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Abstract

Life cycle assessment (LCA) and environmentally extended input output analysis

(EEIOA) are twowidely used approaches to assess the environmental impacts of prod-

ucts and services with the aim of providing decision support. Here, we compare car-

bon footprint (CF) results for products and services in the ecoinvent 3.4 cut-off and

the hybrid version of EXIOBASE. While we find that there is good agreement for cer-

tain sectors, more than half of the matched products differ by more than a factor 2.

Best fits are observed in the energy, manufacturing, and agricultural sectors, although

deviations are substantial for renewable energy. Poorer fits are observed for waste

treatment andmining sectors. Both databases have a limited differentiation in the ser-

vice sector. Differences can, to some degree, be explained by methodological differ-

ences, such as system boundaries and approaches used to resolve multi-functionality,

and data differences. The common finding that, due to incomplete economic coverage

(truncation error), LCA-based CFs should be lower than EEIOA-based CFs, could not

be confirmed. The comparisonofCFs fromLCAandEEIOAdatabases canprovide addi-

tional insights into the uncertainties of CF results, which is important knowledgewhen

guiding decision makers. An approach that uses the coefficient of variation to iden-

tify strategic database improvement potentials is also presented and highlights sev-

eral product groups that could deserve additional attention in both databases. Further

strategic database improvements are crucial to reduce uncertainties and increase the

robustness of decision support that the industrial ecology community can provide for

theeconomic transformations aheadof us. This articlemet the requirements for a gold-

gold JIE data openness badge described at http://jie.click/badges.
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1 INTRODUCTION

Both life cycle assessment (LCA) and environmentally extended input–output analysis (EEIOA) are used tomake environmental impact assessments

of products and services. LCA focuses on specific products and services, and for this purpose, life cycle inventory (LCI) databases describe repre-

sentative production processes (Finnveden et al., 2009; Hellweg & Canals, 2014). EEIOA focuses on product groups that typically cover everything

consumed in an economy (e.g., Davis & Caldeira, 2010; Hertwich & Peters, 2009;Wiedmann et al., 2010). However, recently, LCAs have been used

to assess GHGemissions for product groups covering everything consumed in the economy by pooling large numbers of LCAs (e.g., Nita et al., 2017;

Sala & Castellani, 2019). At the same time, EEIOAs have become so detailed that they represent similar specific products as traditionally found in

LCAs (e.g., Lenzen et al., 2013). Therefore, it has become possible to compare carbon footprints (CFs) with EEIOA and LCA at similar product detail.

Since EEIOA found application in the assessment of environmental impacts associated with the consumption of products and services, there

has been an interest in comparing LCA results with EEIOA results. The general idea is that comparing the results of two different approaches to

assess life cycle impacts gives us an idea of the absolute uncertainties in the results. Early work compared three steel production processes in

the GaBi LCI database with Carnegie-Mellon University’s EIO-LCA database (Hendrickson et al., 1997). Later work compared the ETH 96 LCA

database and the MIET database (Mongelli et al., 2005) and the ecoinvent 2.1 database with the OpenIO database (Majeau-Bettez et al., 2011).

Recent work compared the ecoinvent 3.2 and Agrifootprint v.2 databases to the hybrid version of EXIOBASE (v3.3.8) (Castellani et al., 2019). This

last studydemonstrateshowthepoolingof largenumbersof LCAsand thedisaggregatedEEIOAdatabases canbeused to calculate life cycle impacts

of similar product groups. The authors compare the life cycle impacts of the total European household consumption for housing, mobility, food,

household goods, and appliances. LCA-based CFs were found to be 15% lower than EEIOA-based CFs. Castellani et al. (2019) conclude that EEIOA

and pooled LCA results converge in identifying the main areas of household consumption as key drivers of impact (i.e., food, mobility, housing, and

energy using products), which is in line with previous findings by Tukker and Jansen (2006). Agez et al. (2020, 2021, 2020) have recently provided

new methodology, data, and a code repository for the hybridization of ecoinvent and EXIOBASE, which may help to overcome truncation errors

due to cut-offs in LCA. However, a study that compares the environmental impacts associated with all product groups as modeled in ecoinvent and

EXIOBASE is missing so far.

The purpose of this article is to fill this gap by comparing the carbon footprints of products1 between the ecoinvent and EXIOBASE databases at

the highest possible product resolution. We are aware that one could argue that such a comparison is not valid due to differences in the definition

and aggregation of products, the use of alternative data sources, or different modeling choices. Yet, ourmotivation is to conduct such a comparison

for the practical reason that ecoinvent and EXIOBASE are increasingly used for the same purpose, that is, carbon footprinting of products and

services, regardless of whether practitioners are aware of the underlying differences or not. Ourmain research questions are:

1. What is the sectoral coverage of ecoinvent and EXIOBASE and how does the level of product detail compare across sectors?

2. How do carbon footprints compare in both databases?

We then discuss systematic reasons for differences as well as potential implications for database improvements and the limitations of our study.

2 DATA AND METHODS

2.1 Overall approach

To conduct a comparison between LCI and EEIOA databases, we choose two frequently used databases: the ecoinvent database version 3.4 in

its cut-off systemmodel (Wernet et al., 2016) and the hybrid input-output table of EXIOBASE v3.3.18 (Merciai & Schmidt, 2018) following the by-

product technologymodel (Suh et al., 2010). Thehybrid versionwas chosenover themonetary versionof EXIOBASE, since it expresses the products

in physical units and the services inmonetary units. Thismakes it easier to compareCFs across both databases, as ecoinvent uses physical units, and

also reduces potential CF uncertainties in the comparison due to price fluctuation (Jakobs et al., 2021).

The overall approach consisted of four steps (see also Supporting Information S1, Figure S1): data preparation, matching, analyses, and inter-

pretation. In the following sections, the first three steps are described. Interpretation consists of a discussion of systematic reasons for differences

and implications of our findings, as well as conclusions and recommendations. The complete data, matching files, and code used in this paper are

available on https://zenodo.org/record/6077868#.Yg9kR5Yo9WI.

2.2 Data preparation

2.2.1 Carbon footprint calculation

The carbon footprint of each product in EXIOBASE and ecoinvent is calculated per unit of product, for example, kgCO2-eq. per kg or kgCO2-eq. per

MJ, and thus essentially represent carbon footprint intensities. For both databases, the IPCC, 2013 characterization factors (IPCC, 2013) for a

https://zenodo.org/record/6077868#.Yg9kR5Yo9WI
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100-year time horizon have been used. In order to keep the characterization factors identical between the two databases, some characteriza-

tion factors were removed for ecoinvent. This leads to a median and mean reduction of ecoinvent carbon footprints by 0.2% and 4%, respectively.

Note that EXIOBASE does not have characterization factors for some substances, which are instead directly reported as CO2-eq. (see Supporting

Information S1, Table S2).

2.2.2 Ecoinvent

The ecoinvent database distinguishes two types of activities (i.e., processes): transforming (production) activities and transferring activities (con-

sumptionmixes calledmarkets) (Wernet et al., 2016). The general rule is that production activities source their inputs frommarkets. Although both

types of activities can be regionalized, it is typically the production activities that are regionalized, whilemarkets tend to be global (a notable excep-

tion being the energy sector). In addition to representing consumptionmixes, markets in ecoinvent account for transportation and losses. However,

typically the difference in environmental impact measured after production or at the market is small, since many markets contain only a single

global producer, or group a number of equivalent producers from different geographies into a global market (again a notable exception being the

energy sector). In order not to account for each product twice, that is, once after production and once at the market, we chose to exclude market

activities from the comparison, giving priority to having a better regional resolution over environmental completeness. Thismeans that for the com-

pared ecoinvent products, the final transport step and potential product losses during this step are missing, while all other transport and losses of

intermediates along the supply chain of products are included.

Further, rest-of-the-world (RoW) activities in ecoinvent were excluded from the comparison as their geographical scope does not match the

geographical scope of the RoW regions in EXIOBASE (see also Section 2.3.2).

2.2.3 EXIOBASE

Since many products in ecoinvent have a geographical scope of either global (GLO) or region Europe (RER), two aggregated regions were created

with EXIOBASE based on the existing more detailed country classification, that is, GLO and RER, to enable a better matching of the databases.

Additionally, products were classified according to the International Standard Industrial Classification (ISIC) section level classification that divides

the economy into 21 sectors (United Nations, 2008), which enabled a high-level comparison of the sectoral coverage of both databases (see Sec-

tion 2.4.1). Finally, we exclude EXIOBASE products that have a carbon footprint of zero in a given region as this means that they are not produced

in this region.

2.3 Matching

Three criteria were used tomatch datasets in the ecoinvent database to datasets in EXIOBASE. The first one is product equivalency. Here, we follow

the idea thatEXIOBASE is in general themoreaggregateddatabase, that is, thedefinitionof aproduct inEXIOBASE is broader than that in ecoinvent

(although exceptionsmay exist). For this reason, we associate, wherever possible, ecoinvent productswith EXIOBASE products. Thismeans thatwe

performamany-to-onematching,where several ecoinvent products canbematched tooneEXIOBASEproduct,while an ecoinvent product canonly

bematched to exactly one EXIOBASE product. The second one is geographical equivalency. Here, we try to associate production regions in ecoinvent

to those in EXIOBASE. The general logic applied was to identify exact matches, wherever possible, and otherwise search for an EXIOBASE region

that contains an ecoinvent region. The third one is unit equivalency. In order to perform quantitative comparisons, for example, for product carbon

footprints, the functional unit for both product systems needs to be comparable (e.g., kg to kg and not kg to Euro), and for weight, it was done on the

basis of wet weight (data for the drymatter coefficients are provided as part of the general EXIOBASE data downloadable from exiobase.eu).

Due to the lack of a systematic product classification that enables ameaningful automatic matching of products of both databases, thematching

of products was donemanually tomakematching at the highest level of detail possible.

2.3.1 Products

Wemanuallymatched 2325 of 2851 productsmodeled in the ecoinvent database to 100 of the 164 products of EXIOBASE (e.g.,wheat production to

Wheat or kiwi production to Vegetables, fruit, nuts). The only exception was electricity, which could not be sufficiently distinguished by product name

in ecoinvent (e.g., the product “electricity, high voltage” does not yield information about the power source, such as wind or gas). Here, wemanually

assigned 1987 ecoinvent activities to 12 EXIOBASE products (e.g., electricity production, wind, 1–3MW turbine, onshore to Electricity by wind).
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2.3.2 Regions

EXIOBASE covers the global economy through 43 countries and 5 RoW regions (Merciai & Schmidt, 2018). EXIOBASE’s level of regional disaggre-

gation is very high, that is, most products are produced in most regions. Ecoinvent also has global coverage (Wernet et al., 2016) and distinguishes

261 regions; however, the level of regional disaggregation is not very high; that is, most products are not produced across many regions. Ecoinvent

also includes other regional constructs next to countries, such as UN regions and subregions (e.g., Region North America), provinces or states (e.g.,

for China, India, and Canada), and special constructs such as Europe without Switzerland.

For a small number of regions in ecoinvent, no perfect match could be found. This concerned the aluminum-producing regions, for which we

assumed the respective RoW regions in EXIOBASE, as well as Region Asia, for which we assumed RoWAsia, and Region North America, for which

we assumed the United States. For all other geographies, there was either an exact match (the 43 EXIOBASE countries, RER, and GLO) or a match

where an EXIOBASE RoW region contained a regional activity in ecoinvent (e.g., a province).

2.3.3 Units

In order to perform quantitative comparisons, corresponding datasets in ecoinvent and EXIOBASE had to have the same unit. The hybrid version of

EXIOBASE distinguishes three units, that is, kg, MJ, and Euro, which represent 67.6%, 6.6%, and 25.8% of the number of products in the database,

respectively. Ecoinvent distinguishes 17 different units, of which kg (38.8%) andMJ (9%) could be directly matched and kWh (32.7%) could be con-

verted to MJ to provide an additional match (numbers represent the number of products in ecoinvent). Other important units in the ecoinvent

database are unit (7.7%), m3 (4.5%), hour (1.4%), ton-km (1.4%), ha (1.3%), and m2 (1.3%). Since these units do not exist in EXIOBASE, ecoinvent

products with these units could not be included in the comparison.

2.4 Analyses

2.4.1 Comparison of sectoral coverage

In order to answer RQ1, a higher-level classification of products was required. Multiple classification systems exist for structuring economic activ-

ities, for example, NACE, ISIC, and CPC. We chose the ISIC (United Nations, 2008), since it was already available for the ecoinvent database. For

EXIOBASE, wemanually added an ISIC classification at the “section level” (a broad classification of the economy into 21 sectors) for all products.

2.4.2 Comparison of carbon footprints

In order to answer RQ2, comparisons between the carbon footprints of all matched products weremade. In order to analyze this data, we used the

followingmetrics and statistical measures.

Correlation

Spearman’s rank order correlation is assessed for the matched ecoinvent-EXIOBASE results. Correlation coefficients can be calculated for any

subset of the data, that is, to assess how all matched datasets compare or how specific products compare.

Relative deviation

LCA- and EEIOA-based CFs may differ in orders of magnitude depending on the product (e.g., 1 kg of steel is associated with much higher GHG

emissions than 1 kg of wood). Therefore, a relative measure is required to compare the carbon footprint results of products in both databases. We

use the relative deviation drel as defined in Equation (1), where CFecoinvent and CFexiobase are the product carbon footprints in each database:

drel =
CFecoinvent−CFexiobase

CFexiobase
(1)

The relative deviation thus describes how the ecoinvent CFs differ from EXIOBASE CFs in relative terms. Note that the scale of the relative

deviation is not linear but consists of three parts, which can be interpreted as follows:

∙ numbers greater or equal to 0: If the impact assessment results are equal, the result of Equation (1) will be 0 (meaning no deviation). Positive

numbers mean that ecoinvent results are higher than EXIOBASE results (e.g., 1 means twice the impact score, or+100%).
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∙ numbers between 0 and −1: ecoinvent results are smaller than EXIOBASE results (e.g., −0.5 means 50% lower impacts and −0.99 means 99%

lower impacts).

∙ numbers below−1: Impact assessment results have a different sign in both databases. Since ecoinvent does not have negative impact scores in the

cut-off version, this is a result of the by-product technologymodel in EXIOBASE (substitution); see also Section 4.3.

Coefficient of variation

The coefficient of variation (CV) is a standardized measure of the dispersion of data. A high CV means a high dispersion of the data and the other

way around. It is measured as the ratio of the standard deviation std over itsmean as in Equation (2):

CV =
std (CF)
mean (CF)

(2)

where CF represents the carbon footprints of a set of products in both databases. As described earlier, the matching has been made so that one

or several ecoinvent products match exactly one product in EXIOBASE. Some sort of grouping is thus required to calculate a CV for EXIOBASE.

We chose to calculate the CV for the product level, but across regions. By relaxing the geographical equivalency constraint, we obtain a reasonable

sample size for EXIOBASE products (typically between 40 to 48, as most EXIOBASE products are produced in each region and anywhere from

single digit numbers to several hundred for ecoinvent products). Therefore, regional and technological differences can both determine the CV of

ecoinvent and EXIOBASE products.

For someproducts, onemay expect lowCVsdue to a narrowproduct definition and small regional differences (e.g., electricity by natural gas), while

for other products, one may expect high CVs due to a wider product definition (e.g., chemicals nec2) or important regional differences in production

technology (e.g., paddy rice cultivation) or a combination of product and regional differences (e.g., vegetables, fruits, and nuts).

The CV of products in each database can be plotted against each other. Four quadrants can then be distinguished (as illustrated in Supporting

Information S1, Figure S2): Both databases may contain low or high dispersion products (as expected). However, if a given product has a large

dispersion in one database and a small one in the other, this indicates that one of the databases could be improved and that practitioners should

make an informed decision concerningwhich database to use. For example, if ecoinvent shows a high dispersion and EXIOBASE a low dispersion for

a given product, this could indicate that there are technological or regional differences that are not well captured in EXIOBASE.

3 RESULTS

3.1 Sectoral coverage of databases

Table 1 shows the sectoral coverage of ecoinvent and EXIOBASE at the ISIC section level (21 broad economic sectors). It can be seen that both

databases have a similar scope, focusing on primary production andmanufacture of basic products, aswell as energy and transport services (sectors

A-F and H). Other outputs of service sectors, such as retail, financial, insurance, educational, and health services are covered in an aggregated way

in EXIOBASE or only partly in ecoinvent. It can be further observed that ecoinvent provides, with 4164 products, a much higher disaggregation at

the product level (according to our definition of products that includes the information on the supplying process, see Section 1) than EXIOBASE

with 164 products. However, EXIOBASE provides a much higher level of regionalization as most products are produced in most of the 48 covered

world regions, while ecoinvent typically only includes a small number of regional products (a notable exception is the energy sector).

3.2 Matching

Since both ecoinvent and EXIOBASE have global geographical coverage, a good matching was possible on the regional level: for all 48 EXIOBASE

regions, a matching region was found in the ecoinvent database. However, matches were only found for 177 out of 257 regions in ecoinvent; 2 out

of 3 EXIOBASE (kg and MJ) and 3 out of 17 ecoinvent units (kg, MJ, and by conversion kWh) could be matched. In total, we were able to match

74% of EXIOBASE and 81% of ecoinvent products based on units. On the product level, we were able to match 105 EXIOBASE products out of

the total of 164; however, 22 of these had no matching unit; thus, 84 products were included in the final matching file. For ecoinvent, a matching

product was identified for 3320 out of 4150 products; however, the number was reduced to 2084 after considering the geographical and unit

equivalency constraints. Therefore, roughly half of the products in each database could bematched to the other.Overall, we obtained4567 regional

product matches (i.e., products from specific suppliers in specific regions in ecoinvent matched to products from specific regions in EXIOBASE, e.g.,

electricity, high voltage|electricity production, wind, 1–3MW turbine, onshore|FRmatched to Electricity by wind|FR). Supporting Information S1, Table S1

summarizes thematching results.
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TABLE 1 The sectoral coverage of the compared databases according to the section-level ISIC (rev 4) classification

No regional disaggregation With regional disaggregation

Code Section ecoinvent EXIOBASE ratio ecoinvent EXIOBASE ratio

A Agriculture, forestry, and fishing 398 19 20.9 808 761 1.1

B Mining and quarrying 135 15 9.0 284 437 0.6

C Manufacturing 2059 48 42.9 3907 2185 1.8

D Electricity, gas, steam, and air conditioning supply 343 17 20.2 3162 572 5.5

E Water supply; sewerage, wastemanagement 741 35 21.2 1504 1326 1.1

F Construction 279 1 279.0 525 48 10.9

G Wholesale and retail trade; repair of motor vehicles 10 4 2.5 18 192 0.1

H Transportation and storage 151 7 21.6 248 336 0.7

I Accommodation and food service activities 0 1 – 0 48 –

J Information and communication 6 1 6.0 13 48 0.3

K Financial and insurance activities 0 3 – 0 144 –

L Real estate activities 13 2 6.5 200 96 2.1

M Professional, scientific, and technical activities 2 2 1.0 4 96 0.0

N Administrative and support service activities 26 1 26.0 85 48 1.8

O Public administration and defense; compulsory social 0 1 – 0 48 –

P Education 0 1 – 0 48 –

Q Human health and social work activities 0 1 – 0 48 –

R Arts, entertainment, and recreation 0 1 – 0 48 –

S Other service activities 1 2 0.5 2 96 0.0

T Activities of households as employers 0 1 – 0 46 –

U Activities of extraterritorial organizations 0 1 – 0 0 –

Total number 4164a 164 – 10760a 6671b –

Note: The left side shows the numbers of unique products in EXIOBASE compared to unique product-activity combinations from ecoinvent without regional

disaggregation, while the right side includes regional disaggregation. The ratios relate to the number of ecoinvent product–activity combinations per

EXIOBASE product.
aMarket activities have been excluded in order not to artificially increase the numbers for ecoinvent. Further, 45 ecoinvent processes have no ISIC classifica-

tion (recycled content cut-off activities) and have also been excluded here.
bNot all EXIOBASE regions produce all products; therefore, this number is lower than if all 48 regions were to produce all 164 products (7872).

3.3 Comparison of GHG emissions

3.3.1 Overall correlation

A grand overview of the carbon footprints of the matched regionalized products is shown in Figure 1 (note the double logarithmic scale). Matches

are grouped by ISIC sections, of which, after matching, only sections A-F and N remained. Vertical rows of data points may represent the situation

where alternative suppliers (e.g., different production technologies) are available in ecoinvent for a product in EXIOBASE. Horizontal rows of data

pointsmay represent the situationwhere a productmatchwas feasible formultiple regions, butwhere only theCF of the EXIOBASE product varied

while the CFwas approximately the same for each region in ecoinvent. The overall picture shows thatwemay expect order ofmagnitude deviations

between the carbon footprints calculated with ecoinvent and EXIOBASE. The following sections analyze the differences in more detail.

3.3.2 Relative deviation

The relative deviation between all matched products is shown in ascending order in Figure 2. The plot shows values for the relative deviation

between −2 and 5. Lower and higher values are not shown in order to facilitate the readability of the figure. The observed minimum value is −25

andmaximum value is 8.4 × 107. About 44% of all matches show deviations smaller than a factor 2 (i.e., where ecoinvent products have in between

half to twice the impact of the corresponding EXIOBASE product). For about 29% of thematched datasets, ecoinvent CFs are at least twice as high,
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F IGURE 1 Comparison of carbon footprints in EXIOBASE and ecoinvent for matched products in kg CO2-eq. Note that the functional unit
depends on the specific product (it is either per kg, MJ or kWh [for electricity]) and that 49 products have been excluded from this comparison as
their carbon footprint was negative in EXIOBASE (the logarithm for negative numbers is undefined). The dashed line represents the line of
equality, that is, points on this line have equal CFs in both databases. The data behind this figure are provided in Supporting Information S2

and for about 24%of thematched datasets, the ecoinvent CFs are less than half of EXIOBASECFs; 3%ofmatched datasets have no impact in ecoin-

vent. These are by-products ofwaste treatment processes, which by definition have no impact in the cut-off systemmodel of ecoinvent as thewaste

treatment is fully allocated to the waste-producing activities (Wernet et al., 2016). This is handled differently in EXIOBASE, where a substitution

approach is applied. The latter is responsible for the 1% of opposite sign impacts (benefits in EXIOBASE). The common finding that LCA results

should be lower than EEIOA results due to truncation (Lenzen &Dey, 2000) is not confirmed here.

Figure 3 shows the relative deviation of the CFs of matched products per ISIC section level in the form of box plots. For the product classes with

many matched products (A-E), we observe that the relative deviation can be large. For classes A (agriculture, forestry and fishing), C (manufactur-

ing), and D (electricity, gas, steam and air conditioning supply), the median deviation is relatively small. CFs with ecoinvent are at average (median)

12% lower for class A, 9% lower for class C, and 16%higher for classD. CFs in classes B (mining and quarrying) and E (water supply, sewerage, waste

management, and remediation activities) are at average 43% and 90% lower when assessed with ecoinvent. While we lack a compelling explana-

tion for mining and quarrying, the substantially lower impacts of ecoinvent in class E, which is to a large extent dealing with waste treatment, can

partly be explained by the use of the cut-off systemmodel, which allocates all burdens of waste treatment to the waste producer and thus delivers

co-products of waste treatment burden-free (Wernet et al., 2016). A meaningful comparison of classes F (construction) and N (administrative and

support service activities) was not possible because of the small number of matched products.



8 STEUBING ET AL.

F IGURE 2 Relative deviation of the carbon footprints for all matched products (see Relative deviation on how to interpret the y-axis). The data
behind this figure are provided in Supporting Information S2

F IGURE 3 Relative deviation of the carbon footprints for all matched products across International Standard Industrial Classification (ISIC)
section levels. The number in the y-labels indicates the number of matches (18 products from ecoinvent could not be included in this comparison
due to themissing ISIC section level information). The red line is where ecoinvent and EXIOBASE CFs are equal. Numbers smaller than−1 (grey
line) are negative CF results in EXIOBASE. Boxplots: The boxes represent the quartiles 2 and 3, where the green line is themedian. The whiskers
extend to 1.5 times the interquartile range and outliers are shown as circles. For readability, the plot has been cut-off at+/− 10 as certain outliers
are several orders of magnitude higher/lower. The data behind this figure are provided in Supporting Information S2

3.3.3 Relative deviation by product and region

Figure4 further disaggregates the relative deviationof thematcheddatasets on a regional level andbyEXIOBASEproduct.While EXIOBASEcovers

most regions for all products, ecoinvent does so only for the energy sector (electricity and steam and hot water supply). For most other products,

ecoinvent is limited to a small number of regions, often including Canada, Switzerland, China, Germany, and the United States, as well as GLO. The

observations for Figure 3 are confirmed here, as beyond the energy andmanufacturing sectors, a slight dominance of blue cells, meaning lower CFs

in ecoinvent, can be observed, albeit with many exceptions. Within the power sector, the results for coal-, gas-, and oil-based electricity production

matchwell. The results for renewables aremostly higher in ecoinvent.A clear regional pattern cannotbeobserved for the relativedeviation. Instead,

the differences betweenboth databases seem tobemore related to the products, and thus the underlying production technology and supply chains.

3.3.4 Analysis of the electricity sector

Figure 5 shows aCF comparison for the electricity sector as it is represented in both databases at a relatively high level of technological and regional

detail. The overall spearman correlation is 0.77. However, correlations for individual technologies are much lower (coal: 0.59, wind: 0.38, gas: 0.22,
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F IGURE 4 Median relative deviation of carbon footprints in ecoinvent from EXIOBASE by EXIOBASE product (y-axis) and regions (x-axis). The
colors relate to the value of the relative deviation: Bluemeans that ecoinvent CFs are lower and redmeans that ecoinvent CFs are higher. RoW
EXIOBASE regions are: Asia and Pacific (WA), RoWAmerica (WL), RoWEurope (WE), RoWAfrica (WF), and RoWMiddle East (WM). The number
in the y-labels indicates the number of matches. The data behind this figure are provided in Supporting Information S2

petroleum and other oil derivatives: 0.18, hydro: −0.04, nuclear: −0.06, biomass and waste: −0.12, solar photovoltaic: −0.19). This confirms the

observation that there is a good fit for fossil-based power generation, but not a good fit for renewables and nuclear.

To better understand the reasons for differences, we further analyzed this data for specific patterns (see also our annotations in Figure 5). Two

factors seem to play an important role: regional and technological disaggregation. For example, in the case of hydropower, EXIOBASE shows only

a small range of results, while ecoinvent shows large differences for, for example, reservoir or run-of-river versus pumped-storage hydropower

plants (in pumped storage hydropower, larger CFs are due to the use of fossil-based electricity). In EXIOBASE, pumped hydropower is not specifi-

cally distinguished from conventional hydropower sector itself. The relatively high CFs associated with pumped hydropower may not be visible in

EXIOBASEas long as the contributionof pumpedhydropower to theoverall output of thehydropower sector is small. Further, theCFof hydropower

in general is driven to a large part by the construction of the plants and fugitive emissions from reservoirs, which are not included in EXIOBASE.

Another example is the EXIOBASE product Electricity by biomass and waste, for which two matching products in ecoinvent are highlighted in

Figure 5: electricity from biogas and electricity fromwood chips. Wemay first observe that the additional technological disaggregation in ecoinvent

leads todifferentCFsdependingon the feedstock that is used togenerate electricity. This technological differentiation is not available inEXIOBASE.

At the same time, we observe that there are considerable CF differences across EXIOBASE regions, while the CF of electricity from biogas is the
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F IGURE 5 Carbon footprints per kWh of electricity in EXIOBASE and ecoinvent grouped by EXIOBASE products. Vertical lines of data points
represent situations wheremultiple activities in ecoinvent arematched to a single regional product in EXIOBASE. This may be due to additional
technological disaggregation (e.g., different hydropower technologies) or regional disaggregation (e.g., for China and India). Horizontal lines of data
points reflect the situation where the results for an ecoinvent product are approximately the same across different EXIOBASE regions. The dashed
line represents the line of equality; that is, points on this line have equal CFs in both databases. The data behind this figure are provided in
Supporting Information S2

same for all regions. This indicates the accuracy of CFs for electricity from biomass and waste is limited in EXIOBASE by its level of technological

disaggregation, while in ecoinvent, regional differences may not be fully accounted for. However, EXIOBASE does not always have a more detailed

regional representation, as shown for coal power in China and India, for which data for individual sub-regions are available in ecoinvent, which

makes a considerable difference for the respective carbon footprints. While regional and technological disaggregation may explain the observed

differences partly, thesemay also be the result of more fundamental methodological or data differences (see Section 4.3).

3.3.5 Comparison by coefficient of variation

Finally, we use the CV as a measure of the dispersion in each database at the product level without regional disaggregation (Figure 6). While both

high- and low-dispersion sectors can be expected, significant disagreement in the level of dispersion between the databases may help to identify

where further work may be necessary to improve the databases (for the concept, see also Supporting Information S1, Figure S2). Following this

logic, the chemical products in the product group Chemicals necwould benefit most from further disaggregation in EXIOBASE as it has a dispersion

value of 7 in ecoinvent but only 1 in EXIOBASE. This does not come as a surprise, as in our matching, we associated 494 different chemicals from a

total of 648 supplying activities with this product group.Wind power on the other hand shows a dispersion value above 3.5 for EXIOBASE andwell

below1 in ecoinvent, although ecoinvent distinguishes several onshore and offshore technologies. It is difficult to saywhether the higher dispersion

value in EXIOBASE is due to technological or regional differences as these cannot be distinguished here (see Coefficient of variation).

In general, it can be observed that the upper left quadrant is more populated than the lower-right one, which indicates that the level of tech-

nological detail covered in ecoinvent is a stronger driver for dispersion than the regional differences at the product group level in EXIOBASE. This

is noticeable, for example, for agricultural products, such as Vegetables, fruits, nuts or Cereal grains nec, for which one might have expected stronger

regional differences. It should be noted that the comparison of CVs can only provide indications and cannot replace a closer look at the technologi-

cal, regional, or other reasons for differences (see Section 4.3).

4 DISCUSSION

4.1 Research questions

1. What is the sectoral coverage of ecoinvent and EXIOBASE and how does the level of product detail compare across sectors?

Since both databases have been set up with the goal to assess environmental impacts, they have a clear focus on the manufacture of impor-

tant industrial products and corresponding raw material and energy supply chains with large direct emissions. Ecoinvent has a much more
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F IGURE 6 Coefficient of variation (CV) of the carbon footprint for matched products in ecoinvent and EXIOBASE. Circle size is proportional
to the number of matched ecoinvent datasets (we only included EXIOBASE products where 30 ormorematching ecoinvent products existed). The
color scale represents the difference of CV (ecoinvent minus EXIOBASE); thus, redmeans the CV is higher in ecoinvent and hints at the need for
further disaggregation in EXIOBASE. Blue has the opposite meaning. Products on the grey diagonal have equal CVs. The data behind this figure are
provided in Supporting Information S2

detailed representation of technology (Table 1). At the extreme end, EXIOBASE distinguishes a single product group chemicals nec, while ecoinvent

distinguishes 494 different chemicals that fall within this group. Another example is the product group vegetables, fruits, nuts, for which ecoinvent

covers 70 different crop products. On the other hand, EXIOBASE has a higher degree of regionalization for most product groups (Figure 4). An

exception is the energy sector, where both the technological and regional differentiations are higher in ecoinvent. Both databases have limited

differentiation in the service economy, although it ismore systematically included in EXIOBASE (Font Vivanco, 2020;Majeau-Bettez et al., 2011).

1. How do carbon footprints compare in both databases?

We found that roughly half of the matched products deviate in CF by less than a factor 2, a quarter of products have a CF of at least factor 2

smaller in ecoinvent, and another quarter of products have a factor 2 or higher CF in ecoinvent. The best fits are observed in the energy, manufac-

turing, andagricultural sectors (ISICclassesD,C, andA).A sector that is particularlywell covered inbothdatabases is thepower sector. Interestingly,

CFs related to fossil-based electricity are much more comparable than CFs for renewable and nuclear electricity. This indicates that there is large

agreement whenever there are important direct GHG emissions and where capital infrastructure and supply chain GHG emissions play a smaller

role. However, even for fossil-based electricity generation, there are considerable CF differences for specific technologies or regions (Figure 5).
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TABLE 2 Summary of reasons for differences

Reason for differences ecoinvent (cut-off model) EXIOBASE (hybrid version)

Matching Differences due to imperfect matching of products across both databases

Methodology

System boundaries and cut-offs

(truncation)

Incomplete economic coverage (cut-offs); for

example, tertiary sector is largely missing

By definition, complete system boundaries (see however

limitations with regard to, e.g., temporal system

boundaries and inclusion of capital goods)

Temporal system boundaries Life cycle of a product Snapshot for a reference year

Capital goods Partially included (truncation) Accounted for separately and thus not directly associated

with CFs of product groups

Solutions tomulti-functionality Mix of allocation principles including economic

allocation and the cut-off approach for waste

treatment co-products

By-product-technologymodel (substitution)

Data

Intermediate flows Bottom-up unit process models from various data

sources; higher product level differentiation than

EXIOBASE

Top-down inter-industrymonetary flows and international

trade-flows; initial use of physical technical coefficients

derived from LCIs but, eventually, influenced, for

example, by data reconciliation and balancing

Elementary flows Bottom-up unit process models with broader

coverage than EXIOBASE

Extractions: based on the Global material flow database of

the UN International Resources Panel. Emissions:

calculated bymultiplying activity levels (e.g., use of a

specific energy carrier) with an emission factor (Merciai

& Schmidt, 2018).Waste flows as a result of mass balance

Data age Various reference years (specific to each unit

process)

Specific reference year (here 2011)

Representation of average

products

Aim in ecoinvent, but not always realized (often

plant-specific data)

By definition, data relate to the average for an

industry/product group

Characterization factors No difference in this study

The poorest fits are observed in the waste treatment and mining sectors (ISIC classes E and B). For waste treatment, this is due in part to the

differences in the underlying methods to deal with multi-functionality (see Section 4.3). The largest spread is observed in the mining sector, which

is not surprising as products range from low-CFmaterials, for example, sand, to high-CFmaterials, for example, gold. Product groups in EXIOBASE,

such asOther non-ferrousmetal ores and concentrates, may contain very differentmaterials, and even seemingly narrow-enough product groups, such

as Precious metals, still contain products with widely different CFs, for example, gold versus silver.

Although the material and energy flows of individual processes can be accurately measured, it is virtually impossible to validate if complex real-

world supply chains are accurately represented in LCI and EEIOA databases and, therefore, how correct the calculated CFs really are. Yet, cross-

comparisons as done here help to better understandwhereCF results tend to agree andwhere they do not. This is relevant information for deriving

policy recommendations from LCA and EEIOA, as it provides additional information as to where uncertainties may be particularly high or low.

4.2 Reasons for differences

Besides imperfect and potentially erroneousmatching, differences in databasemethodology and datamay have caused the observed differences in

CFs (see overview in Table 2).

4.2.1 Matching

Although both databases use international product classification systems, EXIOBASE uses NACE version 1.1 (2000) and ecoinvent uses ISIC rev.

4 (2008) as well as the Central Product Classification, an automatic matching of products was not possible due to the lack of a concordance table.

Therefore, matching had to be done manually for several thousands of products and processes. This was a time-consuming step, also since often a

look at the process descriptionswas required to decide if a productmatchmade sense. Even if corresponding product classificationswere available,

product-basedmatching has limitations. For example, matching silver in ecoinvent to precious metals in EXIOBASE seems to make sense, but besides
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matching silver, from a silver mine, it also leads to amatch of silver from the treatment of electronics scrap, which should probably better bematched to

a waste treatment process or excluded. Further, ecoinvent contains service activities that should not be matched with products in EXIOBASE, for

example, hot rolling, steel provides the service of hot rolling as an input to the production of steel, hot-rolled, and only the latter should be matched

to steel in EXIOBASE. Despite all efforts, it is possible that our matching contains imperfect or even nonsensical matches, which make the CF com-

parison seemworse than it should be. The development of a concordance file for ecoinvent and EXIOBASE that considers the obstacles mentioned

in this paper would be desirable. Efforts in this direction have been made by Agez et al. (2020; 2021; 2020), but have not yet been used to test the

consistency of CF results as done here.

4.2.2 Specific database methodologies

Importantmethodological differences include, but are not limited to:

∙ System boundaries and cut-offs (truncation): EEIOA databases are thought to be more complete than LCI databases due to the fact that they

cover the entire economy, while LCI databases are built bottom-up andmay exclude certain parts of themodeled value chains (cut-offs), which is

also known as the truncation error (Lenzen & Dey, 2000). For example, inputs from the service economy are often not included in LCI databases

(Font Vivanco, 2019, 2020). This means that, in theory, CFs derived from EEIOA databases should be higher than those derived from LCI

databases; however, we were not able to confirm this finding based on our comparison (e.g., Figures 2 and 3). In part, this may be explained

by the differences in handling capital goods and temporal system boundaries, as discussed below.

∙ Temporal system boundaries: A fundamental difference is that in LCA the impacts of a product are modeled over its life cycle, while in EEIOA

the impacts of a product group relate to a specific year. This difference may not matter for short-lived products, but it may lead to very different

results for product groups where capital goods used in production are important. For example, investments and environmental interventions

may be large when a hydropower plant is being constructed, but much lower in the years afterward. In LCA, the interventions related to the

construction of the plant are distributed over its assumed lifetime, while in EEIOA, the interventions related to construction are recorded in the

year the hydropower dam is built.

∙ Capital goods: Another fundamental difference is that in monetary EEIOAs, following national accounting rules, the production of capital goods

in a single year is separately recorded as a final demand category gross fixed capital formation. This means that the environmental interventions

associated with the production of capital goods used for productive purposes (e.g., factory buildings, technical installations, machinery) are not

included in the calculated CFs. Although the use of capital goods could be connected to the supply chains of individual products (Södersten

et al., 2018; Ye et al., 2021), this is not standard practice and was not the case in our comparison. Therefore, depending on the importance of

capital goods in the supply-chain, CFs calculated with EEIOA could be lower than CFs calculated with LCA (Font Vivanco, 2019, 2020), which

may explain some of the observed differences where capital goods are important, for example, for nuclear, photovoltaic, wind, or hydropower.

For our hydropower example, this means that even if EEIOAwere to take a life cycle perspective, the construction of the hydropower damwould

not directly contribute to the CF of hydropower in standard EEIOA.

∙ Solutions tomulti-functionality:We know fromprevious studies that the choices of transformationmodel in EEIOA (Heijungs&deKoning, 2019;

VendriesAlgarin et al., 2017) and allocationmethod in LCA (Azapagic&Clift, 1999;Guinée&Heijungs, 2007) canhave a large influenceon impact

assessment results.While different approaches of dealingwithmulti-functionality contribute toCF differences in general, they also lead to some

clearly identifiable effects. Ecoinvent uses, next to economic allocation, a cut-off approach, where environmental burdens fromwaste treatment

are allocated to the waste producer and, consequently, waste treatment co-products have zero environmental burdens (3% of compared prod-

ucts) (Wernet et al., 2016). The by-product-technology model that is applied in the hybrid version of EXIOBASE, which is equivalent in LCA to

a substitution approach (Suh et al., 2010), leads to negative CF results in EXIOBASE for certain multi-functional processes, for example, waste

treatment, combined heat and power generation, or animal farming, which explain the opposite-sign results for about 1% of compared products

(Figure 2).

4.2.3 Data

Important data differences include, but are not limited to:

∙ Intermediate flows: Data for EEIOA and LCI databases are largely of different origin. LCI databases describe interlinked unit processes that

are modeled bottom-up and in physical units. Multi-regional EEIOA tables follow a more top-down approach, which reconciles monetary flows

between industries and countries based on data from statistical offices that follow specific accounting principles (SNA, 2009) and bilateral trade

data provided by international institutes, for example, Comtrade (UNi). The reconciliation requires data balancing routines and, in some cases,
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additional aggregation or disaggregation of specific product groups (as the granularity is different across countries). For example, the different

product groups for electricity in EXIOBASE are created by disaggregating a single electricity production sector based on data from national

statistical offices and the International Energy Agency (IEA) (IEA, 2020). Data reconciliation, balancing, and othermodification further affect the

finalCFs. There are alsomany specific differences in thedataused to represent specific sector,whichwecannot got intodetails here. For example,

the aluminum industry has asserted that it uses cleaner-than-mix electricity for specific production sites. While this has been accounted for in

ecoinvent, it is, to our knowledge, not accounted for in EXIOBASE, which means that aluminum products may have a higher CF for this reason.

Finally, for specific sectors, theremay also be important overlaps in the data sources; for example, data from the IEA are used for both databases,

whichmay explain the particularly good fit for fossil-based electricity production.

∙ Elementary flows: Elementary flows are modeled bottom-up as part of the unit process models in LCA. Ecoinvent generally distinguishes more

elementary flows than EXIOBASE, which could be a reason for slightly lower CFs in EXIOBASE, although we believe that the influence of this is

small since EXIOBASE includes the most important greenhouse gases. Further, emission intensities are likely not the same, as different under-

lying data sources are used (Castellani et al., 2019). For example, in EXIOBASE (hybrid version), emissions from combustion are calculated by

multiplying the use of fuels within activities by specific emission factors and the production of waste is determined by applying a mass balance

within activities associated with lifetime functions of products.

∙ Data age:While data in EEIOAdatabases are specific to a reference year, data in LCI databases typically stem froma great variety of data sources

with different reference years. Therefore, differences in CFmay also be a result of different temporal scopes.

∙ Representation of average products: Both databases aim to represent data for average products; however, while this is the case by definition for

EEIOA, unit processes in LCA do not always represent average processes, but instead the data from a specific plant. This may further contribute

to the deviation of CF results.

∙ Characterization factors: Characterization factors can be excluded in this study as a reason for differences, aswe used the same characterization

factors for both databases.

4.3 Strategic database improvements

The analysis of the sectoral coverage (RQ1) is obviously a good starting point to think about where the databases could be improved. Further,

the CF comparisons (RQ2) provide information on the relative uncertainty of product CFs and, therefore, where database improvements could be

most effective. Product groups containing a wide variety of products with very different environmental profiles are good candidates for further

disaggregation (Majeau-Bettez et al., 2011), for example, chemicals nec; vegetables, fruits, nuts; and plastics, basic. In the ecoinvent database, specific

products, such as electricity frombiomass, couldbenefit frommore region-specific data. Further regionalizationof EXIOBASE, as shown forChinese

and Indian electricity (Figure 5), could also reduce uncertainties relating to CFs and other impact categories, for example, water and biodiversity

(Cabernard & Pfister, 2021).

We also examined the possibility of using the coefficient of variation as a metric to identify which products in which database could benefit

from further technological and regional disaggregation (see concept in Supporting Information S1, Figure S2). The results of the CV comparison

(Figure 6) reaffirm the observations made earlier for specific products. Therefore, the CV comparison is, in principle, a suitable method to identify

improvement potentials in each database. In addition to the inter-databasemetrics used in this work, intra-database analyses can provide additional

insights for strategic improvements of LCI and EEIOA databases (Reinhard et al., 2016; Reinhard et al., 2019).

4.4 Limitations and research opportunities

When we matched ecoinvent products to EXIOBASE product groups, we did not apply weighting factors to account for the different market

shares of products in a product group (e.g., different types of hydropower in Electricity by hydro), as such data were not easily available. Thus,

each ecoinvent product gets the same weight in the comparison regardless of whether it is a niche product or not. This represents a limitation

for the presented correlations and relative deviation. However, we intentionally did not performweighting to show the full dispersion of CF results

across databases and to identify where practitioners can more safely use either database for a product CF calculation and where users should be

cautious.

Some of the differences between the compared databases result, among others, as discussed, from differences inmodeling choices such as deal-

ing with multi-functionality. We recommend that future research tries a similar comparison for the monetary version of EXIOBASEwith either the

cut-off or the allocation at the point of substitution (APOS) versions of ecoinvent. We have tried this for this paper as well, but the general fit was

not very good, probably because the data needed for translating between monetary and physical units were not good enough (we used ecoinvent

production volumes), which is why we have not included this analysis in this manuscript. In fact, some of the observed differences in this paper’s
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comparisonmay also be due to the conversion frommonetary to physical unit as done when generating the hybrid EXIOBASE version. However, in

the absence of knowing the “true” environmental impacts, it is very difficult to identify where improvements should take place.

Future research could extend the comparison of LCI and EEIOAdatabases to other impact categories, as greater differences have been observed

for, for example, particulate matter, photochemical ozone formation, land use, and mineral resources (Castellani et al., 2019; Font Vivanco, 2020).

In order to better understand the reasons for differences, such work could include contribution analyses (e.g., as in Steubing et al., 2016), to shed

light into technological and geographical differences in the supply chain structure and potentially focus on specific sectors only to make the scope

of such a comparisonmore feasible.

5 CONCLUSIONS

The comparison of the ecoinvent and EXIOBASE (hybrid version) databases shows that there is still considerable disagreement in carbon footprint

results. Despite good agreement for specific sectors, more than half of the matched products differ in CF by a factor greater than 2. This is not

ideal, since both EEIOA and LCI databases are increasingly used to inform decision makers on the environmental performance of products and

services, and depending on the database used, the conclusions, for example, the ranking of technologies, may be different. Reliable sustainability

assessment approaches are essential for guiding the transition to more sustainable future economies. Efforts to further improve EEIOA and LCI

databases are crucial to reduce uncertainties in the decision support that the industrial ecology community can provide. Such work should include

efforts to further harmonize themethodologies and validate the results using all available data to shedmore light on the real environmental impacts

of products and services. The coefficient-of-variation approach and analyses presented here can provide additional information for identifying

products and sectors that need particular attention, for example, renewables and chemicals.

An interesting result of ourwork is that the finding that LCA-basedCFs are lower than EEIOA-basedCFs due to truncation errors (Lenzen&Dey,

2000) could not be confirmed. Instead, CFs based on ecoinventwere in 51%of cases higher than EXIOBASECFs for similar products. This resultmay

be the consequence of some of the underlying differences in methodology and data of each database, as depicted in Table 2. For instance, while the

LCA weakness of truncation is avoided by the inherent total economic coverage in EEIOA, an LCA approach is usually better positioned to include

capital goods and the full product life cycle regardless of the time dimension (which is limited to 1 year in IOA).

Finally, when decidingwhich database to use, practitioners should not forget about the specific strengths of EEIOA and LCI databases. For exam-

ple, LCA excels at the product level due to its fine-grained physical unit process models, while EEIOA is more suitable for larger scale national or

regional analyses (see, e.g., Guinée et al. 2011 for further discussion). The observed CF differences may also remind practitioners that EEIOA and

LCI databases remainmodels of reality and their results deserve careful interpretation.
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