
On-The-Fly Solving for Symbolic Parity Games

Maurice Laveaux1(�) , Wieger Wesselink1, and Tim A.C. Willemse1,2

1 Eindhoven University of Technology, Eindhoven, The Netherlands
2 ESI (TNO), Eindhoven, The Netherlands

{m.laveaux, j.w.wesselink, t.a.c.willemse}@tue.nl

Abstract. Parity games can be used to represent many different kinds
of decision problems. In practice, tools that use parity games often rely
on a specification in a higher-order logic from which the actual game
can be obtained by means of an exploration. For many of these decision
problems we are only interested in the solution for a designated vertex in
the game. We formalise how to use on-the-fly solving techniques during
the exploration process, and show that this can help to decide the winner
of such a designated vertex in an incomplete game. Furthermore, we
define partial solving techniques for incomplete parity games and show
how these can be made resilient to work directly on the incomplete game,
rather than on a set of safe vertices. We implement our techniques for
symbolic parity games and study their effectiveness in practice, showing
that speed-ups of several orders of magnitude are feasible and overhead
(if unavoidable) is typically low.

1 Introduction

A parity game is a two-player game with an ω-regular winning condition, played
by players ♢ (‘even’) and □ (‘odd’) on a directed graph. The true complexity of
solving parity games is still a major open problem, with the most recent break-
throughs yielding algorithms running in quasi-polynomial time, see, e.g., [18,7].
Apart from their intriguing status, parity games pop up in various fundamental
results in computer science (e.g., in the proof of decidability of a monadic second-
order theory). In practice, parity games provide an elegant, uniform framework
to encode many relevant decision problems, which include model checking prob-
lems, synthesis problems and behavioural equivalence checking problems.

Often, a decision problem that is encoded as a parity game, can be answered
by determining which of the two players wins a designated vertex in the game
graph. Depending on the characteristics of the game, it may be the case that
only a fraction of the game is relevant for deciding which player wins a vertex.
For instance, deciding whether a transition system satisfies an invariant can be
encoded by a simple, solitaire (i.e., single player) parity game. In such a game,
player □ wins all vertices that are sinks (i.e., have no successors), and all states
leading to such sinks, so checking whether sinks are reachable from a designated
vertex suffices to determine whether this vertex is won by □, too. Clearly, as soon
as a sink is detected, any further inspection of the game becomes irrelevant.

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13244, pp. 137–155, 2022.
https://doi.org/10.1007/978-3-030-99527-0_8

http://orcid.org/0000-0001-8732-7580
http://orcid.org/0000-0003-3049-7962
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99527-0_8&domain=pdf


A complicating factor is that in practice, the parity games that encode deci-
sion problems are not given explicitly. Rather, they are specified in some higher-
order logic such as a parameterised Boolean equation system, see, e.g. [11]. Ex-
ploring the parity game from such a higher-order specification is, in general,
time-and memory-consuming. To counter this, symbolic exploration techniques
have been proposed, see e.g. [19]. These explore the game graph on-the-fly and
exploit efficient symbolic data structures such as LDDs [13] to represent sets of
vertices and edges. Many parity game solving algorithms can be implemented
quite effectively using such data structures [20,28,29], so that in the end, explor-
ing the game graph often remains the bottleneck.

In this paper, we study how to combine the exploration of a parity game
and the on-the-fly solving of the explored part, with the aim to speed-up the
overall solving process. The central problem when performing on-the-fly solving
during the exploration phase is that we have to deal with incomplete information
when determining the winner for a designated vertex. Moreover, in the symbolic
setting, the exploration order may be unpredictable when advanced strategies
such as chaining and saturation [9] are used.

To formally reason about all possible exploration strategies and the artefacts
they generate, we introduce the concept of an incomplete parity game, and an
ordering on these. Incomplete parity games are parity games where for some
vertices not all outgoing edges are necessarily known. In practice, these could be
identified by, e.g., the todo queue in a classical breadth-first search. The extra
information captured by an incomplete parity game allows us to characterise
the safe set for a given player α. This is a set of vertices for which it can be
established that if player α wins the vertex, then she cannot lose the vertex if
more information becomes available. We prove an optimality result for safe sets,
which, informally, states that a safe set for player α is also the largest set with
this property (see Theorem 1).

The vertices won by player α in an α-safe set can be determined using a
standard parity game solving algorithm such as, e.g., Zielonka’s recursive al-
gorithm [31] or Priority Promotion [2]. However, these algorithms may be less
efficient as on-the-fly solvers. For this reason, we study three symbolic partial
solvers: solitaire winning cycle detection, forced winning cycle detection and fa-
tal attractors [17]. In particular cases, first determining the safe set for a player
and only subsequently solving the game using one of these partial solvers will
incur an additional overhead. As a final result, we therefore prove that all these
solvers can be (modified to) run on the incomplete game as a whole, rather than
on the safe set of a player (see Propositions 1-3).

As a proof of concept, we have implemented an (open source) symbolic tool
for the mCRL2 toolset [6], that explores a parity game specified by a parame-
terised Boolean equation system and solves these games on-the-fly. We report
on the effectiveness of our implementation on typical parity games stemming
from, e.g., model checking and equivalence checking problems, showing that it
can speed up the process with several orders of magnitude, while adding low
overhead if the entire game is needed for solving.

138 M. Laveaux, W. Wesselink and T.A.C. Willemse



Related Work. Our work is related to existing techniques for solving symbolic
parity games such as [20,19], as we extend these existing methods with on-the-
fly solving. Naturally, our work is also related to existing work for on-the-fly
model checking. This includes work for on-the-fly (explicit) model checking of
regular alternation-free modal mu-calculus formulas [23] and work for on-the-
fly symbolic model checking of RCTL [1]. Compared to these our method is
more general as it can be applied to the full modal mu-calculus (with data),
which subsumes RCTL and the alternation-free subset. Optimisations such as
the observation that checking LTL formulas of type AG reduces to reachability
checks [14] are a special case of our methods and partial solvers. Furthermore, our
methods are not restricted to model checking problems only and can be applied
to any parity game, including decision problems such as equivalence checking [8].
Furthermore, our method is agnostic to the exploration strategy employed.

Structure of the paper. In Section 2 we recall parity games. In Section 3 we
introduce incomplete parity games and show how partial solving can be applied
correctly. In Section 4 we present several partial solvers that we employ for
on-the-fly solving. Finally, in Section 5 we discuss the implementation of these
techniques and apply them to several practical examples. The omitted proofs for
the supporting lemmas can be found in [22].

2 Preliminaries

A parity game is an infinite-duration, two-player game that is played on a finite
directed graph. The objective of the two players, called even (denoted by ♢) and
odd (denoted by □), is to win vertices in the graph.

Definition 1. A parity game is a directed graph G = (V,E, p, (V♢, V□)), where

– V is a finite set of vertices, partitioned in sets V♢ and V□ of vertices owned
by ♢ and □, respectively;

– E ⊆ V × V is the edge relation;
– p : V → N is a function that assigns a priority to each node.

Henceforth, let G = (V,E, p, (V♢, V□)) be an arbitrary parity game. Throughout
this paper, we use α to denote an arbitrary player and ᾱ denotes the opponent.
We write vE to denote the set of successors {w ∈ V | (v, w) ∈ E} of vertex
v. The set sinks(G) is defined as the largest set U ⊆ V satisfying for all v ∈ U
that vE = ∅; i.e., sinks(G) is the set of all sinks: vertices without successors.
If we are only concerned with the sinks of player α, we write sinksα(G); i.e.,
sinksα(G) = Vα ∩ sinks(G). We write G ∩ U , for U ⊆ V , to denote the subgame
(U, (U × U) ∩ E, p↾U , (V♢ ∩ U, V□ ∩ U)), where p↾U (v) = p(v) for all vertices
v ∈ U .

Example 1. Consider the graph depicted in Figure 1, representing a parity game.
Diamond-shaped vertices are owned by player ♢, whereas box-shaped vertices
are owned by player □. The priority of a vertex is written inside the vertex.
Vertex u1 is a sink owned by player □. ⊓⊔

On-The-Fly Solving for Symbolic Parity Games 139



2

u0

3

u1

0

u2

1

u3

2

u4

Fig. 1. An example parity game

Plays and strategies. The game is played as follows. Initially, a token is placed on
a vertex of the graph. The owner of a vertex on which the token resides gets to
decide the successor vertex (if any) that the token is moved to next. A maximal
sequence of vertices (i.e., an infinite sequence or a finite sequence ending in a
sink) visited by the token by following this simple rule is called a play. A finite
play π is won by player ♢ if the sink in which it ends is owned by player □, and
it is won by player □ if the sink is owned by player ♢. An infinite play π is won
by player ♢ if the minimal priority that occurs infinitely often along π is even,
and it is won by player □ otherwise.

A strategy σα : V ∗Vα → V for player α is a partial function that prescribes
where player α moves the token next, given a sequence of vertices visited by the
token. A play v0 v1 . . . is consistent with a strategy σ if and only if σ(v0 . . . vi) =
vi+1 for all i for which σ(v0 . . . vi) is defined. Strategy σα is winning for player
α in vertex v if all plays consistent with σα and starting in v are won by α.
Player α wins vertex v if and only if she has a winning strategy σα for vertex v.
The parity game solving problem asks to compute the set of vertices W♢, won
by player ♢ and the set W□, won by player □. Note that since parity games are
determined [31,24], every vertex is won by one of the two players. That is, the
sets W♢ and W□ partition the set V .

Example 2. Consider the parity game depicted in Figure 1. In this game, the
strategy σ♢, partially defined as σ♢(πu0) = u2 and σ♢(πu2) = u0, for arbitrary
π, is winning for player ♢ in u0 and u2. Player □ wins vertex u3 using strategy
σ□(πu3) = u4, for arbitrary π. Note that player ♢ is always forced to move the
token from u4 to u3. Vertex u1 is a sink, owned by player □, and hence, won by
player ♢. ⊓⊔

Dominions. A strategy σα is said to be closed on a set of vertices U ⊆ V iff
every play, consistent with σα and starting in a vertex v ∈ U remains in U . If
player α has a strategy that is closed on U , we say that the set U is α-closed.
A dominion for player α is a set of vertices U ⊆ V such that player α has a
strategy σα that is closed on U and which is winning for α. Note that the sets
W♢ and W□ are dominions for player ♢ and player □, respectively, and, hence,
every vertex won by player α must belong to an α-dominion.

Example 3. Reconsider the parity game of Figure 1. Observe that player □ has
a closed strategy on {u3, u4}, which is also winning for player □. Hence, the
set {u3, u4} is an □-dominion. Furthermore, the set {u2, u3, u4} is ♢-closed.
However, none of the strategies for which {u2, u3, u4} is closed for player ♢ is
winning for her; therefore {u2, u3, u4} is not an ♢-dominion. ⊓⊔

140 M. Laveaux, W. Wesselink and T.A.C. Willemse



Predecessors, control predecessors and attractors. Let U ⊆ V be a set of vertices.
We write pre(G,U) to denote the set of predecessors {v ∈ V | ∃u ∈ U : u ∈
vE} of U in G. The control predecessor set of U for player α in G, denoted
cpreα(G,U), contains those vertices for which α is able to force entering U in
one step. It is defined as follows:

cpreα(G,U) = (Vα ∩ pre(G,U)) ∪ (Vᾱ \ (pre(G,V \ U) ∪ sinks(G)))

Note that both pre and cpre are monotone operators on the complete lattice
(2V ,⊆). The α-attractor to U in G, denoted Attrα(G,U), is the set of vertices
from which player α can force play to reach a vertex in U :

Attrα(G,U) = µZ.(U ∪ cpreα(G,Z))

The α-attractor to U can be computed by means of a fixed point iteration,
starting at U and adding α-control predecessors in each iteration until a stable
set is reached. We note that the α-attractor to an α-dominion D is again an
α-dominion.

Example 4. Consider the parity game G of Figure 1 once again. The ♢-control
predecessors of {u2} is the set {u0}. Note that since player □ can avoid moving
to u2 from vertex u3 by moving to vertex u4, vertex u3 is not among the ♢-
control predecessors of {u2}. The ♢-attractor to {u2} is the set {u0, u2}, which
is the largest set of vertices for which player ♢ has a strategy to force play to
the set of vertices {u2}. ⊓⊔

3 Incomplete Parity Games

In many practical applications that rely on parity game solving, the parity game
is gradually constructed by means of an exploration, often starting from an ‘ini-
tial’ vertex. This is, for instance, the case when using parity games in the context
of model checking or when deciding behavioural preorders or equivalences. For
such applications, it may be profitable to combine exploration and solving, so
that the costly exploration can be terminated when the winner of a particular
vertex of interest (often the initial vertex) has been determined. The example
below, however, illustrates that one cannot naively solve the parity game con-
structed so far.

Example 5. Consider the parity game G in Figure 2, consisting of all vertices
and only the solid edges. This game could, for example, be the result of an
exploration starting from u4. Then G ∩ {u0, u1, u2, u3, u4, u5} is a subgame for
which we can conclude that all vertices form an ♢-dominion. However, after
exploring the dotted edges, player □ can escape to vertex u4 from vertex u5.
Consequently, vertices u4 and u5 are no longer won by player ♢ in the extended
game. Furthermore, observe that the additional edge from u3 to u5 does not
affect the previously established fact that player ♢ wins this vertex. ⊓⊔

On-The-Fly Solving for Symbolic Parity Games 141



2

u0

3

u1

0

u2

1

u4

2

u5

2

u3

Fig. 2. A parity game where the dotted edges are not yet known.

To facilitate reasoning about games with incomplete information, we first intro-
duce the notion of an incomplete parity game.

Definition 2. An incomplete parity game is a structure ⅁ = (G, I), where G is
a parity game (V,E, p, (V♢, V□)), and I ⊆ V is a set of vertices with potentially
unexplored successors. We refer to the set I as the set of incomplete vertices;
the set V \ I is the set of complete vertices.

Observe that (G, ∅) is a ‘standard’ parity game. We permit ourselves to use
the notation for parity game notions such as plays, strategies, dominions, etcetera
also in the context of incomplete parity games. In particular, for ⅁ = (G, I),
we will write pre(⅁, U) and Attrα(⅁, U) to indicate pre(G,U) and Attrα(G,U),
respectively. Furthermore, we define ⅁ ∩ U as the structure (G ∩ U, I ∩ U).

Intuitively, while exploring a parity game, we extend the set of vertices and
edges by exploring the incomplete vertices. Doing so gives rise to potentially
new incomplete vertices. At each stage in the exploration, the incomplete parity
game extends incomplete parity games explored in earlier stages. We formalise
the relation between incomplete parity games, abstracting from any particular
order in which vertices and edges are explored.

Definition 3. Let ⅁ = ((V,E, p, (V♢, V□)), I), ⅁′ = ((V ′, E′, p′, (V ′
♢, V

′
□)), I

′) be
incomplete parity games. We write ⅁ ⊑ ⅁′ iff the following conditions hold:

(1) V ⊆ V ′, V♢ ⊆ V ′
♢ and V□ ⊆ V ′

□;
(2) E ⊆ E′ and ((V \ I)× V ) ∩ E′ ⊆ E;
(3) p = p′↾V ;
(4) I ′ ∩ V ⊆ I

Conditions (1) and (3) are self-explanatory. Condition (2) states that on the
one hand, no edges are lost, and, on the other hand, E′ can only add edges
from vertices that are incomplete: for complete vertices, E′ specifies no new
successors. Finally, condition (4) captures that the set of incomplete vertices I ′

cannot contain vertices that were previously complete. We note that the ordering
⊑ is reflexive, anti-symmetric and transitive.

Example 6. Suppose that ⅁ = (G, I) is the incomplete parity game depicted in
Figure 2, where G is the game with all vertices and only the solid edges, and
I = {u3, u5}. Then ⅁ ⊑ ⅁′, where ⅁′ = (G′, I ′) is the incomplete parity game
where G′ is the depicted game with all vertices and both the solid edges and
dotted edges, and I ′ = ∅. ⊓⊔

142 M. Laveaux, W. Wesselink and T.A.C. Willemse



Let us briefly return to Example 5. We concluded that the winner of vertex
u4 (and also u5) changed when adding new information. The reason is that
player □ has a strategy to reach an incomplete vertex owned by her. Such an
incomplete vertex may present an opportunity to escape from plays that would
be non-winning otherwise. On the other hand, the incomplete vertex u3 has
already been sufficiently explored to allow for concluding that this vertex is
won by player ♢, even if more successors are added to u3. This suggests that
for some subset of vertices, we can decide their winner in an incomplete parity
game and preserve that winner in all future extensions of the game. We formally
characterise this set of vertices in the definition below.

Definition 4. Let ⅁ = (G, I), with G = (V,E, p, (V♢, V□)) be an incomplete
parity game. The α-safe vertices for ⅁, denoted by safeα(⅁), is the set V \
Attrᾱ(G,Vᾱ ∩ I).

Example 7. Consider the incomplete parity game ⅁ of Example 6 once more. We
have safe♢(⅁) = {u0, u1, u2, u3} and safe□(⅁) = {u0, u1, u2, u4, u5}. ⊓⊔

In the remainder of this section, we show that it is indeed the case that while
exploring a parity game, one can only safely determine the winners in the sets
safe□(⅁) and safe♢(⅁), respectively. More specifically, we claim (Lemma 1) that
all α-dominions found in safeα(⅁) are preserved in extensions of the game, and
(Lemma 2) the winner of vertices not in safeα(⅁) are not necessarily won by the
same player in extensions of the game.

Lemma 1. Given two incomplete games ⅁ and ⅁′ such that ⅁ ⊑ ⅁′. Any α-
dominion in ⅁ ∩ safeα(⅁) is also an α-dominion in ⅁′.

Example 8. Recall that in Example 7, we found that safe♢(⅁) = {u0, u1, u2, u3}.
Observe that in the incomplete parity game ⅁ of Example 6, restricted to vertices
{u0, u1, u2, u3}, all vertices are won by player ♢, and, hence, {u0, u1, u2, u3} is
an ♢-dominion. Following Lemma 1 we can indeed conclude that this remains an
♢-dominion in all extensions of ⅁, and, in particular, for the (complete) parity
game ⅁′ of Example 6. ⊓⊔

Lemma 2. Let ⅁ be an incomplete parity game. Suppose that W is an α-
dominion in ⅁. If W ̸⊆ safeα(⅁), then there is an (incomplete) parity game
⅁′ such that ⅁ ⊑ ⅁′and all vertices in W \ safeα(⅁) are won by ᾱ.

As a corollary of the above lemma, we find that α-dominions that contain
vertices outside of the α-safe set are not guaranteed to be dominions in all
extensions of the incomplete parity game.

Corollary 1. Let ⅁ be an incomplete parity game. Suppose that W is an α-
dominion in ⅁. If W ̸⊆ safeα(⅁), then there is an (incomplete) parity game ⅁′

such that ⅁ ⊑ ⅁′ and W is not an α-dominion in ⅁′.

The theorem below summarises the two previous results, claiming that the
sets safe♢(⅁) and safe□(⅁) are the optimal subsets that can be used safely when
combining solving and the exploration of a parity game.

On-The-Fly Solving for Symbolic Parity Games 143



Theorem 1. Let ⅁ = (G, I), with G = (V,E, p, (V♢, V□)), be an incomplete
parity game. Define Wα as the union of all α-dominions in ⅁∩ safeα(⅁), and let
W? = V \ (W♢ ∪W□). Then W? is the largest set of vertices v for which there
are incomplete parity games ⅁α and ⅁ᾱ such that ⅁ ⊑ ⅁α and ⅁ ⊑ ⅁ᾱ and v is
won by α in ⅁α and v is won by ᾱ in ⅁ᾱ.

Proof. Let ⅁, with G = (V,E, p, (V♢, V□)) be an incomplete parity game. Pick
a vertex v ∈ W?. Suppose that in G, vertex v ∈ W? is won by player α. Let
⅁α = ⅁. Then ⅁ ⊑ ⅁α and v is also won by α in ⅁α.

Next, we argue that there must be a game ⅁ᾱ such that ⅁ ⊑ ⅁ᾱ and v is
won by ᾱ in ⅁ᾱ. Since v ∈ W? is won by player α in G, v must belong to an
α-dominion in G. Towards a contradiction, assume that v ∈ safeα(⅁). Then there
must also be a α-dominion containing v in G ∩ safeα(⅁), since ᾱ cannot escape
the set safeα(⅁). But then v ∈ Wα. Contradiction, so v /∈ safeα(⅁). So, v must
be part of an α-dominion D in G such that D ̸⊆ safeα(⅁). By Lemma 2, we find
that there is an incomplete parity game ⅁ᾱ such that ⅁ ⊑ ⅁ᾱ and all vertices in
D \ safeα(⅁), and vertex v ∈ D in particular, are won by ᾱ in ⅁ᾱ.

Finally, we argue that W? cannot be larger. Pick a vertex v /∈ W?. Then there
must be some player α such that v ∈ Wα, and, consequently, there must be an
α-dominion D ⊆ ⅁ ∩ safeα(⅁) such that v ∈ D. But then by Lemma 1, we find
that v is won by α in all incomplete parity games ⅁′ such that ⅁ ⊑ ⅁′. ⊓⊔

4 On-the-fly Solving

In the previous section we saw that for any solver solveα, which accepts a parity
game as input and returns an α-dominion Wα, a correct on-the-fly solving algo-
rithm can be obtained by computing Wα = solveα(⅁∩ safeα(⅁)) while exploring
an (incomplete) parity game ⅁. While this approach is clearly sound, computing
the set of safe vertices can be expensive for large state spaces and potentially
wasteful when no dominions are found afterwards. We next introduce safe at-
tractors which, we show, can be used to search for specific dominions without
first computing the α-safe set of vertices.

4.1 Safe Attractors

We start by observing that the α-attractor to a set U in an incomplete parity
game ⅁ does not make a distinction between the set of complete and incomplete
vertices. Consequently, it may wrongly conclude that α has a strategy to force
play to U when the attractor strategy involves incomplete vertices owned by ᾱ.
We thus need to make sure that such vertices are excluded from consideration.
This can be achieved by considering the set of unsafe vertices Vᾱ∩I as potential
vertices that can be used by the other player to escape. We define the safe α-
attractor as the least fixed point of the safe control predecessor. The latter is
defined as follows:

spreα(⅁, U) = (Vα ∩ pre(⅁, U)) ∪ (Vᾱ \ (pre(⅁, V \ U) ∪ sinks(⅁) ∪ I))

144 M. Laveaux, W. Wesselink and T.A.C. Willemse



Lemma 3. Let ⅁ be an incomplete parity game. For all vertex sets X ⊆ safeα(⅁)
it holds that cpreα(⅁ ∩ safeα(⅁), X) = spreα(⅁, X).

The safe α-attractor to U , denoted SAttrα(⅁, U), is the set of vertices from
which player α can force to safely reach U in ⅁:

SAttrα(⅁, U) = µZ.(U ∪ spreα(⅁, Z))

Lemma 4. Let ⅁ be an incomplete parity game, and X ⊆ safeα(⅁). Then
Attrα(⅁ ∩ safeα(⅁), X) = SAttrα(⅁, X).

In particular, we can conclude the following:

Corollary 2. Let ⅁ be an incomplete parity game, and X ⊆ safeα(⅁) be an
α-dominion. Then SAttrα(⅁, X) is an α-dominion for all ⅁′ satisfying ⅁ ⊑ ⅁′.

One application of the above corollary is the following: since on-the-fly solving is
typically performed repeatedly, previously found dominions can be expanded by
computing the safe α-attractor towards these already solved vertices. Another
corollary is the following, which states that complete sinks can be safely attracted
towards.

Corollary 3. Let ⅁ = (G, I) be an incomplete parity game and let ⅁′ be such
that ⅁ ⊑ ⅁′. Then SAttrα(⅁, sinksᾱ(⅁) \ I) is an α-dominion in ⅁′.

4.2 Partial Solvers

In practice, a full-fledged solver, such as Zielonka’s algorithm [31] or one of
the Priority Promotion variants [2], may be costly to run often while exploring
a parity game. Instead, cheaper partial solvers may be used that search for
a dominion of a particular shape. We study three such partial solvers in this
section, with a particular focus on solvers that lend themselves for parity games
that are represented symbolically using, e.g., BDDs [5], MDDs [25] or LDDs [13].
For the remainder of this section, we fix an arbitrary incomplete parity game
⅁ = ((V,E, p, (V♢, V□)), I).

Winning solitaire cycles. A simple cycle in ⅁ can be represented by a finite
sequence of distinct vertices v0 v1 . . . vn satisfying v0 ∈ vnE. Such a cycle is an
α-solitaire cycle whenever all vertices on that cycle are owned by player α.

Observe that if all vertices on an α-solitaire cycle have a priority that is of
the same parity as the owner α, then all vertices on that cycle are won by player
α. Formally, these are thus cycles through vertices in the set Pα ∩ Vα, where
P♢ = {v ∈ V \ sinks(⅁) | p(v) mod 2 = 0} and P□ = {v ∈ V \ sinks(⅁) | p(v)
mod 2 = 1}. Let Cα

sol(⅁) represent the largest set of α-solitaire winning cycles.
Then Cα

sol(⅁) = νZ.(Pα ∩ Vα ∩ pre(⅁, Z)).

On-The-Fly Solving for Symbolic Parity Games 145



Proposition 1. The set Cα
sol(⅁) is an α-dominion and we have Cα

sol(⅁) ⊆ safeα(⅁).

Proof. We first prove that Cα
sol(⅁) ⊆ safeα(⅁). We show, by means of an induction

on the fixed point approximants Ai of the attractor, that Cα
sol(⅁)∩Attrᾱ(⅁, Vᾱ ∩

I) = ∅. The base case follows immediately, as Cα
sol(⅁) ∩ A0 = Cα

sol(⅁) ∩ ∅ = ∅.
For the induction, we assume that Cα

sol(⅁) ∩ Ai = ∅; we show that also Cα
sol(⅁) ∩

((Vᾱ ∩ I) ∪ cpreᾱ(⅁, Ai)) = ∅. First, observe that Cα
sol(⅁) ⊆ Vα; hence, it suffices

to prove that Cα
sol(⅁) ∩ (Vα \ (pre(⅁, V \ Ai) ∪ sinks(⅁)) = ∅. But this follows

immediately from the fact that for every vertex v ∈ Cα
sol(⅁), we have v ∈ Pα ∩

Vα∩pre(⅁, Cα
sol(⅁)); more specifically, we have vE∩Cα

sol(⅁) ̸= ∅ for all v ∈ Cα
sol(⅁).

The fact that Cα
sol(⅁) is an α-dominion follows from the fact that for every

vertex v ∈ Cα
sol(⅁), there is some w ∈ vE ∩ Cα

sol(⅁). This means that player α
must have a strategy that is closed on Cα

sol(⅁). Since all vertices in Cα
sol(⅁) are of

the priority that is beneficial to α, this closed strategy is also winning for α. ⊓⊔

Observe that winning solitaire cycles can be computed without first computing
the α-safe set. Parity games that stand to profit from detecting winning solitaire
cycles are those originating from verifying safety properties.

Winning forced cycles. In general, a cycle in safeα(⅁), through vertices in P♢

can contain vertices of both players, providing player □ an opportunity to break
the cycle if that is beneficial to her. Nevertheless, if breaking a cycle always
inadvertently leads to another cycle through P♢, then we may conclude that all
vertices on these cycles are won by player ♢. We call these cycles winning forced
cycles for player ♢. A dual argument applies to cycles through P□. Let Cα

for(⅁)
represent the largest set of vertices that are on winning forced cycles for player
α. More formally, we define Cα

for(⅁) = νZ.(Pα ∩ safeα(⅁) ∩ cpreα(⅁, Z)).

Lemma 5. The set Cα
for(⅁) is an α-dominion and we have Cα

for(⅁) ⊆ safeα(⅁).
A possible downside of the above construction is that it again requires to first

compute safeα(⅁), which, in particular cases, may incur an additional overhead.
Instead, we can compute the same set using the safe control predecessor. We
define Cα

s−for(⅁) = νZ.(Pα ∩ spreα(⅁, Z)).

Proposition 2. We have Cα
for(⅁) = Cα

s−for(⅁).

Proof. Let τ(Z) = Pα ∩ spreα(⅁, Z). We use set inclusion to show that Cα
for(⅁) is

indeed a fixed point of τ .

– ad Cα
for(⅁) ⊆ τ(Cα

for(⅁)). Pick a vertex v ∈ Cα
for(⅁). By definition of Cα

for(⅁),
we have v ∈ Pα ∩ safeα(⅁) ∩ cpreα(⅁, Cα

for(⅁)). Observe that safeα(⅁) ∩
cpreα(⅁, Cα

for(⅁)) = safeα(⅁) ∩ cpreα(⅁ ∩ safeα(⅁), Cα
for(⅁)). But then, since

Cα
for(⅁) ⊆ safeα(⅁), we find, by Lemma 3, that cpreα(⅁ ∩ safeα(⅁), Cα

for(⅁)) =
spreα(⅁, Cα

for(⅁)). Hence, v ∈ Pα ∩ spreα(⅁, Cα
for(⅁)) = τ(Cα

for(⅁)).
– ad Cα

for(⅁) ⊇ τ(Cα
for(⅁)). Again pick a vertex v ∈ τ(Cα

for(⅁)). Then v ∈
Pα ∩ spreα(⅁, Cα

for(⅁)). Since Cα
for(⅁) ⊆ safeα(⅁), by Lemma 3, we again have

spreα(⅁, Cα
for(⅁)) = cpreα(⅁∩ safeα(⅁), Cα

for(⅁)). But then it must be the case
that v ∈ safeα(⅁). Moreover, cpreα(⅁ ∩ safeα(⅁), Cα

for(⅁)) ⊆ cpreα(⅁, Cα
for(⅁)).

So v ∈ Pα ∩ safeα(⅁) ∩ cpreα(⅁, Cα
for(⅁)) = Cα

for(⅁).

146 M. Laveaux, W. Wesselink and T.A.C. Willemse



We show next that for any Z = τ(Z), we have Z ⊆ Cα
for(⅁). Let Z be such. We first

show that for every v ∈ Z∩Vα, there is some w ∈ vE∩Z, and for every v ∈ Z∩Vᾱ,
we have v /∈ sinks(⅁), v /∈ I and vE ⊆ Z. Pick v ∈ Z ∩Vα. Then v ∈ τ(Z)∩Vα =
Pα ∩ Vα ∩ spreα(⅁, Z) ⊆ pre(⅁, Z). But then vE ∩ Z ̸= ∅. Next, let v ∈ Z ∩ Vᾱ.
Then v ∈ τ(Z)∩Vᾱ = Pα ∩Vᾱ ∩ spreα(⅁, Z) ⊆ Vᾱ \ (pre(⅁, V \Z)∪ sinks(⅁)∪ I).
So v /∈ pre(⅁, V \ Z) ∪ sinks(⅁) ∪ I. Consequently, vE ⊆ Z, v /∈ sinks(⅁) and
v /∈ I.

Since for every v ∈ Z ∩ Vα, we have vE ∩ Z ̸= ∅, there must be a strategy
for player α to move to another vertex in Z. Let σ be this strategy. Moreover,
since for all v ∈ Z ∩Vᾱ we have vE ⊆ Z, we find that σ is closed on Z and since
Z ∩ sinks(⅁) = ∅, strategy σ induces forced cycles. Moreover, since Z ⊆ Pα, we
can conclude that all vertices in Z are on winning forced cycles.

Finally, we must argue that Z ⊆ safeα(⅁). But this follows from the fact that
Z ∩ Vᾱ ∩ I = ∅, and, hence, also Z ∩ Attrᾱ(⅁, Vᾱ ∩ I) = ∅. Since Z is contained
within Pα ∩ safeα(⅁), we find that Z ⊆ Cα

for(⅁). ⊓⊔

Fatal attractors. Both solitaire cycles and forced cycles utilise the fact that the
parity winning condition becomes trivial if the only priorities that occur on
a play are of the parity of a single player. Fatal attractors [17] were originally
conceived to solve parts of a game using algorithms that have an appealing worst-
case running time; for a detailed account, we refer to [17]. While ibid. investigates
several variants, the main idea behind a fatal attractor is that it identifies cycles
in which the priorities are non-decreasing until the dominating priority of the
attractor is (re)visited. We focus on a simplified (and cheaper) variant of the
psolB algorithm of [17], which is based on the concept of a monotone attractor,
which, in turn, relies on the monotone control predecessor defined below, where
P≥c = {v ∈ V | p(v) ≥ c}:

Mcpreα(⅁, Z, U, c) = P≥c ∩ cpreα(⅁, Z ∪ U)

The monotone attractor for a given priority is then defined as the least fixed point
of the monotone control predecessor for that priority, formally MAttrα(⅁, U, c) =
µZ.Mcpreα(⅁, Z, U, c). A fatal attractor for priority c is then the largest set of
vertices closed under the monotone attractor for priority c; i.e., Fα(⅁, c) =
νZ.(P=c ∩ safeα(⅁) ∩MAttrα(⅁ ∩ safeα(⅁), Z, c)), where P=c = P≥c \ P≥c+1.

Lemma 6 (See [17], Theorem 2). For even c, we have that MAttr♢(⅁ ∩
safeα(⅁),F♢(⅁, c), c) ⊆ safe♢(⅁) and MAttr♢(⅁ ∩ safeα(⅁),F♢(⅁, c), c) is an ♢-
dominion. If c is odd then we have MAttr□(⅁∩ safeα(⅁),F□(⅁, c), c) ⊆ safe□(⅁)
and MAttr□(⅁ ∩ safeα(⅁),F□(⅁, c), c) is an □-dominion.

Our simplified version of the psolB algorithm, here dubbed solB− computes
fatal attractors for all priorities in descending order, accumulating ♢ and □-
dominions and extending these dominions using a standard ♢ or □-attractor.
This can be implemented using a simple loop over these priorities.

In line with the previous solvers, we can also modify this solver to employ
a safe monotone control predecessor, which uses a construction that is similar

On-The-Fly Solving for Symbolic Parity Games 147



in spirit to that of the safe control predecessor. Formally, we define the safe
monotone control predecessor as follows:

sMcpreα(⅁, Z, U, c) = P≥c ∩ spreα(⅁, Z ∪ U)

The corresponding safe monotone α-attractor, denoted sMAttrα(⅁, U, c), is de-
fined as follows: sMAttrα(⅁, U, c) = µZ.sMcpreα(⅁, Z, U, c). We define the safe
fatal attractor for priority c as the set Fα

s (⅁, c) = νZ.(P=c ∩ sMAttrα(⅁, Z, c)).

Proposition 3. Let ⅁ be an incomplete parity game. We have F♢
s (⅁, c) =

F♢(⅁, c) for even c and for odd c we have F□
s (⅁, c) = F□(⅁, c).

Similar to algorithm solB−, the algorithm solB−s computes safe fatal attrac-
tors for priorities in descending order and collects the safe-α-attractor extended
dominions obtained this way.

5 Experimental Results

We experimentally evaluate the techniques of Section 4. For this, we use games
stemming from practical model checking and equivalence checking problems.
Our experiments are run, single-threaded, on an Intel Xeon 6136 CPU @ 3 GHz
PC. The sources for these experiments can be obtained from the downloadable
artefact [21].

5.1 Implementation

We have implemented a symbolic exploration technique for parity games in the
mCRL2 toolset [6]. Our tool exploits techniques such as read and write depen-
dencies [20,4], and uses sophisticated exploration strategies such as chaining and
saturation [9]. We use MDD-like data structures [25] called List Decision Dia-
grams (LDDs), and the corresponding Sylvan implementation [13], to represent
parity games symbolically. Sylvan also offers efficient implementations for set
operations and relational operations, such as predecessors, facilitating the im-
plementation of attractor computations, the described (partial) solvers, and a
full solver based on Zielonka’s recursive algorithm [31], which remains one of the
most competitive algorithms in practice, both explicitly and symbolically [28,12].
For the attractor set computation we have also implemented chaining to deter-
mine (multi-)step α-predecessors more efficiently.

For all three on-the-fly solving techniques of Section 4, we have implemented
1) a variant that runs the standard (partial) solver on the α-safe subgame and
removes the found dominion using the standard attractor (within that subgame),
and 2) a variant that uses (partial) solvers with the safe attractors. Moreover,
we also conduct experiments using the full solver running on an α-safe subgame.
An important design aspect is to decide how the exploration and the on-the-fly
solving should interleave. For this we have implemented a time based heuristic
that keeps track of the time spent on solving and exploration steps. The time

148 M. Laveaux, W. Wesselink and T.A.C. Willemse



measurements are used to ensure that (approximately) ten percent of total time
is spent on solving by delaying the next call to the solver. We do not terminate
the partial solver when it requires more time, and thus it is only approximate.
As a result of this heuristic, cheap solvers will be called more frequently than
more expensive (and more powerful) ones, which may cause the latter to explore
larger parts of the game graph.

5.2 Cases

Table 1 provides an overview of the models and a description of the property
that is being checked. The properties are written in the modal µ-calculus with
data [15]. For the equivalence checking case we have mutated the original model
to introduce a defect. For each property, we indicate the nesting depth (ND) and
alternation depth [10] and whether the parity game is solitaire (Yes/No). The
nesting depth indicates how many different priorities occur in the resulting game;
for our encoding this is at most ND+2 (the additional ones encode constants
‘true’ and ‘false’). The alternation depth is an indication of a game’s complexity
due to alternating priorities.

Table 1. Models and formulas.

Model Ref. Prop. Result ND AD Sol. Description

SWP [30] 1 false 1 1 Y No error transition
2 false 3 3 N Infinitely often enabled then infinitely often taken

WMS [27] 1 false 1 1 Y Job failed to be done
2 false 1 1 Y No zombie jobs
3 true 3 2 Y A job can become alive again infinitely often
4 false 2 2 N Branching bisimulation with a mutation

BKE [3] 1 true 1 1 Y No secret leaked
2 false 2 1 N No deadlock

CCP [26] 1 false 2 1 N No deadlock
2 false 2 1 N After access there is always accessover possible

PDI n/a 1 true 2 1 N Controller reaches state before it can connect again
2 false 2 1 N Connection impermissible can always happen or we

establish a connection
3 false 3 1 N When connected move to not ready for connection and

do not establish a connection until it is allowed again
4 true 2 1 N The interlocking moves to the state connection closed

before it is allowed to succesfully establish a connection

We use MODEL-i to indicate the parity game belonging to model MODEL
and property i. Models SWP, BKE and CCP are protocol specifications. The
model PDI is a specification of a EULYNX SCI-LX SySML interface model that
is used for a train interlocking system. Finally, WMS is the specification of a
workload management system used at CERN. Using tools in mCRL2 [6], we have
converted each model and property combination into a so-called parameterised
Boolean equation systems [16], a higher-level logic that can be used to represent
the underlying parity game.

Parity games SWP-1, WMS-1, WMS-2 and BKE-1 encode typical safety
properties where some action should not be possible. In terms of the alternation-
free modal mu-calculus with regular expressions, such properties are of the shape

On-The-Fly Solving for Symbolic Parity Games 149



[true∗.a]false. These properties are violated exactly when the vertex encoding
‘false’ can be reached. Parity games SWP-2, WMS-3 and WMS-4 are more
complex properties with alternating priorities, where WMS-4 encodes branching
bisimulation using the theory presented in [8]. The parity games BKE-2 and
CCP-1 encode a ‘no deadlock’ property given by a formula which states that
after every path there is at least one outgoing transition. Finally, CCP-2 and
all PDI cases contain formulas with multiple fixed points that yield games with
multiple priorities but no (dependent) alternation.

Table 2. Experiments with parity games where on-the-fly solving cannot terminate
early. All run times are in seconds. The number of vertices is given in millions. Memory
is given in gigabytes. Bold-faced numbers indicate the lowest value.

Game Strategy Vertices (106) Explore (s) Solve (s) Total (s) Mem (GB)

BKE-1 full 40 640 65 705 14
solitaire 40/40 629/615 153/100 782/715 15/15
cycles 40/40 635/644 149/160 785/804 15/15
fatal 40/40 624/625 152/164 776/789 15/15
partial 40 651 147 798 15

PDI-1 full 114 27 0.1 28 2
solitaire 114/114 28/27 4/0 33/28 2/2
cycles 114/114 29/28 7/7 36/35 2/2
fatal 114/114 28/28 4/7 32/35 2/2
partial 114 28 9 37 2

PDI-4 full 474 286 0 287 2
solitaire 474/474 284/281 46/14 331/295 2/2
cycles 474/474 284/287 92/91 376/378 2/2
fatal 474/474 285/283 80/91 365/374 2/2
partial 474 286 64 350 2

5.3 Results

In Tables 2 and 3 we compare the on-the-fly solving strategies presented in
Section 4. In the ‘Strategy’ column we indicate the on-the-fly solving strategy
that is used. Here full refers to a complete exploration followed by solving with
the Zielonka recursive algorithm. We use solitaire to refer to solitaire winning
cycle detection, cycles for forced winning cycle detection, fatal to refer to fatal
attractors and finally partial for on-the-fly solving with a Zielonka solver on safe
regions. For solvers with a standard variant and a variant that utilises the safe
attractors the first number indicates the result of applying the (standard) solver
on safe vertices, and the second number (following the slash ‘/’) indicates the
result when using the solver that utilises safe attractors.

The column ‘Vertices’ indicates the number of vertices explored in the game.
In the next columns we indicate the time spent on exploring and solving specif-
ically and the total time in seconds. We exclude the initialisation time that is
common to all experiments. Finally, the last column indicates memory used by
the tool in gigabytes. We report the average of 5 runs and have set a timeout
(indicated by ‡) at 1200 seconds per run. Table 2 contains all benchmarks that
require a full exploration of the game graph, providing an indication of the over-

150 M. Laveaux, W. Wesselink and T.A.C. Willemse



Table 3. Experiments with parity games in which at least one partial solver terminates
early. All run times are in seconds. The number of vertices is given in millions. For
solvers with two variants the first number indicates the result of applying the solver
on safe vertices, and following the slash ‘/’ the result when using the solver that uses
safe attractors. Memory is given in gigabytes. Bold-faced numbers indicate the lowest
value.

Game Strategy Vertices (106) Explore (s) Solve (s) Total (s) Mem (GB)

SWP-1 full 13304 ‡ n/a ‡ ‡
solitaire 15.1/0.4 8.5/1.4 27.3/0.1 35.8/1.5 2.8/1.5
cycles 25.2/0.9 12.3/1.8 42.7/1.0 55.0/2.8 3.2/1.5
fatal 15.1/0.4 9.0/1.3 29.4/0.4 38.4/1.7 3.1/1.5
partial 27.1 13.1 50.4 63.5 3.6

SWP-2 full 1987 ‡ n/a ‡ ‡
solitaire 1631/1987 ‡/‡ 163/11 ‡/‡ ‡/‡
cycles 1774/1774 ‡/‡ 154/91 ‡/‡ ‡/‡
fatal 0.007/0.007 0.9/0.9 0.4/0.2 1.3/1.0 1.4/1.2
partial 0.007 0.9 0.4 1.3 1.4

WMS-1 full 270 2.8 0.4 3.3 0.2
solitaire 270/240 2.8/2.5 0.8/0.4 3.6/2.9 0.3/0.2
cycles 270/270 2.9/3.2 0.8/8.0 3.7/11.2 0.3/0.5
fatal 270/270 2.6/3.2 0.8/8.5 3.4/11.7 0.3/0.5
partial 270 2.7 0.8 3.5 0.3

WMS-2 full 317 3.3 0.3 3.6 0.2
solitaire 7/7 0.2/0.2 1.0/0.5 1.2/0.8 0.1/0.1
cycles 7/66 0.2/0.8 1.0/2.7 1.2/3.4 0.1/0.2
fatal 7/66 0.2/0.7 1.0/2.9 1.3/3.6 0.1/0.2
partial 7 0.2 1.1 1.3 0.1

WMS-3 full 317 2.6 0.1 2.7 0.2
solitaire 317/317 2.6/2.6 0.4/0.3 3.1/2.9 0.2/0.2
cycles 317/317 2.7/2.7 0.4/0.6 3.1/3.3 0.2/0.2
fatal 5/1 0.2/0.1 0.5/0.1 0.7/0.2 0.1/0.1
partial 5 0.2 0.3 0.5 0.1

WMS-4 full 366 ‡ n/a ‡ ‡
solitaire 0.03/0.03 38/38 0.8/0.1 39/38 2/2
cycles 0.03/0.03 37/37 0.8/0.3 38/37 2/2
fatal 0.03/0.03 37/37 0.8/0.3 38/37 2/2
partial 0.03 37 0.7 38 2

BKE-2 full 119 942 36.5 979 28
solitaire 0.0007/0.0001 0.2/0.1 0.0/0.0 0.2/0.2 0.9/0.9
cycles 0.0007/0.0003 0.2/0.2 0.0/0.0 0.2/0.2 0.9/0.9
fatal 0.0007/0.0003 0.2/0.2 0.0/0.0 0.2/0.2 0.9/0.9
partial 0.0007 0.2 0.0 0.2 0.9

CCP-1 full 0.4 28 4.2 32 2
solitaire 0.003/0.003 1.0/1.0 0.1/0.1 1.1/1.1 2/2
cycles 0.003/0.003 1.0/1.0 0.1/0.1 1.1/1.1 2/2
fatal 0.006/0.003 1.3/1.1 0.1/0.1 1.4/1.2 1.5/1.5
partial 0.003 1.0 0.1 1.1 1.5

CCP-2 full 0.9 35 33 68 1.7
solitaire 0.02/0.007 1.6/1.1 0.2/0.0 1.8/1.1 1.5/1.5
cycles 0.02/0.007 1.9/1.1 0.2/0.1 2.1/1.2 1.5/1.5
fatal 0.02/0.007 1.6/1.2 0.2/0.1 1.8/1.3 1.5/1.5
partial 0.02 1.6 0.2 1.8 1.5

PDI-2 full 229 31 12 43 2
solitaire 229/229 33/32 34/12 67/45 2/2
cycles 30/30 15/14 3/5 17/19 2/2
fatal 30/30 15/15 3/5 18/19 2/2
partial 123 23 29 51 2

PDI-3 full 436 228 8 236 2
solitaire 436/436 230/228 36/32 266/260 2/2
cycles 78/162 65/102 19/64 84/166 2/2
fatal 75/84 64/67 19/23 83/90 2/2
partial 110 82 30 112 2

On-The-Fly Solving for Symbolic Parity Games 151



head in cases where this is unavoidable; Table 3 contains all benchmarks where
at least one of the partial solvers allows exploration to terminate early.

For games SWP-1, WMS-1, WMS-2 in Table 3 we find that solitaire, and in
particular the safe attractor variant, is able to determine the solution the fastest.
Also, for all entries in Table 2 this is the solver with the least overhead. Next, we
observe that for cases such as WMS-1 and PDI-3 using the safe attractor variants
of the solvers can be detrimental. Our observation is that first computing safe
sets (especially using chaining) can be quick when most vertices are owned by
one player and one priority and the computation of the safe attractor, which uses
the more difficult safe control predecessor is more involved in such cases. There
are also cases WMS-3, WMS-4, CCP-1 and CCP-2 where the safe attractor
variants are faster and these cases all have multiple priorities. In cases where
these solvers are slow (for example PDI-3) we also observe that more states are
explored before termination, because the earlier mentioned time based heuristic
results in calling the solver significantly less frequently.

For parity games SWP-2 and WMS-3 only fatal and partial are able to find
a solution early, which shows that more powerful partial solvers can be useful.
From Table 2 and the cases in which the safe attractor variants perform poorly
we learn that the partial solvers can, as expected, cause overhead. This overhead
is in our benchmarks on average 30 percent, but when it terminates early it can
be very beneficial, achieving speed-ups of up to several orders of magnitude.

6 Conclusion

In this work we have developed the theory to reason about on-the-fly solving
of parity games, independent of the strategy that is used to explore games. We
have introduced the notion of safe vertices, shown their correctness, proven an
optimality result, and we have studied partial solvers and shown that these can
be made to run without determining the safe vertices first; which can be useful
for on-the-fly solving. Finally, we have demonstrated the practical purpose of our
method and observed that solitaire winning cycle detection with safe attractors
is almost always beneficial with minimal overhead, but also that more powerful
partial solvers can be useful.

Based on our experiments, one can make an educated guess which partial
solver to select in particular cases; we believe that this selection could even be
steered by analysing the parameterised Boolean equation system representing the
parity game. It would furthermore be interesting to study (practical) improve-
ments for the safe attractors, and their use in Zielonka’s recursive algorithm.

Acknowledgements We would like to thank Jeroen Meijer and Tom van Dijk
for their help regarding the Sylvan library when implementing our prototype.
This work was supported by the TOP Grants research programme with project
number 612.001.751 (AVVA), which is (partly) financed by the Dutch Research
Council (NWO).

152 M. Laveaux, W. Wesselink and T.A.C. Willemse



References

1. Beer, I., Ben-David, S., Landver, A.: On-the-fly model checking of RCTL formulas.
In: Hu, A., Vardi, M. (eds.) CAV. LNCS, vol. 1427, pp. 184–194. Springer (1998).
https://doi.org/10.1007/BFb0028744

2. Benerecetti, M., Dell’Erba, D., Mogavero, F.: Solving parity games via
priority promotion. Formal Methods Syst. Des. 52(2), 193–226 (2018).
https://doi.org/10.1007/s10703-018-0315-1

3. Blom, S., Groote, J.F., Mauw, S., Serebrenik, A.: Analysing the BKE-security
protocol with µCRL. Electron. Notes Theor. Comput. Sci. 139(1), 49–90 (2005).
https://doi.org/10.1016/j.entcs.2005.09.005

4. Blom, S., van de Pol, J., Weber, M.: LTSmin: Distributed and symbolic reachability.
In: Touili, T., Cook, B., Jackson, P.B. (eds.) CAV. LNCS, vol. 6174, pp. 354–359.
Springer (2010). https://doi.org/10.1007/978-3-642-14295-6 31

5. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-
decision diagrams. ACM Comput. Surv. 24(3), 293–318 (1992).
https://doi.org/10.1145/136035.136043

6. Bunte, O., Groote, J.F., Keiren, J.J.A., Laveaux, M., Neele, T., de Vink, E.P.,
Wesselink, W., Wijs, A., Willemse, T.A.C.: The mCRL2 toolset for analysing
concurrent systems - improvements in expressivity and usability. In: Vojnar,
T., Zhang, L. (eds.) TACAS. LNCS, vol. 11428, pp. 21–39. Springer (2019).
https://doi.org/10.1007/978-3-030-17465-1 2

7. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games
in quasipolynomial time. In: Hatami, H., McKenzie, P., King, V. (eds.) STOC. pp.
252–263. ACM (2017). https://doi.org/10.1145/3055399.3055409

8. Chen, T., Ploeger, B., van de Pol, J., Willemse, T.A.C.: Equivalence checking
for infinite systems using parameterized Boolean equation systems. In: Caires, L.,
Vasconcelos, V.T. (eds.) CONCUR. LNCS, vol. 4703, pp. 120–135. Springer (2007).
https://doi.org/10.1007/978-3-540-74407-8 9

9. Ciardo, G., Marmorstein, R.M., Siminiceanu, R.: The saturation algorithm for
symbolic state-space exploration. Int. J. Softw. Tools Technol. Transf. 8(1), 4–25
(2006). https://doi.org/10.1007/s10009-005-0188-7

10. Cleaveland, R., Klein, M., Steffen, B.: Faster model checking for the modal mu-
calculus. In: von Bochmann, G., Probst, D.K. (eds.) CAV. LNCS, vol. 663, pp.
410–422. Springer (1992). https://doi.org/10.1007/3-540-56496-9 32

11. Cranen, S., Luttik, B., Willemse, T.A.C.: Proof graphs for parameterised Boolean
equation systems. In: D’Argenio, P.R., Melgratti, H.C. (eds.) CONCUR. LNCS,
vol. 8052, pp. 470–484. Springer (2013). https://doi.org/10.1007/978-3-642-40184-
8 33

12. van Dijk, T.: Oink: An implementation and evaluation of modern parity game
solvers. In: Beyer, D., Huisman, M. (eds.) TACAS. LNCS, vol. 10805, pp. 291–308.
Springer (2018). https://doi.org/10.1007/978-3-319-89960-2 16

13. van Dijk, T., van de Pol, J.: Sylvan: multi-core framework for deci-
sion diagrams. Int. J. Softw. Tools Technol. Transf. 19(6), 675–696 (2017).
https://doi.org/10.1007/s10009-016-0433-2

14. Eiŕıksson, Á.T., McMillan, K.L.: Using formal verification/analysis methods on
the critical path in system design: A case study. In: Wolper, P. (ed.) CAV. LNCS,
vol. 939, pp. 367–380. Springer (1995). https://doi.org/10.1007/3-540-60045-0 63

15. Groote, J.F., Willemse, T.A.C.: Model-checking processes with data. Sci. Comput.
Program. 56(3), 251–273 (2005). https://doi.org/10.1016/j.scico.2004.08.002

On-The-Fly Solving for Symbolic Parity Games 153

https://doi.org/10.1007/BFb0028744
https://doi.org/10.1007/s10703-018-0315-1
https://doi.org/10.1016/j.entcs.2005.09.005
https://doi.org/10.1007/978-3-642-14295-6_31
https://doi.org/10.1145/136035.136043
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1007/978-3-540-74407-8_9
https://doi.org/10.1007/s10009-005-0188-7
https://doi.org/10.1007/3-540-56496-9_32
https://doi.org/10.1007/978-3-642-40184-8_33
https://doi.org/10.1007/978-3-642-40184-8_33
https://doi.org/10.1007/978-3-319-89960-2_16
https://doi.org/10.1007/s10009-016-0433-2
https://doi.org/10.1007/3-540-60045-0_63
https://doi.org/10.1016/j.scico.2004.08.002


16. Groote, J.F., Willemse, T.A.C.: Parameterised Boolean equation systems. Theor.
Comput. Sci. 343(3), 332–369 (2005). https://doi.org/10.1016/j.tcs.2005.06.016

17. Huth, M., Kuo, J.H., Piterman, N.: Fatal attractors in parity games. In:
Pfenning, F. (ed.) FOSSACS. LNCS, vol. 7794, pp. 34–49. Springer (2013).
https://doi.org/10.1007/978-3-642-37075-5 3

18. Jurdziński, M., Lazić, R.: Succinct progress measures for solving
parity games. In: LICS. pp. 1–9. IEEE Computer Society (2017).
https://doi.org/10.1109/LICS.2017.8005092

19. Kant, G., van de Pol, J.: Efficient instantiation of parameterised
Boolean equation systems to parity games. In: Wijs, A., Bosnacki, D.,
Edelkamp, S. (eds.) GRAPHITE. EPTCS, vol. 99, pp. 50–65 (2012).
https://doi.org/10.4204/EPTCS.99.7

20. Kant, G., van de Pol, J.: Generating and solving symbolic parity games. In:
Bosnacki, D., Edelkamp, S., Lluch-Lafuente, A., Wijs, A. (eds.) GRAPHITE.
EPTCS, vol. 159, pp. 2–14 (2014). https://doi.org/10.4204/EPTCS.159.2

21. Laveaux, M.: Downloadable sources for the case study (2022).
https://doi.org/10.5281/zenodo.5896966

22. Laveaux, M., Wesselink, W., Willemse, T.A.C.: On-the-fly solving for symbolic
parity games. CoRR abs/2201.09607 (2022), https://arxiv.org/abs/2201.09607

23. Mateescu, R., Sighireanu, M.: Efficient on-the-fly model-checking for regular
alternation-free mu-calculus. Sci. Comput. Program. 46(3), 255–281 (2003).
https://doi.org/10.1016/S0167-6423(02)00094-1

24. McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Logic
65(2), 149–184 (1993). https://doi.org/10.1016/0168-0072(93)90036-D

25. Miller, D.M.: Multiple-valued logic design tools. In: ISMVL. pp. 2–11. IEEE Com-
puter Society (1993). https://doi.org/10.1109/ISMVL.1993.289589

26. Pang, J., Fokkink, W.J., Hofman, R.F.H., Veldema, R.: Model checking a cache
coherence protocol of a java DSM implementation. J. Log. Algebraic Methods
Program. 71(1), 1–43 (2007). https://doi.org/10.1016/j.jlap.2006.08.007

27. Remenska, D., Willemse, T.A.C., Verstoep, K., Templon, J., Bal, H.E.:
Using model checking to analyze the system behavior of the LHC
production grid. Future Gener. Comput. Syst. 29(8), 2239–2251 (2013).
https://doi.org/10.1016/j.future.2013.06.004

28. Sanchez, L., Wesselink, W., Willemse, T.A.C.: A comparison of BDD-based par-
ity game solvers. In: Orlandini, A., Zimmermann, M. (eds.) GandALF. EPTCS,
vol. 277, pp. 103–117 (2018). https://doi.org/10.4204/EPTCS.277.8

29. Stasio, A.D., Murano, A., Vardi, M.Y.: Solving parity games: Explicit vs symbolic.
In: Câmpeanu, C. (ed.) CIAA. LNCS, vol. 10977, pp. 159–172. Springer (2018).
https://doi.org/10.1007/978-3-319-94812-6 14

30. Tanenbaum, A.S., Wetherall, D.: Computer networks, 5th Edition. Pearson (2011),
https://www.worldcat.org/oclc/698581231

31. Zielonka, W.: Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theor. Comput. Sci. 200(1-2), 135–183 (1998).
https://doi.org/10.1016/S0304-3975(98)00009-7

154 M. Laveaux, W. Wesselink and T.A.C. Willemse

https://doi.org/10.1016/j.tcs.2005.06.016
https://doi.org/10.1007/978-3-642-37075-5_3
https://doi.org/10.1109/LICS.2017.8005092
https://doi.org/10.4204/EPTCS.99.7
https://doi.org/10.4204/EPTCS.159.2
https://doi.org/10.5281/zenodo.5896966
https://arxiv.org/abs/2201.09607
https://doi.org/10.1016/S0167-6423(02)00094-1
https://doi.org/10.1016/0168-0072(93)90036-D
https://doi.org/10.1109/ISMVL.1993.289589
https://doi.org/10.1016/j.jlap.2006.08.007
https://doi.org/10.1016/j.future.2013.06.004
https://doi.org/10.4204/EPTCS.277.8
https://doi.org/10.1007/978-3-319-94812-6_14
https://www.worldcat.org/oclc/698581231
https://doi.org/10.1016/S0304-3975(98)00009-7


Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

On-The-Fly Solving for Symbolic Parity Games 155

http://creativecommons.org/licenses/by/4.0/

	On-The-Fly Solving for Symbolic Parity Games
	1 Introduction
	2 Preliminaries
	3 Incomplete Parity Games
	4 On-the-fly Solving
	5 Experimental Results
	6 Conclusion
	References




