
ORIGINAL PAPER

Relating matrix stress to local stress on a hard
microstructural inclusion for understanding cleavage
fracture in high strength steel

Quanxin Jiang . V. M. Bertolo . V. A. Popovich . J. Sietsma .

Carey L. Walters

Received: 26 May 2021 / Accepted: 12 August 2021 / Published online: 11 September 2021

� The Author(s) 2021

Abstract Macroscale cleavage fracture toughness of

high strength steels is strongly related to the fracture of

hard microstructural inclusions. Therefore, an accu-

rate determination of the local stress on these inclu-

sions based on the matrix stress is necessary for the

statistical modelling of macroscale cleavage fracture.

This paper presents analytical equations to quantita-

tively estimate the stress of the microstructural

inclusions from the far-field stress of the matrix. The

analytical equations account for the inclusion shape,

the inclusion orientation, the far-field stress state and

matrix material properties. Finite element modelling

of a representative volume element containing a hard

inclusion shows that the equations provide an accurate

representation of the local stress state. The equations

are implemented into a multi-barrier model and

compared with CTOD experiments with two different

levels of constraint.

Keywords Cleavage fracture � High strength steel �
Microstructure � Hard inclusion

Abbreviations

a0 Initial crack length of SENB specimen

B Thickness of SENB specimen

ci Constant values used in equations (i is

number or descriptive characters)

Einclu Young’s modulus of inclusion

Ematrix Young’s modulus of matrix

f a Stress concentration factor of inclusion

f(D) Distribution density of the grain major axis

Kmm
Ia Crack arrest parameter of grain boundary

K Hardening parameter of matrix

L Length of SENB specimen

nL Hardening exponent of matrix

N Amount of potential cracking nuclei per

unit volume

Pf Fracture probability

Ri Principal semi-axes of spheroidal inclusion

(i = 1, 2, 3)

S Span of SENB specimen in the three-point

bending test

W Width of SENB specimen

ep Von Mises equivalent plastic strain

ep;matrix Remote plastic strain

ep;th Threshold value of remote plastic strain

g Remote stress triaxiality defined by the

ratio of the hydrostatic stress to the

equivalent Von Mises stress

h Angle between inclusion’s principal semi-

axis R1 and the remote first principal stress

r1
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r1;inclu Representative inclusion stress

r1;matrix Remote first principal stress

req;matrix Remote Von Mises equivalent stress

rcH Critical stress for hard inclusion

ri Principal stress (i = 1, 2, 3)

ry Yield strength

s Shear stress

sp Remote maximum shear stress

1 Introduction

Mechanical integrity assessment of steel structures

frequently requires knowledge of their resistance to

catastrophic failure by fast, unstable crack growth,

expressed as fracture toughness. Ferritic steels exhibit

a transition from ductile fracture modes at higher

temperatures to brittle fracture at lower temperatures.

Toughness at lower temperatures and the transition

temperature region are related to transgranular quasi-

cleavage fracture, which will be called cleavage in this

paper. Many material requirements, for example

Charpy test results, are related to the prevention of

cleavage. The need for more accurate cleavage

modelling is particularly acute for a new generation

of high- and very high-strength steels (yield strength

of 500 to 1000 MPa) because they generally have

lower toughness, and therefore, a lower safety margin.

Furthermore, these classes of steels obtain their

favorable properties through their complex, multi-

phase microstructures, which complicates microstruc-

tural modelling of cleavage-driven failure.

As a highly localized phenomenon, cleavage frac-

ture exhibits strong sensitivity to material character-

istics at the microstructural level, dependent on

material and structure fabrication, and it is coupled

with a constraint effect originating from the macro-

scopic stress state. It is generally accepted that the

micromechanism of cleavage fracture can be

described by three critical events: particle fracture,

propagation of a particle-size crack and the propaga-

tion of a grain-size crack (Lin et al. 1986; Martı́n-

Meizoso et al. 1994; Pineau 2008; Chen et al. 2010;

Pineau et al. 2016; Namegawa et al. 2019). A

summary of the models describing micromechanisms

of cleavage fracture can be found in Jiang et al. (2019).

Table 1 shows a schematic representation of these

three critical events and the corresponding parameters

to define cleavage criteria. As the first in the chain of

events that leads to cleavage, fracture of the hard

particle requires special attention.

Second-phase particles are particles which do not

belong to the matrix phases. They are present because

of the alloying elements that are added for harden-

ability, yield strength, and other properties. Carbides,

brittle inclusions, and M-A constituent are examples

of second phase particles that are widely reported as

being detrimental for cleavage fracture in steels (Ray

et al. 2012; Chen and Cao 2015; Jia et al. 2017;

Tankoua et al. 2018). Although steels also have soft

inclusions like MnS, they mostly affect the ductile

failure mode and are not the focus in this paper. It has

been observed that larger inclusions and inclusion

clusters act as weakest features in the microstructure,

allowing brittle crack initiation and propagation

(Ghosh et al. 2013; Popovich and Richardson 2015;

Pallaspuro 2018; Bertolo et al. 2020). The probability

that cracks initiate in a given particle depends on the

particle size, shape, volume fraction and orientation of

the elongated particles with respect to the applied

stress (Lindley et al. 1970; Ray et al. 1995; Bordet

et al. 2005; Chen et al. 2010; Miao and Knott 2016).

Therefore, it is important to be able to estimate the

local stresses on hard inclusions based on the global

loading in order to be able to capture the first stage of

cleavage fracture, especially in high-strength steels.

Studies on the stress distributions within or around

inclusions have been performed extensively (Huang

1972; Lee and Smivri 1981; Wilner 1988; Ramakr-

ishnan 1996; Lee and Mear 1999; Lauke and Schüller

2002; Huang and Li 2005; Gao 2008). These works

contributed to a good understanding of the stress

distribution within or around a hard inclusion embed-

ded in an elastic–plastic matrix. It is found that there is

a critical aspect ratio at which interface debonding

changes to particle fracture, and the remote stress

triaxiality has a significant effect on this transition

(Lee and Mear 1999).

However, methods that can directly determine the

local stress on a hard inclusion from the remote stress

still need development. For linear elastic problems, the

Eshelby solution (1957) is available for the calculation

of the stress on a spheroidal inclusion. For nonlinear

problems, the classic Eshelby solution has been

modified to incremental approaches with the mean-

field (MF) homogenization method making use of
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equivalent tangent operators (e.g. Mori and Tanaka

1973; Doghri and Ouaar 2003). Corresponding vali-

dations (Pierard et al. 2006) showed that the MF

method can give accurate predictions of the effective

properties of a composite at continuum level, but this

does not guarantee the same accuracy at the

microstructural phase level. The accuracy of the MF

method at the phase level (especially for the inclu-

sions), or other methods using Eshelby tensors, relies

on the assumptions of a homogeneous stress inside the

inclusion and a homogeneous equivalent tangent

operator of the matrix. Violation of the basic assump-

tions leads to inaccuracy or even failure of the Eshelby

tensor based methods. To improve the average stress

calculation of individual phases, Delannay et al.

(2007) proposed including fitting parameters for the

MF method. Because this modified method remains

heuristic and is not predictive a priori for other

composite materials, Brassart et al. (2010) presented

an extended MF method which is fully coupled with a

nonlinear finite element analysis (FEA) of the inclu-

sion problem to avoid the use of Eshelby tensors.

Thus, the calculation of the inclusion stress has to be

performed with numerical simulations (e.g. FEA).

Determination of the inclusion stress using FEA

can be computationally costly because the microstruc-

tures (both matrix and inclusions) of metals can vary

widely. The material may contain hard inclusions that

have various shapes, orientations and material

properties. Under different loading patterns, the con-

straint effect may also vary locally and lead to various

stress states. Lambert-Perlade (2004), Hardenacke

et al. (2010), and Shibanuma et al. (2016) developed

empirical equations to relate the far-field stress to the

local stress on a hard inclusion for a specific material.

A more detailed summary of the available empirical

equations will be given in the ‘‘Discussion’’ section of

the present paper. An empirical equation that can

account for multiple parameters and can be used for a

general case will require extensive simulations and

suffer from an ambiguous fitting process. Thus, this

paper aims to propose an analytical solution that can

be used for the calculation of local stress on a hard

inclusion based on the far-field stress on the matrix.

2 Development of analytical solution of the local

stress on inclusions

For elastic problems, the Eshelby solution (1957) is

available for the calculation of the stress on a

spheroidal inclusion. The detailed calculation of the

Eshelby solution involves determination of the

Eshelby tensor from inclusion geometry and the

formulation of equilibrium equations, which can be

found in Mura (1987). However, the Eshelby solution

is not valid during plastic deformation for the dilute

inclusion problem. A simplified analytical equation is

Table 1 Micromechanisms of cleavage fracture (Adopted from Lambert-Perlade et al. 2004)

Event Criteria

I

II

III

The blue line refers to a crack; the ellipse refers to a hard particle; the

hexagons refer to grains

I Crack initiation in a particle rH [ rcH
II Crack propagation across

particle/grain interface
rn;II [rcn;II ¼

Khm
Ia
ffiffi

d
p

III Crack propagation across grain

boundary
rn;III [ rcn;III ¼

Kmm
Ia
ffiffiffiffi

Dg

p

rH is the first principal stress on the hard particle; rn is the
maximum normal stress on the cleavage planes of the

grain.

Khm
Ia and Kmm

Ia are local crack arrest parameters on the

particle/grain interface and the grain boundary,

respectively.

d, Dg represent the size of crack, which is assumed to be

correlated to the hard particle size, and the grain size,

respectively.

Superscript c represents a critical value.

Subscripts II and III refer to the event number.
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established in this paper to quantitatively determine

the stress on the inclusion from the far-field stress on

the macroscale. The geometric representation of this

problem is illustrated in Fig. 1 as an elastic hard

inclusion embedded in an infinite volume of elastic–

plastic matrix. In this paper, the inclusion is assumed

to be an ellipsoid characterized by the principal semi-

axes (R1 = R2 = R3). The remote load is modelled as

two principal stresses r1 and r2, which are normal to

R3. The angle between inclusion’s principal semi-axis

R1 and the remote first principal stress r1 is noted as h.
For the third principal direction, the remote deforma-

tion is considered to be zero, which corresponds to a

plane strain condition on macroscopic scale for the

matrix.

2.1 Key assumptions

The following five assumptions are used in the

derivation of the analytical solution:

(1) There is perfect cohesion between the inclusion

and the matrix.

(2) The matrix has low-hardening behaviour after

yielding.

(3) The average first principal stress over the mid-

section of the inclusion is the representative

stress (r1;inclu).
(4) If r1;matrix is the remote first principal stress of

the matrix, then the stress difference

(r1;inclu � r1;matrix) is only related to the devia-

toric part of the remote stress field (the maxi-

mum shear stress) when remote plastic

deformation is pronounced. The derivation of

the analytical solution is based on a formulation

with remote shear stress, while the hydrostatic

pressure of the remote stress field is not

considered. This assumption is further validated

with FEA in Sect. 3.

(5) The tensile stress induced by shear deformation

vanishes in the matrix close to the inclusion, and

the entire reduced stress is taken by the inclu-

sion. This assumption is further illustrated in

Sect. 2.2 and validated with FEA in Sect. 3.

Assumption (1) comes from the observation that

cleavage fracture is mostly transgranular failure

initiated rather by particle cracking than by boundary

decohesion. Assumption (2) corresponds to a charac-

teristic of high strength steels. For example, Bannister

(2000) reported on the plasticity properties of hun-

dreds of structural steels. Almost all of the steels with a

yield strength greater than 500 MPa had an ultimate

strength that is less than 25% greater than the yield

strength. Assumption (3) is due to the fact that the

maximum tensile stress within the inclusion is largely

influenced by the imperfect morphology which cannot

to be reflected by analytical derivation, and the

average tensile stress over the mid-section can reflect

the driving force to break an inclusion. Assumption (4)

is based on the argument that the stress difference

caused by hydrostatic pressure is due to the compatible

deformation under volume change, and when the

matrix remains elastic, extra uniform strain is gener-

ated inside the inclusion to satisfy the compatibility of

deformation. However, when the matrix enters the

plastic stage, large deviatoric deformation can be

generated in the matrix near the inclusion allowing the

Fig. 1 A schematic

representation of a

microstructural inclusion

embedded in an infinite

matrix under a general

remote load and b remote

deviatoric (pure shear) stress
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condition of compatible deformation to be satisfied.

The extra strain inside the inclusion will no longer

remain uniform, and the influence of hydrostatic

pressure is negligible. Assumption (5) is due to the

effect that the inclusion gives extra constraint to the

nearby matrix and the matrix cannot deform freely

along the slip plane. As a consequence, larger shear

stress is generated along the inclusion/matrix interface

rather than along the remote shear direction. The

tensile stress associated with the shear deformation is

also redistributed from the matrix to the inclusion.

2.2 Two dimensional analysis

The analytical expression of the inclusion problem is

first formulated in 2D based on a plane-strain condi-

tion by Fig. 2. When only considering the remote

deviatoric stress, the general case will reduce to

Fig. 1b, where s = r1 = - r2. In Fig. 2, the principal
stress coordinate system is used, where the y axis is

parallel to the remote maximum principal stress and

the x axis is parallel to the remote minimum principal

stress. The inclusion outline is visualized by the solid

lines in Fig. 2 and is defined as an ellipse by:

cos hð Þx� sin hð Þyð Þ
1

� �

2 þ cos hð Þyþ sin hð Þxð Þ
R1=R2

� �

2

¼ 1:

ð1Þ

In Eq. 1, x and y are lengths normalized by the

minor axis of the ellipse and are dimensionless. There

are four planes parallel to the remote principal shear

directions, which are visualized by the dashed lines in

Fig. 2a, forming a rectangle around the inclusion.

According to slip-line theory, only the matrix between

the inclusion and the rectangle is assumed to be

influenced by the presence of the inclusion, and the

shear field outside the rectangle will be uniform. The

parameters c1, c2, c3, and c4 shown in Fig. 2 can be

found from geometry.

Figure 2b shows the free body diagram of half the

inclusion and the matrix in its vicinity. The outline of

the isolated body is visualized by the solid lines. There

are five straight boundaries of this free body noted as l1
to l5. The forces acting on these boundaries are noted

as F1 to F5 respectively. When the inclusion has the

same material properties as the matrix, the isolated

body behaves like a homogeneous matrix material.

Boundaries l1 and l2 are parallel to the remote

principal shear directions and thus F1 and F2 are pure

shear forces. Boundaries l3 and l5 are normal to the

remote first principal stress and thus F3 and F5 are

parallel to the y axis.

The force equilibrium in the y direction is:

F1cos45
� þ F2cos45

� ¼ F3 þ F4;y þ F5; ð2Þ

where F1 ¼ sl1, F2 ¼ sl2 and F3 ¼ F5 ¼ sl3.

Fig. 2 a Parameters for the analytical expression of an inclusion in a 2D coordinate and b free body diagram of half the inclusion and

the matrix in its vicinity
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When the inclusion is of a much stronger material

than the matrix (e.g. the inclusion remains in elastic

stage when the matrix is yielding), there is an extra

constraint for plastic deformation of the matrix in the

vicinity. The shear stress along the inclusion/matrix

interface is generally increased. In order to maintain

force equilibrium, the normal stress at the horizontal

boundaries l3 and l5 is reduced. Consequently, the

matrix in the vicinity of the inclusion has a much

smaller stress in the principal direction, and the

reduced stress is taken by the inclusion. The force

F4,y is further decomposed into the force that it would

otherwise have in a homogenous system, F4h,y and the

added force that it has because it takes stresses from

the unstressed surroundings, F4D,y.

F4;y ¼ F4h;y þ F4D;y: ð3Þ

The forces F3 and F5 are assumed to become zero

and will lead to the following force equilibrium in the

y direction:

F1cos45
� þ F2cos45

� ¼ F4h;y þ F4D;y: ð4Þ

The extra force taken in the y-direction by the

inclusion can be calculated as F4D;y ¼ 2s c1�c2
2

� c3
� �

.

If this force is averaged at the inclusion mid-section

normal to the y direction, the averaged extra stress is:

r1;inclu � r1;matrix ¼
DF4;y

2c4
¼ s

ðc1 � c2Þ=2� c3
c4

¼ req;matrix
ffiffiffi

3
p ðc1 � c2Þ=2� c3

c4
: ð5Þ

2.3 Formulation

As result of the 2D analysis, the representative stress

of the inclusion (r1;inclu) can be calculated with:

r1;inclu ¼ r1;matrix þ f
R1

R2

; h

� �

req;matrix; ð6Þ

where r1;matrix is the first principal stress on the far

field, and req;matrix is the remote Von-Mises stress of

the matrix; f R1

R2
; h

� �

is given as:

f
R1

R2

;
R3

R2

; h

� �

¼ ððc1 � c2Þ=2� c3
c4

Þ=
ffiffiffi

3
p

; ð7Þ

where c1, c2, c3 and c4 can be determined with Eqs. 8

to 16.

c1 ¼ x1 þ
px1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qx21 þ 4h
p

2h
; ð8Þ

c2 ¼ �x2 þ
px2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qx22 þ 4h
p

2h
; ð9Þ

c3 ¼
ph c1 þ c1ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qh2 c1 þ c2ð Þ2 þ 4ðp2 � qÞh
q

p2 � q
;

ð10Þ

c4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=
cosh
1

� �2

þ sinh
R1=R2

� �2
" #

v

u

u

t ; ð11Þ

x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16h3 þ 4hp2 þ 16ph2

q2 � 4h2 þ p2 þ 4ph
� �

q

s

; ð12Þ

x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16h3 þ 4hp2 � 16ph2

q2 � 4h2 þ p2 � 4ph
� �

q

s

; ð13Þ

h ¼ sin2hþ cos2h

ðR1=R2Þ2
; ð14Þ

p ¼ 2coshsinh 1� 1

ðR1=R2Þ2

 !

; ð15Þ

q ¼ 4cos2hsin2h
1

ðR1=R2Þ2
� 1

 !2

� 4 sin2hþ cos2h

ðR1=R2Þ2

 !

cos2hþ sin2h

ðR1=R2Þ2

 !

:

ð16Þ

The above equations are based on a 2D formulation,

assuming the 3-D ellipsoidal inclusion to have a

symmetric geometry. In that case, the result remains

even if the local shear direction deviates from remote

shear direction. When the symmetric axis of the

inclusion lies parallel to the remote first principal

stress, the above assumption is satisfied and the

derivation does not require correction. When the

symmetric axis of the inclusion has an angle to the

remote first principal stress, the 2D geometric charac-

terization of the inclusion may differ along the third

direction (when the 2D derivation is at the xy plane, the

third direction perpendicular to the xy plane is denoted

by z axis), and a correction term should be applied. The
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correction term is heuristically assumed to be propor-

tional to the geometry asymmetry with shear stress as a

weight factor:

ðr1;inclu � r1;matrixÞcorrected
ðr1;inclu � r1;matrixÞxy

¼ 1� syz;max
sxy;max

� �

þ syz;max
sxy;max

�
ðc1�c2Þ=2�c3

c4

� �

yz

ðc1�c2Þ=2�c3
c4

� �

xy

;

ð17Þ

where syz;max and sxy;max are the maximum shear

stresses in yz plane and in xy plane respectively,
ðc1�c2Þ=2�c3

c4

� �

yz
and

ðc1�c2Þ=2�c3
c4

� �

xy
are geometry cal-

culations based on yz plane and xy plane respectively.

For plane strain condition, the correction term is

approximated as a function of c4:

ðr1;inclu � r1;matrixÞcorrected
ðr1;inclu � r1;matrixÞxy

¼ 0:3þ 0:7� c4: ð18Þ

If the matrix is in the elastic stage, the inclusion

stress can be calculated by analytical equations

following Eshelby’s solution. The effects of remote

stress triaxiality and inclusion modulus can be

included. If the matrix has developed significant

plasticity, the inclusion stress is only related to the

shear components in the remote loading condition as

stated in Assumption (4). In such a situation, the

effects of remote stress triaxiality and inclusion

modulus can be neglected, and the inclusion stress is

calculated by the present analytical equations involv-

ing the inclusion geometry, orientation and the remote

matrix stress. When the matrix starts to yield but has

not reached a threshold plastic strain (ep;th), the

inclusion stress is calculated by a linear interpolation

with respect to plastic strain from the stress calculated

by Eshelby’s solution in the elastic range to the stress

calculated by Eqs. 6 to 17 when the plastic strain is

equal to ep,th. The exact value of ep;th to define the

transition can be regarded as the plastic strain at which

the strain hardening rate dr=dep of the steel is less than
0.5% of the Young’s modulus.

3 Validation with numerical simulations

In order to validate the analytical solution (Eqs. 6 to

17) that predicts the representative stress on a hard

inclusion, numerical simulations with nonlinear FEA

are performed. The FEAmodel is first described. After

that, the assumption of the shear regions formed

around the inclusion is validated. The effect of the

remote stress triaxiality, the remote plastic strain, and

the Young’s modulus of the inclusion are evaluated.

Comparison between analytical solution and numer-

ical simulations is presented on the geometry of the

inclusion with first the aspect ratio (ratio of major to

minor axis) and thereafter the orientation. Finally, the

effect of the stress–strain curve of the matrix is

considered.

3.1 Description of FEA model

The FEA solutions are performed with Abaqus 2017

(Dassault Systemes 2017) for an elastic hard inclusion

embedded in an elastic–plastic matrix. The stress–

strain relationship of the steel is characterized by

Ludwik’s law, which is defined with the flow stress (r)
and the effective plastic strain (ep) as:

r ¼ ry þ KenLp ; ð19Þ

where K and nL are material parameters. For the

reference study, ry is 690 MPa, K is 234 MPa, and nL
is 0.17, which are determined from a tensile test of

S690 QL steel at room temperature. The inclusion is a

linearly elastic material with a Young’s modulus of

300 GPa and a Poisson’s ratio of 0.3. According to

several authors (e.g. Lamagnere et al. 1996; Chen et al.

2017; Gu et al. 2019), typical hard inclusion moduli

vary from 250 to 380 GPa. A sensitivity study is

performed for various aspect ratios of the spheroidal

inclusion (R1/R2), stress triaxiality of the remote load

(g), angle between inclusion’s major axis and remote

principal stress (h), and material properties of the

inclusion and the matrix.

For the case where h = 0�, one eighth of the entire

40 lm� 40 lm� 40 lm cubic volume is modelled

with the use of symmetry as shown in Fig. 3a. The

longer axis of the inclusion is 4 lm, resulting in a

volume fraction of inclusions of approximately 0.04%

and a length fraction of 10%. The boundary conditions

of the inclusion problem is referred as the far-field
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state, which represents the plastic strain and stress

triaxiality on a macroscopic level. The boundary

conditions of the cubic volume correspond to a plane-

strain condition on the macroscopic scale. Normal

traction is applied uniformly in two principal direc-

tions (axis 1 and 2), and normal displacement is

constrained to zero in the third principal direction (axis

3). Displacement control is used to apply deformation

at the boundary surfaces to generate a final plastic

strain of approximately 0.05. The displacement along

axis 1 (u1) is the major tensile traction and the

displacement along axis 2 (u2) is set as a ratio to u1 to

generate a constant stress triaxiality. The C3D20R

(20-node hexahedron with reduced integration) ele-

ment is used to mesh both the inclusion and the matrix.

The average element of the inclusion has a length of

0.01 lm. The average element of the matrix has a

length of 1 lm. The matrix in the vicinity of the

inclusion has a linearly biased mesh to transition to a

larger element size. For the case where h[ 0�
(Fig. 3b), half of the entire cubic volume is modelled

with the use of symmetry. The size of the inclusion,

cubic volume, element density and the loading con-

ditions are the same as for h = 0�.
The full Newton–Raphson algorithm is used to

solve the geometric and material nonlinearity. The

representative inclusion stress is defined as the aver-

age tensile stress acting on the mid-section of the

inclusion. The mid-section lays normal to the tensile

loading direction (axis 1 in Fig. 3), through the

centroid, and separates the inclusion into two anti-

symmetrical parts. The average stress is computed as

the normal component of the total force acting on the

mid-section divided by the area of themid-section. The

total force accounts for both tensile and compressive

components, while since the remote load long axis 1 is

in tension the average stress on mid-section would also

be in tension. A convergence study on element size has

been conducted. Re-running the same model with

twice the inclusion size was checked, yielding the

same results. The check of element size and inclusion

size is not included in the manuscript for brevity.

Fig. 4 Distribution of first principal stress around the inclusion

(stress is given in MPa)

Fig. 3 3Dmodel of an inclusion (in colour green) embedded in a cubic volumematrix a h = 0� one eighth of the cube and b h[ 0� half
the cube
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3.2 Validation of shear plane hypothesis

Figure 4 shows the distribution of first principal stress

near the inclusion for the case of a spherical inclusion

(R1 = R2), under g = 2. It confirms the assumption that

a shear plane is formed at the inclusion/matrix

interface, following the principal shear direction.

Between the shear plane and the inclusion, the matrix

undergoes significant stress variation. The principal

stress directions in the vicinity of the inclusion have

been distorted due to the constraint of the inclusion.

Consequently, the first principal stress inside the

inclusion is higher than the remote first principal

stress.

3.3 Validation of assumption on plastic strain

and stress triaxiality

The stress is computed using the solution for shear

only. The remote pressure does not play a role when

matrix deformed plastically. Figure 5 shows the

inclusion stress under various stress triaxiality values,

which supports the assumption. Although the stress

depends on the stress triaxiality in the elastic and the

early yielding stage, the dependence vanishes when a

certain level of plastic deformation has been devel-

oped in the matrix. It is observed that the influence of

the hydrostatic pressure on the stress difference

between inclusion and matrix is decreasing if the

remote plastic strain is greater than 0.01 and fully

vanishes if remote plastic strain is greater than 0.03. It

should be mentioned that it is straightforward to notice

this phenomenon when the stress is plotted with the

absolute difference between inclusion stress and

matrix stress, as in Fig. 5a. If the stress is plotted as

a normalized value (as in Fig. 5b), it can be compared

with the results in the literature (Lee and Mear 1999;

Thomson and Hancock 1984; Wilner 1988) but does

not show the above conclusion.

3.4 Effect of inclusion elastic modulus

A similar effect is observed in the sensitivity study of

the inclusion modulus. Figure 6 shows that the

influence of the inclusion modulus is decreasing with

increasing remote plastic strain and fully vanishes for

remote plastic strain greater than 0.02. If the matrix

has developed significant plasticity, the effects of

inclusion modulus can be neglected, as stated in the

development of the analytical solution.

3.5 Effect of inclusion shape

To assess the influence of the shape of the inclusion,

the aspect ratio was first varied parametrically while

the stress triaxiality was held constant at g = 2. Based

on the matrix elasto-plastic properties, ep;th in the

analytical solution is determined as 0.02. Figure 7

shows the results of this study. It is observed that the

inclusion stress is higher for larger values of R1/R2.

This effect occurs for all levels of remote plastic strain.

Next, the effect of orientation was assessed.

Figure 8 shows an inclusion of R1/R2 = 2 under the

same remote loading condition, but the major axis (R1)

has an angle (h) with the direction of the remote first

Fig. 5 Stress of the

inclusion vs remote plastic

strain under various stress

triaxialities (g) a plotted as

absolute difference and

b plotted as normalized

value
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principal stress. It is observed that as h increases, the

stress at an elongated inclusion is reduced. This effect

exists for all levels of remote plastic strain. By

comparing the curve h = 90� in Fig. 8 with the curve

R1/R2 = 0.5 in Fig. 7, it can be noticed that the stress is

less pronounced for the inclusion of R1 = 0.5R2-

= 0.5R3. This indicates that the effect of inclusion

geometry is related to its three-dimensional morphol-

ogy, even if the remote loading condition is plane

strain.

3.6 Effect of the shape of the stress–strain curve

The analytical solution has been compared with FEA

models of various matrix properties other than the

reference study. The yield strength and Ludwik’s

parametersK and nL, given in Eq. 19, have been varied

to determine the influence. Figure 9a shows the stress–

strain curves of steels A–D. Figure 9b shows the

parameters to define steels A–D. Steels A–D are all

high strength steels with ry � 690 MPa and relatively

low-hardening behaviour. The varied parameter val-

ues are hypothetical, while the resulting curves can be

compared with stress–strain curves for commonly

used high strength steels, for example as reported by

Wuertemberger (2016). The analysis is performed

with an arbitrary case R1/R2 = 2 and h = 45�. Accord-
ing to Fig. 9c, the analytical solution shows good

performance independently of yield strength and nL

Fig. 6 Stress difference vs. plastic strain for various inclusion

moduli (R1/R2 = 1)

Fig. 7 Stress difference vs plastic strain for various aspect

ratios (h = 0�)

Fig. 8 Stress difference vs. plastic strain for various inclusion

orientations (R1/R2 = 2)

Fig. 9 a Hardening behaviour for various matrix materials,

b material parameters of steels A–D, and c stress difference vs.
plastic strain for steels A–D
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values. However, for a higher K value (pronounced

hardening in the early yielding stage), the analytical

solution is seen to give a less accurate prediction of the

stress. This phenomenon can be explained by its

violation of the assumption of the low-hardening

condition. Thus, the analytical solution should be used

carefully on materials that have pronounced hardening

behavior.

3.7 Summary of validation studies

The analytical model has been systematically com-

pared with FEA to assess the underlying assumptions

and accuracy over a range of parameters. It was first

demonstrated that shear regions around the inclusion

do form as a tangent to the hard inclusion, with a 45�
angle relative to the first principal stress. It was shown

in Figs. 5 and 6 that the fully plastic solution is

independent of stress triaxiality and the Young’s

modulus of the inclusion. It was shown in Figs. 7, 8

and 9 that the analytical model was able to accom-

modate the shape (aspect ratio and orientation) of the

inclusion and various stress–strain curves. Materials

that show a high level of hardening show less

correlation with the analytical solution. This is to be

expected based on the assumptions used in developing

the solution and based on the observations that high-

strength steels (the focus of this study) tend to have

low hardening rate.

The analytical model is able to capture important

input parameters within approximately 25% when full

plasticity is developed. The Eshelby solution remains

a good method of assessing linear-elastic conclusions.

We present and validate a solution for fully plastic

behavior. We have shown that linear interpolation

between the elastic condition and the fully plastic

behavior can provide an acceptable accuracy. In the

validations,ep;th is set as 0.02, where the strain

hardening rate dr=dep of the steel is less than 0.5%

of the Young’s modulus. The linear interpolation and

criterion to define ep;th is demonstrated and validated

in Figs. 7, 8, and 9. The method is developed and

validated for plane strain conditions, but the assump-

tions and deviations are maintained for plane stress

conditions.

4 Application to cleavage fracture modelling

The developed solution has been applied on fracture

test data to demonstrate the relevance for cleavage

fracture modelling. The data sets include specimens

taken from the top quarter section and middle section

of the S690 QL steel plate. All specimens are fractured

at - 100 �C and have a brittle fracture mode.

4.1 Description of the materials and mechanical

tests

A commercially available 80 mm thick quenched and

tempered S690 high strength steel plate is used in this

paper for illustration and validation. Materials are

extracted from the top quarter section and the middle

section of plate. The materials have been previously

characterized in Bertolo et al. (2020). The chemical

composition of the steel plate is shown in Table 2.

The microstructure of the plate varies through the

thickness from a fully tempered martensitic structure

in the regions close to the surfaces to a mixed

tempered martensitic–bainitic structure in the central

section of the plate. Spherical inclusions and second-

phase particles ranging from 1 to 5 lm were observed

through the full thickness, including oxides and

nitrides of rather complex chemical composition such

as (Mg, Ti)(O, N), (Mg, Al, Ca)(O, N) and (Mg, Al,

Ca, Ti)(O, N). In the middle position, in addition to the

spherical inclusions, cubic and elongated inclusions

with dimensions ranging from 1 to 11 lm were

observed. Niobium-rich carbides and nitrides such as

(Ti, Nb)(N), (Ti, Nb)(C), Nb(C), and (Nb, Ti)(C,N) are

present in the middle position. Figure 10 shows

representative morphology of the inclusions observed

in the S690QL steel plate at top quarter section and

middle section.

Prior austenite grains (PAG) at three locations in

each section were reconstructed based on EBSD data

and ARPGE software. Figure 11 shows the statistical

distribution of grain size in each section, with the

Least Square fitting. It is apparent that the middle

section specimens have larger average grain size and a

greater portion of extremely large grains (major axis

larger than 50 lm).

The parameters of Ludwik’s law are determined for

top quarter and middle section by tensile tests

at - 100 �C. The values of the parameters are sum-

marized in Table 3.

123

Relating matrix stress to local stress on a hard microstructural inclusion 11



Fracture toughness tests were performed according

to ISO 12135 at - 100 �C using sub-sized single edge

notched bending (SENB) specimens, with three

geometries (a0/W equal to 0.5, 0.25 and 0.1). For top

quarter section specimens, geometries of a0/W = 0.5

and 0.25 are considered as high and low constraint

conditions, respectively. For middle section specimen,

geometries of a0/W = 0.5 and 0.1 are considered as

high and low constraint conditions, respectively. The

geometry of the SENB specimens is specified in

Fig. 12 and Table 4. Fractographic examinations

reveal that the microstructural hard inclusions play

an important role in the cleavage fracture process

(Bertolo et al. 2020).

4.2 Statistical modelling of cleavage fracture

In this paper, the modelling of cleavage fracture

considers crack nucleation in hard particles and crack

propagation through grain boundaries. Observation of

the fracture surface reveals that the tested specimens

are fractured by crack initiated from oxides and Nb

inclusions. The inclusions are relatively large com-

pared to commonly observed hard particles, like

carbides, and the cracks initiated by the large inclu-

sions can easily propagate through the inclusion/grain

interface. Thus, the dominant barrier of crack propa-

gation is assumed to be the grain boundary instead of

the inclusion/grain interface. The modelling approach

is adapted from a double-barrier model proposed by

Lambert-Perlade (2004), assuming the initiated micro-

crack to be always large enough to propagate through

the inclusion/grain interface.

In the model, FEA of a macroscopic specimen gives

the result of stress/strain distribution under a certain

global load level (represented as a CTOD). The

Table 2 Chemical composition of S690QL

Wt (%) Fe C Si Al Mo Other

Top Balance 0.17 ± 0.001 0.29 ± 0.022 0.07 ± 0.005 0.30 ± 0.007 Mn, Ni, Cr, Nb

Fig. 10 SEM micrograph of

inclusions in the S690QL steel

plate (RD rolling direction, ND
normal direction) a a (Mg, Al,

Ca)(O,N) inclusion and b a Nb

enriched inclusion

Fig. 11 Statistical distribution of grain size at top quarter and

middle section

Table 3 Material parameters of S690 QT steel determined by

tensile test at - 100 �C

Parameters Top section Middle section

Young’s modulus (GPa) 219 236

Yield stress (MPa) 961 888

Hardening parameter, K (MPa) 521 593

Hardening exponent, nL 0.42 0.66
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process zone (PZ) is taken to be the plastic zone.

Cleavage probability of each element within the

process zone is calculated based on its stress and

strain condition. By accounting for the cleavage

probability of all elements over the process zone, the

total failure probability of the specimen can be

calculated.

Prior to the cleavage modelling, the stress concen-

tration factor of inclusion,f a, is calculated using the

developed analytical solution based on the material

properties and inclusion geometry. The cleavage

probability of a single potential cracking nucleus in

element j under load level i, Pf ;ij, is calculated based

on the following steps:

(1) Calculate the inclusion stress r1;inclu from Eq. 6

and check if the inclusion stress exceeds the

critical value rCH . A micro-crack is initiated in

the inclusions if r1;inclu [ rCH , and Pf ;ij would be

calculated by steps (2)–(3). Otherwise, it is

assumed that no micro-crack is initiated and

Pf ;ij ¼ 0:

(2) If the inclusion stress exceeds the critical value

to nucleate a crack, a minimum grain size Dc is

calculated by Griffith-like criteria as for the first

principal stress within the grain (r1;matrix) to

propagate the crack across the grain boundary,

by

Dc ¼ ðKmm
Ia =r1;matrixÞ2; ð20Þ

where Kmm
Ia is the crack arrest parameter of grain

boundary.

(3) A cleavage probability Pf ;ij is calculated for the

possibility that a grain has the major axis greater

than Dc. Pf ;ij can be calculated by

Pf ;ij ¼
Z þ1

Dc

f gðDÞdD ¼ a

Db
c

; ð21Þ

where f gðDÞ is the distribution density function

of the grain major axis. In this paper,
Rþ1
Dc

f gðDÞdD is measured from microscopy

and fitted as a power-law function with param-

eters a and b.

The total fracture probability Pf ;i at load step i is

then updated based on the weakest-link mechanism.

Pf ;i is calculated from a Weibull-like formulation that

accounts for the total cleavage probability of all

potential cracking nuclei within the process zone (PZ):

Pf ;i ¼ 1� expð�
Z

PZ

NPf ;ijdVÞ; ð22Þ

where N is the average number of potential cracking

nuclei (inclusion) per unit volume.

After looping over all elements, the calculation will

be performed for the next load step until all the load

Fig. 12 Geometry information of

the SENB specimen (Z direction

coincides to ND of the plate)

Table 4 Geometric information of the initial crack length

Constraint ID Position in material Crack length, a0 (notch length ? prefatigued crack length) (mm)

1 Top quarter section: middle section 10 mm (8.6 mm ? 1.4 mm)

2 Top quarter section 5 mm (3.6 mm ? 1.4 mm)

3 Middle section 2 mm (0.6 mm ? 1.4 mm)
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steps are evaluated. When the computation is finished,

the output is the fracture probability of each load step,

in terms of CTOD value.

4.3 Finite element modelling of the fracture test

SENB specimens with the geometry specified in

Table 4 are modelled in Abaqus 2017 (Dassault

Systemes 2017). In total, four analyses are performed

to consider the variety of initial crack length and

material properties. For each analysis, a quarter of the

specimen (L=2� B=2�W) is modelled as a 3D

deformable solid by using symmetry. The support

and load roller are modelled as analytical rigid

surfaces. The contact surface between rollers and the

specimen is frictionless. Figure 13a shows the 3D

model of a quarter of the specimen and two rollers.

Figure 13b shows the mesh near the crack tip. The

initial prefatigued crack tip is modeled as a finite notch

that is 0.005 mm in radius. According to Andrieu

(2012), this finite notch is small enough to model the

near-crack-tip-field for the CTOD value considered in

this study. C3D20R element is used for the mesh. The

smallest element near the crack tip has a length of

0.001 mm. Displacement control is used to apply a

total deflection of 1 mm. A full Newton–Raphson

algorithm is used to solve the geometric and material

nonlinearity. The material parameters of the top

quarter section and the middle section are taken as

the values in Table 3.

4.4 Cleavage fracture modelling assuming

spherical inclusions

The inclusions of both the top quarter section and the

middle section are assumed to be spherical for the

purposes of calculating f a. The material parameters of

the matrix are taken as in Table 3. The remaining input

parameters are listed in Table 5.

There are two major differences in the microstruc-

tures between the top quarter specimens and the

middle section specimens: the grain size distribution

and the existence of the elongated inclusions. With the

assumption that the grain boundary is the barrier to

arrest micro-cracks, the inverse modelling will result

in two fitted parametersKmm
Ia (crack arrest parameter of

grain boundary) and rCH (critical stress of hard

inclusion). Determination of these two parameters

uses two constraint conditions. The fitted parameter

values are listed in Table 6.

The fitting on the top quarter specimens and middle

quarter specimens results in similar values of Kmm
Ia but

significantly different values of rCH , which corresponds
to the microstructural observation that there are

similar grain boundaries but distinct inclusions

through the thickness. The inclusions in the middle

section are computed to have lower strength, which

means they are more prone to fracture. Figure 14

shows the resulting Pf-CTOD curves from the mod-

elling in comparison with experimental data.

Fig. 13 a 3D model of the three-point-bending test and b mesh near the crack tip
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4.5 Fracture modelling considering the inclusion

geometry

The above modelling of cleavage fracture with the

assumption of spherical inclusions shows that the

inclusions in the middle section are computed to have

lower strength. One of the potential causes of the

lower inclusion strength in the middle section can be

related to the elongated inclusion shape. In order to

explain the variety of inclusion strength determined in

the cleavage fracture modelling, the developed ana-

lytical solution is used to calculate inclusion stress

with (a) oblate and (b) prolate as shown in Fig. 15.

It has been observed that the inclusions in the

middle section tend to have a longer axis along the RD

and a shorter axis along the ND, as shown in Fig. 10.

The aspect ratio of individual inclusions varies

significantly. In this study, an assumption of aspect

ratio of 2 and 3 is used to estimate the effect. For both

the oblate and prolate shapes, the minor axis lies along

the ND, which is the out of plane direction of the

SENB specimens, and the major axis lies perpendic-

ular to the crack (h = 0�). Table 7 shows the results of
cleavage parameter determination considering the

variety of inclusion geometry.

This example shows that the inclusion strength

strongly depends on the inclusion shape, while the

crack arrest parameter of the grain boundary is

independent of inclusion features. Compared with

Table 6, when the inclusions are modelled with shapes

that are prone to cracking, a higher critical stress of

hard inclusion is determined, as the stress concentra-

tion effect is considered in the calculation of inclusion

stress.

Table 5 Value of the input parameters for the cleavage model

Parameters Values for top Values for middle

Elementary volume, V0 (mm3) 0.001 0.001

Grain size (major axis) distribution, D (in lm) PðgreaterthanDÞ ¼ 1:24�1011

D8:24 PðgreaterthanDÞ ¼ 4:80�109

D6:95

Number of inclusion per V0 44 51

Young’s modulus of inclusions (GPa) 300 300

Table 6 Parameter values from inverse modelling

Parameters Values for top Values for middle

Crack arrest parameter of grain boundary (MPa
ffiffiffiffi

m
p

) 25.0 23.2

Critical stress for hard inclusion (MPa) 2000 1200

Fig. 14 Pf-CTOD curve of top

quarter section in comparison with

experimental data (dots are the

experimental data and curves are

the model predictions)
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Table 7 shows the critical inclusion stresses

obtained from the cases oblate (R1/R2 = 1, R2/

R3 = 3) and prolate (R1/R2 = 2, R2/R3 = 1) are closer

to the values determined for the top quarter sec-

tion. The prolate geometry would lead to anisotropy in

the rolling direction and the longitudinal direction,

while the oblate geometry does not. Since the micro-

scopic observation and fracture tests only reveal

anisotropy between the rolling direction and the

normal direction, but not for the longitudinal direction,

the oblate assumption is more sensible for the

investigated material. Although the present example

only shows the trend of critical inclusion stress versus

inclusion shape, it proves the strong correlation

between fracture modelling and the microstructural

feature of inclusions. If the inclusion geometry and

orientation can be determined in a statistical format,

the developed solution is capable of exploring its

effect on cleavage fracture with more detail.

5 Discussion

5.1 Capabilities of the model

In the above validations and applications, the analyt-

ical solution reflects the influence of several factors on

the inclusion stress, which corresponds to the obser-

vations of hard inclusion behaviour in cleavage

fracture that have been reported in literature. The

following factors have been reflected:

(1) The stress level depends on the shape and

orientation of the inclusion. The tensile stress on

the inclusion is much more pronounced when

the inclusion has its major axis along the remote

first principal stress. This difference can explain

the observation that particle fracture is often

reported for elongated inclusions when loaded

along their length (Pineau et al. 2016).

(2) The representative inclusion stress increases

with remote plastic strain when matrix

Fig. 15 a Oblate (R1/R2 = 1, R2/

R3 = 2 or 3), and b prolate

inclusions (R1/R2 = 2 or 3, R2/

R3 = 1) with remote loading in

plane strain

Table 7 Parameter values from inverse modelling considering inclusion geometry

Parameters Oblate (R1/R2 = 1,

R2/R3 = 2)

Oblate (R1/R2 = 1,

R2/R3 = 3)

Prolate (R1/R2 = 2,

R2/R3 = 1)

Prolate (R1/R2 = 3,

R2/R3 = 1)

Crack arrest parameter of grain

boundary: Kmm
Ia (MPa

ffiffiffiffi

m
p

)

23.1 23.2 23.2 23.2

Critical stress for hard inclusion rCH
(MPa)

1350 1600 2100 2550
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hardening is considered. It agrees with the

observation that plastic deformation is neces-

sary for cleavage initiation even if the cleavage

is stress-controlled (Bordet et al. 2005).

(3) Various matrix plasticity parameters have been

used to validate the solution. It is found that the

inclusion stress increases with the yield stress of

the matrix. It explains the observation that

particle cracking is preferred in a hard matrix

and a soft matrix favours particle decohesion

(Chen and Cao 2015).

5.2 Comparison with existing solutions

The analytical solution developed in this paper can

also be compared with empirical equations. The

empirical equations for the stress in an inclusion that

have been used by other researchers are in a format

similar to Eq. 6. Shibanuma et al. (2016) calculated

the maximum principal stress at a cementite particle

by:

r1;inclu ¼
Einclu

Ematrix
r1;matrix þ 0:179ry

ep;matrix
ey

� �0:627

:

ð23Þ

Lambert-Perlade (2004) calculated the maximum

principal stress in the M-A particle by:

r1;inclu ¼ r1;matrix þ 1:8ðreq;matrix � ry;matrixÞ: ð24Þ

Hardenacke et al. (2010) proposed an equation to

calculate the particle stress and attempted to account

for particle geometry and orientation with four

empirical parameters:

r1;inclu ¼ cIr1;matrix þ cMcIIðe1ÞcIII ; ð25Þ

while the determination of the c parameters is not

explicit in the publication.

The proposed analytical solution Eq. 6 can be

written as an empirical equation fitted with the present

results of FEA:

r1;inclu ¼ r1;matrix þ cFreq;matrix; ð26Þ

where cF is a fitted parameter related to the aspect ratio

and orientation of the inclusion. For the case h = 0�,
the fitted relationship is:

cF ¼ 0:3026
R2

R1

: ð27Þ

As introduced at the beginning of this paper,

methods based on Eshelby tensors have been used to

calculate the stress of inclusions. Beremin ductile

fracture model provides equations in a similar format

of Eq. 6 (Beremin 1981):

r1;inclu ¼ r1;matrix þ cBðreq;matrix � ryÞ; ð28Þ

where parameter cB is determined analytically with the

usage of Eshelby tensors. In the following discussion,

Eq. 28 is used as the representative of Eshelby tensor

based equations to be compared with the present

analytical solution.

Figure 16 shows the performance of the developed

analytical solution (Eqs. 6 to 17), the fitted empirical

equation (Eqs. 26 and 27), and the solutions provided

by other researchers (Eqs. 23, 24 and 28), by

comparing with FEA results. The comparison is in

terms of the ratio ðr1;inclu � r1;matrixÞ=req;matrix. The
matrix material is material A in Fig. 9 and comparison

is at ep;matrix ¼ 0:05. The comparison is based on

spheroidal inclusions of various aspect ratios (R1/

R2 = 0.5, 1, 1.5, and 2) with h = 0�. Among the

considered equations, only the Shibanuma formula

(Eq. 23) always accounts for the elastic mismatch,

which is not supported by the FE results. Equations 23

and 24 have the shortcoming of not reflecting the

influence of particle geometry and orientation (which

results in a single data point representing a spherical

inclusion in Fig. 16). Equation 25 attempts to reflect

the particle geometry, but deviates from FEA results.

Both the fitted empirical equation (Eqs. 26 and 27) and

the analytical solution (Eqs. 6 to 17) in the present

article give good predictions in terms of particle

geometry. However, the empirical equations 26 and

27 are unable to take account of the orientation of the

inclusion.

Fig. 16 Performance of the current developed analytical

solution and empirical equations
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As described in Part 1, mean-field method has been

widely used in multi-scale material modelling. Fig-

ure 17 shows the results by using the MF method in

Abaqus 2017 (Dassault Systemes 2017), which was

adapted from Doghri and Ouaar (2003), to analyse the

inclusion problem (with R1/R2 = 1, g = 0, matrix

material A). Both the general method and the spectral

method (Doghri and Ouaar 2003) have been tested for

the isotropization of the matrix material. The result

shows that the two isotropization methods can well

predict the matrix behaviour (which is equivalent to

the macroscale behaviour in a dilute inclusion prob-

lem), but fail to predict the inclusion stress when the

matrix material enters nonlinearity. It requires cali-

bration from FEA to predict the stress concentration of

inclusions in the case of highly nonlinear constituent

materials.

5.3 Limitations

In general, the analytical equations derived in the

present paper are able to involve several features as the

inclusion geometry, the inclusion orientation, the far-

field stress state and different matrix material proper-

ties. It should be noticed that the analytical solution is

only suitable for the following situations:

(1) The inclusions are distributed sparsely in the

matrix. The space between inclusions should be

at least five times the inclusion diameter.

Otherwise, there will be interaction between

inclusions, which the developed solution does

not account for.

(2) The matrix material has low-hardening beha-

viour after yielding. The presence of an inclu-

sion will result in high local plastic strain in the

matrix. If the matrix material has pronounced

hardening behaviour after yielding, the local

stress state in the matrix near the inclusion will

be much higher than assumed. The stress in the

inclusion will be underestimated by the analyt-

ical solution.

(3) The inclusion can be assumed as an ellipsoid.

The analytical solution estimates the represen-

tative stress of the inclusion, which is an average

stress over the midsection. If the inclusion has a

very irregular shape, the average stress may not

represent the stress level within the inclusion

and the analytical solution should not to be used.

6 Conclusions

This paper presents analytical equations to quantita-

tively calculate the stress on a hard inclusion from far-

field stress on a matrix. The solution has been derived

based on the assumption of shear-dominated beha-

viour in fully-formed plasticity. Validation was per-

formed by numerical modelling of a microscopic hard

inclusion in a high strength steel. The simulation

validates the assumptions on which the analytical

solution is based and estimates the performance of the

analytical solution. Finally, the solution was demon-

strated by using it in an existing statistical framework

to model cleavage fracture in CTOD specimens.

The main conclusions are highlighted as the

following:

(1) A set of analytical equations is established to

quantitatively estimate the inclusion stress from

far-field matrix stress. The analytical equations

together with the classic Eshelby’s solution are

able to take account of the interaction of the far-

field hydrostatic pressure and deviatoric stress.

(2) The analytical equations are able to take account

of features such as the inclusion shape and the

inclusion orientation. The prediction corre-

sponds to the FEA results that the inclusion

stress is much more pronounced for the inclu-

sion that has its major axis along the remote first

principal stress.

(3) The analytical equations give an approximate

solution for the inclusion stress that is asymp-

totically approached in plastic deformation of

low-hardening materials. Themaximum error of

Fig. 17 Result of using mean-field method on the inclusion

problem
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r1,inclu - r1,matrix is 25% for the studied cases.

For materials with more pronounced hardening

behaviour, the analytical solution is less

satisfying.

The analytical solution to quantitatively determine

the stress on a microstructural hard inclusion can be

used for the statistical characterization of macroscale

cleavage fracture, and on the identification of

anisotropic fracture behavior. It avoids costly numer-

ical simulations when the features of microstructural

inclusions vary widely in the steel and provides an

efficient estimation of inclusion fractures in the

cleavage process. Because the solution can account

for multiple parameters, it can be used not only for a

particular material but in general for high strength

steels containing heterogeneous microstructures and

under various loading patterns. The ductile damage

mode is often modeled based on the assumption that

hard particles separate from the surrounding matrix

material. While it was not the purpose of this study,

such a failure model may also benefit from the current

developments if a failure model is applied to deter-

mine when decohesion occurs between the hard

particle and the surrounding matrix.
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Fuentes-Pérez M (1994) Modelling cleavage fracture of

bainitic steels. Acta Metall Mater 42(6):2057–2068

McClintock FA (1971) Plasticity aspects of fracture. In:

Liebowitz H (ed) Fracture: an advanced treatise. Aca-

demic, New York

McMeeking RM (1977) Finite deformation analysis of crack-tip

opening in elastic–plastic materials and implications for

fracture. J Mech Phys Solids 25:357–381

Miao P, Knott JF (2016) Effects of inclusions and their surface

chemistry on cleavage fracture in a C–Mn steel weld metal.

In: HSLA steels 2015, microalloying 2015 and offshore

engineering steels 2015, pp 1149–1161

Mori T, Tanaka K (1973) Average stress in matrix and average

elastic energy of materials with misfitting inclusions. Acta

Metall 21:571–574

Mura T (1987) Micromechanics of defects in solids. Kluwer

Academic Publishers, Dordrecht

Namegawa T, Hoshino M, Fujioka M, Minagawa M (2019)

Effect of carbon content on toughness of tempered

martensitic steels analyzed by toughness prediction model.

ISIJ Int 59(7):1337–1343

NEN (2019) EN 10025-6: hot rolled products of structural

steels—Part 6: technical delivery conditions for flat prod-

ucts of high yield strength structural steels in the quenched

and tempered condition

Pallaspuro S (2018) On the factors affecting the ductile–brittle

transition in as-quenched fully and partially martensitic

low-carbon steels. PhD Thesis, Oulu University

Pineau A (2008) Modeling ductile to brittle fracture transition in

steels—micromechanical and physical challenges. Int J

Fract 150(1–2):129–156

Pineau A, Benzerga AA, Pardoen T (2016) Failure of metals I:

brittle and ductile fracture. Acta Mater 107:424–483

Popovich VA, Richardson IM (2015) Fracture toughness of

welded thick section high strength steels and influencing

factors. In: TMS2015 supplemental proceedings, March,

pp 1031–1038

Ray A, Paul SK, Jha S (1995) Effect of Inclusions and

microstructural characteristics on the mechanical proper-

ties and fracture behavior of a high-strength low-alloy

steel. J Mater Eng Perform 4(6):679–688

Ray A, Sivaprasad S, Chakrabarti D (2012) A critical grain size

concept to predict the impact transition temperature of Ti-

microalloyed steels. Int J Fract 173(2):215–222

Rice JR (1967) A path independent integral and the approximate

analysis of strain concentration by notches and cracks.

ARPA SD-86 Report E39. Brown University

Shibanuma K, Aihara S, Suzuki K (2016) Prediction model on

cleavage fracture initiation in steels having ferrite–ce-

mentite microstructures—Part II: model validation and

discussions. Eng Fract Mech 151:181–202
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