figure 5).

Figure 5: Action selection flow.

3.7 Question Generator

Based on content in a xml files this module creates a database of questions
and answers available for a Quiz based on the language of the child. This
module is subscribed to the QuizCommand and QuizResponse messages
(coming from the Action Selector) and produces QuizQuestion messages. If
the QuizCommand contains the Question command a question is selected
taken into account:

• if the child already is asked this question before

• the topic of the question

• the goal of the child

If a QuizResponse is received the results are saved into de database. This
functionality could be changed in a later stage, e.g., when quiz questions are
embedded in the dialog manager, or when a quiz module has more advanced
quizzes (e.g., including the difficulty level of the question, etc..)

EU H2020 PAL (PHC-643783) 12

Technical and Software Architecture Fumagalli et al.

3.8 Goal Manager

The specific goals to be reached by each child will be identified by his per-
sonal doctor/caregiver and input into the DB manager throught the PAL
control module. The goal manager constantly checks the data provided by
the MyPALApp and by NAO connector to verify if some specific goal has
been reached. Goals reached will be stored in the DB Managed and mes-
sages will be sent to MyPalApp and to NAO Connector to provide real time
feedback of the child.

3.9 Behavior Manager

The BehaviorManager module is responsible for the generation of the move-
ment of the (virtual) NAO, and it subscribes to the messages form the Nexus
which contain the multimodal utterance. The utterance consists of the name
of the gestures to execute and the text to be spoken as well as the emotional
state of the child. From this content it constructs the necessary values to
move the joints of the (virtual) NAO which are then published to the Nexus.
The task of the BehaviorManager can be divided into two parts i) make the
(virtual) NAO look lively and ii) make the make the (virtual) NAO execute
the multimodal utterance.

3.9.1 Make the (virtual) NAO look lively

The activity of this part is to realize a (virtual) NAO which is looking lively
(do autonomous moves). When the (virtual) NAO is looking alive it will be
more engaging for the child. These autonomous moves activity needs to be
carefully combined with the deliberate movements resulting from Behavior
messages from the PAL system. Currently the autonomous movements are
sending randomly modulated signals to the head, the arms and the hips/legs,
as well as blinking with the eyes.

3.9.2 The gesture generation

The Behavior Manager (see Figure 6) receives multimodal utterance which
contains a name of a gesture, the text to be spoken and the emotional state
of the child. From the gesture name the BehaviorManager needs to calculate
the position of the joints of the (virtual) NAO and the time available for the
joints to reach that position. These conversions are defined in three different
ways: i) fixed behaviors, ii) mood behaviors and iii) pre-recorded behaviors.

i) Fixed behaviours. Fixed behaviors are defined in a file which contains
values for joints over time for various gestures. The BehaviorManager reads
the values and publish them. The NAOConnector listens to that messages
and acts upon them.

EU H2020 PAL (PHC-643783) 13

Technical and Software Architecture Fumagalli et al.

ii) Mood behaviors. Mood-behaviors are defined using both joint over
time values and a procedure to modulate the values by an emotion parameter
in terms of positiveness and activeness [7]. The message contains a value for
the actual emotional state of the child derived by the ChildModel. For each
gesture a sequence of postures is defined. Based on the emotional parameter
the postures are adapted with regards to the amplitude of the posture and
the speed with which the sequence is executed. The resulting joint and time
values are published and received by the NAOConnector. These behaviors
originate from the DUT RoboTutor. This mechanism has been tested for
correct recognition of affect in the gestures as well as effects on observers
in several usage scenarios [6, 8]. Since the RoboTutor is created using C#,
a programming language no longer supported by the NAO, the source code
has been ported to Java. The rough conversion is done with the CS2J tool
from Twiglet Software after which the remaining changes where done by
hand. After that the resulting code is integrated into the workflow of the
already available BehaviorManager.

iii) Pre-Recorded behaviors. These behaviors are situated on the NAO
and mostly contain complex gestures like stand-up and sit-down. The Be-
havior Manager publishes the name of the gesture to be executed and the
NAOConnector processes that message.

Figure 6: graphical representation of the various components of the Behav-
iorManager.

EU H2020 PAL (PHC-643783) 14

Technical and Software Architecture Fumagalli et al.

Figure 7: Description of how the different parts are connected.

3.10 NAO Connector

This module is responsible to have the NAO move and/or speak. It sub-
scribes to message containing the actual values of the joint positions and
the time to reach the position, and the text to be spoken (published by
the BehaviorManager). The information received is converted into actual
commands of the NAOs internal system (see Figure 7).

This module has two different implementations:

• An implementation which communicates with the real NAO

• An implementation which is running on the tablet to communicate
with the virtual NAO

Both are using the same text-to-speech engine to assure the voices sounds
identical. In case of the Italian Mary TTS is used but because there is no
support for the Dutch language (yet) eSpeak is applied. Components are
created on both NAOs to be able to handle the text-to-speech conversion.

The implementation for the real NAO is a wrapper which converts the
data received (from the BehaviorManager into the commands which can be
send to the NAOs own execution system. The majority of the messages
originate from the autonomous move system. The main issue to solve is
handling all messages in parallel without blocking the processes. The module
also monitors if an execution and/or speech is finished, if its sensors are
touched and processes the sound localization messages. This information is
published to the PAL system.

The implementation for the virtual NAO is embedded in the Unity en-
vironment in which the MyPAL application is developed and the task is
to execute the moving of the joints of the model according to the values
received.

EU H2020 PAL (PHC-643783) 15

Technical and Software Architecture Fumagalli et al.

If needed the NAOConnector of the real NAO can also be run on the
NAO. It simplifies the registration process during the experiment, but then
the NAO needs to be equipped with the Java run time environment, which
is not installed by default.

3.11 MyPAL App

MyPalApp is the application and one of the front-end parts of PAL System.
The children can interact with the PAL System through the application
or the Real NAO. All the analysis and the design is focused on usability
for children that are 7-15 years old. This application can help children to
keep track of their meal, activity, and physical state, such as Glycaemia or
emotional state. One of the main component in the App is the NAO Avatar,
who helps children during the usage of the application and increase their
desire to use it. The application contains several parts that communicate
with the entire system through Nexus. MyPalApp is connected with a server
and the children must login in to use it.

The application is composed by 4 sections (see also Figure 8):

• Main section

• Objectives section

• Quiz section

• Timeline section

Figure 8: Simple application tree.

3.12 Main Section

In the Main Section there will be mainly the PAL Avatar (3D Model of
NAO) and it is focused on the Child-Avatar (NAO) interaction. The In-
teraction Manager (PAL Agent Module) will decide the interactions that
can be suggested by the system, the possible questions to be asked, useful
information to be gained through dialogue, etc.

EU H2020 PAL (PHC-643783) 16

Technical and Software Architecture Fumagalli et al.

3.13 Time Line

In the Timeline section the child will able to insert, in a diary frame, every-
thing s/he does during the day (Figure 9a); Child can insert about his meal
(Figure 9d), activity (Figure 9c), Glycemia (Figure 9b) or emotional state
(Figure 9c) and the NAO Avatar interacts with the child for supporting
him/her during the App utilization. Information will be accessible for the
caregiver in charge (through the PAL Control panel), because the applica-
tion will send the information to the PAL database (policies for information
exchange are being developed).

EU H2020 PAL (PHC-643783) 17

Technical and Software Architecture Fumagalli et al.

(a) Time Line start

(b) Time Line Glycemia

(c) Time Line Activity

(d) Time Line Food

Figure 9: Different views of the timeline section
EU H2020 PAL (PHC-643783) 18

Technical and Software Architecture Fumagalli et al.

3.14 Quiz

In the Quiz Section the child will have the possibility to play a quiz game
with the PAL Avatar. The QuizManager (PAL agent’s component) will
generate all the questions and answers.

The child is allowed to select his/her answer only by touching the correct
one, and s/he can cut off the play at any time s/he wants.

Quiz will be classified by difficulty levels, in such a way to provide an
always challenging experience to the player.

3.15 Games

Serious games will be delveloped inside the MyPalApp application to offer to
the child the oppurtunity to learn and to review important concepts about
his desiease and the correct lifestyles and a potentially fun way.

The games will be designed in such a way to generate a long term en-
gagement about the MyPalApp mbile application. The presence of the NAO
avatar will probably be used in each game to provide a family feeling whitin
the whole application.

Game benefits and rewards will be provided to the player if specific
achievements will be reached,by using the MyPalApp. Examples of goals
that will generate rewards are:

• daily use of the application,

• number and type of timeline data inserted,

• number and persentage of correct quiz answered

Examples of rewards that will be provided are:

• more special powers for the games

• new accessories of the NAO avatar (for example: new hats, clothes,
glasses, etc)

• new animations for the NAO avatars

• new levels and features of the games

3.16 Message Dispatcher

The Nexus is the module which acts like the message board. It is a pub-
lish/subscribe or remote procedure call mechanism through which messages
are send throughout the system.

The current implementation is based on the TECS-infrastructure (Thrift
Eventbased Communication Service) created by one of the partners (DFKI).
The services provide both messaging based on the publish/subscribe mech-
anism (PS) as well as based on remote procedure calls (RPC). The PS type
is used generally and for specific database access the RPC method is used.

EU H2020 PAL (PHC-643783) 19

Technical and Software Architecture Fumagalli et al.

This TECS environment provides Thrift-based-tools to create class im-
plementation of messages just by defining the message in thrift syntax. This
being the primary reason why this system is selected.

Each module can register to the message-types it needs and produce
message-types it is supposed to. Appendix 4.1 provides the full description
of the message.

3.17 Speech Recognition

As a preliminary solution, we developed an adapter to the Google Speech
API which provides its results as UserTextFeedback events. Since the use of
automatic speech recognition will be minor in the first system, this should
suffice for the current needs, but will have to be replaced in the long run.

EU H2020 PAL (PHC-643783) 20

Technical and Software Architecture Fumagalli et al.

References

[1] Patrick Hayes. RDF semantics. Technical report, W3C, 2004.

[2] Koen V Hindriks and J-J Ch Meyer. Toward a programming theory for
rational agents. Autonomous Agents and Multi-Agent Systems, 19(1):4–
29, 2009.

[3] Hans-Ulrich Krieger. Ontologies and reasoning architecture for PAL.
Technical report, DFKI GmbH, 2015.

[4] Rainer Reisenzein. Emotions as metarepresentational states of mind:
Naturalizing the belief–desire theory of emotion. Cognitive Systems Re-
search, 10(1):6–20, 2009.

[5] Herman J. ter Horst. Completeness, decidability and complexity of en-
tailment for RDF Schema and a semantic extension involving the OWL
vocabulary. Journal of Web Semantics, 3:79–115, 2005.

[6] Junchao Xu, Joost Broekens, Koen Hindriks, and Mark A Neerincx.
Bodily mood expression: Recognize moods from functional behaviors of
humanoid robots. In ICSR 2013. Springer, 2013.

[7] Junchao Xu, Joost Broekens, Koen Hindriks, and Mark A Neerincx.
Mood expression through parameterized functional behavior of robots.
In RO-MAN, 2013 IEEE, pages 533–540. IEEE, 2013.

[8] Junchao Xu, Joost Broekens, Koen Hindriks, and Mark A Neerincx.
Robot mood is contagious: effects of robot body language in the imita-
tion game. In Proceedings of the 2014 international conference on Au-
tonomous agents and multi-agent systems, pages 973–980. International
Foundation for Autonomous Agents and Multiagent Systems, 2014.

EU H2020 PAL (PHC-643783) 21

Technical and Software Architecture Fumagalli et al.

4 Annexes

4.1 Message Description

Abstract The full description of the message definition.

Availablity Unrestricted.

EU H2020 PAL (PHC-643783) 22

24

Message description
The full description of the message defined is:
 # Names of the various messages # ################################ Const string PALToAll = ".*"; const string UserTextFeedbackMsg = "UserTextFeedback" const string UserEmotionMsg = "UserEmotion" const string QuizResponseMsg = "QuizResponse" const string QuizCommandMsg = "QuizCommand" const string QuizQuestionMsg = "QuizQuestion" const string UserPictureMsg = "UserPicture" const string DiaryFreeTextMsg = "DiaryFreeText" const string UserSentimentMsg = "UserSentiment" const string IntentionListMsg = "IntentionList" const string IntentionMsg = "Intention" const string DialogCommandMsg = "DialogCommand" const string BehaviourMsg = "Behaviour" const string LowLevelNaoCommandMsg = "LowLevelNaoCommand" const string LowLevelExecuteCommandMsg = "LowLevelExecuteCommand" # Names of the various modules # ############################### const string ActionSelector = "ActivitySelector"; const string NAOConnector = "NAOConnector"; const string ChildSimulator = "ChildSimulator"; const string BehaviorManager = "BehaviorManager"; const string Database = "Database"; # Messages related to perception # ################################## # this message contains any direct textual input coming from the child either through the SR or the interface struct UserTextFeedback { 1:required i32 id; 2:required string content; } # this message contains emotional state information of the child. struct UserEmotion { 1:required i32 id; 2:required string content; } # this message contains the response of a child to a question struct QuizResponse { 1:required i32 id; 2:required string category; 3:required string questionText; 4:required i32 response; # 0-based! 5:required bool correct; }

25

struct UserPicture { 1:required i32 id; 2:required string content; } # this message contains a valence, arousal description of the child. struct UserSentiment { 1:required i32 id; 2:required string content; } struct DiaryFreeText { 1:required i32 id; 2:required string content; } # Messages related to reasoning cycle # ####################################### # this message contains a list of intentions which can be executed. struct IntentionList { 1:required i32 id; 2:required string content; } # this message contains the intention selected from the list struct Intention { 1:required i32 id; 2:required string content; } # Messages related to actions # ############################### struct DialogCommand { 1:required i32 id; 2:required string content; } # this message contains command about the quiz # [stop, start, question] struct QuizCommand { 1:required i32 id; 2:required string command; 3:required list<string> topics; 4:required i32 level; 5:required string asker; # [child|robot] } # this message contains the data about a question struct QuizQuestion { 1:required i32 id; 2:required string questionText; 3:required list<string> answers; 4:required string topic; 5:required i32 whichCorrect; # 0-based 6:required string asker; # [child|robot]

26

} # this message contains the information needed to generate the behavior of the (virtual) NAO struct Behaviour { 1:required i32 id; 2:required string gesture; 3:required string textToSpeak; 4:optional string type; 5:optional double mood; } # this message contains commands send to the NAO # [startbehavior, stopbehavior, getposture, gotoposture] struct LowLevelNaoCommand { 1:required i32 id; 2:required string command; }
this message contains the data for the joints values over time struct LowLevelExecuteCommand { 1:required i32 id; 2:required list<string> joints; 3:required list<list<double>> angles; 4:required list<list<double>> times; 5:required string textToSpeak } Example scenario explaining message flow: PAL agent/NAO presents itself - InteractionManager posts IntentionList that includes “greeting” intention, ChildModel posts UserEmotion. - ActionSelector posts Intention “greeting” - InteractionManager posts Behavior as implementation of the “greeting” intention. - BehaviorManager posts LowLevelExecuteCommand (containing the greeting implementation). - NAOConnector execute motion and speech on real or virtual NAO and posts LowLevelNAOCommand when finished execution PAL agent asks a question to get to know the name OR a closed question - InteractionManager posts IntentionList that includes “ask_usermodel_question” intention, - ChildModel posts userEmotion. - ActionSelector posts Intention “ask_usermodel_question” - InteractionManager posts DialogCommand implementation of question “ask_usermodel_question” intention. - InteractionManager posts Behavior implementation. “ask_usermodel_question” intention. - BehaviorManager posts LowLevelExecuteCommand (containing the “ask_usermodel_question” implementation). - NAOConnector execute motion and speech on real or virtual NAO and posts LowLevelNAOCommand when finished execution - DialogRealizer posts SRCommand containing start.

27

- SRModule posts UserTextFeedback containing possible text spoken by the child - DialogRealizer posts UserTextFeedback based on buttonclicks <off topic talk can be repeated….> Not going to the same level of detail, the rest of the sample scenario is as follows: NAO suggest playing a quiz Reasoning cycle posts a quizCommand (start) command QUIZ runs (repeated) The QuizEngine posts a next question as a quizCommand (question) The QuizApp (MyPal) posts a quizResponse The InteractionManager proposes to quit the quiz with that action in the intentionList QUIZ ends and NAO praises the child on his/her performance (customized to quiz result) Reasoning cycle ends the quiz with a quizCommand(stop) message Reasoning cycle proposes and executes a Behavior with customized text

	Tasks, objectives, results
	Actual work performed
	Description of logical architecture

	List of PAL Software modules
	Description of the software modules
	PAL Control
	PAL Inform
	DB Manager
	Interaction Manager
	Interaction with overall system
	Internal Structure

	Child Agent Model
	Action Selection
	Question Generator
	Goal Manager
	Behavior Manager
	Make the (virtual) NAO look lively
	The gesture generation

	NAO Connector
	MyPAL App
	Main Section
	Time Line
	Quiz
	Games
	Message Dispatcher
	Speech Recognition

	References
	Annexes
	Message Description

	Message Description

