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Abstract 

Background: Our aim was to develop a machine learning model, using real-world data captured from a connected 
auto-injector device and from early indicators from the first 3 months of treatment, to predict sub-optimal adherence 
to recombinant human growth hormone (r-hGH) in patients with growth disorders.

Methods: Adherence to r-hGH treatment was assessed in children (aged < 18 years) who started using a connected 
auto-injector device (easypod™), and transmitted injection data for ≥ 12 months. Adherence in the following 3, 6, or 
9 months after treatment start was categorized as optimal (≥ 85%) versus sub-optimal (< 85%). Logistic regression 
and tree-based models were applied.

Results: Data from 10,929 children showed that a random forest model with mean and standard deviation of adher-
ence over the first 3 months, infrequent transmission of data, not changing certain comfort settings, and starting 
treatment at an older age was important in predicting the risk of sub-optimal adherence in the following 3, 6, or 
9 months. Sensitivities ranged between 0.72 and 0.77, and specificities between 0.80 and 0.81.

Conclusions: To the authors’ knowledge, this is the first attempt to integrate a machine learning model into a digital 
health ecosystem to help healthcare providers to identify patients at risk of sub-optimal adherence to r-hGH in the 
following 3, 6, or 9 months. This information, together with patient-specific indicators of sub-optimal adherence, can 
be used to provide support to at-risk patients and their caregivers to achieve optimal adherence and, subsequently, 
improve clinical outcomes.
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Background
The development of recombinant human growth hor-
mone (r-hGH) has provided a more readily available 
treatment for growth disorders, although at a higher cost 
than human pituitary-derived growth hormone (GH), 
which was withdrawn over safety issues [1]. r-hGH is 
currently approved in many countries for the treatment 
of short stature associated with GH deficiency (GHD), 
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Turner syndrome (TS), Prader–Willi syndrome (PWS), 
chronic renal insufficiency (CRI), short stature home-
obox-containing gene deficiency (SHOX-D), and being 
born small for gestational age (SGA) [2]. Treatment with 
r-hGH involves daily subcutaneous injections, often for 
many years, to enable the children affected by these con-
ditions to reach an adult height within or at least close to 
the normal range. Treatment success has been defined as 
doubling of pretreatment growth velocity after 12 months 
of treatment; close correlations have been observed 
between the calculated height velocity after 3  months 
and the observed height velocity after 12 months [3]. In 
addition to increasing final adult height, treatment with 
r-hGH also improves body composition and metabolism, 
decreasing visceral adipose tissue and improving lipid 
profiles [2, 4].

An important factor that determines the response to 
r-hGH treatment is adherence to the injection regimen 
[5, 6]. Optimal adherence is defined as a minimum of 85% 
of doses administered, equivalent to missing no more 
than one injection per week [7]. Motivation to adhere to 
treatment may reduce over time, partly because the ben-
efits of r-hGH treatment are not immediately apparent, 
and also because daily subcutaneous injections present a 
significant burden to the children and their parents/car-
egivers [4]. The most obvious effects of poor adherence 
to r-hGH treatment are reductions in growth rates and 
final adult height [5, 7], but it can also result in wasted 
medication and increased healthcare costs [5, 8].

Whilst poor adherence is a well-recognized problem, 
accurate measurement of adherence to r-hGH treatment 
has always been difficult [4, 9]. Historically, unreliable 
proxy methods have had to be used, such as patient rec-
ollection, tracking prescriptions filled, or vials counted. 
Patients and parents/caregivers may be reluctant to admit 
to missing doses or do not remember accurately and may, 
therefore, overestimate their adherence to treatment 
when questioned by their healthcare providers (HCPs). 
Medication from prescriptions that are filled may not be 
used fully or may not be used at all [8]. Furthermore, sup-
posedly objective methods such as vial counting do not 
indicate whether or not the medication has actually been 
used. Estimates of the prevalence of non-adherence range 
from 5 to 82% [10], demonstrating the great variability 
in the accuracy of methods used to evaluate and define 
adherence.

This situation has now been improved, however, by 
the development of an electromechanical auto-injector 
device for r-hGH (easypod™; Merck Healthcare KGaA, 
Darmstadt, Germany) and a connected ecosystem (easy-
pod™ connect), comprising a transmitter, software, and 
a secure, cloud-based data storage system (Fig.  1). The 
use of this ecosystem enables adherence to be assessed 
objectively using real-world data obtained from this con-
nected device [11]. Similar digitally enhanced devices 
and systems have been utilized effectively in diabetes 
and asthma management in recent years [12–14]. The 
device accurately records the date, time, and actual dose 

Fig. 1 The easypod™ connect ecosystem for remote monitoring of therapy
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administered along with the various comfort settings for 
the injector, such as injection speed and duration. The 
patient can then use the transmitter to send these data 
to their HCP and to the secure database. With access to 
the data, the HCP can review each individual patient’s 
level of adherence over time, giving them the opportunity 
of intervening, if necessary, with personalized correc-
tive measures to try to improve adherence and subse-
quent outcomes. In addition, researchers can study the 
anonymized data stored in the database to analyze adher-
ence behavior at the population level. This has demon-
strated how important adherence is for optimal results 
following r-hGH treatment [15].

The aim of this study was to attempt the first integra-
tion (to the authors’ knowledge) of a machine learn-
ing approach into a digital health ecosystem to develop 
a model based on data from the first 3 months of treat-
ment with r-hGH to identify early indicators and predict 
sub-optimal adherence (< 85%) over the following 3, 6, 
and 9  months using information obtained via the con-
nected easypod™ device. The 85% threshold corresponds 
to approximately one missed injection per week [7], and 
below this value, the effectiveness of the treatment is 
known to be significantly affected [5, 8].

Methods
Patients
The study evaluated real-world data generated by 
patients registered or and transferring injection data 
using the easypod™ connect digital health ecosystem 
worldwide. Inclusion criteria were: starting to use the 
system during childhood (< 18  years old) and having a 
period of at least 12 months (1 year) between the first and 
the last recorded injection between 2007 and April 2020. 
Our research focused on the implementation component 
within the Ascertaining Barriers to Compliance (ABC) 
taxonomy of medication adherence [16].

Ethics approval was not required for this analysis, 
since we used secondary anonymized data from a com-
mercially available service that collected data outside the 
scope of this study. The aforementioned commercial ser-
vice had received all necessary legal approvals to allow 
secondary research purposes. The data was collected and 
analyzed according to the informed consent which was 
obtained at the time of data collection by the commer-
cial service and provided without a patient identifier. The 
informed consent specifically allowed the use of data for 
secondary analysis and it was locally approved by legal 
teams and Data Privacy Officers.

Data processing and feature engineering
For analysis purposes, data were extracted for all patients 
who recorded their injections and their injection settings 

in the auto-injector device during the period from 2007 
to April 2020. The device automatically calculated and 
recorded the weekly adherence for a given week, based 
on the injected versus prescribed dose during that week. 
Data were then transmitted to the easypod™ connect 
database at the convenience of the patient/caregiver via 
wireless transmission from the easypod™ docking station 
to the cloud-based data storage system. The transmission 
dates, together with records of the injections given and 
other specific information (weekly adherence, injection 
settings, personal information), were used to calculate 
and create relevant features for each patient.

Features considered for the first 3 months of treatment 
were: number of transmissions, number of prescribed 
dose changes, most frequently used comfort settings 
(injection speed, injection depth, needle speed–which 
can be adjusted by a HCP according to patient prefer-
ence–and injection time i.e. the duration for which the 
needle remains in the skin), mean weekly adherence 
(mean value of the weekly adherence records), weekly 
adherence standard deviation (SD; modeling week-to-
week regularity), and personal information such as the 
patient’s gender and age at start of use.

Study variable
The target variable to be predicted was the level of mean 
adherence during the following 3, 6, and 9 months after 
treatment start with respect to the 85% threshold. The 
task was, therefore, framed as a classification prob-
lem, where the positive class is “sub-optimal” adher-
ence (< 85%) and the negative class “optimal” adherence 
(≥ 85%).

Train‑test split
The initial dataset of patients was unbalanced from the 
perspective of the two classes. In all three timeframes 
considered for prediction (3, 6, and 9 months), 78 to 80% 
of the patients had an optimal adherence level, while only 
20 to 22% of patients had a sub-optimal level. There are 
several common techniques for working with machine 
learning applied to unbalanced datasets; these include 
resampling the dataset by over-sampling the minority 
class or under-sampling the majority class to achieve bal-
ance, reporting and optimizing for relevant performance 
metrics (e.g. F1-score, precision, sensitivity, specificity), 
or choosing appropriate algorithms [17]. To prevent bias-
ing the algorithms towards the majority class (optimal 
adherence), we chose to train them on a balanced train-
ing dataset; however, to assess the algorithms’ perfor-
mances under real-world conditions, the test set followed 
the real-life class distribution.

During our study, the negative class in the original 
dataset was first randomly under-sampled to achieve 
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class balance, and the non-selected patients in the nega-
tive class were kept aside. Various models were trained on 
80% of the balanced dataset and their hyper-parameters 
were optimized for the F1-score using a fivefold cross-
validation scheme (for each of the three timeframes). The 
test set consisted of the remaining 20% of the balanced 
dataset, on to which we added the necessary number of 
previously non-selected negative class patients in order 
to achieve a class distribution similar to the original one: 
78 to 80% negative class (optimal adherence) and 20 to 
22% positive class (sub-optimal adherence). The opti-
mized performance metric was the F1-score, which is 
defined as the harmonic mean between precision (the 
ratio between true positive predictions and all of the 
positive predictions) and recall (or sensitivity; the ratio 
between true positive predictions and the actual number 
of positive instances). The F1-score ranges between 0 and 
1.

Machine learning models and interpretation techniques
To predict adherence in a computationally efficient way, 
while also being able to interpret the prediction model in 
order to extract early indicators of near future adherence, 
we considered logistic regression and tree-based models 
[18–21]. The latter are widely used in biomedical appli-
cations due to their increased interpretability [12, 22]. 
Optimal/sub-optimal adherence in the following 3, 6, and 
9 months was defined as target; and mean and SD adher-
ence in the first 3  months, gender, age at start, number 
of transmissions, number of dose changes, the most fre-
quently used injection time/speed/depth, and needle 
speed settings as predictors.

On the best performing model, global interpreta-
tion techniques based on SHapley Additive exPlana-
tions (SHAP) values were applied [23–25] to identify 
the most important features for distinguishing between 
optimal and sub-optimal adherence, including the rela-
tion between a feature’s value and the model’s output (i.e. 
whether a high value drives predictions towards the posi-
tive or the negative class).

To obtain the typical thresholds used by the model for 
distinguishing between the two classes, local interpreta-
tion techniques [26] were applied on 10 randomly cho-
sen instances of the optimal and sub-optimal classes, 
respectively. The aggregated thresholds were used to 
create Boolean features from continuous or multi-value 
features and their significance for distinguishing between 
the two classes was assessed by performing chi-squared 
tests [27]. The multiple testing problem was accounted 

F1− score = 2×
Precision× Recall

Precision+ Recall

for by further applying the Bonferroni correction [28] on 
the p-values associated with the chi-square test results 
(Additional file 1).

Results
In total, 10,929 children aged < 18 years who started using 
the connected easypod™ device and transmitted injection 
data for ≥ 12 months were available for analysis. Table 1 
shows the characteristics of the study population.

Prediction performance
The four different machine learning models optimized 
on the train set in a fivefold cross-validation scheme 
included logistic regression [21], ordinal logistic regres-
sion [20], random forest [18], and extra trees [19]. Among 
these, the random forest model gave the best results in 
terms of average F1-score on the 5 cross-validation folds 
for all three prediction timeframes (3, 6, and 9 months) 
(Table 2).

The optimized random forest model was retrained on 
the entire balanced train set before being assessed on the 
unbalanced test set following a positive/negative class 
distribution similar to the real-world data (please refer 

Table 1 Characteristics of the study population (N = 10,929)

SD standard deviation

Characteristics Mean (SD) 
or P50 (P25– 
P75)

n (%)

Age at start (years) 9.7 (3.4)

Gender

 Boys 6353 (58%)

 Girls 4576 (42%)

Number of transmissions in first 3 months
 0
 ≥ 1

6042 (55%)
4887 (45%)

Adherence in first 3 months (%) 99 (94–100)

Needle speed in first 3 months

 Slow 384 (4%)

 Medium 5268 (48%)

 Fast 5277 (48%)

Injection time in first 3 months (seconds) 8 (5–10)

Injection depth in first 3 months

 4 mm 1424 (13%)

 6 mm 6895 (63%)

 8 mm 2248 (21%)

 10 mm 362 (3%)

Number of dose changes in first 3 months
 0
 ≥ 1

8447 (23%)
2482 (77%)

Adherence < 85% 3 months 1964 (18%)

Adherence < 85% 6 months 2194 (20%)

Adherence < 85% 9 months 2419 (22%)
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to the Train-test split section). The model achieved an 
Area Under the Curve (AUC) between 0.82 and 0.87 for 
predicting sub-optimal mean adherence in the following 
3, 6, and 9 months based on data in the first 3 months. 
Figure  2 shows the Receiver Operating Characteristic 
(ROC) curves with the random forest model for the three 
timeframes. Figure  3 shows the confusion matrices for 
the machine learning models to predict adherence for 
the three timeframes. The models achieved sensitivities 
between 0.72 and 0.77, specificities between 0.80 and 
0.81, and F1-scores between 0.59 and 0.60 (Table 3).

Indicators and predictors of adherence
In the importance plot based on SHAP values with the 
random forest model (Fig. 4), the features over the first 
3  months are shown in decreasing order of importance 
for predicting the sub-optimal adherence class in the 
following months. The color map shows whether a high 

value on one particular feature drives model predictions 
towards the positive class (sub-optimal adherence, posi-
tive SHAP value) or the negative class (optimal adher-
ence, negative SHAP value).

The adherence mean and SD over the first 3  months 
were the two most important features for predicting 
adherence in the following 3, 6, and 9  months: a high 
value of the mean adherence over the first 3  months 
drove model predictions towards the “optimal” class, 
while a high SD (high variability, low regularity) drove 
model predictions towards the “sub-optimal” class. 
When looking at the comfort settings for easypod™, the 
needle speed was the most important, and patients set-
ting it to a high value (i.e. fast setting) had a lower risk 
of sub-optimal adherence than those setting it to a low 
value (i.e. slow setting).

Further interpreting the plot, we concluded that: (i) 
patients transmitting injection data more frequently were 
more likely to belong in the optimal adherence class; 
(ii) patients starting to use the connected auto-injector 
device at a later age had an increased risk of sub-optimal 
adherence; and (iii) a fast needle speed setting was a pre-
dictor of optimal adherence. Although very few patients 
had dose adjustments in the first 3 months, they tended 
to be on the optimal adherence side, and although gender 
was among the three features with the lowest importance, 
male gender (encoded as 1) drove the model’s prediction 
towards the sub-optimal class more than female gender 
(encoded as 0).

The Boolean features obtained as per the methodology 
described in the Machine learning models and interpre-
tation techniques section [26] and which were significant 
under a Bonferroni-corrected [28] p-value assumption, 
are displayed in Table  4, together with their respective 
aggregated critical threshold. Injection speed and injec-
tion time were not statistically significant and, therefore, 
are not presented in Table 4.

As we found that adherence over the first 3  months 
is the most significant predictor for adherence in the 
future, we compared our model to a simple heuristic 
model that would predict sub-optimal (respectively, opti-
mal) adherence in the future if adherence is sub-optimal 

Table 2 F1-scores for the four machine learning models evaluated over three time periods

SD, standard deviation

Optimized Machine Learning Model Mean (SD) F1‑score (train set, fivefold cross‑validation)

3 months prediction 6 months prediction 9 months prediction

Logistic regression 0.797 (0.012) 0.785 (0.016) 0.768 (0.012)

Ordinal logistic regression 0.798 (0.011) 0.784 (0.013) 0.768 (0.010)

Random forest 0.807 (0.012) 0.798 (0.018) 0.780 (0.011)

Extra trees 0.801 (0.017) 0.783 (0.021) 0.771 (0.01)

Fig. 2 ROC curves to predict adherence to r-hGH therapy in the 
following 3, 6, and 9 months after starting r-hGH treatment. AUC, area 
under the curve; r-hGH, recombinant human growth hormone; ROC, 
receiver operating characteristic.
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(respectively, optimal) over the first 3 months. The sen-
sitivity, specificity, and F1-score (on the test set) of this 
simple model for predicting sub-optimal adherence in the 
following 3, 6, or 9 months were between 0.39 and 0.49, 
0.96 and 0.97, and 0.52 and 0.60, respectively (Table 3).

Discussion
We developed an accurate model predicting how likely 
a child’s adherence will be < or ≥ the optimal threshold 
(85%) over the following 3, 6, and 9  months, based on 
data from the first 3 months and early indicators of sub-
optimal adherence to r-hGH therapy when using the con-
nected easypod™ device. Due to the importance of both 
optimal adherence and the treatment starting phase for 
the success of treatment with r-hGH, the ability to not 
only predict which patients are at risk of sub-optimal 
adherence but also to recognize the early indicators is 
a valuable asset for the HCP teams managing the treat-
ment of these young patients. Our research aimed to be 
the first attempt to design a machine learning approach 
integrated into a digital health ecosystem to manage 
adherence to and provide clinical decision support for 
children receiving GH therapy via a connected auto-
injector device. Recent calls towards human-centered 
artificial intelligence (AI) with explainability features 
supporting HCPs to understand recommendations and 
make informed decisions have been raised in the litera-
ture [29]. For this present work, we focused on a data-
driven design culture and the need to engage HCP teams 
to interact with the values provided by the digital health 
ecosystem. Indeed, our results can serve as an example 
for other ecosystems to show how AI techniques on real-
world data can be used in daily practice to provide accu-
rate and personalized advice based on a patient’s historic 
treatment journey.

We employed a machine learning and statistics 
approach to conduct our study. The random forest 
model (the best performing model among the four dif-
ferent optimized models), besides being able to model 
non-linear data, has the advantage of being highly com-
patible with advanced machine learning interpretation 
techniques based on game theory SHAP values [23–25] 
or local linear estimations [26]. This, in turn, enabled 
the identification of the main adherence drivers–infor-
mation that can be readily used by HCPs. SHAP-type 
visualizations can support the understanding of factors 
contributing to adherence which can ultimately support 
the creation of next-generation Clinical Decision Support 
Systems. In the absence of model predictions, adherence 
can be improved through measures including modifica-
tion of comfort settings for the injection device such 
as changing the needle speed and the injection depth, 
encouraging transmissions, or evaluating whether a dose 

Fig. 3 Random forest models to predict r-hGH therapy adherence 
in the following a 3, b 6, and c 9 months. The 85% threshold 
corresponds to approximately one missed injection per week; the 
effectiveness of treatment is known to be significantly affected below 
this value. r-hGH, recombinant human growth hormone.
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change is needed. While our study is a multi-variate 
analysis, which is by itself one way to control potential 
confounding factors, the injection depth and age may 
benefit a deeper investigation (e.g. through stratification), 
as adults typically require a deeper injection.

The demonstrated importance of the initial phase 
of 3  months of treatment with r-hGH [3], as well as 
a clinical need to identify early indicators and take 
action as soon as possible in case of undesired treat-
ment behavior, underpinned our choice to build the 
models based on data from the first 3 months of treat-
ment only. However, once the starting treatment phase 
is over, the model could be deployed on a continuous 
basis, by updating each month the future prediction 
based on the previous 3  months of data. Our study 
evaluated the prediction of optimal/sub-optimal adher-
ence over three possible timeframes: the next 3, 6, or 
9 months. While specificity and F1-scores remain simi-
lar, sensitivity was substantially higher when predicting 
short-term adherence behavior (0.77 or 77%, time-
frame: 3 and 6  months) versus long-term adherence 
behavior (0.72 or 72%, timeframe: 9  months). Indeed, 
the longer the timeframe, the greater the probability of 
unexpected events that may alter injection adherence 
and, hence, the more unpredictable the sub-optimal 
adherence behavior. Furthermore, eight features were 
shown to be important for predicting future sub-opti-
mal adherence, some of which were related to not using 
the system’s features (e.g. infrequent transmission of 
data and not changing some of the comfort settings, 
such as the needle speed setting) or starting treatment 
at an older age. We calculated the critical thresholds 
of all eight of these features in order to help HCPs to 
classify patients who may be at risk of future sub-opti-
mal adherence. For example, patients aged more than 
10  years at the start of their treatment had a statisti-
cally significantly (p < 0.001) higher risk of future sub-
optimal adherence than patients who started treatment 
earlier. These patients are likely to require additional 
support to adhere to r-hGH therapy, on the basis of our 
results. Similarly, not transmitting data during the first 
3 months of treatment with r-hGH was identified as a 
statistically significant indicator of sub-optimal adher-
ence. This observation (which would be invaluable to 

HCPs) was only possible because we included data from 
patients with 0 transmissions within the first 3 months. 
However, actually performing a prediction for these 
patients would not be possible in a real-world setting 
because there would be no data at that time. In this 
case, and given the fact that the absence of transmis-
sions suggests an increased risk of non-adherence and 
warrants follow-up, we can envision a system that noti-
fies the HCP if a registered patient has not transmitted 
data within the first 3 months of their r-hGH treatment.

The specificity versus sensitivity trade-off would itself 
benefit from discussion between medical experts. The 
machine learning model outputs a class probability from 
0 to 1 and the current sensitivities, specificities, and 
F1-scores mentioned in the Prediction performance sec-
tion are calculated for a standard prediction probability 
threshold of 0.5, above which the model predicts sub-
optimal adherence. The current specificity of 80–81% 
means that the model misclassifies optimal adherence as 
sub-optimal in ~ 20% of cases. In terms of absolute num-
bers, this translates into a number of false positive pre-
dictions close to that of true positive ones, meaning that 
HCPs would have to follow-up unnecessarily on almost 
half of the patients flagged as being at risk of sub-optimal 
adherence by the model. Specificity can be increased by 
choosing a different threshold on the ROC curve; how-
ever, this comes at the expense of a loss of sensitivity. The 
optimal point on the ROC curve may not be the same 
for everyone and it ultimately needs to answer an ever-
recurring question: do HCPs need to identify as many 
patients at risk of sub-optimal adherence as possible and 
take a rather precautious approach, or should they rather 
avoid unnecessary workload and patient nudging?

Strengths of our study include user-centered design 
aiming to provide clinical decision support for children 
receiving r-hGH therapy via a connected auto-injector 
device and conducting rigorous testing using validation 
methods on a large study population from which accu-
rate real-world data could be extracted by means of the 
connected easypod™ device. Examples of connected 
devices with data collection and data transmission capa-
bilities have also been successfully utilized in other thera-
peutic areas, such as asthma and diabetes [13, 14], and 
examples of adoption of explainable AI–how to provide 

Table 3 Random forest model versus simple heuristic baseline model performances over three time periods, reported on the test set

3 months prediction 6 months prediction 9 months prediction

Random forest Baseline Random forest Baseline Random forest Baseline

Sensitivity 0.77 0.49 0.77 0.44 0.72 0.39

Specificity 0.81 0.96 0.81 0.97 0.80 0.97

F1-score 0.59 0.60 0.59 0.57 0.60 0.52
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Fig. 4 Relative importance of features to model output concerning r-hGH therapy adherence in the following a 3, b 6, and c 9 months after starting 
r-hGH treatment. SD, standard deviation; r-hGH, recombinant human growth hormone; SHAP, SHapley Additive exPlanations.
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appropriate information to help users understand the 
AI’s functions and decisions –are described in the litera-
ture [29–31].

The same methodology can be replicated, therefore, 
to different medical conditions, provided that simi-
lar data are available. In fact, several machine learning 
approaches have already been used to successfully evalu-
ate adherence in other therapeutic areas [32, 33].

This study aimed to derive indicators of and to predict 
sub-optimal adherence for persistent patients. How-
ever, non-persistence is a closely related problem which 
was not addressed here. By construction of the data-
set, all considered patients had a persistence of at least 
12  months. While this study did not evaluate whether 
non-persistent patients would be classified by the algo-
rithms as having sub-optimal adherence, a previously 
performed study investigated predictors of non-per-
sistence and modeled the risk of non-persistence over 
the following 6  months [34]. The two models could be 
used together for a more complete patient insight and 
to provide clinical support. Further work could evaluate 
whether the results of the two models are consistent, i.e. 
whether patients with a high risk of non-persistence are 
also classified as having sub-optimal adherence.

A limitation of our study included the fact that sta-
tistical tests on the difference in F1-scores between the 
models were not performed, which may have resulted 
in differences observed by chance. Furthermore, the 
F1-scores on the test set (0.59–0.60) were up to 0.20 
lower with respect to the average ones obtained on the 
train set in a fivefold cross-validation scheme (0.78–
0.80). The underlying reason is likely because the train-
ing set was a balanced one and, therefore, the model does 
not favour the optimal (negative) adherence prediction. 
The test set, however, followed a real-life unbalanced 

distribution with considerably more optimal adherence 
than sub-optimal adherence cases. Future work could 
compare results from this methodology with results from 
where the training set would follow the same distribution 
as the test set. Another secondary reason might be over-
fitting on the training set, although cross-validation was 
applied; further refinements of the model could propose 
a train-validation-test schema instead.

In addition, dose change was only investigated dur-
ing a short timeframe of 3 months; studies with a longer 
timeframe are needed to validate the impact of no dose 
change on sub-optimal adherence. Furthermore, previous 
research showed that both self-injection and age impacts 
sub-optimal adherence [35]. In this current study, we did 
not have data on whether it was the child who injected 
themselves or if it was their parent. Therefore, we were 
not able to investigate the interaction between age and 
self-injections on future sub-optimal adherence. Lack of 
data was also the reason why, when analyzing factors that 
are impacting adherence, several other potentially rel-
evant variables such as cost, insurance status, or comor-
bidities were not assessed and included. This is one more 
limitation of the study and, upon availability, future work 
could consider enriching the dataset with this informa-
tion, so that its impact is equally analyzed. Another limi-
tation includes the fact that our study did not address 
the growth outcomes achieved by the sub-optimal and 
optimal adherence groups due to the lack of a bank of 
height measurement data equivalent to the adherence 
data. However, previous studies have shown that better 
adherence translates into better outcomes for the chil-
dren involved [4, 6, 8, 36]. Further evaluation is required 
to assess performance of this model in terms of reliabil-
ity, utility, and expandability as part of clinical decision 
support.

A final observation concerns the comparison of the 
machine learning model with the simple heuristic base-
line model built on the assumption that future adher-
ence is optimal/sub-optimal if adherence in the first 
3  months is optimal/sub-optimal. The performance 
of this simple model increasingly declines in terms of 
both sensitivity and F1-score when the prediction time-
frame increases from 3 to 6  months, and eventually to 
9  months. The F1-score of the machine learning model 
does not differ substantially to that of the simple model 
for the short-term predictions, but reduces abruptly for 
the 9  months’ prediction while the specificity remains 
similar between the different prediction timeframes; 
specificity was higher for the simple model (0.96–0.97) 
than for the machine learning model (0.80–0.81). 
However, when comparing the two models based on 
sensitivity, the machine learning model (0.72–0.77) dem-
onstrates a much higher performance over the simple 

Table 4 Boolean features which were significant under a 
Bonferroni-corrected p-value, together with their respective 
aggregated critical threshold

SD standard deviation

Feature in the first 3 months 
(with respect to a threshold 
value)

Bonferroni‑ corrected p‑value

3 months 
prediction

6 months 
prediction

9 months 
prediction

Mean adherence < 90% < 0.001 < 0.001 < 0.001

Adherence SD > 9% < 0.001 < 0.001 < 0.001

Number of transmissions = 0 < 0.001 < 0.001 < 0.001

Fast needle speed < 0.001 < 0.001 < 0.001

Age at start > 10 years old < 0.001 < 0.001 < 0.001

No dose changes 0.002 < 0.001 –

Injection depth > 6 mm 0.021 < 0.001 0.002

Gender (male) 0.042 0.013 –
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one (0.39–0.49). We can therefore conclude that the sim-
ple model could be a good option for predicting optimal 
adherence and for reducing the risk of false sub-optimal 
adherence alarms, although this approach can only iden-
tify < 50% of the patients with actual future sub-optimal 
adherence. Referring to the sensitivity–specificity trade-
off discussed earlier, future work could investigate how 
these performances change when setting a different 
adherence threshold for the first 3 months for the simple 
model. However, not only do the additional features in 
the machine learning model enhance the sensitivity rate 
and give insights on other factors impacting adherence 
(e.g. weekly adherence consistency, transmission and use 
of the e-device and its settings), re-training it regularly 
in a production environment would enable this model to 
account for shifts in the adherence behaviour of patients 
over time which could not be taken into account when 
a fixed threshold is considered. Even in the case where 
a simple model could satisfy the performance require-
ments, these last points are arguments in favour of using 
a more complex machine learning model and warrant a 
discussion between the medical and technical profession-
als when deciding on the adoption of such a predictive 
model.

Conclusions
Our study emphasizes the power of AI techniques–big 
data processing, machine learning, and statistical mod-
els–on real-world data from more than 10,000 patients 
with growth disorders to predict future adherence to 
r-hGH, with sensitivities of between 72 and 77% and spe-
cificities of between 80 and 81%. Infrequent transmission 
of data, certain comfort setting values, and starting treat-
ment at an older age were regarded as major factors in 
predicting the risk of sub-optimal adherence in the fol-
lowing 3, 6, or 9 months after starting r-hGH treatment.

Real-world data enables accurate predictions of clini-
cally meaningful and explainable outcomes related to 
GH treatment. which can be deployed in clinical prac-
tice using digital health platforms. This allows HCPs to 
personalize therapy at any stage of their patients’ journey 
and improve shared decision-making with both patients 
and caregivers to achieve optimal growth outcomes.

In addition to enabling personalized healthcare and 
improving patient–HCP communication, our model has 
demonstrated the association between a good level of 
adherence to treatment with r-hGH and being engaged 
with the electronic drug-delivery system, i.e. transmitting 
frequently and changing the comfort settings. This latest 
finding generated a new research question: is engaging 
with a digital ecosystem per se improving treatment-
related metrics such as adherence, persistence of use and 

growth outcomes? The results of this work are, however, 
outside the scope of the current paper.

Lastly, for machine learning models to fully open the 
path to personalized healthcare and patient support, 
further research is needed to investigate their feasibil-
ity, acceptability, and expandability to guide and improve 
clinical decisions.
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