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Abstract

The dermal Advanced REACH Tool (dART) is a tier 2 exposure model for estimating dermal ex-
posure to the hands (mg min−1) for non-volatile liquid and solid-in-liquid products. The dART builds 
upon the existing ART framework and describes three mass transport processes (deposition (Dhands), 
direct emission and direct contact (Ehands), and contact transfer (Thands)) that may each contribute to 
dermal exposure. The mechanistic model that underpins the dART and calibration of the mechanistic 
model, such that the dimensionless score that results from encoding contextual information about 
a task into the determinants of the dART can be converted into a prediction of exposure (mg min−1), 
have been described in previous work. This paper completes the methodological framework of the 
dART model through placing the mechanistic model within a wider statistical modelling framework. 
A mixed-effects model, within a Bayesian framework, is presented for modelling the rate of dermal 
exposure per minute of activity. The central estimate of exposure for a particular task is provided by a 
calibrated mechanistic model (and thus based upon contextual information about a task). The model 
also describes between- and within-worker sources of variability in dermal exposure, with prior dis-
tributions for variance components based upon the literature. Estimates of exposure based upon in-
formative prior distributions may be updated using measurement data associated with the task. The 
dART model is demonstrated using three worked examples, where estimates are initially obtained 
based upon the prior distributions alone, and then refined through accommodating measurement 
data on the tasks.
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Introduction

The dermal Advanced REACH Tool (dART) is a new 
generic tier 2 exposure model for estimating dermal 
exposures to the hands to low volatile liquid products 
and solids in liquid. The model is based upon the ex-
isting ART (www.advancedreachtool.com) framework 
(Tielemans et al., 2011) and incorporates elements of 
the ART model for estimating dermal contamination by 
aerosol deposition (one of three pathways considered in 
the model). The mechanistic model of the dART is based 
upon that of the ART (Fransman et al., 2011) and fol-
lows a source–receptor model (Schneider et al., 1999) 
with principal modifying factors along the source–re-
ceptor pathway. A detailed description of the dART 
mechanistic model is provided in Goede et al. (2018, 
2019) and the references therein. Calibration of the 
dART mechanistic model, which is the process of con-
verting the dimensionless score estimated by the dART 
mechanistic model into an exposure estimate, is de-
scribed in McNally et al. (2019). A tool to implement 
the theoretical models is currently in development.

The mechanistic model of the dART is a central ele-
ment of the overall modelling framework. Based upon 
contextual information about a task, statements about 
the task can be made, which map onto the underlying 
determinants of the mechanistic model. Based upon the 
assignments to model determinants, a dART score is thus 
obtained (Goede et al., 2019) and this can be converted 
to an estimate of dermal exposure (mg min−1) based 
upon the results of calibration (McNally et al., 2019). 
Furthermore, a (multiplicative) confidence interval about 
the central estimate of exposure can be estimated.

The calibrated mechanistic model of the dART pro-
vides an estimate of average exposures to the hands 
associated with a task (and uncertainty about this es-
timate can be quantified), however exposures amongst 
workers (inter-individual) performing the same task 
may differ substantially. Furthermore, there may be 
substantial variability within the repeated exposures 
of individual workers (Kromhout et al., 2004). A com-
plete modelling framework therefore additionally needs 
to account for inter- and intra-individual sources of 
variability.

Various authors (Creeley et al., 2005; Hewett et al., 
2006; Ramachandran, 2008) have proposed the use of 
Bayesian methods so that mathematical models of ex-
posure can be combined with the limited data available 
from exposure measurements and utilized in risk assess-
ments. A Bayesian framework allows the various dis-
parate sources of information (contextual information 
related to the task, information on variance components 
from the literature, and exposure measurements) that 
are relevant to an exposure scenario to be integrated 
within a statistically rigorous framework.

In this paper, the technical details of the statis-
tical model that underpins the dART are presented. 
Following a similar modelling framework to that of the 
ART (McNally et al., 2014), a Bayesian approach is fol-
lowed due to the hierarchical model of exposure, the 
disparate sources of information available and the tech-
nical advantages of the approach (a full and complete 
treatment of uncertainty, the ability to resolve problems 
that are ill-posed in the classical sense and treatment of 
censored observations). The model is demonstrated via 
worked examples which illustrate the entire workflow of 
the dART, beginning with contextual information about 
the exposure scenario and ending with a posterior dis-
tribution for the exposure distribution after including 
dermal exposure measurements.

Materials and methods

Exposure model
The underlying statistical model of the dART assumes 
that every relevant exposure scenario has a distinct ex-
posure distribution that is adequately represented by a 
lognormal mixed-effects model, with random-effects 
representing between-worker variability, and a residual 
error representing within-worker variability. The de-
pendent variable is the rate of deposition of product 
onto the hands per minute of exposure (derived as mass 
of product divided by sampling time). For an analyte 
with a concentration of less than 100%—pure sub-
stance—the measurement should be normalized by the 
fraction of the product-in-use equation (1). This nor-
malization is necessary since the calibrated mechanistic 

What’s Important About This Paper?

Many thousands of exposure scenarios need to be assessed under REACH and other legislation. Exposure 
modelling provides an essential support to this process. There are currently no higher tiered tools available 
for dermal exposure assessment. The dART is a new generic tier 2 exposure model currently in development 
for estimating dermal exposures to the hands to low volatile liquid products and solids in liquid.
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model of the dART (see ‘Prior specification’) predicts the 
rate of deposition of product—the conversion back from 
product to analyte is made as the final calculation (see 
‘Computation’).

Measurement = weight fraction of analyte−1

×mass of analyte

× sampling time−1

� (1)

The statistical model is written

ln(Yij) = µ+wi + εij� (2)

wi ∼ N(0, σ2
bw)� (3)

εij ∼ N(0, σ2
ww)� (4)

In equation (2), Yij represents the jth dermal exposure 
measurement on the ith worker, μ represents the mean 
(natural log) exposure associated with the exposure 
scenario, wi represents the worker effect for the ith 
worker—the tendency for an individual worker per-
forming a task to have exposures that are systematically 
above or below the average exposure associated with the 
task, and εij represents residual error. Equations (3) and 
(4) specify that worker effects and residual errors are 
normally distributed (for a model specified on the log-
scale) with standard deviations of σbw and σww, respect-
ively. The model is simpler than that for the ART model 
(McNally et al., 2014) as between company variability is 
not modelled: we expand on this aspect of model form 
in the discussion section.

Prior specification
As noted in the introduction, a Bayesian framework is 
pursued in this work, consistent with the (inhalation) 
ART. A joint prior distribution for model parameters 
is therefore required. Informative prior distributions 
for the average exposure (μ) and variance components 
are specified separately, utilizing different information 
sources.

A Gaussian form equation (5) is adopted for the 
mean (natural log) exposure.

µ ∼ N(log(CDARTscore),σ2
s )� (5)

In equation (5), CDARTscore (calculated through equa-
tions (6) and (7)) denotes the estimate of exposure from 
the calibrated mechanistic model of the dART, which 
is derived from contextual information about the ex-
posure scenario. Contextual information maps onto 
the underlying determinants of the dART mechanistic 
model and dimensionless scores for deposition (Dhands), 
direct emission and direct contact (Ehands), and transfer 
(Thands) (equation (6)) result from application of the 

scheme described in Goede et al. (2019) and the ref-
erences therein. The parameters α, β1, and β2 (Table 1) 
were estimated during model calibration (McNally et al., 
2019) and translate the three dimensionless scores into 
an estimate of exposure (mg min−1). Uncertainty associ-
ated with the mechanistic model prediction is quantified 
through the standard deviation σS (Table 1).

DARTScore = Dhands + β1Thands + β2Ehands� (6)

CDARTscore = α×DARTscore� (7)

A published dataset on components of dermal variability 
(Kromhout et al., 2004) was re-analysed in order to es-
timate prior distributions for the between- and within-
worker variance components. Kromhout et al. (2004) 
studied within- and between-worker variability in dermal 
exposure to the hands in groups of workers undertaking a 
particular task at a specific factory. A random-effects ana-
lysis of variance model was fitted to thirty such datasets 
with between- and within-worker variances estimated 
for each worker group. Summary statistics based on this 
analysis were reported in Table 5 of Kromhout et al. 
(2004) with detailed results given in Table A1 of appen-
dices. The within- and between-worker variance compo-
nents (σ2

bw and σ2
ww, respectively) based upon Table A1 of 

Kromhout et al. (2004) are provided for these 30 worker 
groups in Table 2—this analysis of variance components 
was based upon the dependent variable of exposure rate 
(mg min−1). Also shown in Table 2 are standard deviations 
(per worker group) which summarize the total variability, 
where σtotal is given by

σtotal =
»
σ2
bw + σ2

ww� (8)

Our review of these data led us to conclude that the 
small datasets and limited repeat sampling of workers 
for the majority of worker groups led to unreliable es-
timates of between- and within-worker variance com-
ponents. Specifically, between-worker variability was 
estimated as exactly zero for 18 of these 30 worker 
groups (Table 2). This appears to be as a consequence 
of how the maximum likelihood algorithm functions for 
small datasets when there is insufficient information in 
the data to distinguish between the two sources of vari-
ability. We therefore concluded these data were unsuit-
able for the estimation of prior distributions. However, 
the estimates of σtotal (equation (8)) were judged as being 
reliable.

Table 1.  Parameters derived from model calibration.

α β1 β2
Glove σs

1.14 87.40 5.02 −5.72 1.08

604� Annals of Work Exposures and Health, 2022, Vol. 66, No. 5

D
ow

nloaded from
 https://academ

ic.oup.com
/annw

eh/article/66/5/602/6490538 by guest on 27 June 2022



An indirect approach to prior specification is pursued 
in current work. This involves the specification of prior 
distributions on two functions of σ2

bw and σ2
ww, which 

can be reliably parameterized, and which subsequently 
imply prior distributions for σ2

bw and σ2
ww. This mod-

elling approach is compatible (and justified) within a 
Bayesian approach although not frequently utilized in 
the occupational hygiene literature.

A prior distribution on σtotal was estimated using the 
calculated values for the Kromhout et al. (2004) data 
(30 data points), and a similar dataset on σtotal based 
upon measurements used in the calibration of the dART 
mechanistic model (McNally et al., 2019)—a further 38 
data points (the numeric values in columns 3 and 4 of 

Table 3). A log-normal distribution (equation (9)) was 
found to be an adequate fit to this combined dataset.

σtotal ∼ LN(−0.12, 0.64)� (9)

A second prior distribution on either σbw or σww or some 
function of these parameters is required to fully specify 
a joint prior distribution for σbw and σww. The data on 
variance components from measurements of inhalation 
exposures [compiled by Kromhout et al. (1993)] and 
as utilized by McNally et al. (2014) were re-analysed 
to provide this second prior. An analysis of the ratio of 
between- and within-worker variances in 116 groups of 
workers led to a log-normal prior distribution (10) for 
this ratio. Further discussion around the modelling de-
cision to use a dataset on components of variability in 
inhalation exposure measurements to derive the prior 
(equation (10)) is provided in the discussion section of 
this paper.

σ2
bw/σ

2
ww ∼ LN(−0.92, 1.44)� (10)

Through equations (9) and (10) marginal distributions 
for σ2

bw andσ2
ww are defined. Although these do not 

take the form of recognized probability distributions, 
these implied prior distributions can be sampled from. 
An important difference compared with the direct spe-
cification of σ2

bw andσ2
ww through independent priors is 

that through this indirect specification σ2
bw and σ2

ww are 
strongly correlated.

Computation
In the absence of dermal exposure measurements, es-
timates of dermal exposure are based upon the prior 
alone. Samples are drawn from (5), (8), and (9) and 
summary statistics of interest are calculated for each 
complete sample from the priors. Central estimates and 
credible intervals are based upon this sample from the 
prior. Two quantities of particular interest are the time-
weighted average (TWA) and long-term average (LTA) 
of individual exposure distributions: percentiles from 
these distributions are calculated from equations (11) 
and (12), respectively.

TWAα = exp(µ)× exp(zα ×
»
σ2
bw + σ2

ww)� (11)

LTAα = exp(µ+ 0.5× σ2
ww)× exp(zα ×

»
σ2
bw)� (12)

When measurements on the exposure scenario are 
available then the joint posterior distribution of model 
parameters is sampled from and inference is based upon 
this sample. In the examples presented in ‘Worked ex-
amples’ a Markov Chain Monte Carlo (MCMC) algo-
rithm was coded using the WinBUGS software (Lunn 
et al., 2009) and the R2WinBugs package for R (R Core 

Table 2.  Estimates of components of variability in dermal 
exposure for 30 scenario-in-factory subsets of the 
Kromhout et al. (2004) data.

Scenario Rate (mg min−1)

σ2
ww σ2

bw
σtotal

Maintenance/servicing 0.12 0 0.35

Maintenance/servicing 0.37 0.5 0.93

Loading (liquids) 4.29 0 2.07

Filling 0.21 0.53 0.86

Filling 0.33 1.58 1.38

Filling 1.41 0 1.19

Filling 0.03 2.74 1.66

Mixing/diluting 4.58 3.33 2.81

Mixing/diluting 0.72 0 0.85

Wiping 11.3 0 3.36

Wiping 0.19 0.12 0.56

Wiping 0.64 0 0.8

Pouring 2.97 0 1.72

Spreading material 0.12 0 0.35

Rolling 0.37 0 0.61

Rolling 0.42 0 0.65

Brushing 1.14 0.42 1.25

Brushing 0.52 0 0.72

Spray painting 0.7 0.15 0.92

Spray painting 1.06 0 1.03

Spray painting 1.17 0.48 1.28

Galvanizing 0.03 0 0.17

Galvanizing 0.97 0 0.98

Galvanizing 0.47 0 0.69

Galvanizing 1.57 0 1.25

Galvanizing 0.01 0.09 0.32

Grinding 0.95 0.45 1.18

Grinding 0.14 0.17 0.56

Grinding 0.7 0 0.84

Grinding 0.33 0 0.57
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Team 2014; Sturtz et al., 2005). Code for the worked ex-
amples is supplied in Appendices (available at Annals of 
Work Exposures and Health online).

As discussed in ‘Exposure model’, the dependent vari-
able in the model is the rate of deposition of product onto 
the hands per minute of exposure (equation (1)). The total 

loading onto the hands over a specified duration (such as 
full shift) is derived by multiplying through by the length of 
time (minutes) of interest. Similarly, the exposure to a specific 
analyte within the product is derived by multiplying by the 
proportion (or weight fraction) of the analyte in the in-use 
product. Both calculations are demonstrated in examples.

Table 3.  Information on total variability in dermal exposure from for the exposure scenarios analysed in calibration of 
the dART mechanistic model.

Description GSD σtotal

Over glove Under glove Over glove Under glove

Anti-fouling spraying 1.9 6.9 0.64 1.93

Car body spraying 2.6 NA 0.96 NA

Anti-fouling paint spraying 3.6 NA 1.28 NA

Spray cleaning foam 2.9 NA 1.06 NA

Knapsack motorized spraying 2.2 2.7 0.79 0.99

Knapsack spraying 6.2 NA 1.82 NA

Spraying low pressure lance NA 2.8 NA 1.03

Spraying high pressure lance 2.6 NA 0.96 NA

Insecticide spraying 5.8 NA 1.76 NA

Boom spraying closed cabin 1.8 NA 0.59 NA

Boom spraying semi-closed cabin 4.8 NA 1.57 NA

Boom spraying closed cabin 1.9 NA 0.64 NA

Boom spraying semi-closed cabin 4.2 NA 1.44 NA

Boom spraying closed cabin 3.5 NA 1.25 NA

Boom spraying semi-closed cabin 5.7 NA 1.74 NA

Boom spraying in orchard cabin 4.5 NA 1.5 NA

Boom spraying in orchard no cabin NA NA NA NA

Boom spraying in orchard cabin 3.2 NA 1.16 NA

Fogging NA 5.3 NA 1.67

Dipping activities (timber) NA 4.2 NA 1.44

Electroplating NA NA NA NA

Electroplating (KRIOH) NA 1.8 NA 0.59

Electroplating (KRIOH) NA NA NA NA

Timber pre-treatment (solvent) NA 8.8 NA 2.17

Timber pre-treatment (water) NA 5.2 NA 1.65

AF net deployment (solvent) NA 1.5 NA 0.41

AF net deployment (water) NA 1.5 NA 0.41

Forestry: packing and planting NA 6.2 NA 1.82

Non-professional brush painting 6 11.5 1.79 2.44

Brush and roller painting NA 10.1 NA 2.31

Opening and closing packaging, cleaning equipment and spreading 10.5 NA 2.35 NA

Car washing NA NA NA NA

Large-scale surface wiping 1.9 NA 0.64 NA

Loading DEGBE 16.7 NA 2.82 NA

Filling of spray guns 4.6 NA 1.53 NA

Filling DEGBE 3.5 NA 1.25 NA

Filling DEGBE 7.8 NA 2.05 NA

Filling DEGBE NA NA NA NA

Filling DEGBE 3 NA 1.1 NA

Filling DEGBE 4.4 NA 1.48 NA
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Worked examples

Spraying of cars
The first example is spraying of cars (activity class 1.1)—
one of three exposure scenarios that are reported in 
Delgado et al. (2004). Briefly, the exposure scenario (and 
associated measurements) relates to the spray painting 
of cars in repair shops using water-based paints. Spray 
painting took place in down-flow spray booths. Between 
0.38 and 2.4 l of paint were applied during spraying 
operations with spraying durations of between 6 and 
30 min. The scenario began when the trigger of the spray 
gun was depressed and concluded when the trigger was 
released: filling of the spray gun and cleaning of spray 
guns following spray applications were investigated as 
separate tasks within the study with their own dermal 
exposure measurements.

This example follows on from Goede et al. (2019) 
where scoring of determinants associated with this scen-
ario is given in detail—the results of these calculations 
are given here (see Supplementary Material in Goede 
et al., 2019) for technical detail of determinants and cal-
culations). The calculated scores were of Dhands = 0.05
, Ehands = 0.225, and Thands = 0.00075. The calculated 
exposure rate is given in (13). Based upon the calibrated 
mechanistic model the direct emission and direct contact 
and transfer pathways, accounting for approximately 
63% and 36% of the calibrated dART score, respect-
ively, were the important pathways of exposure.

CDARTscore = 1.14× (0.05+ 87.4× 0.00075

+ 5.02× 0.225) = 1.49mgmin−1

� (13)

Equation (13) represents the central estimate of the geo-
metric mean (GM); however, a prior distribution repre-
senting uncertainty in the estimate of the GM is represented 
by equation (5) and a density plot of this prior is shown in 
Fig. 1a. A multiplicative 95% credible interval based upon 
the prior is of a rate of accumulation of product onto the 
hands of between 0.18 and 12.4 mg min−1.

Fig. 1b shows the central estimate of the 1st to 99th 
percentiles for the cumulative distribution of exposure 
rates (solid red line) and also accounts for between- 
and within-worker variability (equation (11)). A 95% 
credible interval for percentiles is indicated by the 
shaded region.

For this example, the prior to posterior analysis is also 
demonstrated. In total 29 measurements from 17 work-
shops, visited during the course of the study, were avail-
able. Repeat samples were available on five workers (29 
measurements from 24 workers). Cotton sampling gloves 
were used as the sampling device. Results in Table 2  
of Delgado et al. (2004) were in units of µg cm−2 min−1 

for both the analyte (aluminium) and product and were 
provided per glove. A surface area of 410 cm2 per hand 
was assumed by Delgado et al. (2004). A dataset of 29 
measurements for paired (left and right glove) specimens 
were available. The GM, geometric standard deviation 
(GSD), and range of measurements for exposure rate to 
product were 2.33, 2.56, and 0.35–11.02 mg min−1.

As noted in ‘Computation’, inference is achieved 
using MCMC. For this example, 20 000 samples of the 
model parameters were drawn from the posterior with 
every 20th retained for inference. The GM and the dis-
tribution of exposure rates were calculated for each re-
tained sample with summary statistics (presented below) 
calculated from this retained sample.

Fig. 1c shows the posterior distribution for the GM 
loading rate and is based upon the calibrated mechanistic 
model and the 29 measurements. The posterior is indicated 
by the darker shaded region—the prior is also shown for 
comparison as the lighter shaded region. The posterior 
mode and 95% credible interval for the GM were 2.32 and 
1.62–3.29 mg min−1, respectively. Fig. 1d shows the pos-
terior distribution (1st to 99th percentiles) for the cumula-
tive distribution of exposure rates. The central estimate is 
indicated by the dashed red line and a 90% credible interval 
for percentiles is indicated by the darker shaded region. The 
solid red line and lighter shaded region correspond to cen-
tral estimate and credible interval from the prior alone.

The measurements provided high-quality informa-
tion on both average exposures and on total variability 
in measurements and consequently summary statistics 
showed a large reduction in uncertainty compared with 
the prior. The central estimates changed little from prior 
to posterior in this example, since the central estimate 
of the GM provided by the mechanistic model was very 
close to that estimated from data, however in general use 
a larger discrepancy between estimates of the GM from 
prior and from data would be expected.

Inference is for the modelled variable of exposure to 
product per minute of activity, however calculations based 
upon the modelled variable can be performed based upon 
both prior and posterior. Three such calculations are dem-
onstrated in Table 4: the cumulative loading onto the 
hands (based upon the median sampling time of 16 min); 
the exposure rate to the measured analyte, aluminium at 
a concentration of 2%; the loading rate of aluminium per 
square cm—this final calculation requires information 
about the exposed area of the hands. In this example, the 
coding of the mechanistic model (and hence the derived 
prediction) assumes that one half of a single hand (area 
of 410/2 = 205 cm2) was exposed. A central estimate and 
95% credible interval for both prior and posterior are 
given in Table 4 for all three derived variables.
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Figure 1.  A comparison of the prior and posterior distributions for the GM loading rate and the percentiles of the cumulative dis-
tribution of loading rates (mean and 95% credible interval): (a) prior GM loading rate; (b) prior cumulative distribution of loading 
rates; (c) comparison of prior and posterior GM loading rate—darker shaded region corresponds to posterior; (d) comparison of 
prior and posterior cumulative distribution of loading rates—darker shading corresponds to posterior 95% credible interval, solid 
red line denotes prior mean, and dashed red line denotes posterior mean.
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Handling immersed objects
The second example is a laboratory exposure scenario 
taken from the SysDEA study (Franken et al., 2019). 
Briefly, the exposure scenario required the dipping of cy-
linders into a bath of low viscosity fluid (activity class 

2.1). Fifteen smooth metal cylinders (with diameter and 
length of approximately 8 and 20 cm, respectively) were 
(i) each dipped in a low viscosity fluid and hung on a 
rack; (ii) moved and hung on a second rack following 
completion of dipping activities; (iii) moved from the 

Figure 1.  Continued.
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second rack and placed horizontal on a work surface [a 
more detailed task description is provided in Franken 
et al. (2019)]. Hands were not immersed during this 
task. The study took place in a ~39 m3 room with ~33 
air-changes per hour (ACH). The tracer analyte within 
the dipping fluid was Tinopol SWN at a weight fraction 
of 0.2% within the product-in-use.

The calculated scores were of Dhands  =  0.001, 
Thands = 1.75, and Ehands = 0.5. The calculated exposure 
rate is given in equation (14). Based upon the calibrated 
mechanistic model the transfer pathway (hand-surface 
contact) was dominant, accounting for approximately 
98.5% of the calibrated dart score.

CDARTscore = 1.14× (0.001+ 87.4× 1.75

+ 5.02× 0.5) = 177.23 mgmin−1

� (14)

Based upon the prior distributions specified in equations (5), 
(9), and (10) and the estimate (equation (14)), the prior dis-
tribution for the scenario is defined. In this example the GM 
and the 50th percentile of the LTA distribution are demon-
strated, with priors plotted in Fig. 2a and b, respectively. 
Some summary statistics for the parameters in the prior and 
calculated variables of interest are given in Table 5.

The experimental study described above was con-
ducted by four volunteers who each undertook four rep-
licates of the task, leading to 16 measurements and good 
information to distinguish between within- and between-
worker sources of variability. Task duration was between 
7 and 10 min. The exposure rate to product was derived 
(based upon measurements of analyte and concentration 
within the product-in-use), with a GM, GSD, and range of 
89.2, 1.44, and 51.4–151.1 mg min−1, respectively. Cotton 
sampling gloves were used as the sampling device.

For this example, 20 000 samples of the model 
parameters were drawn from the posterior with every 
20th retained for inference. Table 5 provides summary 
statistics from the posterior distributions of the model 
parameters and the GM and LTA. Posterior densities of 
the GM and LTA are shown in Fig. 2c and d, respect-
ively—in both plots the corresponding priors are also 
show to aid interpretation.

In this case study the prior was clearly consistent 
with data, however the central estimates of µ and σtotal 
were both reduced in posterior compared with prior, 
with a large reduction in the uncertainty in both of these 
parameters (as characterized by the width of the credible 
intervals). The implied prior distribution of the LTA (Fig. 
2b) was particularly wide as a consequence of the sig-
nificant uncertainty in the two parameters which define 
variability within the model (Table 5); the posterior of 
the LTA (Fig. 2d) was significantly narrower.
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Pouring of liquids
The third example is also a laboratory exposure scenario 
taken from the SysDEA study (Franken et al., 2019). 
Briefly, the exposure scenario required the pouring of a 

low volatility liquid (activity class 6.2). Participants’ de-
canted 1 l of a high viscosity liquid from a 5 l bottle 
into 1 l jug and then carried the filled jug to a worksta-
tion and decanted the contents of the jug into an open 

Figure 2.  A comparison of the prior and posterior distributions for the GM and LTM loading rates: (a) prior GM loading rate; (b) 
prior LTM loading rate; (c) comparison of prior and posterior GM loading rate—darker shaded region corresponds to posterior; (d) 
comparison of prior and posterior LTM loading rate—darker shaded region corresponds to posterior.

Annals of Work Exposures and Health, 2022, Vol. 66, No. 5� 611

D
ow

nloaded from
 https://academ

ic.oup.com
/annw

eh/article/66/5/602/6490538 by guest on 27 June 2022



receiving container. The task was repeated five times 
until the bottle had been emptied, and then repeated 
with a second 5 l bottle, i.e. 10 l of fluid were decanted 
in total in this exposure scenario (a more detailed task 

description is provided in Franken et al. (2019). The 
study took place in a ~39 m3 room with ~33 ACH. The 
tracer analyte within the dipping fluid was Tinopol SWN 
at a weight fraction of 0.2% within the product-in-use.

Figure 2.  Continued.
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The calculated scores for this case study were of 
Dhands = 0.009, Ehands = 13.5, andThands = 0.015. The 
calculated exposure rate is given in equation (15).

CDARTscore = 1.14× (0.009+ 87.4× 0.015

+ 5.02× 13.5) = 78.76mgmin−1

� (15)

The direct emission and direct contact accounted for ap-
proximately 98% of the calibrated dART score.

In this worked example, calculations of the GM and 
90th percentiles of the cumulative distribution of the ex-
posure distribution (corresponding to equation (11) with 
zα = 1.6449 are demonstrated). Calculations of these 
summary statistics based upon the prior distribution are 
given in Fig. 3a and b, with the median and a 95% cred-
ible interval indicated in the plot.

The experimental study described above was con-
ducted by four volunteers who each undertook four rep-
licates of the task, leading to 16 measurements and good 
information to distinguish between within- and between-
worker sources of variability. Task duration was between 
5 and 7 min. The exposure rate to product was derived 
(based upon measurements of analyte and concentration 
within the product-in-use), with a GM, GSD, and range 
of 17.28, 1.44, and 7.4–32.2 mg min−1, respectively. 
Handwashing was used as the sampling method.

The prior was sequentially updated, with meas-
urement data from the first volunteer initially util-
ized (4 measurements), with a further three updates 
incorporating measurement data from the second (8 
measurements), third (12 measurements), and fourth (16 
measurements) volunteers. An estimate and 95% cred-
ible interval for GM and ninetieth percentiles is shown 
in Fig. 3a and b for all sets of calculations in addition to 
those under the prior.

The results indicate that the inclusion of measure-
ment data rapidly corrected the estimates from the prior, 
with a particularly rapid reduction in uncertainty (repre-
sented by the credible interval) even with the inclusion 

of only four measurements from a single volunteer. 
There was a further large reduction in uncertainty fol-
lowing the introduction of data from a second volunteer, 
which provided information with which to update the 
prior encoding of between-worker variability.

Discussion

In previous work, we presented and calibrated a mech-
anistic model for dermal exposure to the hands (mg 
min−1) for exposure scenarios involving the use of low 
volatile liquid products and solids in liquids (Goede 
et al., 2019; McNally et al., 2019). Based upon this 
earlier work a central estimate of the GM with prob-
ability bounds could be estimated, using contextual in-
formation alone, for supported exposure scenarios. In 
this paper, a Bayesian mixed-effect model for dermal 
exposure to the hands (per minute of exposure) has 
been specified. The central estimate of exposure for a 
supported exposure scenario is provided by the cali-
brated mechanistic model. Additionally, between- and 
within-worker variability are specified, with prior distri-
butions specified based upon data previously published 
by Kromhout et al. (1993, 2004) and McNally et al. 
(2019). Based upon prior alone estimates (with prob-
ability bounds) of percentiles of the cumulative distribu-
tion of exposures (such as the 90th or 95th percentiles) 
are now possible (as illustrated in the first and third 
worked examples). Furthermore, estimation of LTA ex-
posures is possible (as illustrated in the second worked 
example). Estimates from the prior may be updated 
using any available measurement data relating to the ex-
posure scenario, as demonstrated in worked examples. 
The third worked example demonstrates that a rapid 
reduction in uncertainty results from incorporating 
measurement data even when few data are available. 
Whilst inference is for the rate of deposition of product-
in-use onto the hands per minute of exposure, exposure 
to analyte, cumulative loading onto the hands, and ex-
posure to product/analyte per cm2 can be easily com-
puted. The dART model provides an estimate of the 
potential dermal exposure. As with the ART, the effect 
of personal protective equipment (PPE)—in this case 
protective gloves—is not part of the model. The pro-
tective effect of chemical protective PPE gloves can be 
accounted for through applying established reduction 
factors, with a factor of 10 or factor of 20 typically ap-
plied (TNsG, 2007). However, the appropriate factors 
may relate to manner of use, glove material, whether 
gloves are new or used, and whether they are designated 
as chemical protective (Creely and Cherrie, 2001; Fent 
et al., 2009; Spaan et al., 2013; Roff, 2015; Marquart 

Table 5.  Summary statistics for model parameters and 
derived variables for case study 2.

Variable Prior Posterior

Median 95% CI Median 95% CI

μ 5.16 3.08, 7.29 4.51 4.20, 4.85

σtotal
0.86 0.24, 3.32 0.43 0.29, 0.72

σ2
bw/σ

2
ww 0.39 0.02, 7.17 0.33 0.03, 3.18

GM 174.3 21.7, 1468.4 90.8 66.6, 127.4

LTA 265.5 27.6, 10 680.5 96.9 70.9, 138.8
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et al., 2017). A reduction factor can be easily chosen 
and applied by a user (with appropriate justification).

The dART model builds upon the well-established 
ART framework, with the ART model providing 

estimates for the deposition pathway within the dART 
model. Whilst a similar exposure model may be desir-
able for consistency, some changes have been made 
to the form of the statistical model. One important 

Figure 3.  A comparison of the central estimate and a 95% credible interval under the prior and based upon posteriors using 4, 8, 
12, and 16 data points: (a) GM; (b) ninetieth percentile.
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simplification of the conceptual model (compared to the 
ART) is the absence of between company/site variability 
in equation (2). In their analysis of dermal exposure data, 
Kromhout et al. (2004) reported that between-factory 
(site) variability (variability across sites carrying out a 
similar task) was larger than residual (within-worker) 
variability. This apparent inconsistency with the form of 
the statistical model of the dART can be reconciled since 
the mechanistic model of the dART has the ability to dis-
tinguish between exposure scenarios with a much finer 
degree of granularity compared to the factory groups of 
Kromhout et al. (2004). In principle, the ART model can 
also distinguish between exposure scenarios with a fine 
degree of granularity, yet between company variability 
is still accounted for within the exposure model. There 
are residual differences between companies that are not 
fully captured by the mechanistic model, however in 
practical use an exposure scenario may be constructed 
for the ‘average’ company associated with the scenario, 
with small differences in room volume, ventilation, use 
rate, etc. absorbed into between-company variability; 
the exposure scenarios included in the exposure meas-
urement database of the ART (Schinkel et al., 2013) are 
widely defined in this manner. As a consequence of the 
omission of a between company variance component in 
the dART statistical model the exposure scenarios are 
necessarily more tightly defined for dermal exposure. 
In our experience of coding exposure scenarios for 
model calibration we found small changes in some de-
terminants such as tool length, degree of automation, 
frequency of contacts with contaminated surfaces, etc. 
could make a large difference to scores: a scenario dom-
inated by direct emission in one workplace may have a 
substantial contribution from contact transfer in other 
workplaces. Given such differences in the potential for 
dermal exposure (as estimated by the dART mechanistic 
model), in what appear to be broadly similar exposure 
scenarios, we believe this tighter definition of an ex-
posure scenario is necessary in general. Additionally, for 
many tasks, particularly related to spraying, a between-
company component is not applicable since in these ex-
posure scenarios work is undertaken by sole traders and 
the between company component only makes sense for a 
nesting of workers-within-company.

A second important difference is in the specifica-
tion of priors for variance components. For the ART, 
a database of approximately 20 000 chemical (inhal-
ation) exposures obtained from in excess of 500 groups 
of workers across a variety of industries [compiled by 
Kromhout et al. (1993)] was used in McNally et al. 
(2014). A statistical analysis of the variance compo-
nents facilitated the estimation of log-normal prior 

distributions that quantified the variability in between- 
and within-worker standard deviations, σbw and σww, re-
spectively. However, the available data on variability in 
dermal exposures were too weak, due to limited repli-
cates, to allow for identification of the variance compo-
nents. Therefore, a less direct approach has been used, 
based upon two steps: (i) specification of a prior for 
total variability in dermal exposure; (ii) specification of 
a prior for the ratio of between- to within-worker vari-
ation. The second step makes use of the larger volume 
of data available for variability in inhalation expos-
ures. As noted above, the ART is used directly for pro-
viding the deposition score in the dART model and for 
scenarios where the deposition pathway is dominant this 
assumption appears reasonable. For exposure scenarios 
where the direct emission and direct contact and con-
tact transfer pathways are dominant, and where worker 
behaviour might play an important role, the use of data 
on inhalation exposures is a potential source of error. 
However, we note that estimates of the GM and per-
centiles of the cumulative distribution of exposures are 
insensitive to this prior. Whilst inference about LTA 
exposure is sensitive to the prior for the ratio of be-
tween- to within-worker variation, our testing indicates 
that estimates from the prior result in very wide posi-
tive skewed distributions for percentiles of the LTA and 
the true (but unknown) value is likely to lie within this 
wide distribution. The prior estimates are rapidly refined 
even with small measurement datasets. Even with rela-
tively poor data available for distinguishing between 
within- and between-worker variability it is important 
to include both components within the model, so that 
the information on these components contained within 
a given users measurement dataset is properly accounted 
for. If a suitable dataset is identified, the prior specifi-
cation will be revised in future work such that within- 
and between-worker variance components are specified 
based upon only dermal exposure measurements.

The full Bayesian model of dART has been dem-
onstrated by three diverse case studies, where initial 
estimates from the prior were updated using measure-
ment data. Measurement data from cotton gloves and 
handwashing were utilized; the dART will support both 
of these dermal (hands) sampling methods. In the second 
and third worked examples, the estimates were dom-
inated by a particular exposure pathway; these cases 
represent more extreme case studies compared to the cali-
bration dataset (McNally et al., 2019) where typically 
two pathways contributed to exposures in each scenario. 
The ‘Spraying of cars’ and ‘Handling immersed objects’ 
scenarios are interesting since they represent a spraying 
scenario where deposition was unimportant (due to the 
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activity taking place in a spray booth) and a dipping scen-
ario where direct emission and direct contact was unim-
portant (since the task involved careful dipping without 
splashing and avoided immersion of the hand). Insights 
about the exposure scenario may be gleaned through the 
structured assessment of the scenario necessitated by the 
mechanistic model and a study of the fractions of ex-
posure attributed to different pathways. Thus, the mech-
anistic model alone offers an improvement in exposure 
scenario assessment and transparency over other tools for 
dermal exposure assessment. However, as a consequence 
of the complexity of the mechanistic model, the process 
of scoring is not currently a simple process. Both the 
scenarios used in calibration and the worked examples 
documented in this paper have required scoring by hand 
on a determinant-by-determinant basis, with careful as-
sessment, scoring and verification of scores. In principle, 
a supported dermal exposure scenario requires only a few 
more user responses compared to the specification of an 
ART scenario for inhalation (hence deposition), therefore 
an extension of the existing web-based ART model is de-
sirable. A demo web tool is currently under development. 
Given a mechanistic model estimate, estimates of all sum-
maries of interest can be obtained through running an R 
script, and easily updated using measurement data. Once 
again, in order to reduce the possibility of user input error, 
it is desirable to fully encompass this facility into a user-
friendly software tool.

McNally et al. (2019) noted that calibration of the 
dART required high-quality contextual data on a task 
so that scoring could be carried out with confidence, 
and reliable Dhands, Thands, and Ehands scores compared 
with measurements on the task through the calibration 
model. In current work, the dART model has been dem-
onstrated with similar high-quality datasets, where indi-
vidual determinants could be precisely scored. However, 
in practical use, conservative assumptions (resulting in 
a higher dART score) can be made by a user of the tool 
when contextual data related to some determinants is 
weak, to ensure that where there is uncertainty, it trans-
lates to an over-estimate rather than an under-estimate 
of dermal exposure. Whilst this suggestion is a practical 
approach to accommodating imperfect information, this 
suggested approach would be impractical when the en-
tire task is poorly documented.

Finally, we comment briefly on two outstanding tech-
nical issues that require attention prior to the deployment 
of a finished tool. Firstly, the dART currently has a ten-
dency to over-predict exposure to the hands; this is as a 
direct consequence of a calibration dataset dominated by 
measurements from cotton gloves, which due to their cap-
ture efficiency have a tendency to over-estimate exposure 

to the hands. Both the mechanisms of retention and re-
moval of product from the hands, which are particularly 
important for scenarios where the product loading rate 
is high, are yet to be coded. A correction will need to be 
applied both to the mechanistic model of the dART and 
to any measurement data collected using cotton gloves 
in order to derive estimates of product loading and re-
tention onto the hands. Conversely, under-estimates of 
exposure may be obtained from handwashing and also 
need correcting for. Secondly, the loading capacity of 
the hands (loading saturation) must also be accounted 
for in the model to ensure that unrealistically large pre-
dictions of dermal exposure, that exceed the capacity 
of the hands, are not made. Loading saturation of the 
hands was accounted for in calibration (McNally et al., 
2019) through treating measurements as right censored. 
A similar treatment of measurement data could be ap-
plied within the dART model (equation (2)), however 
an upper bound on the estimate from the mechanistic 
model is also required to deal with a subset of exposure 
scenarios, including scenarios involving immersion of the 
hands, where the retention capacity of the skin is rapidly 
reached. Downstream calculations such as total loading 
onto the skin also need adjusting, to ensure that the re-
tention capacity of the hands is not exceeded. Loading 
rate, task duration, and viscosity of the product-in-use 
will be important variables that influence the loading of 
product. It is important that product-in-use feeds into 
calculations rather than an analyte since the loading rate 
of product and retention of product are the limiting fac-
tors in determining exposures to an analyte of interest—
it could result in a considerable over-estimate if a minor 
fraction analyte was considered. It is our intention to 
fully account for loading saturation, retention, and re-
moval in future development of a software tool.
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