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Abstract. This paper introduces three intelligent operator support functions to allow multiple 

operators to effectively and efficiently supervise multiple autonomous operations. The many-to-

many concept assumes a stage in human-automation collaboration design where supervision of 

maritime autonomous surface ships is not permanently required anymore. Only in extreme and 

very rare situations the human may need to intervene. One of the challenges is balancing the task 

assignments and support functions over the operators to ensure the cognitive task load matches 

the operator’s mental capacity. For this purpose we introduce and described a dynamic task 

allocation algorithm. Also, human attention is limited and operators therefore must constantly 

shift attention resulting in moment-to-moment fluctuations in situation awareness. To overcome 

these reductions in situation awareness, operators must reassess the environment to recover 

situation awareness. We introduce the concept of continuous risk assessment to initiate the 

process of situation awareness recovery. Furthermore, the many-to-many ratio between 

supervising operators and autonomous ships implies that operators will not be able to supervise 

all ships in parallel. This makes current supervisory control interfaces less suitable. Instead we 

opt to apply the idea of progressive disclosure in the operator’s interface and interactions. The 

work described in this paper is directed towards developing an intelligent operator support 

system with which the operator support functions will be demonstrated as part of a Robotic 

Container Handling System, an innovation of the European MOSES research project. 

1.  Introduction 

It is expected that in the maritime domain, automation will advance to levels where supervision of 

maritime autonomous surface ships is not permanently required anymore, as systems are able to work 

fully autonomously in almost every condition. Only in extreme and very rare situations the human may 

need to intervene. This implies that the human operator will be out-of-the-loop by definition and will 

not have the skills to take measures in these, probably, difficult conditions. This has led to different 

opinions and strategies on how to deal with remote operator support in the transition to fully autonomous 

systems. 

Van den Broek et. al [1], distinguish three different stages for highly automated human-automation 

collaboration that require different operator support designs (see figure 1). In the supervision stage, the 

first distinguished phase, the human operator monitors the system 100 percent of his time and is not 

involved in other tasks. Supervision of dynamic positioning systems by onboard operators is an example 

of this (e.g., [2], [3]). Such one-to-one supervision duties require continuous high vigilance levels and 

are prone to loss of situation awareness (SA), out-of-the-loop problems [4], and complacency [5]. 
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Stage Support functions References 

1. Supervision stage. The human 

operator is 100% of his time 

supervising the system(s) and is not 

involved in other tasks 

Common (SCADA) interface support [2], [3] 

2. Partial supervision/autonomy 

stage. Self-directness is higher. The 

human operator spends part of his or 

her time conducting secondary 

tasks. 

Supervisory displays; 

SA recovery support after returning to the 

main task; 

Increase the reaction window by detecting 

early signals; 

Situation awareness recovery. 

[6], [8], [9], [10], 

[13] 

3. Intervener/full autonomy stage. 

Both self- sufficiency and self-

directedness are high. The system is 

working autonomously almost 

100% 

Dynamic task allocation; 

Continuous Risk Assessment; 

Progressive Disclosure Interface Design. 

This paper, [17], 

[21] 

Figure 1. Overview of three different stages for highly automated human-automation collaboration that 

require different operator support designs. 

 

SA is defined as the conscious knowledge of the immediate operational environment and the events 

that are occurring in it. It involves the perception of elements in the environment, comprehension of 

what they mean and how they relate, and projection of their future state. It refers to the operator’s 

awareness of the current operational status and the anticipated future status of a system, necessary to 

intervene in an effective and timely manner. 

To address these operator related issues (i.e., human factors issues), a new operator support concept 

has been developed and demonstrated in previous research by TNO to enable partial supervision [6]. In 

the partial supervision/autonomy stage, the second distinguished human-automation collaboration stage, 

the system self-directness is higher. This allows the human operator to spend time performing secondary 

tasks and thereby leave the control station on the bridge. In case a critical situation is building, the 

operator gets informed, via a smart watch and tablet computer. It is the operator’s decision whether or 

not it is necessary to return to the bridge and to intervene. The main challenge for stage two is to keep 

the operator posted of the status of critical tasks and to enable him or her to resume control effectively 

when required. Both the human operator and the automation develop SA relevant for the primary task 

[7]. 

The operator support for the partial supervision/autonomy stage consists of the following functions 

[8]: 

1. Support the upkeep of operator SA using supervisory displays [9] to help the operator decide 

whether involvement in the primary task is required; 

2. Provide SA recovery support after returning to the main task; 

3. Increase the reaction window by detecting early signals and providing on-time alerts for the 

primary task; 

4. Situation awareness recovery [10]: provide, change detection and option awareness support for 

quick decision making when a critical event has occurred at the primary task. 

However, it is expected that future shore control centres will be staffed in such a way to allow for 

the supervision of multiple operations in parallel, because it will be more cost efficient compared to the 

one-to-one set-up (a single human supervises a single operation) described above. Supervisory control 

by a single operator over multiple operations could match the efficiency requirement. When a human 

supervises a set of multiple operations (one-to-many) care must be taken to ensure that the operator has 

the capacity to give adequate attention to each operation [11]. Neerincx [12] developed a cognitive load 

model, distinguishing three load factors that have a substantial effect on task performance and mental 

effort: percentage time occupied, level of information processing, and task-set switching. The 
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combination of the three load factors determines the cognitive task load. The challenge is to balance the 

task load in such a way that it matches the operator’s mental capacity in a certain task setting. In addition, 

unexpected situations can arise in which autonomous systems require human assistance. It can be 

assumed that these will be safety-critical and difficult situations that will require full attention. As a 

result, the operator span of facilitation will be limited to one system, with the result that other operations 

under the responsibility of the operator are forced to left unattended [13], providing a potential risk. For 

reasons of operational safety, therefore, a transfer of supervision responsibility to another operator is 

necessary under these circumstances. So, for reasons of cognitive load balancing and for guaranteeing 

the overall span of facilitation, it is necessary to have some sort of task allocation over multiple 

operators. For this reason, we propose a many-to-many remote control centre concept, in which several 

operators supervising a set of multiple operation (several one-to-many instantiations) allowing for 

dynamic task allocation over operators. 

For a many-to-many shore operation concept to work requires that both self-sufficiency and self-

directedness of the autonomous systems are high and the systems are working autonomously nearly 100 

percent of the time. This allows the operator to work on other tasks, i.e., to work on other operations. 

But even fully autonomous systems fail sometimes, for different reasons, and in these exceptional cases 

the operator needs to intervene. This third and highest level of human-automation collaboration is the 

so-called intervener/full autonomy stage. 

In line with the above, this paper advocates the necessity of additional operator support concepts to 

enable this high level human-automation collaboration. 

The additional operator support concepts that will be discussed in this paper are: 

1. Dynamic task allocation. 

Assign ships (operations) to operators based on user and task profile. 

2. Continuous Risk Assessment. 

Assess in real-time potential risks and warn, inform, explain and help solve them. 

3. Progressive Disclosure Interface Design. 

Show information and offer control on different abstraction levels. 

The research outlined in this paper is carried out as part of the European MOSES1 research project. 

As a system demonstration is part of the MOSES scope, the concepts will be integrated into a single AI-

based Intelligent Operator Support System (IOSS). 

The use-case within MOSES is to enable multiple operators to oversee and track multiple loading 

and offloading operations, executed by robotic container handling systems mounted on autonomous 

feeder vessels, and to take action and intervene when necessary. The MOSES research scope and the 

robotic container handling systems innovation will be described in the next section. 

The three additional operator support concepts are described in the following paragraphs. The article 

ends with a conclusion section. 

2.  The MOSES research context 

The European MOSES research project [14] is one of three research and innovation projects within the 

Horizon 2020 program that contributes to more automation and autonomy in Europe’s short sea 

logistics. The other two projects are AUTOSHIP and AEGIS. The main focus of AUTOSHIP is on 

vessel technology. The AEGIS consortium, on the other hand will design Europe's next generation 

sustainable and highly competitive waterborne logistics system comprising more autonomous ships and 

automated cargo handling. 

The innovations within the MOSES project, aim to significantly enhance the Short Sea Shipping 

(SSS) component of the European container supply chain by implementing a constellation of 

innovations including innovative vessels and the optimization of logistics operations. 

The work described in this paper is directed towards developing and demonstrating a Robotic 

Container Handling System (RCHS) that, when mounted upon a hybrid electric and autonomous feeder 

 
1 AutoMated Vessels and Supply Chain Optimization for Sustainable Short SEa Shipping. 
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vessel, will stimulate and support the use of short sea container services for small ports that have limited 

or no (un)loading infrastructure. 

Normally, a crane operator controls the crane based on his/her eye-hand coordination, e.g. knowing 

which container to pick-up, he/she looks for the position of the container, estimates the distance between 

spreader and container, reduces speed if needed, locks, etc. Furthermore, the safety of the operation is 

guaranteed with a relatively high degree of oversight from other people as well as the creation of a 

secured and sealed-off area. The RCHS research challenge2 is to bridge the large gap between the current 

way of working and the envisioned concept where the RCHS can perform all these tasks on its own, i.e. 

autonomously. 

The RCHS is approached as a systems-of-systems. In fact, the RCHS consists of five major 

components, each consisting of multiple subcomponents. 

 

 
Figure 2. As a systems-of-systems, the robotic container handling system consists of five major 

components. 
 

1. The crane, spreader, and automatic swivel control system. 
2. The Crane Control Unit (CCU), responsible for both the control and high-level decision-making 

needed to load and unload containers safely in a public area at a small port. The control 
functionality of CCU is responsible to drive the crane and all of its sub-components. The 
decision-making function is responsible to decide which container to load or unload when and 
where. 

3. The 3D World Interpreter (3DWI), is responsible for the perception (detection) of elements in 
the environment, comprehension of what they mean (identification) and how they relate. This 
SA is required by the CCU for controlling the crane and high-level decision-making. Likewise, 
it provides the local information needed both for operator SA as for the functions the operators 
support. Combined, the CCU and the 3DWI is the core of a self-sufficient autonomously 
operating crane system. 

4. Sensor suite, a combination of (stereo) cameras and lidars to provide the 3DWI with images of 

the operational area. 

5. The Intelligent Operator Support System (IOSS) is responsible for safely managing a large 

amount of autonomous container handling operations occurring in parallel and their supervision 

from a remote shore control centre. This system ensures that every ongoing operation is 

performed effectively and safely. It does so by providing support to enable only a few operators 

 
2 Within the RCHS research and development TNO closely collaborate with MacGregor Finland Oy, the 

company that provides the physical crane system and crane control software. 
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to supervise many operations. Examples are the allocation of operations, SA support, risk 

assessment, control suggestions and more. 

3.  Dynamic task allocation 

As indicated, within the concept it is envisioned that several remote operators within the Shore 

Control Centre will be responsible for several loading and unloading operations at the same time. 

To deal with workload fluctuations in a dynamic way, the dynamic task allocation algorithm connects 

to the voyage and operational stage planning on fleet level and estimates the operator workload level 

associated with the number of ships under supervision and their voyage stage [13]. When workload 

thresholds threaten to be exceeded, the span of control, i.e. the number of ships under control, can be 

enlarged or reduced through task reallocation. 

The algorithm takes five stages into account: sea passage (transit), port departure/approach, 

leaving/approaching berth, and container handling. For each stage the autonomy mode changes for 

which the workload demands can be planned in advance with exception of the stage in which exceptional 

circumstances occur. 

We face two challenges when allocating ships to operators based on expected workload per stage. 

From a human factors perspective we face the challenge of modelling workload. Second, this model 

needs to be incorporated into a feasible optimization algorithm to compute an responsible allocation. 

To model workload we opted to define a cost function. This function takes a given ship-to-operator 

allocation and returns how costly it is in terms of workload. Workload is defined as a percentage of an 

operator’s total capacity (e.g., 100%). This abstraction allows us to circumvent the issue of formally 

defining the cognitive processes that determine workload. For instance, a task with an expected load of 

10% implies that the operator can handle ten of such tasks in parallel given a capacity of 100%.  

Given a ship and a certain loading/offloading at a port, we assign such a workload to each of the 

stages. For instances, for a particular combination of a ship, port and containers the sea passage might 

require 5%, the port approach 10%, and the container handling stage 15%. These percentages can vary 

given the complexity of the tasks. For instance, autonomously berthing to a crowded port might be more 

difficult and thus potentially require more supervision. To determine these relative percentages an 

approach such as by Wilson et. al [15] can be used that utilizes physiological measurements to assess 

the cognitive strain a task has on people. Such an approach should typically be performed in the design 

phase of the shore control centre and can be repeated when necessary. 

We also account for the fact that these workloads per stage depend on an operator’s expertise. As 

such, we increase these expected workloads as operator expertise decreases. For instance, in the example 

above, the stages might require double the workload for a junior operator resulting in an actual workload 

of 10%, 20% and 30% respectively. Operator expertise can be simply defined by their years of 

experience with a fixed factor affecting the workload of various tasks. However, it is more optimal to 

perform a more in-depth task analysis on what expertise each task and difficulty in an operation requires 

combined with assessments how skilled an operator is in such an expertise. Although this remains an 

open challenge, works such as by Allais et. al [16] illustrate how this can be done in other domains. 

This provides us with a basic model of workload that is feasible to work with. Next we define the 

cost function. The purpose of this function is to compute how “bad” any given allocation of ships to 

operators is. The higher the cost, the worse the allocation in terms of workload distribution. We define 

this function as a simple linear additive function, where several components model an aspect of human 

factors knowledge.  

The components we defined are as follows: 

1) The average and variance of workload over time and all operators. Minimizing this ensures 

that the workload is equally distributed over all operators. 

2) The average time in a critical workload for all operators. A critical workload is defined as 

either too high of a workload (e.g., above 80%) or too low of a workload (e.g., below 20%). 

Minimizing this ensures that operators are not cognitive over- or underloaded. 
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3) The average time operators still have work after a certain amount of time. This models the 

requirement to take breaks. For instance, every four hours operators should have time with 

no workload. Minimizing this ensures operators have sufficient breaks. 

These components are each weighted in linear fashion. The selection of weights should be considered 

in the design phase of a shore control centre as it is dependent on the models of workload, operator 

expertise, and tasks as well as the desired working environment within the centre. The summation of the 

weighted components result in single combined cost. For instance, an allocation with a cost of 0.5 is a 

worse fit given these than one with a cost of 0.25. See figure 3 for an illustration how workload is 

modelled over time for three operators and six operations. For a more detailed overview and evaluation 

of this cost function we refer to Brug et. al [17]. 

 

 

Figure 3. Three graphs depicting how we 

model workload for three operators given the 

allocated ships for him/her to supervise. The 

x-axis depicts workload capacity and the y-

axis the time. 
 

Given this cost function we can know apply common optimization strategies to find the best possible 

allocation of ships to operators based on our workload model. We opted for the Iterative Deepening 

Depth First Search (IDDFS) [18]. This is not necessarily the only available algorithm as we defined the 

challenge of dynamic task allocation as a straightforward optimisation problem. The IDDFS algorithm 

however is a relatively straightforward approach that is reasonably efficient and performant, and it lends 

itself to reallocate tasks by reusing previous computations. Which is a beneficial property to dynamically 

reallocate tasks based on events (i.e., a new operation becomes known or the difficulty of an operation 

changes suddenly). Alternative approaches could include classical approaches such as A* [19] and 

derivatives, or more recent algorithms based on linear programming [20]. The only additional 

requirement is that the selected algorithm can efficiently handle the reallocation of already assigned 

operations. Otherwise, the algorithm will be uncapable of handling the dynamic reallocation of 

operations effectively when a new operation is introduced. 

The IDDFS algorithm functions by iteratively selecting an unallocated ship and assigns it to each 

operator. It computes the cost of each potential allocation and selects the best fit. Then it continues with 

the next unallocated ship, until all are allocated. Since the order of ships matters, several samples must 

be taken to improve the allocations. This is repeated for a number of times with the operations being 

allocated in different orders to ensure enough of the search space is covered. If all orders are addressed, 

the optimal allocation will be found. This is still more time and memory efficient (both linear) then a 

brute force search (exponential) since computations can be reused and only a fraction of all potential 

allocations are actually computed. For a more detailed discussion of this we refer to Brug et al. [17].See 

figure 4 for an overview how this algorithm functions in one iteration given three operators and three 

ships to allocate. 
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Figure 4. An illustration of the 

IDDFS algorithm used to allocate 

three autonomous ship operations 

(rows; o1, o2 and o3) to three 

operators (columns; p1, p2 and p3). 

At each allocation iteration the cost 

of allocating a ship to any operator 

is assessed (depicted as C), and the 

best one is selected (green 

highlight) until all ships are 

allocated. Such a search tree is 

repeated with the operations in 

various orders to ensure 

convergence to the optimal 

allocation. 
 

 

This approach fulfils three major requirements; 

1) It models workload in an abstract sense that is easily extendable with more notions from the 

human factors literature. 

2) It is guaranteed to find the optimal allocation given sufficient time, which increases only linear 

given the number of operators and ships. 

3) The allocation is dynamic. 

Especially the latter is a major advantage. As this approach allows for the introduction of new ships 

requiring supervision as well as operators to flag ships they do not feel they are suited to supervise. In 

both cases a new allocation needs to be found. This can be  done by allocating that ship to the operator 

with the lowest workload at the time of the operation. However, there might be a better allocation if 

additional ships are reallocated. For instance, in cases when the new operation’s difficulty requires a 

more experienced operator then is available.  

With the IDDFS algorithms we can efficiently reallocate operators by reverting several steps of the 

computation. Each reverted step signifies an operation that might potentially be reallocated. For 

instance, we could undo the last five allocated operations. This would give the IDDFS algorithm more 

freedom to allocate the new operation to a suitable operator without having to reallocate all operations. 

To determine how many operations should be reallocated we introduce a fourth component in the cost 

function that penalizes each operation that is being reallocated (e.g., reallocating five operations might 

introduce an additional cost of 0.1 whereas three operation an additional cost of 0.06). This allows us to 

incorporate the decision how many operations should be reallocated into the optimisation process itself. 

In other words, the IDDFS algorithm can revert steps incrementally and reallocate those operations until 

the gain in reallocating operations balances the cost of doing so. See for more details on this the work 

by Brug et. al [17] that describes this process in more detail and demonstrates it on several simulated 

cases. 

Since we provide operators to flag operations they feel should not be allocated to them for some 

reason, it might occur that a single operator does not accept a necessary reallocation. In this case the 

IDDFS can fall back to a less optimal allocation. However, if operators are reluctant and flag operations 

too often, we put the computed plans up for review for a team leader to allocate operations manually by 

presenting the expected cost and workload over time.  

 

To conclude, this dynamic task allocation method allows for the efficient allocation of supervisory tasks 

to operators under changing conditions while accounting for human factors knowledge on the ideal 

workload for operators. 
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4.  Continues risk assessment 

Because human attention is limited, operators in this dynamic environment must constantly shift 

attention between different autonomous ships and operations. These shifts in attention result in moment-

to-moment fluctuations in situation awareness (SA). For example, when one ship needs assistance, the 

operator's attention is mainly focused on a single ship and the operator cannot know or forgets about 

other ships, situations and critical information. Such reductions in SA are a constant, given the fact that 

attention has to be divided over several operations. To overcome these reductions in SA, a skilled 

operator must reassess the environment to recover SA; Gartenberg et al. [10], call this process situation 

awareness recovery (SAR). 

It is vital to the SAR process that operators are informed in a timely manner about a critical situation 

or receive information about a situation that could develop into one. The IOSS has therefore been given 

the functionality to continuously assess risks for each ship and to adequately bring a risk to the attention 

of the operator. This raises the question of what is 'adequate' and what this means for the assessment of 

such risks. 

In the case of our operators, every intervention requires SAR. Risk assessment can provide the means 

for IOSS to evaluate whether an intervention is, or will be, required. For instance, if the weather worsens 

the risk of an unsuccessful autonomous berthing might increase and thus offer a trigger for IOSS to 

bring this to the attention of the allocated operator. 

This raises the question however, what needs to be communicated to provide this awareness. A risk 

can be defined by its expected impact, which is a combination of its likelihood of occurring and severity 

of its consequences if it occurs. While this seems to be an adequate definition, it lacks real world 

complexity, and in particular the complexity seen in maritime industry. It is common for errors, 

malfunctions, calamities and other events to be interrelated, resulting in a potential long list of risks with 

various likelihood and severity. Such a long list does not improve an operator’s SAR process. 

Instead we opt to also include the connectivity and velocity of risks in its expected impact. A highly 

connected risk, is a risk that – if it occurs – affects the likelihood of many other risks. The velocity of a 

risk dictates how much more likely it makes those other risks it is connected with. This makes the 

expected impact of a risk much richer as it also includes the relations between risks. For instance, a 

malfunctioning sensor and a busy port might not be that severe on their own, but combined make the 

risk of human injury much more likely. 

Without modelling the connections between risks, operators might not be involved in a sufficiently 

timely manner. In addition, modelling such relations allows for a straightforward root cause analysis – 

and even tracing causes and effects – by analysing the network of risks and their effects on each other 

given a situation. This kind of information can be visualized and communicated to an operator to 

facilitate a quick grasp of the situation and how to effectively intervene. 

The challenge is to find a way to model these risks. We opted for the use of graphs, where a single 

node represents a certain risk. Within that node is a computational model of its likelihood given a current 

situation. This can be as straightforward as a slowly increasing likelihood of a sensor malfunctioning as 

time progresses, or include a much more sophisticated predictive maintenance model using AI methods. 

See figure 5 for an example of such a graph. 
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Figure 5. An example on how we propose to 

model risks and their relation through the use 

of graphs. It illustrates four risks (rectangles) 

and their causal connections (red arrows, 

strength depicted by thickness). A single 

high-level risk category is depicted for 

sensor failures. This small toy example 

shows how the risk of harm is significantly 

more likely if the LIDAR fails and people are 

detected nearby. 
 

Also contained in that node is a similar model of its severity. Again, this can be as straightforward 

as a relative number dictating that a risk such as a busy port is of medium severity. Instead, it might 

again be a much more complex model where the severity depends on the situation as well. For instance, 

that a port busy with commercial traffic is less severe than a port with much recreational boating. 

The edges between the nodes dictate the relations between the risks. On each edge there might be a 

simple weight to model its connectivity; the larger the weight, the more it impacts the likelihood of a 

connected risk. Again, it might also be much more complex where connectivity depends on the situation. 

For instance, the sensor failure and busy port can be both connected to the risk of human injury. 

However, if the sensor has another as backup, then its velocity – its weight on the edge between itself 

and the risk of human injury – might be much lower. 

The impact of each risk can then be computed using so-called “spreading activation algorithms”. 

These algorithms propagate the effects, a node’s “activation”, of risk to its connected risks. This 

“activation” of a node is equal its likelihood, which in turn is affected by the likelihood of the nodes 

connected to this it. Ideally, such graphs are acyclic, meaning that risks are not connected to themselves 

through other risks. As this would introduce a feedback-loop, resulting in a cascade of spreading 

activations that end with all risks being entirely likely to occur. If, for some reason, the graph needs to 

be acyclic this effect can be easily prevented by introducing a diminishing effect of one risk on another 

based on how many risks are between them. 

As stated, this approach allows for a straightforward approach to root cause analysis, which can be 

used to explain to an operator why a certain risk has such a high likelihood. What is needed is only to 

trace back how much each linked risk affected that risk’s likelihood. This can also be visualized in 

various ways. The most interestingly is presenting the graph itself as an overview of all current risks. If 

such a graph contains many nodes, a (hierarchical) classification of risks can be defined. For instance, a 

class “malfunctions” can be made that in turn can contain a class “sensor failures” which contains a 

singular risk such as “camera #1 failure”. Not only can such a classification be used to visualize a 

comprehensible graph, it can also offer a way to organize risks. For instance, a risk of “malfunctions” 

can be defined which is simply the highest likelihood of one of the risks contained in this class. 

To conclude, a graph-based risk assessment approach enables the use of state of the art risk models 

to provide an operator with timely notification of a potential risk occurring and a relevant causal analysis 

to support his/her SAR process. 

5.  Progressive disclosure interaction design 

With IOSS we aim to achieve this many-to-many ratio between supervising operators and 

autonomous ships. By definition this implies that operators will not be able to supervise all ships in 

parallel under their responsibility. This makes current supervisory control interfaces less suitable. 

Instead we opt to apply the idea of progressive disclosure in the operator’s interface and interactions. 

Progressive disclosure is an interaction design pattern that provides a user with increasingly more 

and detailed interactions about a topic [21]. The pattern entails the idea that interactions (or control 

signals) should start simple, and progressively become more complex and intricate based on previous 
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interactions and the situation. The reason to do so is to prevent overload, reduce the risk of human-error, 

and prevent micro-management. 

The idea of progressive disclosure for operators is not novel [22]. We argue however that this idea 

should be much pervasively present to enable a many-to-many ratio. Furthermore, progressively 

disclosing interaction designs tend to be entirely user-driven where the user determines the pace and 

next steps. With IOSS functions as dynamic task allocation and continuous risk assessment this does 

not necessarily need to be the case. 

We developed for IOSS a three-layer interface that progressively discloses more information about 

the operations an operator supervises and enables increasingly more complex and involved control 

actions. These three layers are; 1) a global view providing an overview of the entire fleet an operator is 

responsible of, 2) a localized view providing an overview of the status of a single ship, and 3) a 

situational view providing an entirely immersive view using virtual reality on a single situational 

perspective of a ship. See figure 6 for an overview of each level. 

 

 
Figure 6. An overview of the three interface layers for the operator. This follows the design 

pattern of progressively disclosing more information and allowing more complex control 
actions. 

 

The global view lists all ships that were allocated and accepted by an operator. For each ship it provides 

general information, such as tasks (e.g., berthing checklist), operation phase (e.g., ship approaching 

port), and issues (e.g., low risk level). In addition we opted to illustrated the expected workload over 

time of the operator, as well as give an indication of the workload of his/her close colleagues. Control 

actions are limited here to accepting responsibility of newly allocated ships or flagging a ship to allocate 

to a different operator, potentially accounting for his/her own workload compared to that of any 

colleagues. From here the operator can decide to move towards a localized view of a single ship, or 

IOSS can proactively suggest this based on an upcoming activity for the operator or a risk that is 

increasing. See figure 7 for an initial interface design of this global view. 
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Figure 7. Our concept for the global view of an operator's interface. It lists all ships the operator is 
currently responsible for and detailed information such as open tasks, ship phases, and the expected 

workload of him-/herself and direct colleagues. 
 

The local view shows the detailed status of a single ship. Here the operator can review the voyage plan 

and -stages as well as various tabs with detailed information, such as assessed risks, open tasks, 

operation progression, cargo status and manifest, and the ship’s history (e.g., sensor malfunctions, ports 

visited, etc.). Typical control actions are here to complete open tasks, understand the assessed risks and 

act upon them. Acting on such risks, whether current or expected, is done through contacting relevant 

parties (e.g., terminal operator or cargo owner). This is done through a message-based interaction if low 

priority. Where – on the operator’s or IOSS’ initiative – a conversation can be started. Given the topic, 

IOSS will automate any information transfer. For example, if a sensor is malfunctioning and needs to 

be checked in the next port, the terminal operator can receive the details from IOSS on the sensor’s 

make, location and malfunctioning without involvement from the operator. See figure 8 for an initial 

interface design of this local view. 
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Figure 8. Our concept for the local view of an operator's interface. It presents a single ship's voyage 

plan as well as various tabs with detailed information. Typical control actions are contacting 
relevant people on risks and completing verification tasks. 

 

The situational view aims to immerse the operator entirely in the ship’s current situation. Here we rely 

on the real-time reconstruction of a ship’s situation into a digital twin. This digital twin is used as a 

virtual reality environment in which the operator can freely explore the sensor data the ship acquires. 

Outside the ship’s sensor range either a default ocean view is presented when the ship is in transit or a 

3D reconstruction of a port is rendered based on predefined models. The role of IOSS is to retrieve the 

high-level sensor data and create this digital twin (e.g., position and classification of objects), and where 

needed or requested provide the actual raw data (e.g., a camera feed). This ensure this immerse view 

can be maintained with a regular 4G connection. Control actions in this view may vary depending on 

the level of autonomy of the ship. For instance, control can be restricted to a (safe) stop signal and 

informing relevant parties or might support an IOSS assisted tele-operator. We opted for the former, as 

we assume a high degree of autonomy. The situational view is currently in development, see figure 9 

for an impression. 
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Figure 9. An indication how the situational view could look like. It is a real-time digital twin 

rendered by IOSS to enable an operator to view an autonomous ship's current situation through 
virtual reality. 

 

Note that the idea of progressive disclosure can and should be implemented throughout. For instance, 

the local view presents a tab of assessed risks, which can also first present only the high level and 

summarized risks and through interaction or necessity further details can be presented. 

6.  Conclusions 

The work described in this paper is directed towards developing an intelligent operator support system 

(IOSS) with which the operator support functions will be demonstrated as part of a robotic container 

handling system, an innovation of the European MOSES research project. For this purpose, we 

introduced three intelligent operator support functions to allow multiple operators to effectively and 

efficiently supervise multiple autonomous operations. 

Despite the fact that we have developed IOSS to fit in the operational context of the robotic container 

handling system, we believe that the operator support functions introduced and described above should 

be considered as generic and necessary support functions for many-to-many remote control centre 

concepts, in which several operators supervising a set of multiple operation. 

1) Due to the dynamics in the task environment, the many dependencies in the overall planning and 

the unpredictability of system failures and unsafe situations, the cognitive task load will not be 

completely predictable and will fluctuate as a result. To mitigate these fluctuation and to balance 

cognitive workload distributions a dynamic task allocation mechanism should be in place. One can argue 

whether it should be an AI algorithm or human supervisor to execute the load balancing is yet another 

discussion. 

2) Human attention is limited and operators therefore must constantly shift attention resulting in 

moment-to-moment fluctuations in situation awareness. Such reductions in SA are a constant, given the 

fact that attention has to be divided over several automated operations. The more reliable and robust that 

automation is, the less likely that operators overseeing the automation will be aware of critical 

information and are able to take action when needed [23]. The concept of continuous risk assessment 

support the process of situation awareness recovery by presenting operators information over critical 

situation or development that could develop into a critical situation. 

3) The many-to-many ratio between supervising operators and autonomous ships implies also that 

operators will not be able to supervise all ships in parallel nor in full detail. Because operators want to 
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have on overview of all the operation (the broader picture) but also want to be able to zoom in to a higher 

level of detail, a three-layer interface that progressively discloses more information about the operations 

an operator supervises and enables increasingly more complex and involved control actions is eminent. 

Although generic in nature, to be able to deploy the support functions for effective and efficient 

human automation collaboration in other contexts, adaptation is necessary. It is the domain, i.e., task 

context in which IOSS is applied that determines what critical information is, which risks can arise and 

how the layers of a progressive disclosure interface should be designed. 
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