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ABSTRACT

Quadratic three-dimensional autonomous systems may display complex behavior. Studying the systems Sprott A and NE9, we find families
of tori and periodic solutions both involving canards. Using time-reversal and symmetry, we are able to explain in these two systems both
the analysis and origin of tori, periodic solutions, and the numerics of these objects. For system NE9, unbounded solutions exist that admit
analytic description by singular perturbation theory of the flow near infinity, also we observe torus destruction and a new chaotic attractor
(Kaplan–Yorke dimension 2.1544) produced by a period-doubling scenario. The subtle numerics of periodic solutions involving canards is
explained in the final section.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0097508

In dissipative systems, the presence of an infinite family of tori
is unusual. We explain these phenomena for two systems of
ODEs, Sprott A and NE9, by showing certain symmetries in the
systems. A remarkable additional aspect is that the tori show
canard behavior. Because of the canards, the presence of peri-
odic solutions on the tori present special numerical integration
problems. There are more surprising phenomena in both simple-
looking systems: chaotic behavior in both systems and in system
NE9 an isolated invariant manifold with in its neighborhood
again canard solutions, produced by a stability transition of the
manifold.

I. INTRODUCTION

A number of chaotic three-dimensional systems, in fact 17
autonomous systems with linear and quadratic terms only and one
parameter (a), have been listed and studied in Ref. 7; see also Ref. 15;
all these systems are dissipative, i.e., the three-dimensional phase-
flow is not volume-preserving. The systems are numbered NE1, . . . ,
NE17 with one of them, called Sprott A (or NE1). The study of these
17 systems is very instructive as three-dimensional systems gener-
ally show much more complexity than two-dimensional ones and as

the 17 systems are relatively simple, quadratic and, with one param-
eter. The evidence for chaos in Ref. 7 is mainly numerical and an
interesting start.

A remarkable aspect of the systems Sprott A and NE9 is the
observed presence of families of invariant tori, known in conserva-
tive systems, but in contrast, we have here dissipative systems with
the parameter small a. This aspect was studied in more detail for
Sprott A in Refs. 12 and 13 who correctly observe that we have a
kind of KAM (Kolmogorov-Arnold-Moser) tori.

A novel result is that we can complete the theoretical picture
both for Sprott A and NE9 by linking the tori bifurcation phe-
nomenon to time-reversal and canards. The scalings near the origin
of phase-space in Secs. II and III are related to geometric desingular-
ization of degenerate singularities. For the vast literature, see Refs. 8
and 11. For both systems, we can identify a number of periodic solu-
tions on the tori. For the Sprott A system, unbounded solutions
can only be found on the z axis. Another novel aspect is that for
system NE9, this is different; we find “rings” of initial values lead-
ing to unbounded solutions. Scaling near infinity and using again
geometric singular perturbation theory provides insight into this
dynamics.

We formulate the equations. The system Sprott A is

ẋ = y, ẏ = −x − yz, ż = y2 − a, (1)
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with a ≥ 0. The Sprott A system is a special case of the Nosé–Hoover
oscillator; for the physics references of this oscillator and a nice
introduction to the theory, see Ref. 14. For a number of a values, the
system (1) suggests chaotic behavior; if a 6= 0, no equilibria exist.
In Ref. 7, the case a = 1, x(0) = 0, y(0) = 5, and z(0) = 0 of system
(1) produces a structure that looks like an attractor. The “attracting”
object has Kaplan–Yorke dimension 3.0, see Ref. 7.

System NE9 shows related but also different characteristics.
The equations are

ẋ = y, ẏ = −x − yz, ż = −xz + 7x2 − a, a ≥ 0. (2)

System NE9 has no equilibrium if a 6= 0.

A. Setup of the paper

In the Introduction section, we formulate a number of useful
lemmas for periodic solutions in the Sprott A and NE9 systems, and
we observe the time-reversal character of the two systems. In Sec. II,
we consider the Sprott A system adding more details to the canard
results of Ref. 1 producing for 0 < a � 1 pulse-like behavior of the
solutions. Time-reversal leads to the presence of a tori family around
a periodic solution that serves as an organizing center. Infinite fam-
ilies of tori are typical for Hamiltonian systems, see Ref. 2. It is
interesting to find such families in dissipative systems. We expect to
find periodic solutions on the tori with rather long periods because
of their passage through slow manifolds. It takes subtle numerical
methods to find the periodic solutions, both stable and unstable (see
Sec. V for comments on the numerics). More insight in the presence
of tori and the transition to chaos is obtained by using the frequency
method of Laskar, see Subsection II D.

A striking difference between the Sprott A and NE9 systems
is the presence of families of unbounded solutions in NE9. The
behavior near infinity requires again singular perturbation analy-
sis and yields insight into the presence of domains where solutions
are attracted to infinity. In system NE9, a chaotic attractor with
Kaplan–Yorke dimension 2.1544 is detected that emerges from a
period doubling sequence. It is demonstrated how periodic solu-
tions, tori, and chaos are connected.

B. Some useful observations

Consider systems (1) and (2). For arbitrary a, the z axis is an
invariant manifold with, if a 6= 0, unbounded solutions,

sx = y = 0, z(t) = z(0)− at. (3)

An interesting discrete symmetry feature of (1) is
Lemma I.1. If [x(t), y(t), z(t)] is a solution of system (1) then

also [−x(t), −y(t), z(t)] is a solution.
This is verified by substitution. An important feature involving

time-reversal of (1) is
Lemma I.2. If [x(t), y(t), z(t)] is a solution of system (1),

then by putting x̄ = x, ȳ = −y, z̄ = −z and reversing time τ = −t,
[x̄(τ ), ȳ(τ ), z̄(τ )] is also a solution.

Such time-reversal symmetry is called R-symmetry in Ref. 9.
For system NE9, we have a similar reversibility as in Lemma I.2:

Lemma I.3. If [x(t), y(t), z(t)] is a solution of system (2),
then by putting x̄ = −x, ȳ = y, z̄ = −z and reversing time τ = −t,
[x̄(τ ), ȳ(τ ), z̄(τ )] is also a solution.

By differentiating the equation for x, we rewrite system (1) as

ẍ + ẋz + x = 0, ż = ẋ2 − a. (4)

Consider the Sprott A system in the form (4). It is easy to prove the
following lemma:

Lemma I.4. Assume that x(t) = ξ(t), y = dξ/dt, z(t) = ζ(t)
are T-periodic (T > 0) solutions of system (4) for a > 0, then

∫ T

0

ζ(t)dt = 0. (5)

Proof. The equation for x with z = ζ(t) becomes

ẍ + ζ(t)ẋ + x = 0.

According to the Floquet theory, the solutions of the x-equation are
of the form exp(Bt)8(t) with T-periodic matrix 8(t) and constant
2 × 2 matrix B. For the characteristic exponents λ1, λ2, we have in
the periodic case

λ1 + λ2 =
1

T

∫ T

0

ζ(t)dt = 0,

which proves the lemma (the corresponding multipliers ρ1, ρ2 satisfy
the relation ρ1ρ2 = 1). �

A different proof adds insight into the periodic solutions of
system (1).

Alternative proof of Lemma I.4
Consider for the solutions of system (4) the function

F(x, y, z) =
1

2
(x2 + y2 + z2). (6)

Differentiation and using the equations yields easily

dF

dt
= −az,

or

F(x(t), y(t), z(t)) = F(x(0), y(0), z(0))− a

∫ t

0

z(s)ds.

If (x.y.z) is T-periodic, we have F(x(0), y(0), z(0)) = F(x(T), y(T),
z(T)) and so, if a > 0,

∫ T

0

z(s)ds = 0.

The additional insight is that the quantity F(x(0), y(0), z(0)) is
conserved with error O(a) on periodic solutions.

It was observed and proved by averaging in Ref. ! 12 that
Sprott A system (1) has a periodic solution near the origin of phase-
space and for 0 < a � 1. The scaling needed is x = εx̄, y = εȳ,
z = εz̄, a = ε2a0 with a0 being a positive constant. The location is
given by (x(0), y(0), z(0)) = (

√
2a0, 0, 0). According to Ref. 1, the

periodic solution exists also for system NE9 with the same scaling;
the location for NE9 is given by (x(0), y(0), z(0)) = (

√
2a0/7, 0, 0).

In both systems, the periodic solution is neutrally stable to second
order approximation.

Using Poincaré compactification, it was shown in Ref. 13 for
the Sprott A system that the only orbits that can reach infinity are
the solutions starting on the z axis. So all solutions starting outside
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the z axis are bounded. The proof does not carry over to system NE9;
it is easy to find solutions escaping to infinity numerically.

II. THE SPROTT A SYSTEM

We summarize the degenerate case a = 0 studied in Ref. 12 as
the dynamics for 0 < a � 1 shows very interesting different aspects.
We will use the spherical radius R and the distance r to the z axis
defined by

R2 = x2 + y2 + z2, r2 = x2 + y2. (7)

A. The limit case a =0

It was shown in Ref. 12 that for a = 0, the behavior is more
regular, in fact integrable. We summarize the following:

• If a = 0, x = y = z = 0 is a degenerate critical point of the
vector field (equilibrium of the system).

• We differentiate using system (1)

d

dt
(R2) = 2(xẋ + yẏ + zż) = −2az.

So if a = 0, the spheres with radius R are invariant manifolds of
the system, but the system (1) is still dissipative.

• If a = 0, the z axis consists of equilibria puncturing the invariant
spheres in north- and south-pole. If 0 < R < 2, the south-pole is
an unstable focus, the north-pole a stable focus on each invariant
sphere. To see this, we differentiate the vector field of system (1),





0 1 0
−1 −z −y
0 2y 0



 .

If (x, y, z) = (0, 0, ±R), the eigenvalues are on the invari-

ant sphere with radius R: 1
2
(R ±

√
R2 − 4) (north-pole) and

1
2
(+R ±

√
R2 − 4) (south-pole). If R ≥ 2, the two pole equilib-

ria are nodes, for z(0) > 2, respectively, stable and unstable.The
implication is that for 0 < z(0) < 2, the solutions near the
invariant z axis are winding toward the axis in the x, y plane;
for −2 < z(0) < 0, the solutions near the invariant z axis are
winding outward in the x, y plane with respect to the z axis.

B. Slow–fast and canard behavior for small a

Consider now the case a = ε (a small, positive parameter). We
choose the initial values of (x, y, z) in an interior subset D of the
sphere with R = 2. If x(0)2 + y(0)2 + z(0)2 < 4, we keep the rotat-
ing character of the flow around the z axis observed for a = 0. It
was shown in Ref. 1 that if a is small, we have a singular perturba-
tion problem with canard behavior; the behavior of the solutions for
a = 0 and 0 < a � 1 is dynamically and topologically very differ-
ent. We will give the analysis in more detail here, add quantitative
aspects, and discuss its geometric consequences.

If a is small, it is basic to see system (1) as a slow–fast system
and to apply Tikhonov’s theorem.16 Note that

dr2

dt
= −ẋ2z,

so, as long as z(t) is positive, the (x, y) phase-flow is strongly
damped, and if z(t) is negative, the flow is excited. When starting
with O(1) initial values and z(0) > 0, the time needed to produce
x(t), y(t) = O(

√
ε) is O(| ln ε|). To put the system in the formulation

of Tikhonov’s theorem, we rescale: x =
√
εx̄, y =

√
εȳ. Omitting the

bars, system (1) becomes

ẋ = y, ẏ = −x − yz, ż = ε(y2 − 1), (8)

and rescaling time τ = εt, we find the equivalent system

ε
dx

dτ
= y, ε

dy

dτ
= −x − yz,

dz

dτ
= y2 − 1. (9)

According to the geometric singular perturbation theory system, (8)
shows fast motion of the x, y-component except in an O(ε) neigh-
borhood of the one-dimensional slow (or critical) manifold, M0

defined by

y = 0, −x − yz = 0. (10)

The slow manifold M0 corresponds with the z axis in three-
dimensional phase-space; it is normally hyperbolic when excluding a
neighborhood of z = 0 as we have for the fast part of the system that
the real part of the spectrum is −z/2. M0 approximates the smooth
slow manifold Mε that exists for solutions of system (8). Accord-
ing to section 15.7 of Ref. 18, when excluding a neighborhood of
z = 0, M0 approximates Mε exponentially close. To fix ideas, we take
initially

x(0) = x0, y(0) = 0, z(0) = z0, 0 < x0, z0 < 2.

We assume that x0, z0 are not ε-close to 0 or 2. According to
Tikhonov, we have when starting outside M0 at positive z(0) = z0 an
O(ε) approximation of the fast solutions of system (8) of the form

X0(t) = x0e
−z0t/2 cos

(

√

4 − z2
0

t

2

)

. (11)

The approximation is valid on an interval O(1) in τ , O(1/ε) in t as
long as we do not enter a ε-neighborhood of M0. From (11), we can
estimate the fast time T1 needed to approach M0,

x0e
−z0T1/2 cos

(

√

4 − z2
0

T1

2

)

= ε. (12)

Ignoring the oscillations, a rough estimate is

T1 ≤ −
2

z0

ln

(

ε

x0

)

. (13)

The approximate time needed for the motion until z = 0 along M0

is T2 = z0/ε. Using the symmetry result of Lemma I.2, we find the
estimate of the return time T ≥ 2(T1 + T2) of the flow in system (8).
The pulse-like behavior for the fast motion of the flow is shown
in Fig. 1. The slow–fast system (8) is actually valid in an O(

√
ε)

neighborhood of the origin, whereas in Fig. 1, we start the solutions
outside this region; this is possible because of the strong damping if
z(t) > 0, but it will produce a lower bound of the return time.

Geometric singular perturbation theory in combination with
time-reversal and symmetry produces the behavior shown in the
Poincaré maps of Fig. 2. Increasing ε, we expect the tori to break
up, perhaps with Cantor gaps as in near-integrable Hamiltonian
systems.
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FIG. 1. Pulses of r2(t) showing the fast motion of the (x, y)-flow with respect to the z axis that is near the slow manifold. In the left, we have a = 0.01, x(0) = 1,
y(0) = 0, z(0) = 1, and in the right, a = 0.1, x(0) = 0.3162, y(0) = 0, z(0) = 1. The behavior near the z axis shows canard behavior.

C. Tori and periodic solutions for small a

In this subsection, periodic orbits will be described obtained by
the procedure outlined in Sec. V.

It has become clear that Lemma I.2 regarding time-reversal and
symmetry plays an essential part in producing recurrence of the
canards and tori-like structures. As we will show in Subsection II E,
unfolding system (1) destroys the reversal symmetry and the tori-
like structures. Time-reversal symmetry plays a part in what is
sometimes called “dissipative KAM theory,” see for surveys Refs. 3,
9, and 14.

For the Sprott A system this, was conjectured in 12 and 13 with
strong numerical evidence. There exist a large number of papers
describing the emergence of quasi-periodic solutions and tori near
equilibria with purely imaginary eigenvalues, sometimes in three-
space with a zero eigenvalue added. However, the framework for the
Sprott A system is different as for a (or ε) zero, we have an infinite
set of equilibria, whereas for a > 0, we have no equilibrium in the

FIG. 2. Poincaré maps in the plane y = 0 of the Sprott A system (1) near the
origin of phase-space for a = 0.01. The behavior near the z axis shows canard
behavior for various initial conditions.

system, and the infinite set persists as invariant manifold of the sys-
tem. For a = 0, phase-space is foliated into invariant spheres that
collapse to tori for 0 < a � 1. In our analysis, we have a periodic
solution at O(ε) distance of three-dimensional phase-space. This
periodic solution is surrounded by the infinite set of slow–fast solu-
tions we derived in Subsection. II B. This follows from the estimates
in section 15.7 of Ref. 18 when excluding a neighborhood of z = 0
and the time-reversal characteristic.

It makes sense to have a closer look at the tori. First, we note
that the theory of canards guarantees the presence of slow manifolds
for a small enough. The slow manifolds are tunneling exponentially
close to the z axis parametrized by z(0). The reversibility result of
Lemma I.2 yields a tori family of which the dynamics still has to be
explored.

It is interesting to look for periodic solutions embedded in tori
by using Lemma I.4. Define

I(t) =
∫ t

0

z(s)ds.

Look for T-periodic zeros of I(t), maybe varying ε for fixed z0; T will
be close to the return times of the tori.

It might help us to consider maps of the x, I-plane into itself for
y = 0. These maps will be used to find periodic solutions numeri-
cally later on.

It was shown in Refs. 12 and 13 and to the second order in Ref.
1 that on scaling x, y, z = O(ε) and a = ε2a0, a Lyapunov stable peri-
odic solution exists O(ε2)-close to the invariant manifold z = 0 and
the circle x2 + y2 = 2a0ε

2. As a0 is an arbitrary O(1) constant, this
means that we have found a family of periodic solutions that gives
for each fixed a an organizing center of the family of tori. See Fig. 3.
An example of this family is periodic orbit 2 of Table I.

A different periodic solution is shown in Fig. 4. This periodic
solution of system (1) in a torus near the origin is found by numer-
ical bifurcation analysis for a = 0.013 149; x(0) = −0.0985, y(0)
= 0.098 11, andz(0) = 0.9951. The slow manifold shows up in the
center of the (x, y) projection (left figure) and in the vertical z motion
in the (x, z) projection (middle); the observed asymmetry in the
(x, y) projection gives us the mirrored periodic solution (right in
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figure) guaranteed by Lemma I.1. For the three Lyapunov exponents
of this periodic solution, we find zero.

Numerical integrations show that the recurrence of the orbits
in the tori is generally not periodic, but we can find more isolated,
stable periodic solutions; see again Table I. We have strong depen-
dence of the tori on the initial conditions [x(0), y(0)) = O(

√
ε] and

z(0).

1. The periodic orbits of table I

The Poincaré maps of the periodic orbits show collections
of segments that consist of isolated points that correspond with
the transitions of the transversal plane of section. Segments arise
because of the slow–fast dynamics of the orbits if a is small.

The exception is orbit 2 that is part of the family that forms the
organizing center of the tori. For orbit 2 in this family, the Poincaré
section is a fixed point, and the (x, y) projection is close to a circle.

As mentioned in the caption of Table I, at least seven addi-
tional periodic orbits exist because of symmetry considerations. In
Fig. 5, we present a few typical examples of Table I. Orbit 8 looks
rather complex; we illustrate its behavior with time in Fig. 6 for

x(t), z(t). In accordance with Lemma 5, we find for the z, I-diagram

(I =
∫ t

0
z(s)ds) a closed loop (picture not shown).

The stability of the periodic solutions follows from the 3 Lya-
punov multipliers. As the Sprott A system is autonomous, one
multiplier ρ1 will always be 1; Lemma I.4 and the time reversality
yield that for the two remaining multipliers, we have ρ2 = 1/ρ3; see
Table II. We have stability if |ρi| = 1, i = 1, 2, 3.

It is more difficult to find unstable periodic orbits. We list five
unstable cases in Table III. The Poincaré sections and projections on
the (x, y) plane are shown in Fig. 7

The R-symmetric orbits of Table I have all their complex mul-
tipliers on the unit circle; the orbits are Lyapunov stable. It is
important to note that there exist also periodic orbits with real multi-
pliers outside the unit circle in the complex plane, they are unstable;
see Tables III and IV.

D. Fundamental frequencies in the chaotic regions

The method of fundamental frequencies was first introduced
by Laskar in 1990 where he used it to estimate the size of the chaotic
zones in a 15 degrees of freedom dynamical system. The idea behind
it is that the frequency map is still exactly defined on the Cantor set

TABLE I. Initial values of 11 periodic orbits with a= 0.1. According to Lemma I.1, the seven asymmetric orbits (asymm) yield additional periodic orbits by the symmetry

−x(t),− y(t), z(t). In the cases of orbits 1, 2, 8, and 9 with “symm ?” in the last column, the orbits are looking symmetric in the (x, y) projection but a proof is lacking.

Orbit x(0) y(0) z(0) Comment

1 1.869 599 405 933 272 8 0.294 452 058 991 819 9 0.011 086 661 220 298 6 symm?
2 0.429 103 720 566 849 1 0.098 722 569 075 084 1 0.021 838 833 127 457 4 symm?
3 0.474 435 715 195 752 1 0.098 342 667 345 030 0 0.857 675 021 281 200 9 asymm
4 0.277 489 384 298 501 0 0.099 574 978 195 378 2 −1.341 926 431 170 751 7 asymm
5 2.354 073 257 472 744 1 0.093 024 366 364 032 1 0.003 835 439 436 810 8 asymm
6 1.790 893 256 744 474 4 0.001 415 500 825 757 7 0.000 079 059 087 479 4 asymm
7 1.343 783 088 166 542 7 −0.004 965 472 230 357 1 −0.000 369 482 205 205 8 asymm
8 1.225 723 045 768 512 4 −0.007 955 177 667 238 2 −0.000 648 869 624 227 3 symm ?
9 1.467 128 202 691 749 2 −0.000 444 419 976 762 0 −0.000 030 287 526 724 3 symm ?
10 2.233 390 196 654 015 3 −0.006 617 364 200 344 8 −0.000 296 248 143 657 4 asymm
11 1.742 820 349 983 936 3 −0.005 163 843 294 830 3 −0.000 296 265 056 214 4 asymm

FIG. 4. Periodic solution of system (1) in a torus near the origin of phase-space for a = 0.013 149; x(0) = −0.0985, y(0) = 0.098 11, z(0) = 0.9951. The verti-
cal motion in the x, z projection (middle) corresponds with the slow manifold. Right: the corresponding mirrored periodic solution with a = 0.013 149; x(0) = 0.0985,
y(0) = −0.098 11, z(0) = 0.9951.

Chaos 32, 083119 (2022); doi: 10.1063/5.0097508 32, 083119-5

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 5. Periodic solutions of system (1) from Table I. Successive orbits 3 (asymmetric but simple), 8, and 10 (more complex orbits). Left are the Poincaré sections consisting
of many points; right are the projections on the (x, y) plane.
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FIG. 6. Timeseries x(t) and z(t) on orbit 8 in Table I.

FIG. 3. Five orbits in tori andO(ε2)-close to five members of the family of periodic
solutions in the Sprott A system (1) with projection in the (x, y) plane given by x2

+ y2 = 2a. We took successively a = 0.1, 0.075, 0.05, 0.025, 0.01 corre-
sponding to y(0) = 0, z(0) = 0.005 75, 0.003, 0.0018, 0.0009, and 0.000 01.

of the invariant tori. It can be thought of as a diffeomorphism on this
set. Chaotic zones will, therefore, appear as loss of regularity regions
for the frequency map. This approach is more accurate than using
Lyapunov exponents and computing the Kaplan–Yorke dimension
as the frequency variations directly signal the breakup of invariant
tori. This criterion is used here to identify chaotic behavior in the
Sprott A system. The fundamental frequencies were computed using
the SDDS numerical analysis of the frequencies (NAFF) algorithm
by Laskar, see Ref. 10 for more details on the approach of numerical
analysis of the frequencies (NAFF).

In Fig. 8, we show the fundamental frequencies as a function
of x(0) in the tori and chaotic regions for a = 0.1. Left in Fig. 8, we
run x(0) from 0 to 0.13 showing a clear and regular pattern. Right
in the figure, we have zoomed in near the origin [−0.0004 < x(0)

< +0.0004]; near x(0) = 0, we have an accumulation of frequen-
cies and loss of regularity of the frequency map yielding, therefore,
chaotic motion in the Sprott A system at parameter value a = 0.1.

E. Unfolding near eigenvalue zero

The time-reversality is essential for our results; we show this by
unfolding of the singularity and breaking time-reversality. If a = 0,
we have a zero eigenvalue for the critical point at the origin. We
propose the following unfolding using positive parameter c,

ẋ = y, ẏ = −x − yz, ż = y2 − a − cz. (14)

Lemma I.2 does not hold anymore, the time symmetry is bro-
ken. The z axis is still an invariant manifold; starting at (x, y, z)
= (0, 0, z0), the solution is

z(t) = −
a

c
+

(

z0 +
a

c

)

e−ct. (15)

If a = 0, c > 0, the origin is a stable focus with one negative eigen-
value and two purely imaginary ones. The spheres R2 = x2 + y2

+ z2 = constant are no longer invariant manifolds; dR2/dt = −2cz2.

TABLE II. Periods and multipliers of 11 stable periodic orbits of Table I [system (1)].

Of the 16 decimals, we show for the periods two decimals for the multipliers 4. In each

case, |ρ i| = 1, i= 1, 2, 3.

Orbit Period Multipliers ρ1, ρ2, ρ3

1 80.35 1; 0.0576 + 0.99839i; 0.0576 − 0.9983i
2 6.21 1; −0.3702 + 0.9289i; −0.3702 − 0.9289i
3 25.80 1; 0.9822 + 0.1878i; 0.9822 − 0.1878i
4 34.40 1; 0.8610 + 0.5086i; 0.8610 − 0.5086i
5 98.53 1; 0.5801 + 0.8145i; 0.5801 − 0.8145i
6 1.15 1; 0.9878 + 0.1560i; 0.9878 − 0.1560i
7 59.69 1; 0.7648 + 0.6443i; 0.7648 − 0.6443i;
8 111.19 1; 0.9952 + 0.0974i; 0.9952 − 0.0974i
9 128.46 1; 0.9713 + 0.2379i; 0.9713 − 0.2379i
11 149.48 1; 0.9158 + 0.401i; 0.9158 − 0.401i
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FIG. 7. Five unstable periodic solutions of system (1) from Table III. Left are the Poincaré sections consisting of many points; right are the projections on the (x, y) plane.
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FIG. 7. continued

If a > 0, c > 0, we have on the negative z axis the critical point
(x, y, z) = (0, 0, −a/c); if a is fixed and c tends to zero, this critical
point moves to minus infinity and is stable. We will characterize the
dynamics near the invariant z axis in the case 0 < a, c � 1.

In Eq. (14), we rescale x =
√
εx̄, y =

√
εȳ, a = εa0, c = εc0;

omitting the bars, we obtain

ẋ = y, ẏ = −x − yz, ż = εy2 − εa0 − εc0z. (16)

This is a slow–fast system with again slow manifold x = y = 0; the
slow manifold is hyperbolic unless z = 0. If z(0) > 0, the (x, y) oscil-
lations are strongly damped and the phase-flow moves to the z axis.
The Tikhonov theorem16 can be used as in the case c = 0. We find
again recurrent canard behavior but not the presence of invariant
tori as it turns out that the solutions tend for 0 < a, c � 1 to a stable
periodic solution near the origin. We show this using a different scal-
ing of Eq. (14): x = εx̄, y = εȳ, z = εz̄, a = ε2a0, c = εc0; omitting

the bars, we obtain

ẋ = y, ẏ = −x − εyz, ż = εy2 − εa0 − εc0z. (17)

Using transformation to cylindrical coordinates,

x = r cos(t + ψ), y = ẋ = −r sin(t + ψ), z = z, (18)

we find the variational system











ṙ = −εr sin2(t + ψ)z,

ψ̇ = − 1
2
ε sin(2t + 2ψ)z,

ż = εr2 sin2(t + ψ)− ε(a0 − c0z).

(19)

Averaging to first order produces equations governing the approxi-
mations for r,ψ , z,

ṙ = −
ε

2
rz, ψ̇ = 0, ż =

ε

2
(r2 − 2a0 − 2c0z). (20)
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FIG. 8. The frequencies in the neighborhood of the origin in the tori and in the regions between them.

If r=
√
(2a0), z = 0, we have an equilibrium of the averaged system

(20). According to theorem 11.5 in Ref. 17 (the so-called second
Bogoliubov theorem), the autonomous system (17) has a periodic
solution in an O(ε) neighborhood of the equilibrium if the n × n
Jacobian matrix at this point has rank n − 1; this is the case here. We
find two complex eigenvalues and one negative eigenvalue O(ε), so
an isolated stable periodic solution exists in an O(ε) neighborhood
of the origin. The behavior of the Sprott A system unfolded near the
origin is similar to the behavior of system NE8, see for details Ref. 1.

III. SYSTEM NE9 FOR PARAMETER a SMALL

The analysis of Sprott A system (NE1) for small a carries partly
over to system NE9 as similar time-reversal plays a part but there
are interesting new aspects like the presence of sets of unbounded
solutions, tori destruction, and a new chaotic set.

If a = 0, the origin of phase-space is an equilibrium with eigen-
values ±i, 0. The first two equations of system (2) are the same as
for the Sprott A system, the implication is that also in system NE9,
the (x, y) flow is strongly damped as long as z(t) > 0. See Fig. 9 for
the tori that emerge near the origin of phase-space and small a; this
region near the origin is smaller than in the case of the Sprott A
system.

The behavior of the canards and the corresponding pulses are
quantitatively different from the Sprott A system, see Fig. 10

A. Tori and periodic solutions for small a

As in Subsection II C, the numerical analysis of periodic solu-
tions in system NE9 refers to Sec. V.

We rescale x, y, z = O(ε) and a = ε2a0. It was shown in Ref. 1
that a Lyapunov stable periodic solution exists O(ε2)-close to the
invariant manifold z = 0 and the circle x2 + y2 = 2

7
a0ε

2. As a0 is
an arbitrary O(1) constant, this means that we have found again
a family of periodic solutions that we expect to produce for fixed

a an organizing center of a family of tori. See Fig. 11. Lemma I.3
guarantees time-reversal and symmetry.

To analyze the canards, we use a different scaling. Again, we
put a = ε with small parameter ε ≥ 0. As in Sec. II, we put the sys-
tem in the formulation of Tikhonov’s theorem, here by rescaling
x = εx̄, y = εȳ. Omitting the bars, system (2) becomes

ẋ = y, ẏ = −x − yz, ż = ε(−xz + 7εx2 − 1). (21)

The slow manifold M0 corresponds as before with the z axis
in three-dimensional phase-space; it is normally hyperbolic when
excluding a neighborhood of z = 0. M0 approximates the smooth
slow manifold Mε that exists for solutions of system (21) expo-
nentially close when excluding a neighborhood of z = 0 (see again
section 15.7 of Ref. 18). As for system NE1, the family of canard solu-
tions surround the small family of periodic solutions near the origin
as in Subsection I B.

From the canard behavior, we have via time-reversal and sym-
metry (Lemma I.3) the emergence of tori for parameter small a.
However, the pulses for system NE9 in Fig. 10 show more variation
than in the NE1 case. These variations are caused by the different
terms in the z-equation.

In Fig. 12, we show a few examples of periodic solutions.

IV. SYSTEM NE9, BOUNDEDNESS AND CHAOS

System NE9 has many other interesting features if we admit
larger values of the parameter a. We will discuss boundednes of solu-
tions and explore for O(1) values of parameter a the presence of tori
and strange attractors.

A. Bounded and unbounded solutions

Consider again system NE9 (2) but now regarding bounded-
ness of the solutions. In Fig. 13, we present regions of initial con-
ditions (yellow) that produce unbounded solutions if a = 0.01; the
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black regions correspond with initial conditions for bounded solu-
tions. We repeat the search for bounded and unbounded solutions
for a− = 0.55, see the results in Fig. 14.

The numerics shows that z(t) becomes unbounded; y(t) tends
in this case to zero, whereas x(t) tends to a fixed number, dependent
on the initial conditions, see Fig. 13. Using this information, we give
arguments for the behavior near infinity by transforming z = 1/w;
system (2) becomes

ẋ = y, ẏ = −x −
y

w
, ẇ = xw − 7x2w2 + aw2, a ≥ 0. (22)

We have that w = 0 is a solution if y(t) tends to zero and faster
than w(t); another condition will be that for certain t0 and t ≥ t0, we
have x(t) < 0. Suppose that w(t) 6= 0 but O(ε). We rescale w = εw̄,
system (22) can be written as

ẋ = y, εẏ = −εx −
y

w̄
, ˙̄w = xw̄ − ε7x2w̄2 + εaw̄2, a ≥ 0. (23)

According to singular perturbation theory, see Ref. 18, y(t), t ≥ t0

moves to zero in a fast fiber if w(t0) > 0 with timelike variable t/ε,
w̄ tends to zero with timelike variable t. This shows that w = 0,
with the assumptions given above, corresponds with a set of solu-
tions of system (22); we have for this set y(t) → 0 and x(t) tends
to xc = x(t0)+ O(ε). The computation gives also a hint regarding
the origin of the structure of “rings” of initial conditions leading to
bounded and unbounded solutions. We noted that for w = (1/z)
= 0 to be an attractor, we have the condition x(t) < 0, t ≥ t0. We
expect that for various starting values of x(t), this component of the
system will still oscillate before it enters the neighborhood of w = 0
for t ≥ t0. Its sign at t = t0 will determine the final boundedness.

As qualitative arguments, this reasoning is sound but note that
the analysis of the quantitative behavior is for a large part numerical.

TABLE IV. Periods and multipliers of five unstable periodic orbits of Table III

[system (1)]. Of the 16 decimals, we show for the periods two decimals for the

multipliers 4.

Orbit Period Multipliers ρ1, ρ2, ρ3

1B 25.82 1; 0.8278; 1.2080
2B 59.85 1; 0.4951; 2.019 77
3B 85.44 1; 0.9858; 1.0144
4B 128.46 1; 0.7867; 1.2711
5B 307.59 1; 0.9779 1.0226

1. The case a=1

A special unbounded solution arises if a = 1. We find on the
manifold z = 7x the solutions

x(t) = −
t

7
+ x(0), y = −

1

7
, z(t) = −t + 7x(0). (24)

The family of solutions is parameterized by x(0); the sign of x(0) is
for a = 1 clearly not important. Linearization of system (2) for a = 1
at this special solution produces structural stability of the solution
when a neighborhood of x = 0 is excluded. The solution is asymp-
totically stable if x > 0 and unstable if x < 0. The structural stability
implies continuation for a finite interval of time when excluding
a neighborhood of x = 0. This agrees with the picture of Fig. 16
where a = 0.99. The solution for a = 0.99 follows the set z = 7x and
shows canard behavior when passing the region where x = 0. We
transform x, y, z 7→ x, v, w by

x = x, y = y, w = z − 7x. (25)

We find the system satisfying w = 0, a = 1,

ẋ = y, ẏ = −x − yw − 7xy, ẇ = −xw − 7y − a. (26)

FIG. 9. Poincaré map in the plane y = 0 of system (2) near the origin of phase-
space for a = 0.01. The numerics shows tori near the origin of phase-space as
in the Sprott A system.

TABLE III. Initial values of five periodic orbits with a= 0.1. According to Lemma I.1, the three asymmetric orbits (asymm) correspond with a periodic orbit −x(t),− y(t), z(t). In

the cases of orbits 2B,4B, the orbits are looking symmetric in the x, y projection but a proof is lacking.

Orbit x(0) y(0) z(0) Comment

1B 0.109 891 123 298 179 0 0.298 944 419 753 410 0 0.847 726 150 012 819 0 asymm
2B 0.009 527 565 043 901 2 −0.294 898 633 563 472 0 1.091 596 029 314 960 0 symm ?
3B 0.323 721 629 619 965 0 −0.326 760 282 978 711 0 0.956 383 536 790 022 0 asymm
4B −0.451 148 780 756 107 0 0.322 009 639 732 568 0 1.174 466 230 699 029 9 symm ?
5B 0.020 576 277 638 496 8 0.103 655 085 208 649 0 1.007 651 800 721 620 0 asymm
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FIG. 10. Pulses of r2(t) showing the fast motion of the (x, y)-flow with respect to time including the slow manifold for system (2), NE9. Left we have a = 0.05,
x(0) = 0.1, y(0) = 0, andz(0) = 0.4; right the same initial conditions but a = 0.01. The behavior near the z axis shows canard behavior, but for a = 0.01, the pulses
are more irregular.

In Fig. 15, the bounded solutions are shown in yellow regions
of the x, z-diagram for a = 1 and a = 0.99. Choosing a close to 1,
say, a = 1 − ε, the structural stability of the exact solution enables
us to approximate w(t) as long as we do not enter a neighborhood of
x = 0. We have no need for the usual slow manifold scaling. We find
with exact solution (24) for the equation with approximate w(t),

ẇ = −(x(0)−
t

7
)w + ε, w(0) = 0. (27)

The approximate solution is

w(t) = εe(−x(0)t+ t2

14 )

∫ t

0

e(x(0)s−
s2

14 )ds, 0 ≤ t ≤ 7x(0).

FIG. 11. Five orbits in tori and O(ε2)-close to five members of the family of peri-
odic solutions in the NE9 system (2) with projection in the (x, y) plane given by
x2 + y2 = 7

2
a. We took successively a = 0.1, 0.075, 0.05, 0.025, and 0.01.

The term t2/14 dominates the expression with consequence that
the canard behavior, following the manifold z = 7x where it has
become unstable, depends with O(ε) on x(0). This is confirmed by
the numerics of the system, see Fig. 16. We find a family of periodic
solutions with canard behavior as the slow manifold z = 7x is fol-
lowed for some time where it is unstable, but as w(7x(0)) = O(ε),
the solutions are very close (in Fig. 16 ε = 1 − a = 0.01).

2. Bifurcation analysis of the periodic orbit near the

canard

Continuation of the periodic orbit at a = 0.99 with respect to
the parameter a yields the following bifurcation diagram. See Fig. 17.

Continuation of the periodic solution with respect to the
parameter a and starting at a = 0.99 yields twice a period dou-
bling. The first one occurs at a = 5.753 79 × 10−1 where the orbit
undergoes a supercritical period-doubling bifurcation with nor-
mal form coefficient l1 = −4.893 206 × 10−5 and period T = 8.24
becomes unstable and a stable period 2 orbit bifurcates from it.
The unstable periodic period 1 orbit undergoes a second super-
critical period-doubling bifurcation with normal form coefficient
l1 − 6.610 245 × 10−3 and period T = 6.93 at the parameter value
a = 4.656 81 × 10−1. The other two period doubling are related to
the first two by the symmetry in the NE9 system. At a = 4.118 88
× 10−1, a fold bifurcation occurs where the time-reversal symmet-
rically related orbits collide in a symmetric orbit and disappear. See
Fig. 18.

B. Tori and chaos for NE9

The presence of periodic solutions and tori was demonstrated
for small values of a in Sec. III A. Interestingly destruction of tori
can be observed when decreasing the parameter a. Decreasing from
a = 0.1925 until a = 0.190 26, we observe the changes of a double
torus that is loosing smoothness, collapsing on itself and getting
destroyed at some point; see Fig. 19. In Ref. 7, a chaotic set is
identified for a = 0.55, x(0) = 0.5, y(0) = z(0) = 0, Kaplan–Yorke
dimension DKY = 2.1544. One can identify more chaotic sets, see
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FIG. 12. We show a R-symmetric periodic stable solution of system NE9, a = 0.01 (top position). Multipliers [0.999 999 999 510 044; 0.901 390 727 296 870
+ 0.433 006 647 792 041i;0.901 390 727 296 870 − 0.433 006 647 792 041i]. Left the Poincaré section and right the projection on the (x, z)-plane, period: 69.3070. Below an
unstable solution, period 75.7092. Multipliers [0.999 999 999 630 394; 0.992 154 675 576 315 + 0.125 016 399 303 422i; 0.992 154 675 576 315 − 0.125 016 399 303 422i,
located on the unit circle. Left the Poincaré section; right the projection on the (x, z)-plane.

Fig. 20 for the case a = 0.206 01, the attractor is reminiscent of a
full torus perforated an infinite number of times. It is important to
understand its origin by analyzing the corresponding chaotic sce-
nario. It turns out that by continuation of certain periodic solutions,
a cascade of period doublings produces a chaotic attractor. This is
the case when starting for instance with the periodic solution found
by averaging, see the start of Subsection III A. The period doublings
of periodic orbits Pi, i = 1, . . . , 5 for several values of a are shown in
Table V.

The ratio’s (a(Pi+1)− a(Pi))/(a(Pi+2)− a(Pi+1), i = 1, 2, 3 are
5.464 63, 4.758 87, 4.663 11 and tend to the Feigenbaum constant
δ = 4.6692. In Fig. 21, we show the cascade of period doubling
starting with a periodic R-asymmetric orbit.

Another way to display the chaotic attractor of Fig. 20 is
showing it in three-space, see Fig. 22.

V. NUMERICAL COMPUTATION OF PERIODIC ORBITS

We describe the procedure that we followed to determine
periodic solutions for the systems Sprott A and NE9. This is not
straightforward as the solutions are embedded in families of tori and
have to pass through slow manifolds.

Finding (unstable) periodic solutions in dynamical systems is
important for understanding and clarifying the mechanisms behind
the emergence of strange attractors and the ensuing chaos. A whole
branch of mathematics called Periodic Orbit Theory is devoted to
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FIG. 13. The solutions of system NE9, a = 0.01 that become unbounded start
in the colored regions of the (x, z)-plane, the limiting value xc is indicated by the
color; the black regions correspond with bounded solutions. Left initial conditions
starting at −2 < x < 2,−4 < z < 4; right a zooming in at the upper corner.

this problem. There is a broad literature available in this area. See, for
example, Ref. 4 and the literature therein. There is also a vast amount
of literature and open source tools available on CAPD Computer
Assisted Proofs in Dynamics and interval arithmetics to bridge the

FIG. 14. The solutions of system NE9, a = 0.55 that become unbounded start
in the colored regions of the (x, z)-plane, the limiting value xc is indicated by the
color; the black regions correspond with bounded solutions.

gap between what is numerically observed in simulations and what
can actually be proved theoretically.

In this paper, a combination of techniques has been used to
locate periodic orbits. First, the time-reversal symmetry is exploited

FIG. 15. Left the bounded solutions indicated by yellow regions in the x, z-plane of system NE9 with a = 1; the solutions start at y(0) = −1/7. The manifold z = 7x shows
up, the nearby behavior looks complex. Right the case a = 0.99, again starting at y(0) = −1/7.
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FIG. 16. Solutions in the x, z-plane of system NE9 with a = 0.99; the solutions
start at z(0) = 7x(0), y(0) = −1/7 for x(0) = 0.5, 2, 3, they can hardly be
distinguished.

to find R-symmetric periodic solutions. Theorem 4.1 in Ref. 9 is
heavily used to reduce the dimensionality of the space of initial
conditions that yield R-symmetric periodic solutions from 3 to 1.
For completeness, we reformulate here Theorem 4.1 as stated in
Ref. 9 for flows.

FIG. 18. Time-reversal symmetrically related orbits collide in a symmetric orbit
and disappear.

Theorem V.1. Let o(x) be an orbit of the flow of an
autonomous vector field with time-reversal symmetry R. Then,

• An orbit o(x) is symmetric with respect to R if and only if o(x)
intersects Fix(R), in which case the orbit intersects Fix(R) in no
more than two points and is fully contained in Fix(R2).

• An orbit o(x) intersects Fix(R) in precisely two points if and only
if the orbit is periodic (and not a fixed point) and symmetric
with respect to R.

FIG. 17. Bifurcation diagram of the periodic orbit near the
canard solution. The diamond symbol (upper figure) corre-
sponds to period-doubling bifurcations. The square symbol
indicates a fold bifurcation. Dashed linesmean the periodic orbit
is unstable.
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FIG. 19. Projection of a torus on the x, z-plane in system NE9, a ≈ 0.19. Varying
a, it gets into a state of non-smoothness and then becomes a double torus.

In the case of the Sprott A system, Fix(R) is the x axis. A direct
consequence of the time-reversal symmetry is that R-symmetric
periodic solutions of the Sprott A system are Lyapunov stable and
have all multipliers on the unit circle. The Lyapunov stability of the
R-symmetric periodic solutions makes numerical detection feasible.
Using Theorem V.1, orbits starting on the x axis are numerically
integrated and the number of intersections with Fix(R) is moni-
tored. All orbits that approximately intersect Fix(R) twice are labeled
as “potentially” periodic. This set of orbits is then used as first
guess in continuation tools like Matcont5 and Auto6 to pinpoint
their location exactly and compute their multipliers. Continuation
even further with respect to the parameter a of the R-symmetric
orbits as seeds yields branching point bifurcations with symmetry
breaking yielding non-symmetric saddle periodic orbits. New unsta-
ble orbits are easily obtained from the R-symmetric ones through
Branching Point Bifurcations. Most of the periodic orbits numeri-
cally found in this paper were obtained using this procedure. Note

TABLE V. Period doublings and corresponding values of a in system NE9.

Orbit Value a

P1 0.203 744 391
P2 0.205 393 369
P3 0.205 695 124
P4 0.205 758 533
P5 0.205 772 131

FIG. 21. The period-doubling cascade in system NE9 starting at a = 0.2 leading
to the chaotic set of Fig. 20 at a = 0.206 01.

FIG. 20. Left the projection of a chaotic attractor on the x, z-plane in system NE9, a = 0.206 01, initial values (x, y, z)(0) = −0.083 111 75, 0.071 374, −0.711 455 7.
Right the Poincaré section of the attractor transversing the plane y = 0.
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FIG. 22. Strange attractor from Fig. 20 at a = 0.206 01 arising from a cascade
of period doublings, here displayed in three-space.

that the procedure is not exhaustive, in the sense that it does not
guarantee the finding of all periodic solutions in the Sprott A sys-
tem. It is merely intended to be used as a “light weight” and easy
to implement technique to quickly find stable and unstable peri-
odic orbits and investigate their involvement, if any, in the observed
complexity and chaos in the Sprott A and later on in the NE9
system. Not all unstable periodic solutions in the Sprott A sys-
tem branched off from an R-symmetric periodic solution. A second
approach to find these saddles numerically was implemented by
using the result from Lemma I.4. The lemma guarantees a neces-
sary condition for periodicity regardless of its stability character.
The results of a numerical 3D sweep of initial conditions yields
potential candidates for periodic solutions that are then used as first
guess in Matcont to generate the precise location and the multipliers
accurately.

VI. DISCUSSION AND CONCLUSIONS

1. As stated in Ref. 13, the presence of infinite families of tori
for dissipative systems is a surprising phenomenon in systems
Sprott A and NE9. It is analogous to the phenomenon of KAM
tori near stable equilibrium of Hamiltonian systems. We have
shown that for these dissipative systems, it arises from the
time-reversal property of the systems.

2. Using rescaling of the differential equations, geometric singular
perturbation theory adds valuable information on the qualita-
tive and quantitative behavior of the solutions near the origin of
phase-space and near infinity.

3. It would be interesting to study the remaining 14 systems listed
in Ref. 7 for the presence of time-reversal, symmetry, and invari-
ant manifolds. It was shown in Ref. 1 that for 0 < a � 1 system
NE8 contains a family with canard behavior, but after some
time, the solutions tend to a stable periodic solution. System

NE8 contains the z axis as an invariant manifold but misses out
on the time-reversal with symmetry.

4. We found isolated tori and chaotic sets for the Sprott A and NE9
systems. It is an interesting open question how many more tori
and chaotic sets exist in these systems.
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