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Constraining urban emissions is gaining more attention because of the important role of cities in reaching na
tional climate mitigation targets. Urban inverse modelling studies could constrain emissions of large hotspots, 
but still face many challenges. It has been argued that more detailed information is needed on both atmospheric 
transport and prior emissions when moving to a higher spatial and temporal resolution. In this work we focus on 
the description of temporal variability in the prior emissions and examine how it impacts the optimization of 
urban emissions of CO2, CH4 and CO on a monthly time scale representative for a measurement campaign. 
Currently, temporal profiles based on long-term average activity data are often applied. However, these average 
temporal profiles are unable to capture a realistic variability in the emissions, such as those imposed by envi
ronmental conditions. Therefore, we created a set of location- and time-specific temporal profiles and compared 
the optimized emissions using these average and specific temporal profiles. We find that using the specific 
temporal profiles increases the optimized CO2 emissions with 19%, even though the prior monthly emissions are 
the same. This suggests a change in the source-receptor relationship that affects comparison of the observed and 
simulated mixing ratios, leading to a different emission estimate. The impact is also large (~40%) for CH4, but 
this is mainly due to the increase in prior emissions caused by redistributing agricultural emissions over all 
months of the year. Moreover, we show that extrapolating monthly emission estimates to annual estimates, 
required for reporting, using the various sets of temporal profiles can result in differences of max. 26% for CO2, 
101% for CH4, and 13% for CO. Therefore, we conclude that an accurate representation of the temporal vari
ability is essential for urban inverse modelling studies.   

1. Introduction 

The 2015 Paris Agreement describes a climate action plan to mitigate 
greenhouse gas (GHG) emissions globally (UNFCCC, 2015). The agree
ment specifies nationally determined emission reduction targets and 
obliges participating countries to monitor their progress towards 
achieving their targets. Currently, this reporting is performed annually 
based on national energy statistics (UNFCCC, 2020). Although this 
approach is reliable for carbon dioxide (CO2), national emission esti
mates for methane (CH4) and nitrous oxide (N2O) are associated with 
relatively large uncertainties (Ganesan et al., 2015). Moreover, emission 
reporting is done with a lag of two years. Hence, there is a strong call for 
independent verification of the emissions (reductions) up to present 
year. For this purpose, inverse modelling frameworks have been 

developed to estimate emissions (trends) by combining monitoring 
network data and atmospheric transport models (Bergamaschi et al., 
2018; Ciais et al., 2010). First experiences show that inversions can 
suggest improvements to national emission inventories, as illustrated by 
Ganesan et al. (2015) for the UK and Ireland. 

Urban areas and associated industrial clusters are emission hotspots 
and responsible for about 70% of the global fossil fuel CO2 emissions 
(IEA, 2008). Therefore, an important role is laid out for urban areas in 
reaching national (and global) climate mitigation targets as laid down in 
the Paris Agreement. Moreover, many large cities (e.g. C40 cities) have 
set their own ambitious climate goals. As urban areas often encompass a 
wide variety of human activities, they are very suitable to monitor the 
impact of measures in different source sectors and their combined effect. 
As such, exchange of best practices derived from verified emission 
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reduction policies from frontrunner cities as encouraged by the Paris 
Agreement may benefit the policies implemented worldwide. Several 
scholars have examined the possibility to use inverse modelling to 
constrain urban fossil fuel GHG emissions (Breón et al., 2015; Hedelius 
et al., 2018; Kunik et al., 2019; Lauvaux et al., 2013, 2016; Nathan et al., 
2018; Staufer et al., 2016; Ware et al., 2019). Although the results look 
promising, several challenges remain. For example, transport modelling 
and resolving sub-kilometre scale processes, combining different types 
of observations, and prior emissions information (Boon et al., 2016; 
Breón et al., 2015; Kort et al., 2013; Nathan et al., 2018). In this work we 
focus on the impact of the temporal variations in prior emissions on the 
inversions for urban areas. Improving the temporal variability has been 
recognized early as a key activity to improve GHG emission inversions 
(Peylin et al., 2011), although limited attention was given to the topic so 
far. Shortcomings in accounting for the temporal variability in the prior 
emissions may impact the quality of the inversions in several ways. 

Firstly, the variability in emissions is, together with meteorological 
variability, the main driver for the variability in atmospheric concen
trations of GHGs and air pollutants. Brophy et al. (2019) performed a 
simulation experiment in which the ‘truth’ is based on constant emis
sions and the prior uses temporally varying emissions. In their study, the 
temporally varying emissions were generated using average temporal 
profiles (hereafter: TPs), which are based on long-term average activity 
data (e.g. Breón et al., 2015; Denier van der Gon et al., 2011). With this 
approach Brophy et al. (2019) reached an uncertainty estimate of 
approximately 12% for three month-long measurement campaigns, 
which is comparable to the uncertainty estimate from atmospheric 
transport. Although these average TPs include typical seasonal and 
diurnal cycles, they do not include the impact of environmental and 
economic conditions. Studies within the air quality domain have shown 
that TPs that take into account environmental conditions improve the 
temporal correlation between observed and modelled timeseries and 
thus the link between emissions and concentrations (Hendriks et al., 
2015; Mues et al., 2013). Moreover, Guevara et al. (2021) have shown 
significant reductions in emissions from road transport and industrial 
activities during COVID-19 lockdown periods, but also changes in 
day-to-day variability. Understanding the impact of these lockdowns, 
which induce deviations from statistical average activities and associ
ated TPs, on local emissions is valuable information for policy-makers 
and scientists worldwide, but is impossible to assess without 
COVID-specific TPs. 

Secondly, an incorrect representation of the temporal variability in 
emissions can negatively impact the total emission estimate derived 
from short-term measurement campaigns and inversions using a time-of- 
the-day selection criterion (Super et al., 2020b). Although extensive 
observational networks are currently available around a number of 
megacities (Breón et al., 2015; Hedelius et al., 2018; Turnbull et al., 
2015), such infrastructure is still relative scarce. This makes targeted 
measurement campaigns, that typically cover shorter periods, indis
pensable to verify GHG emissions in the future. To arrive at annual 
emissions, needed for reporting, an extrapolation is required using a 
description of the temporal variability within a year. A similar approach 
is needed when a subset of a time series is used in an inversion. For 
example, some inversions use only daytime observations to favour 
well-mixed conditions (Boon et al., 2016; Breón et al., 2015; Lauvaux 
et al., 2013). Deriving near real-time information on the impact of 
(temporary) mitigation measures, such as the COVID-19 lockdowns, will 
encounter the same challenge. 

Thirdly, using different TPs may affect the outcome of an inversion 
through the prior uncertainty. Whereas the uncertainty in country-level 
emissions is often well-defined, the uncertainty in high-resolution 
emission maps is not well-known. Spatiotemporal downscaling results 
in additional uncertainties that need to be taken into account. Although 
efforts have been made to better quantify the prior emission un
certainties (Andres et al., 2016; Gately and Hutyra, 2017; Hutchins 
et al., 2017; Super et al., 2020b), the impact of improved uncertainties 

on inverse modelling results has not yet been examined in detail. 
Hence, we argue that an accurate description of the prior emission 

timing can alleviate several problems currently faced in urban inversion 
studies. The goal of this paper is to quantify the impact of the TPs and the 
prior emission uncertainty on the inverted emissions of the GHGs CO2 
and CH4 and co-emitted species CO for the Rotterdam-Rijnmond region 
in the Netherlands. With the results we aim to show the potential of 
short-term campaigns to evaluate emission strengths from cities or 
specific sources. The research questions are: 

1. How well can we describe the temporal variability in human activ
ities that cause emissions of CO2, CH4 and CO and how does this 
affect the prior uncertainty? (Sect. 3.1)  

2. How do the TPs affect simulated mixing ratios of CO2, CO and CH4? 
(Sect. 3.2)  

3. What is the impact of the TPs and prior uncertainties on monthly 
emission estimates? (Sect. 3.3)  

4. What is the impact of the TPs on the extrapolation of monthly to 
annual emissions? (Sect. 3.4) 

2. Materials and methods 

We selected the Rotterdam-Rijnmond (RR) region in the Netherlands 
to investigate the impact of the specification of the temporal variability 
and uncertainty of the prior emissions for short-term monitoring with a 
limited number of stations. This region was selected for its variety of 
source sectors and the availability of three stations with high quality 
observations around the main source area. After a short description of 
the case study region we detail the a-priori emission preparation and 
inversion framework used. 

2.1. Case study 

For the case study we nest the RR-domain region in a larger domain 
covering the Netherlands entirely and some major source areas in Ger
many (Ruhr area) and Belgium (Antwerp) (NL-domain). Fig. 1 shows the 
domains and the emissions for the RR-domain. At the centre of the RR- 
domain lies the city of Rotterdam with ~625,000 inhabitants. To the 
west of the city the largest sea port of Europe is located, dominated by 
industrial activities clearly visible on the map with point source 
emissions. 

The inversions cover a period of one month (January 2015), illus
trative for a short-term measurement campaign, to illustrate the 
importance of a correct representation of the temporal variability when 
applying extrapolation to a full year. We hypothesize that one month is 
short enough to still have some effect of random errors in the emission 
timing, but long enough to be meaningful for an annual emission esti
mate. Besides the greenhouse gases CO2 and CH4 we also include CO in 
our simulations, because CO is co-emitted with CO2 from fossil fuel 
burning activities and can provide information on which of the source 
sectors causes the largest discrepancies. 

In this study we used the observations of CO2, CH4 and CO from three 
sites within the RR-domain (see Fig. 1). The first site, Westmaas, is 
located 15 km south of the city centre of Rotterdam. The second site, 
Zweth, is 7 km northwest of Rotterdam. Both sites are equipped with 
cavity ring-down spectroscopy analysers (Picarro Inc., type G2401) 
sampling air from an inlet of 10 m a.g.l. For a detailed description of 
these two sites we refer to Super et al. (2017b). The Zweth measurement 
site is close to the Rotterdam-The Hague airport from which standard 
meteorological observations were obtained. A third site, Cabauw, is 
located 32 km east of the centre of Rotterdam (Van der Laan et al., 2016; 
Vermeulen et al., 2011). Cabauw is the experimental supersite for at
mospheric composition in the Netherlands, for which long-term obser
vations of CO2 and CH4 are available from several heights along a tall 
tower. For CO2 and CH4 we used the observations at 60 m a.g.l., whereas 
CO is measured at ground level only (Frumau et al., 2020). Given the 
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dominant wind direction from the southwest Zweth and Cabauw are 
often strongly affected by urban/industrial emissions, although the 
plumes are more strongly diluted by the time they arrive in Cabauw. The 
area between Rotterdam and Cabauw is dominated by agricultural ac
tivities and Cabauw is a good site to constrain agricultural emissions. 

2.2. Emission data 

The prior emission dataset for 2015 is developed by TNO and 
described by Super et al. (2020b). The emission map covers western 
Europe (Netherlands, Germany, Belgium, parts of France and the UK, 
and several other countries) at a resolution of 1/60◦ longitude x 1/120◦

latitude (~1 × 1 km2). It is based on the reported emissions by European 
countries to the UNFCCC (greenhouse gases) and to EMEP/CEIP (Eu
ropean Monitoring and Evaluation Programme/Centre on Emission In
ventories and Projections, air pollutants). These emissions have a high 
level of detail, but are aggregated to 12 GNFR sectors after spatial 
downscaling using proxy maps. For road transport emissions are pro
vided per fuel type. For large point sources the exact location and re
ported emission is used when available (e.g. from the E-PRTR (European 
Pollutant Release and Transfer Register)). Table 1 summarizes the sec
toral emissions for each trace gas. Fig. 1 shows the emissions for the 
RR-domain from both the area and point sources. 

The a-priori total emissions for the RR-domain in 2015 were esti
mated to be 59.7 Tg CO2, 91.5 Gg CO and 75.8 Gg CH4. The CO2 
emissions come from a variety of human activities, such as road trans
port and industry clustered in urban regions. During combustion CO is 
co-emitted with CO2 in an emission ratio that is determined by the 
combustion characteristics (completeness of combustion, type of fuel, 
etc.). In contrast, CH4 emissions show a very different pattern as these 
emissions are often not related to fossil fuel combustion. Two important 

source sectors are fugitives and waste, which are often larger in more 
densely populated areas. For example, waste treatment takes place close 
to where the waste is produced, i.e. near urban/industrial areas. How
ever, another important source of CH4 is agriculture (livestock). In our 
case study region there is a lot of agricultural activity taking place in 
close proximity to the urban centres. 

Fig. 1. Emissions maps of CO2 (Tg yr− 1) for the RR-domain, both for a) area sources and b) point sources. C) Model domains with a horizontal resolution of 1/10◦

longitude x 1/20◦ latitude (NL-domain) and 1/60◦ longitude x 1/120◦ latitude (RR-domain). The RR-domain is represented by a black box. Black stars represent the 
measurement locations. 

Table 1 
Emissions for 2015 per sector in Tg yr− 1 (CO2) or Gg yr− 1 (CH4 and CO) and 
between brackets the sectoral contribution (in %) to the total emission per 
species. Contributions <1% are not given.  

Sector NL_domain RR_domain 

CO2 CH4 CO CO2 CH4 CO 

A_PublicPower 203 
(41) 

23 (2) 50 (3) 31 
(52) 

1 (1) 2 (2) 

B_Industry 136 
(27) 

112 
(9) 

719 
(47) 

14 
(24) 

5 (6) 10 
(11) 

C_OtherStationaryComb 73 
(15) 

72 (6) 199 
(13) 

5 (9) 6 (9) 9 
(10) 

D_Fugitives 5 (1) 70 (5) – – 11 
(15) 

– 

E_Solvents – – – – – – 
F_RoadTransport_exhaust 65 

(13) 
– 418 

(27) 
5 (9) – 53 

(58) 
G_Shipping 11 (2) – 18 (1) 3 (5) – 4 (5) 
H_Aviation – – 8 (1) – – – 
I_OffRoad 3 (1) – 116 

(8) 
– – 13 

(15) 
J_Waste – 226 

(18) 
– – 24 

(32) 
– 

K_AgriLivestock – 765 
(60) 

– – 27 
(36) 

– 

L_AgriOther – – – – – –  
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2.2.1. Average temporal profiles 
A set of default TPs per GNFR sector was used as the ‘average’ set 

(Fig. 2), based on TPs originally developed for air quality modelling 
applications by Denier van der Gon et al. (2011). These TPs were 
calculated using a scaling factor for the month of the year, the day of the 
week and the hour of the day. These factors describe e.g. the patterns in 
seasonal heating demand, in the reduced economic activity during the 
weekend, and in traffic intensity during the day. Using these average 
TPs, the a-priori emissions for January 2015 are 5.89 Tg CO2, 7.715 Gg 
CO and 5.08 Gg CH4 for the RR-domain. 

2.2.2. Location- and time-specific temporal profiles 
A set of location- and time-specific TPs (hereafter: specific TPs) was 

developed using local activity data. We only created specific TPs for the 
public power, other stationary combustion, road transport, and 
agriculture-livestock sectors. The reasons for this selection are that these 
sectors have a lot of variability, are important sources of the selected 
pollutants (Table 1), and the relevant data were available to improve the 
average TPs. 

For public power (GNFR_A) detailed activity data are available from 
the European Network of Transmission System Operators for Electricity 
(ENTSO-E). The data are available per country and fuel type and we use 
average data for the Netherlands for gas, coal and biomass. For the 
simulation with specific TPs we applied the fuel-specific TPs to the point 
sources in OPS, whereas the residual power plant emissions (i.e. small 
sources not reported to point source databases) got the TP for gas. 

The other stationary combustion sector (GNFR_C) mostly consists of 
heating (commercial and residential). The degree day method (Mues 
et al., 2014) using the outside temperature measured at Rotterdam-The 
Hague airport was used to calculate the specific TP. This methodology 
describes the temporal variations in emissions as a function of the 
outside temperature, taking into account a fixed amount of energy 
consumption used for cooking and warm water supply. We used the 
heating degree day method to get daily emission intensities and adopted 
the diurnal cycles from smart meter data (i.e. separate TPs for weekdays 
and weekends) (Liander, 2020). 

For road transport (GNFR_F) traffic counts were collected for 

different road types (highway, main roads and urban roads) in and 
around Rotterdam. All selected locations distinguish at least 3 vehicle 
types (if more, they were aggregated): cars, light-duty vehicles (LDV) 
and heavy-duty vehicles (HDV). Given the gaps in the traffic count time 
series and the fact that large spatial variations exist in traffic patterns, 
we created average monthly, weekly and daily TPs for the entire region 
for each road and vehicle type. The daily cycles were made separately 
for weekdays and weekends/holidays. To get one TP per fuel type we 
weighted the contribution of the different vehicle and road types. 

Finally, we updated the TPs of the agricultural sector. The agricul
tural sector consists of two sub-sectors: agriculture-livestock and 
agriculture-other. The CH4 emissions from agriculture-livestock are 
dominated by enteric fermentation, which is an important source of 
CH4. The agriculture-other sector is dominated by manure/fertilizer 
application, which is mainly important for ammonia. As shown in Fig. 3 
the average TPs are very different for both sub-sectors, with no emis
sions from agriculture-other in January. Unfortunately, in a previous 
version of the emission dataset the emissions from enteric fermentation 
were accidently assigned to the agriculture-other sector, meaning that 
an important source of CH4 was missing in January. So we represented 
the temporal variations in agriculture-livestock using the agriculture- 
other TP in the average set and the agriculture-livestock TP in the spe
cific set. Although this error is much larger than what inverse modellers 
are normally looking for, we included this experiment to illustrate the 
impact of missing sources. 

The resulting TPs and the comparison to the average TPs are dis
cussed in Sect. 3.1. 

2.2.3. Emission uncertainties 
The high-resolution emission dataset described in Sect. 2.2 is pre

pared using a wide range of data. Emissions are calculated as the product 
of activity data (e.g. fuel consumption) and emission factors. The spatial 
disaggregation was done using proxy maps and the temporal disaggre
gation makes use of TPs based on activity data. All these data have a 
certain level of uncertainty, which can be used to calculate the total 
emission uncertainty for the RR-domain and case study period. We use a 
Monte Carlo method for this, as described in detail by Super et al. 
(2020b). The final uncertainties from the Monte Carlo analyses using 
average and specific TPs are shown in Table 2. These values populate the 
diagonal of the prior error covariance matrix P (see Sect. 2.3 for further 
explanation). The off-diagonal values are set to zero, meaning that the 
errors are not correlated. Note that the overall uncertainties change 
when using specific TPs due to a shift in the importance of each source 
sector, with more uncertain sectors becoming more dominant. 

To study the impact of prior uncertainties on the optimization of 
emissions we also applied a second uncertainty estimate motivated by 
other scientific studies. The Monte Carlo-based uncertainty for CO2 was 
estimated to be only ~5%, which is lower than generally used in urban 
inversions. Bréon et al. (2015) assume a 20% uncertainty in their 
monthly CO2 inventory for Paris. Similarly, Graven et al. (2018) 

Fig. 2. Temporal scaling factors for the month of the year, day of the week and 
hour of the day per GNFR sector. This set is denoted as the ‘average’ set of TPs. 
TPs are not shown for those source sectors that have no variability. The TPs for 
road transport – exhaust – gasoline are also valid for diesel and LPG. 

Fig. 3. Average TPs (daily data) for the agriculture-other and agriculture- 
livestock sectors. 
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estimated the uncertainty in the CO2 emissions for California to be 
18–19%. Lauvaux et al. (2016) found an aggregated error variance of 
25% for Indianapolis for a 5-day period. These values are about 4–5 
times higher than we estimated here. For CH4 uncertainty estimates are 
even more sparse and variable. For example, Ganesan et al. (2015) used 
a lognormal standard deviation of 50% for national scale CH4 emissions 
for the UK/Ireland. In contrast, with the Monte Carlo approach we es
timate the total annual emission uncertainty for CH4 in the whole of the 
Netherlands to be about 10%, which is similar to the official reported 
uncertainty of 9% for the Netherlands. From this literature overview we 
conclude that the uncertainties vary a lot between different studies, also 
depending on the spatial and temporal resolutions. Nevertheless, values 
used in literature are generally higher than what we calculated with the 
Monte Carlo approach. Therefore, we used a second set of uncertainties 
that are about 4–5 times higher than the Monte Carlo-based un
certainties (Table 2). 

2.3. Inverse modelling framework 

The basis of our inverse modelling framework is the CarbonTracker 
Data Assimilation System (CTDAS) (v1.0) described in more detail by 
Van Der Laan-Luijkx et al. (2017) and used previously for urban appli
cations (Super et al., 2020a). CTDAS uses an Ensemble Kalman Filter 
approach (Whitaker and Hamill, 2002), which optimizes the cost func
tion for all variables in the state vector x using information from ob
servations (y0 with covariance R) and starting from a prior estimate of 
the state vector (xb with covariance P): 

J(x)=
(
y0 − H (x)

)T R− 1( y0 − H (x)
)
+
(
x − xb)T P− 1( x − xb) (1) 

Here, H is the atmospheric transport model (observation operator) 
that returns simulated mole fractions given the state vector. R and P 
determine how much weight is given to the observations and prior es
timate, respectively. See sections 2.2.3 and 2.3.3 on how the R and P 
matrices are defined. 

The optimized state vector (indicated with superscript a, whereas b 
refers to the prior estimates) which minimizes the cost function is 

xa = xt
b +K

(
yt

0 − H
(
xt

b)) (2)  

and its covariance is 

Pt
a =(I − KH)Pt

b (3) 

Here, H is the linearized observation operator and K is the Kalman 
gain matrix: 

K =
(
Pt

bHT)( HPt
bHT + R

)− 1 (4) 

We calculated the solutions of Eq. (2) and Eq. (3) using an ensemble 
of 20 members. The dimensions of our inverse problem are N = 1726, 
1283 and 1801 observations of CO2, CH4 and CO, respectively, and M =
3 unknowns. We replaced the global TM5 transport model originally 
integrated in CTDAS with a combination of the regional LOTOS-EUROS 
model and the OPS plume model. More details about the individual parts 
of the inversion system are provided in the following sections. 

2.3.1. Observation operator 
The observation operator consists of two models: LOTOS-EUROS 

(v2.2) for the NL-domain and area sources in the RR-domain (see 
Fig. 1 for domains); OPS (v10.3.5) for the point sources in the RR- 
domain. We use the OPS model for point sources that are relatively 
close to the measurement sites, because a grid-based model like LOTOS- 
EUROS tends to overestimate the dilution of such sources (Boon et al., 
2016; Vogel et al., 2013). The grid resolutions of LOTOS-EUROS are 
1/10◦ longitude x 1/20◦ latitude (NL-domain) and 1/60◦ longitude x 
1/120◦ latitude (RR-domain). 

LOTOS-EUROS is an open-source, regional chemical transport model 
with both scientific and operational applications (Manders et al., 2017). 
It was mainly developed for air quality modelling, but is also applied for 
greenhouse gases. The model includes labelling options for source 
apportionment and has been used for data assimilation (Curier et al., 
2012; Kranenburg et al., 2013). LOTOS-EUROS is an offline model that 
uses meteorological data obtained from other models. Here, we use 
meteorological data produced by the COSMO model (Baldauf et al., 
2011) with a resolution of 0.05 × 0.05◦ and 40 vertical layers up to 10 
km, which is interpolated to the LOTOS-EUROS grid. The boundary 
conditions of CO2, CO and CH4 mixing ratios for the largest NL-domain 
are taken from a high-resolution (0.14 × 0.14◦) IFS run (https://www. 
ecmwf.int/en/research/modelling-and-prediction) with full chemistry 
(C-IFS). The mixing ratios calculated by LOTOS-EUROS for the 
NL-domain are used as boundary conditions for the RR-domain. 
Biogenic fluxes are calculated with the Vegetation, Photolysis, and 
Respiration Model (VPRM) (Mahadevan et al., 2008) at a 5 × 5 km2 

resolution. The anthropogenic emissions were labelled to be able to 
separate between fossil fuel emissions from the RR-domain and all other 
processes (large-scale background, biogenic fluxes, fossil fuel emissions 
from outside the RR-domain). Note that average TPs are used for the 
NL-domain (except for agriculture), so that the boundary conditions for 
the RR-domain are exactly the same for all experiments. 

OPS (short-term version) is a plume dispersion model that provides 
hourly atmospheric concentrations at receptor locations (Van Jaarsveld, 
2004; Sauter et al., 2016). It works with forward trajectories, taking into 
account time-varying transport, and applies a Gaussian plume formu
lation to calculate the concentrations. The OPS model is driven by 
spatially interpolated meteorological observations from the Royal Dutch 
Meteorological Institute. 

The influence time for the urban observations is set at 10 h, i.e. 
emissions from more than 10 h ago do no longer affect the current ob
servations, which is based on the size of the RR-domain and typical wind 
speed. Therefore, we run the OPS model from − 10 h to the time of 
observation to calculate concentrations. For LOTOS-EUROS we only 
perform one monthly simulation per set of TPs and apply the ensemble 
of scaling factors directly to the calculated concentrations (only that part 
labelled as coming from local emissions), assuming a linear relationship 
between emissions and concentrations. Although this method neglects 
the influence of atmospheric chemistry, we believe that this simplifi
cation has little impact on our findings due to the relatively short in
fluence time compared to the relatively long chemical lifetime of the 
trace gases included in this work. 

2.3.2. State vector and propagation 
The state vector consists of one scaling factor for the entire RR- 

domain per trace gas, i.e. a total of 3 scaling factors with a prior value 
of 1.0. We optimize the state vector for each day individually, starting 
each new day with the optimized scaling vector. In other words, the 
information gained from the previous day is propagated. The prior 
emission uncertainties (Sect. 2.3.4) are reset each day to give the state 
vector freedom to move away from its prior. Having daily scaling factors 
helps to identify the source sectors that are likely causing the largest 
errors, especially in combination with the wind direction, multiple trace 
gases and the difference between the two sets of TPs. Although such a 
detailed study is beyond the scope of this work, we use propagation to 
demonstrate the applicability of this approach. 

Table 2 
Prior uncertainty estimates for the case study domain and 1-month period based 
on the Monte Carlo approach using average and specific TPs and based on a 
literature review.   

Average TPs Specific TPs Literature-based 

CO2 4.7% 4.6% 20% 
CO 21.2% 24.9% 80% 
CH4 40.7% 49.2% 200%  

I. Super et al.                                                                                                                                                                                                                                    

https://www.ecmwf.int/en/research/modelling-and-prediction
https://www.ecmwf.int/en/research/modelling-and-prediction


Atmospheric Environment: X 11 (2021) 100119

6

2.3.3. Selection of observations 
To favour well-mixed conditions, which have a lower model error, 

inverse modelling studies often select daytime observations. Here, we 
choose a different selection criterion, namely observations when the 
wind speed is at least 3 m s− 1. The advantage of this method is that all 
hours of the day are sampled (Fig. 4), so that a structural error in the 
diurnal emission timing will have less impact on the results. On the 
downside, we may introduce uncertainty by modelling night time con
ditions. Nevertheless, it was argued that a selection based on meteoro
logical conditions could actually be more suitable than a selection based 
on the time of the day (Martin et al., 2019). We have compared the 
inversion results using the wind speed and hour of the day selection 
criteria and found that the posterior residuals were smaller using the 
wind speed criterion (not shown). 

Besides the uncertainty in the prior emissions we also need to 
consider the uncertainties caused by the model transport, interpolation 
and observations. These uncertainties are based on typical errors in the 
comparison of the simulated and observed mixing ratios and are set at 
2.5 ppm (CO2), 15 ppb (CH4) and 8 ppb (CO), which populate the di
agonal of the R matrix. We assume these uncertainties are not correlated 
(i.e. off-diagonal R values are set to zero). 

2.4. Experiments 

We performed three experiments, which are listed in Table 3. The 
‘Base’ and ‘Uncertainty’ runs use the average TPs, whereas the ‘Specific’ 
run uses the specific TPs. Both the ‘Base’ and ‘Specific’ runs start with a 
prior uncertainty based on the Monte Carlo approach. The ‘Uncertainty’ 
run uses the uncertainty estimate from literature. Otherwise the runs are 
exact copies. 

The results from the inversions are used to answer research questions 
3 and 4. The monthly scaling factors are calculated as the mean of the 
daily scaling factors. To examine the impact of uncertain TPs on the 
extrapolation of monthly to annual emissions we compare the annual 
emissions using extrapolation with the average and specific TPs. The 
prior and optimized monthly emissions (Eprior, month and Eopt, month) for the 
‘Base’ and ‘Specific’ experiment are calculated as follows: 

Eprior,month =Eprior,year
/

12⋅tmonth,average (5)  

Eopt,month =Eprior,month⋅optimized scaling factor (6) 

Here, Eprior, year is the prior annual emission and tmonth, average is the 
monthly temporal scaling factor from the average set of TPs. The opti
mized annual emissions using the average TPs are 

Eopt,average,year =Eprior,year⋅optimized scaling factor (7) 

Using the specific TPs the optimized annual emissions are 

Eopt,specific,year =Eopt,month
/

tmonth,specific⋅12 (8)  

where tmonth, specific is the monthly temporal scaling factor from the spe
cific set of TPs. The optimized annual emissions using the different sets 
of TPs are related as follows: 

Eopt,specific,year
/

Eopt,average,year = tmonth,average
/

tmonth,specific (9) 

For the ‘Specific’ experiment the subscript ‘average’ and ‘specific’ in 
the above equations are switched. 

3. Results 

3.1. Location- and time-specific temporal profiles 

The specific and average TPs for public power (GNFR_A) are shown 
in Fig. 5. The average TPs have been developed mainly for air pollutants, 
which are primarily emitted by coal-fired power plants which were 
thought to show little short-term variability. Therefore, the average TP 
mostly represents the seasonal variability in the coal-fired power plant 
emissions. However, gas-fired power plants show more short-term 
variability, and also coal-fired power plants show increasingly more 
short-term variations. These are not captured well and the agreement 
between the average and specific (data-based) TPs is limited (R2 = 0.34 

Fig. 4. Total number of observations for each hour of the day after selecting for wind speed. The observations of CH4 which are used for the bias correction are also 
excluded here. The total number of observations for the whole period is given. 

Table 3 
Overview of experiments and their settings.  

Name TPs Prior uncertainty 

Base Average Monte Carlo 
Uncertainty Average Literature 
Specific Specific Monte Carlo  

Fig. 5. Specific TPs (daily data) for power plants based on ENTSO-E data, 
separately for gas, coal and biomass. The average TP is also shown. 
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(gas), 0.19 (coal) and 0.004 (biomass) for 2015; R2 = 0.45 (gas), 0.27 
(coal) and 0.01 (biomass) for January 2015). Apparently, the day-to-day 
variations in emissions from coal-fired power plants are captured less 
well than those in the emissions from gas-fired power plants. 

We compare the average and specific TPs from other stationary 
combustion (GNFR_C) to the activity reported by smart meters (Liander, 
2020) (Fig. 6) and find a much better agreement with the specific TP (R2 

= 0.90 for 2015; R2 = 0.81 for January 2015) than with the average TP 
(R2 = 0.65 for 2015; R2 = 0.02 for January 2015). Moreover, the smart 
meter data provides information on the diurnal variations. The average 
TP represents the average diurnal cycle for weekdays very well (R2 =

0.84), but less for weekends and holidays (R2 = 0.68). We use the 
heating degree day method to get daily emission intensities and adopt 
the diurnal cycles from the smart meter data (i.e. separate TPs for 
weekdays and weekends). 

The average TPs for road transport (GNFR_F) (Fig. 7) are mainly 
based on cars, which are dominated by gasoline exhaust, and there is a 
better agreement with the specific TP for gasoline (R2 = 0.84 for 2015 
and January 2015) than for diesel (R2 = 0.70 for 2015 and January 
2015). Diesel is more dominated by HDV, which shows a different 
weekly and diurnal cycle. LPG is much less used, but is represented 
relatively well by the average TP (R2 = 0.85 for 2015; R2 = 0.86 for 
January 2015). 

With the specific TPs, we estimate the prior emissions for January 
2015 to be 5.90 Tg CO2, 8.50 Gg CO and 6.29 Gg CH4 for the RR-domain 
(compared to 5.89 Tg CO2, 7.715 Gg CO and 5.08 Gg CH4 using the 
average TPs). The uncertainties from the Monte Carlo analyses using the 
specific TPs are 4.6% for CO2, 24.9% for CO, and 49.2% for CH4 
(Table 2). The overall uncertainties are slightly higher for CO and CH4 
when using specific TPs. In this case, the CH4 agriculture-livestock 
emissions are missing when using average TPs and therefore they do 
not affect the uncertainty. However, this is a very large sector and when 
adding them using the improved TP there are more emissions with a 
relatively large uncertainty added. Similarly, for CO there is an increase 
in household emissions, which also have an above-average uncertainty. 

3.2. Validation of forward simulations 

A first check of the forward model simulations reveals a significant 
bias in the CH4 ratios, also when sampling relatively clean background 
air (Fig. 8). This suggests there is a bias in the large-scale background, 
which could cause an incorrect attribution of the model-data mismatch 
to local emissions. Although the background or boundary conditions can 
be optimized, this option is currently not part of our framework. Instead, 
we decided to apply a bias correction on the prior CH4 mixing ratios 
using background data. 

We assume a mixing ratio of less than 2000 ppb to be relatively free 
of local emission contributions and select all data points with a simu
lated and observed mixing ratio of less than 2000 ppb to calculate the 

bias in the background (simulated – observed). We only use observations 
from Westmaas and Cabauw for this bias correction, as these locations 
are more likely to sample air representing background concentrations. 
Both sites show a similar mean bias of 30.5 (Westmaas) and 33.3 ppb 
(Cabauw) with specific TPs and 32.3 (Westmaas) and 42.3 (Cabauw) 
with average TPs, resulting in a bias correction of 31.9 (specific) and 
37.3 ppb (average). The data used for the bias correction are not 
assimilated to avoid contamination, but since these background data do 
not contain much information on local emissions they are of little use to 
the inversion. 

A comparison of daily mean mixing ratios (after bias correcting CH4) 
is shown in Fig. 9. The difference between the model simulations using 
the average and specific TPs is limited, because the large-scale back
ground dominates the CO2 and CH4 mixing ratios. The correlation with 
the observations is similar for both runs, with a good agreement for all 
species. However, the run with specific TPs is often closer to the 1:1 line, 
especially for CO2 and CO at the locations that are often affected by local 
enhancements (Zweth, and to a lesser extend also Westmaas). This 
suggests that days with high local enhancements are better represented 
with specific TPs, whereas they are often underestimated when average 
TPs are used. 

3.3. Monthly emission calculations 

Comparing the optimized monthly emissions from the three experi
ments reveals that the TPs can affect the optimization in several ways 
(Fig. 10). First, the prior monthly emissions can be different. Second, the 
comparison of hourly observed and simulated mixing ratios is affected, 
even if the monthly emissions remain similar. Third, the prior uncer
tainty can be different when relatively uncertain source sectors get more 
or less weight. We also clearly see that the impact of different TPs is 
larger than the impact of an increased prior uncertainty. However, there 
is an interplay between the prior uncertainties and the difference be
tween the two sets of TPs. All of these aspects will be discussed in more 
detail. 

In the case of CH4 the main difference is the inclusion of emissions 
from agriculture-livestock in the ‘Specific’ experiment. This is an 
important sector, but also highly uncertain. Fig. 10 shows that the CH4 
emissions have a large prior uncertainty and the optimized emissions 
using specific TPs are much higher than for the ‘Base’ experiment. The 
most likely explanation is that agricultural emissions are strongly 
underestimated and that the contributions of other sectors do not 
correlate with those of agriculture. Therefore, in the absence of agri
cultural emissions in the ‘Base’ experiment, scaling is entirely ineffec
tive. This results in lower optimized emissions for the ‘Base’ experiment. 
The improved representation of the agricultural emissions in the ‘Spe
cific’ experiment provides the inversion system the degrees of freedom 
to pull close to the observations. 

In contrast, for CO2 and CO the prior monthly emissions are nearly 

Fig. 6. a) Specific TP (daily data) for small combustion based on degree days, compared to true activity (smart meter data) and the average TP. b) Diurnal cycle in 
true activity (smart meter data) for weekdays and weekends/holidays (hour LT), compared to the average TP. 
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similar using the two sets of TPs. However, the prior uncertainty in CO2 
emissions is small, whereas the prior uncertainty in CO emissions is 
relatively high. Nevertheless, they are similar for the ‘Base’ and ‘Spe
cific’ experiments and therefore the main difference between these ex
periments is the hourly variability. We find that the optimized CO2 
emissions are much higher for the ‘Specific’ experiment, despite the 
small difference in simulated time series (Fig. 9), whereas it is similar to 
the ‘Base’ experiment in the case of CO. This suggests that the difference 
between simulated and observed mixing ratios at hourly resolution has a 
significant effect on the optimization of monthly emissions, especially 
when the prior uncertainty is small. With a relatively high prior un
certainty less information is taken from the prior and more weight is 
given to the observations (Eqs. (2) and (4)) and hence the impact of a 
different prior is limited. Thus the optimized emissions of CO are mostly 
the result of a fit to the observations. 

This is also reflected in Fig. 11, which shows the daily variations in 
scaling factors for the different experiments. The CO scaling factors are 

similar for all experiments, so the impact of the prior data and uncer
tainty is limited. In contrast, the CO2 scaling factors show large day-to- 
day differences between experiments, even though the final CO2 scaling 
factor is similar for the ‘Base’ and ‘Uncertainty’ experiments. The dif
ference between the ‘Base’ and ‘Specific’ experiments suggests a change 
in the source-receptor relationship that affects the outcome of the 
inversion, despite starting with the same overall emissions. Updating the 
time profiles affects the dominance of each source sector at any given 
moment, changing the entire emission landscape. This is especially true 
for sectors that are influenced by synoptic meteorological conditions, 
such as residential heating. Generally, colder conditions in our study 
domain occur with an easterly wind, increasing the emissions from other 
stationary combustion compared to a period with a westerly wind. This 
causes a systematic bias in the source-receptor relationship when these 
differences are not taken into account. Indeed, the first 2 weeks of 2015 
and the period from 25 to 28 January were a lot warmer than average 
with a westerly wind, resulting in a stronger decrease in the ‘Base’ 
scaling factors to compensate for this. 

3.4. Annual emission calculations 

Based on the results of our campaign-like inversion we can estimate 
annual emissions using extrapolation with the various sets of TPs. 
Fig. 12 shows the optimized annual emissions following from Eq. (7) and 
Eq. (8). The difference between the ‘Average TP’ and ‘Specific TP’ case 
reflects the difference in the monthly temporal scaling factors (Eq. (9)). 
So the larger the error in the TP for the period in which a measurement 
campaign is done, the larger the error in the annual estimate. The prior 
yearly emissions from the TNO emission inventory are indicated by the 
dashed line. 

We find small differences between the ‘Average TP’ and ‘Specific TP’ 
cases for CO2. Indeed, the temporal scaling factors in January are very 
similar (Fig. 13). The annual CO2 emissions are relatively well-known, 
with an estimated uncertainty of ~2%. Whereas the ‘Base’ experiment 
deviates significantly more from the annual prior than its estimated 
uncertainty, both annual emission estimates for the ‘Specific’ 

Fig. 7. a) Monthly variations, b) weekly variations, and c) daily variations (weekdays (full lines) and weekends (dashed lines)) in traffic counts per vehicle type, only 
for main roads; d) Specific TPs per fuel type for all roads combined. The average TPs are also given. 

Fig. 8. Zoom on time series of CH4 mixing ratios at Westmaas simulated by 
LOTOS-EUROS + OPS (yellow dashed line) and observed (black dots). After the 
bias correction the simulated mixing ratios are closer to the observations (blue 
line). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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experiment are much closer to the prior. This gives confidence that the 
specific TPs improve the comparison between the model and observa
tions despite starting with the same overall emissions for January as the 
‘Base’ experiment. Although we expect this conclusion to be valid for 
CH4 and CO as well, it partly remains speculation due to the large 

uncertainty in the annual emissions and in the spatial distribution. 
For CH4 the difference between the ‘Average TP’ and ‘Specific TP’ 

cases is very large. Whereas the CH4 emissions from agriculture- 
livestock in January were set to zero in the average TP, the temporal 
scaling factor for that same sector is 0.7 in the specific TP. This means an 

Fig. 9. Scatter plots of daily mean modelled vs. observed CO2, CH4 and CO mixing ratios at the three measurement sites. Shown are the model simulations with 
average (red) and specific (blue) TPs. The black dotted line represents the 1:1 line. Statistics are provided for the comparison between the two model simulations and 
the observations (av. = average, sp. = specific). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 10. Prior and optimized monthly emissions of CO2, CH4 and CO for the three experiments. Given are the emissions and their 1σ uncertainty, which is also 
represented by the error bars. 
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overall temporal scaling factor of 0.8 (average) and 1.0 (specific) in 
January. In other words, a 20% difference occurs using the two sets of 
TPs starting from the same prior monthly emission estimate. We also see 
that the total annual emissions using the original set of TPs (average for 
‘Base’ and specific for ‘Specific’) for the extrapolation are much closer 
together than when the opposite TPs (specific for ‘Base’ and average for 
‘Specific’) are used. 

4. Discussion 

This paper aims to quantify the impact of various specifications of 
the temporal variability on the optimization of urban anthropogenic 
emissions on a monthly time scale. First, a new set of TPs was developed 
based on actual activity data. We find that the average TPs often used in 

modelling exercises underestimate variability in the actual activity data. 
This is due to the use of long-term average data to create average TPs. 
The specific TPs represent the variability much better compared to the 
actual activity data. However, we choose to update the TPs for a few 
source sectors only, based on the availability of high-resolution activity 
data. Although with the selected source sectors we cover a significant 
part of the CO2 (75%) and CO (75%) emissions and about half of the CH4 
emissions (46%), there are several other important sectors that are more 
challenging to improve. Specifically for CH4 the TPs for agricultural 
sectors should receive more attention to ensure the variability in emis
sions is resolved. 

The impact of the various TPs on the simulated mixing ratios is small, 
even though the small changes appear to be important in the inversions. 
Previous studies have shown similar results. For example, the impact of 
different TPs for road transport on the average concentrations of NO2, 
O3 and PM10 was shown to be limited, although diurnal peaks and night- 
time concentrations were slightly improved (Menut et al., 2012). The 
simulated mixing ratios in Fig. 9 also show some differences in the 
day-to-day variability, although this is not necessarily reflected in 
improved statistics. In addition, small (but important) increases in cor
relations for hourly and daily mixing ratios of NO2, SO2 and PM10 were 
shown as a result of updating the TPs of the same source sectors as in this 
study (Mues et al., 2014). 

This suggests that a large part of the uncertainty in the mixing ratios, 
and inherently the model-data mismatch, is the result of errors in at
mospheric transport and source contributions. Previous studies have 
looked into different causes of uncertainty (atmospheric transport, prior 
spatial distribution, prior temporal distribution, uncertain boundary 
conditions, different inversion schemes) and their relative impact 

Fig. 11. Daily scaling factors for CO2, CH4 and CO emissions for the three experiments.  

Fig. 12. Yearly emissions of CO2, CH4 and CO based on extrapolation of monthly optimized emissions for the three experiments. The extrapolation is done using both 
average TPs and specific TPs for all experiments, irrespective of their prior TPs. The dashed line indicates the prior yearly emissions taken from the TNO emis
sion inventory. 

Fig. 13. Monthly variations in emissions of CO2, CH4 and CO based on average 
(full lines) and specific (dashed lines) TPs. 
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(Brophy et al., 2019; Feng et al., 2019; Göckede et al., 2010; Hedelius 
et al., 2018; Martin et al., 2019). Yet there is no consensus as to which 
factors are the most important due to the differences between studies in 
spatial and temporal resolutions and the chosen perturbations for each 
of these factors. Moreover, these studies mostly focused on CO2, for 
which the prior emissions are relatively well-known. For CH4 or CO the 
uncertainties in the prior (including the TPs) could be larger, making it a 
more important source of uncertainty. In this study, we show that the 
TPs do affect the inversions significantly through different pathways. 
The total prior emissions can change, but also the comparison between 
the model and observations is affected by the TPs. Overall, we find that 
the impact of prior uncertainties is smaller than the impact of the 
different TPs, although a relatively small prior uncertainty increases the 
importance of having location- and time-specific TPs. 

We also examined the impact of TPs on the extrapolation of emission 
estimates based on short-term campaigns or daytime data to annual 
emission estimates. Although we find that the annual estimate for CO2 is 
closer to the relatively well-known prior when specific TPs are used, we 
are unable to validate the experiments with observations. Especially for 
CO and CH4 we would recommend to invest in an additional observation 
site to independently validate the experiments. For now, we limit the 
discussion to the impact of using different TPs. The differences between 
the two sets of TPs differs per month and therefore the impact on the 
extrapolation does as well. The maximum difference is 26% for CO2 
(December), which is very large compared to the uncertainty in annual 
emissions (generally a few percent at country-level). For CH4 the 
maximum difference is 101% (March) and for CO 13% (August). This 
illustrates that an accurate representation of the temporal variability in 
emissions from different source sectors is important to put the results 
from a measurement campaign into a broader perspective. Inversions 
that use daytime data may face similar challenges, because the diurnal 
cycle in emissions is highly uncertain. We found a difference of 5% 
(CO2), 1% (CO) and 36% (CH4) in the monthly emission estimates using 
only daytime data compared to the data selection based on wind speed 
for the ‘Base’ experiment (not shown). A previous study also showed 
that using afternoon data to constrain daily emissions can cause an error, 
because the diurnal cycle is not corrected (Kunik et al., 2019). Addi
tionally, Martin et al. (2019) argued that mixing ratios are often over
estimated at night and underestimated during the afternoon, so using 
daytime data can result in a biased emission estimate that cannot easily 
be extrapolated to cover an entire year. 

The conclusions drawn from this work are not only valid for small 
spatiotemporal scales. Although larger (regional) scale inversions often 
cover longer time periods that may cancel out random errors, the change 
in the source-receptor relationship will sustain and cause a systematic 
error. The reason for this is that the atmospheric concentrations are 
correlated with synoptic conditions, both through atmospheric transport 
and through the impact of the weather on emissions. This effect was 
previous illustrated by Hendriks et al. (2015), who studied the impact of 
temporal profiles on air pollutant concentrations from the energy sector, 
taking into account weather dependencies in renewable energy supply. 
They concluded that the effect of emission reductions due to renewable 
energy was smaller when accounting for the impact of synoptic meteo
rological conditions. 

Since the goal of this study was not to actually constrain the monthly 
or yearly emissions within our study domain we used a relatively simple 
model set-up. However, several scholars showed a significant spread in 
the mean optimized emissions when using different correlation length 
scales (Breón et al., 2015; Kunik et al., 2019). Moreover, Kunik et al. 
(2019) showed that including temporal error correlations avoids the 
underestimation of the posterior uncertainty. Another concern is the 
bias in the CH4 large-scale background in our forward simulations. We 
decided to correct for this bias to avoid incorrectly attributing it to local 
emission sources, which could have had a large impact on the results. 
For example, Göckede et al. (2010) showed that a shift in advected 
background CO2 mixing ratios of 1–2 ppm could cause an error of more 

than 40% in the biospheric CO2 flux in the state of Oregon, US. Although 
we do not know what causes this bias we believe our conclusions are 
valid because no correction has been applied to CO2 and CO. Further 
examination of the bias is needed to use this system for actual emission 
verification. 

Based on our findings we conclude that short-term campaigns can be 
suited to constrain fossil fuel emissions from cities or specific sources in 
support of reporting obligations, as was already illustrated by several 
studies (e.g. (Cui et al., 2017; Gourdji et al., 2018; Wecht et al., 2014)). 
However, there are a few conditions that need to be met. First of all, it is 
important to cover not just the afternoon with the measurement cam
paigns. A focus on the afternoon makes it impossible to constrain the 
diurnal cycle in emission strengths, which in turn causes a bias in the 
emission estimate when the diurnal cycle is not correctly described by 
the TPs. Second, the prior emission inventory should be complete; all 
sources should be included, even if they are highly uncertain. Missing 
emissions cannot be scaled and can significantly affect (short-term) in
versions. Third, an effort has to be made to improve the description of 
the temporal variability in emissions to correctly extrapolate the emis
sion estimates to an annual scale. 

The final condition, improving the TPs, is gaining increasing atten
tion, but still large steps have to be made towards true location- and 
time-specific TPs (Matthias et al., 2018). Preferably, TPs should be 
dependent on location, fuel type and species. We have already shown 
that the TPs for power plants and road transport are highly dependent on 
the fuel type, but the road transport emissions of CO are also affected by 
cold starts (Andrews et al., 2004). Moreover, the degree day method 
could be applied to each grid cell in the model instead of being based on 
country-average temperature data, especially for large countries with a 
strong temperature gradient. Efforts to make such improvements are 
currently ongoing through the development of dynamic emission 
models. More detailed emission data can be provided from bottom-up 
techniques, e.g. using near real-time traffic data (Tu et al., 2018), but 
this can be computationally expensive and requires a lot of data. 
Another approach is to use available data to look for typical patterns that 
can be applied over larger areas or periods of time. Examples could be 
typical driving behaviour on a roundabout or the prediction that on a 
sunny weekend day there is additional traffic towards the beach. Note 
that atmospheric transport models are currently suited to use average 
TPs applied to annual emissions. Therefore, using detailed emission data 
requires adaptations to those models as well, either through providing 
more input data (takes more time) or by online emission processing (less 
dynamic) (Jähn et al., 2020). 

5. Conclusions 

We illustrate the impact of using location- and time-specific TPs on 
the optimization of urban emissions of CO2, CH4 and CO. The specific 
TPs show more variability than the average TPs and are more in line 
with actual activity data. The impact of specific TPs on the prior emis
sion uncertainty is relatively small, but does not necessarily show a 
decrease. The reason is that, due to the different TPs, a source sector 
with a higher uncertainty can become dominant. Nevertheless, both the 
monthly optimized emissions and the extrapolation to annual emissions 
are strongly affected by the TPs, causing differences of up to 100% for 
CH4. We also find that the TPs affect the source-receptor relationship 
that influences the direct comparison of observations and models. This 
results in a 19% higher optimized CO2 emission using specific TPs, even 
though the prior monthly emissions were the same with both sets of TPs. 
We therefore conclude that more effort is needed to improve the rep
resentation of the temporal variability in emissions in order to get reli
able emission estimates for urban areas using short-term inversions. 
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