Int. J. Human—-Computer Studies 164 (2022) 102831

FI. SEVIER

Contents lists available at ScienceDirect
International Journal of Human - Computer Studies

journal homepage: www.elsevier.com/locate/ijhcs

Computer
Studies

t.)

Check for

Design patterns for human-Al co-learning: A wizard-of-Oz evaluation in an | W&

urban-search-and-rescue task

Tjeerd A.J. Schoonderwoerd?, Emma M. van Zoelen **", Karel van den Bosch?,

Mark A. Neerincx >"

@ TNO, Soesterberg, Kampweg 55, the Netherlands
Y Delft University of Technology, Delft, Mekelweg 5, the Netherlands

ARTICLE INFO ABSTRACT

Keywords:

Human-Al co-learning
Human-Al collaboration
Design patterns
Learning design patterns
Urban-search-and-rescue
Wizard-of-Oz study

The rapid advancement of technology empowered by artificial intelligence is believed to intensify the collabo-
ration between humans and Al as team partners. Successful collaboration requires partners to learn about each
other and about the task. This human-AlI co-learning can be achieved by presenting situations that enable
partners to share knowledge and experiences. In this paper we describe the development and implementation of
a task context and procedures for studying co-learning. More specifically, we designed specific sequences of
interactions that aim to initiate and facilitate the co-learning process. The effects of these interventions on
learning were evaluated in an experiment, using a simplified virtual urban-search-and-rescue task for a human-
robot team. The human participants performed a victim rescue- and evacuation mission in collaboration with a
wizard-of-Oz (i.e., a confederate of the experimenter who executed the robot-behavior consistent with an
ontology-based Al-model). The designed interaction sequences, formulated as Learning Design Patterns (LDPs),
were intended to bring about co-learning. Results show that LDPs support the humans understanding and
awareness of their robot partner and of the teamwork. No effects were found on collaboration fluency, nor on
team performance. Results are used to discuss the importance of co-learning, the challenges of designing human-
Al team tasks for research into this phenomenon, and the conditions under which co-learning is likely to be
successful. The study contributes to our understanding of how humans learn with and from Al-partners, and our
propositions for designing intentional learning (LDPs) provide directions for applications in future human-Al

teams.

1. Introduction

The increasing advancements in the development and deployment of
technology utilizing artificial intelligence are changing the way in-
dividuals and teams learn and perform their tasks. It is believed that in
the future, humans and intelligent machines will operate more jointly, as
hybrid teams (e.g., Li et al., 2015; Peeters et al., 2020; Woods et al.,
2004). To enable a team to harmonize its work processes, it is important
to be familiar with team members social, cognitive, affective and
physical qualities (Demir et al., 2020; Ososky et al., 2012). The devel-
opment of a hybrid team therefore requires the team to be frequently
involved in situations that enable and support partners to learn about
the task and about each other. In addition, it requires collaborative
learning: situations in which both humans and agents learn how the
performance of the team depends upon their own role, upon the role of
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the other members in the team, and upon the interdependencies be-
tween them Stout et al. (2017). These situations should enable partners
to learn about a wide array of characteristics of others, such as a team
members objectives, skills, its (work) history of relevant past experi-
ences; its inclination to request or offer assistance; its motivation to
contribute to the teams objectives; and many more properties. For such
situations, we use the term co-learning rather than just learning, because
it involves learning from interactions, and has the explicit objective of
learning together in order to improve team functioning and perfor-
mance. Co-learning supports a team to develop from a collection of
separate team members into a coordinated expert team (Salas et al.,
1997).

In contrast to human-human teams, the members of a hybrid team
have different information processing systems, they bring in different
knowledge about the task and domain, and do not naturally and
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automatically share a language to communicate about their knowledge,
intentions and plans. Yet, despite these differences, humans and agents
need to develop and gradually refine the knowledge, understanding, and
skills that are needed for successful cooperation as a hybrid team. To
support the team in this co-learning process, methods are needed that
enable human and AI team members to share their knowledge and ex-
periences with each other, while accommodating to their inherent dif-
ferences. Such methods should ideally be generic in nature, allowing its
use in various situations. Moreover, proposed methods should be eval-
uated in a real or simulated task environment to determine their effects
on team functioning and performance.

In this paper, we discuss how to design human-Al co-learning. Based
on principles from the literature on team learning and human-AI
collaboration, we designed a set of sequenced interactions intended to
initiate learning of specific objectives. We introduce the term Learning
Design Patterns (LDPs) for this. An LDP should be fit for recurrent use in
a variety of situations that require team partners to learn about the task
and about the team. In an experiment for a human-Al team, we devel-
oped two LDPs and empirically evaluated the effects on learning in the
human. The team consisted of one human participant and one robot Al,
who jointly performed an Urban-Search-And-Rescue (USAR) mission in
a simulated environment. The robot was controlled by a wizard-of-Oz-
experimenter, a person behind the scenes (Riek, 2012). This technique
allows studying human-robot interaction without the need of compu-
tationally modeling all the required prerequisite competencies of the
robot, like sensing the environment and communicating in natural
language. That is, existing computational robot models lack the func-
tionality and flexibility for studying how members will be able to learn
within a future human-robot team, as these models do not yet suffi-
ciently incorporate the principles of interdependence and autonomy
(Lematta et al., 2019). In this study we use the method of a
restricted-perception wizard-of-Oz (WOz), that has been advocated for
the study of designs for strategies in human-robot interaction research
(Sequeira et al., 2016). Half of the human-robot teams engaged in the
LDPs; the other teams did not. We investigated the effects of LDPs on
task critical knowledge and situational team awareness (Stanton et al.,
2017), both being critically important for coordinated team operation,
and the effects on the teams overall performance.

2. Theoretical background

There is a rapidly increasing body of research in human-Al teaming
and human-robot collaboration (Ajoudani et al., 2018). Application
areas have mostly been safety-critical contexts (Bradshaw et al., 2003;
Kruijff et al., 2014) and manufacturing (Matheson et al., 2019). Recently
it has extended to other domains, for example to healthcare (Buxbaum
et al., 2019). Many studies address the utilization of the different
strengths and weaknesses of human and artificial intelligence. In order
for a hybrid team to make use of the different capabilities of the AI
technology and the human, members need to be able to collaborate
fluently. Demands for creating successful human-Al collaborations are:
(1) conditions in which all partners come to recognize and acknowledge
their respective capabilities; (2) a shared understanding of how to
exploit complementary strengths to the benefit of the team; and (3) a
method for establishing adjusted and new work agreements based on the
team partners’ progressive insights (Mioch et al., 2018).

2.1. Co-learning

Developing fluent collaborations is a challenge, even in human-only
teams. The development of a teams competency is brought about by
interrelated processes, ranging from team partners temporarily coordi-
nating their activities in response to local task circumstances in the short
term, to fine-tuning their actions to accommodate variations that may
re-occur in the task context in the long-term. This is all co-learning (van
den Bosch et al., 2019): a process in which collaborating partners adapt
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to each other and learn together over time. It is key that such learning
does not happen separately, but through collaborative interactions that
enable humans and Al to discover and learn about the task, themselves,
and their team partners. Moreover, to be able to cope with dynamic
environments, learning should take place in situations that closely
resemble the actual work environment. Learning should not be limited
to formal training, but should continue during the lifetime of a teams
operation, embedded in on-the-job work. Learning always takes place,
with every new exercise or performance of a team (e.g., Mitchell et al.
(2018)).

Co-learning in human-Al teams is related to collaborative learning
within humans-only teams (Dillenbourg et al., 1996), but not the same,
considering that human and AI team members have different kinds of
mental models, embodiments, and ways of learning. A graphical over-
view of co-learning can be seen in Fig. 1, which shows the interactions
between team members and their environment, as well as the growth of
their individual mental models and their shared mental model.
Co-learning has been identified as important for successful human-AI
teamwork, and its components have been conceptually investigated
(Holstein et al., 2020; van den Bosch et al., 2019; Wenskovitch and
North, 2020). In addition to this conceptual work, there is a need for
empirical research into the design of co-learning for human-Al teams,
and into its effects on team processes and team performance.

Co-learning may occur implicitly, while partners jointly perform the
task. From experience, they learn what sequences, or patterns of inter-
action (e.g., explaining certain actions, or requesting assistance for a
particular task) contribute to the teams mission, and what sequences or
patterns are not successful (this relates to co-adaptation, as in Nikolaidis
et al. (2017)). Partners may become consciously aware which particular
patterns are successful, but explicit awareness is in itself not necessary
for partners to learn and apply this knowledge Patterson et al. (2010). In
fact, such learning from experience often remains tacit (Reber et al.,
2019). In contrast, co-learning may also take place intentionally, in
situations purposely designed to elicit interactions that enable team
members to learn, and to become explicitly aware of what has been
learned. Such formalization of what has been learned supports partners
to sustain successful interactions beyond the training context.

2.2. Learning design patterns

In our study, we focus on co-learning through explicitly designed
interactions in which prescribed learning activities enable team mem-
bers to improve, correct and extend their mental models. We describe
the learning interactions in terms of Design Patterns. Design Patterns are
used to describe a solution to a generic or recurring design problem
within a particular context (Alexander, 1977; Van Welie et al., 2001). In
our case, the design problem consists of the learning that needs to take
place between two members of a team. We compose Learning Design
Patterns to specify the interactions that take place between these team
members to facilitate co-learning. The LDPs can be seen as an extension
of Team Design Patterns (van Diggelen and Johnson, 2019), which have
been specifically developed to guide human-Al teams in different con-
figurations. Our LDPs aim to optimize the co-learning process, to
improve long-term team performance, in current as well as future tasks
and contexts.

3. Design of human-AI team context

To utilize the different strengths and weaknesses of human and
artificial intelligence, a hybrid team should be designed for interde-
pendence in human-Al relationships (van den Bosch et al., 2019). Within
such a team, an Al-robot needs to be able to coordinate its activities with
that of other members of the team; it should be able to provide or request
help, and it should be able to collaborate with another team member on
the same task. A true hybrid human-AI team therefore sets demands with
respect to observability, predictability, directability, and explainability
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Fig. 1. Co-learning in a human-AI team.

of its team members (Johnson et al., 2014a; Klein et al., 2004; Peeters
et al., 2020).

A context that meets the above requirements involves dependencies
among the members of a team. Johnson and colleagues (Johnson and
Bradshaw, 2021; Johnson et al., 2014a) define dependency in terms of
capacity and relationships. Capacity refers to the knowledge, skills,
abilities, and resources that a team member requires to competently
perform an activity individually. Dependency exists when a member
lacks a required capacity to competently perform an activity in a given
context. Relationships refer to the ability to regulate ones own behavior
in response to the needs of another team member, and to the re-
quirements of the teams task. This may pertain, for example, to: syn-
chronizing actions, delegating or taking over tasks, and issuing
authorizations to permit or prohibit various actions. Dependency exists
when a member cannot perform a particular task without the help of a
team member (e.g., together carrying a voluminous and heavy object in
order to move it), or when a member can perform a task much better and
quicker when supported by a team member (e.g., an idle member taking
over a task from a very busy member reduces the work load of the team
and speeds up completion time).

Thus, designing a context for studying human-Al co-learning re-
quires dependency between tasks, and interdependency between teams
members. It compels team members to support one another in normal
and unexpected situations, and to best utilize the strengths of each.

3.1. A team task for studying human-AI co-learning

It has been advocated that Urban-Search-And-Rescue (USAR) is an
appropriate domain for studying how learning of human and Al team
members may be investigated and supported (Lematta et al., 2019). In
future USAR teams, robots are expected to fulfill cognitive task functions
in victim identification that were previously carried out by people,
including reasoning with mental models (Sreedharan and Kambham-
pati, 2018), communicating in natural language (Feng et al., 2018), and
providing explanations (Chakraborti et al., 2017). We developed a
computer simulation of an USAR task, in which a human and an agent
(representing a robot, controlled by a wizard) have to jointly perform

the search and evacuation of victims from an incident area (see Fig. 2).

There are a number of buildings in the area that has been hit by an
earthquake. Each may contain one or more victims. The walls of the
buildings are shown as colored squares. These buildings may be
damaged by the earthquake, and each building may contain one or more
victims. Victims may be unhurt, wounded or dead. The team has to
localize all victims in the buildings, assess their condition, and bring
them to the command post. Dependencies have been built in the task.
For example, wounded victims need to be treated first before they can be
brought to the command post. Also, damaged buildings cannot be
entered unless the debris blocking the entrance has been removed. In-
terdependencies between team members have been implemented by
assigning complementary capacities to the human and the agent. For
example, only the robot can assess whether or not a building has been
damaged by the earthquake. Furthermore, the robot can remove debris,
but the human cannot. In contrast, the human can treat victims, but the
robot cannot. However, they can both carry victims from the buildings
to the command post. By using complementary capacities, the team
requires collaboration to complete the task. The human can send com-
mands to the robot using template sentences (e.g., “Free entrance of
building...”) via a chat-box that is displayed next to the task
environment.

In our experiment, we employ a WOz-paradigm in which the agent is
controlled by a confederate researcher. To determine the agent’s
behavior in the scenario, the wizard strictly followed a behavior pro-
tocol that was created based on the knowledge and behavior model of
the agent (see Section 4. This protocol dictated the order of task actions
that the agent should perform (e.g., move to closest building, inspect the
building, clear the entrance), and the behavior of the agent in response
to events or actions of the human team member (e.g., the human team
member sending a command, or going into a building that the robot was
already navigating towards).

To introduce a controlled need for co-learning, the robots model (see
Section 4) lacked certain knowledge elements that are of critical
importance for efficient task execution. The implications of this
knowledge deficiency appear approximately halfway the first run of the
scenario, when the area is suddenly hit by a second earthquake. In the
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B2 Not collapsed B8 Not collapsed

Fig. 2. Screenshot of the human-robot team performing an urban-search-and-rescue task. The avatar with the helmet is of the human participant; the agent’s avatar
is in building B6. The avatars with initials represent victims, and the question mark means that their condition has not yet been assessed. The color of a building
indicates its status, with grey indicating: collapsed; and blue: not collapsed. The green building is the command post. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

instruction, before the start of the experiment, the human participant
was informed that if such a second earthquake would occur, the status of
already examined buildings would expire. A re-examination of the
buildings in the vicinity of the earthquake would then be needed.
However, this knowledge was not part of the robot’s model, and thus the
behavior protocol for the wizard controlling the robot did not include
actions based on this knowledge. The human participant was not
informed about the robot being unfamiliar with this procedure. As a
consequence, soon after the second earthquake, the human participant
was confronted with unexpected behavior of the robot. Participants had
to sort out for themselves how to proceed and to complete the run. Then,
for half of the teams, two Learning Design Patterns were initiated (see
Section 5 for details). The other half of the teams did not engage in these
LDPs. Then, a second run was administered to all teams, which again
included an earthquake midway the scenario. Measures of collaboration,
mutual understanding, and performance (see Section 6.2.2) were used to
test the effects of the Learning Design Patterns.

4. Knowledge and behavior model of the robot

Although the WOz-paradigm allows a human controller to freely
determine the agent behavior, we chose to explicitly model the knowl-
edge and behavior of the robot. We deem this necessary for maintaining
ecological validity of research into human-Al teams, because humans
should have the impression that they are working with an Al-driven
teammate and not with another human being. In order to simulate the
Al in the robot team member, we made a formal representation of the
robot’s knowledge, and a behavioral model that links knowledge to
specific robot behaviors. The behavioral model was used to construct the
protocol for the wizard, which dictated how the agent should be
controlled during the USAR task.

The knowledge of the robot was represented by an ontology-based
model containing concepts related to the task (e.g., goals,

requirements) and to team members (e.g., capabilities, intentions). This
knowledge was determined prior to the experiment. The model consists
of a domain ontology that represents a relational network of concepts
(classes or properties) related to the USAR task (e.g., Goal, Agent, Role,
BuildingStatus, Location, Robot, VictimStatus, Earthquake). This
domain ontology was built on top of the SUMO upper ontology (Niles
and Pease, 2001), and extended with management concepts (MSPM;
Cheah (2008)) and task world models (Van Welie et al., 1998). The final
ontology consisted of 53 classes (19 of which are object properties) and
248 axioms. As an example, Human and Robot are modelled as sub-
classes of CognitiveAgent (i.e., an agent with responsibilities and with
the ability to reason; (Niles and Pease, 2001)), that have an Identifier,
Skill(s), and a Location. The concepts Explorer and RescueWorker are
Roles that can be enacted by CognitiveAgents, are associated to a Task,
and require at least one Skill.

Concepts from the knowledge model were used to construct a
behavior model that defined what actions should be performed by the
robot, based on inputs from the environment (i.e., environment state,
and commands from the human team member). A goal-driven approach
was used, in which the model decomposes a task into sub-goals, and
further decomposes it into actions required to achieve a particular goal.
The benefit of a goal driven approach is that it -in contrast to machine-
learning techniques- allows behavior explanations that are under-
standable by humans. Arguably, actions from an intelligent system are
best understood by humans if they are explained using concepts such as
beliefs, intentions, and goals (De Graaf and Malle, 2017; Miller, 2019).
Therefore, the robot’s behavior model was created using a Goal Hier-
archy Tree (GHT, Broekens et al. (2010); Harbers et al. (2010a)), based
on the guidelines described in Harbers et al. (2010b). A GHT is a
high-level description of the agents reasoning and is based on hierar-
chical task analysis. We decomposed the USAR task into two high-level
goals (find victims in buildings and rescue victims). These were further
analyzed into beliefs about world states (e.g., building is collapsed,
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victim is mildly injured) and intentions of the robot (e.g., clear building
entrance, bring victim to command post).

The robot should respond in a manner that corresponds exactly to its
knowledge of the world at that point in time (which is incomplete and
even partly incorrect for reasons of the study), its objectives, and to its
assigned capacities. Therefore, the protocol for the wizard explicitly
linked beliefs about the world state to behavioral intentions through
conditional statements (e.g., ’if a building is collapsed, then clear its
entrance’, and: ’if battery is empty, then send a chat message with
current battery level’). The wizard solely made use of this protocol to
determine the behavior of the robot.

5. Learning design patterns

We developed two learning design patterns intended to support co-
learning. The goal of the first LDP (SitRep LDP) is to support identi-
fying knowledge gaps that team members may have. The objective of the
second LDP (Knowledge-rule LDP) is to initiate (inter)actions that
enable team partners to learn from other team members.

In our implementation of the USAR task, the need for learning
manifests itself directly following the earthquake, as the robot shows
behavior that is not expected by the human. The SitRep LDP aims to
fulfill this need for learning by providing information that clarifies the
robot’s behavior; the Knowledge-rule LDP supports the human with
teaching the robot critical knowledge about the consequences of the
earthquake. The LDPs were developed using a Research through Design
approach (Zimmerman et al., 2007): iteratively proposing and evalu-
ating designs. Each design iteration was evaluated by a group of experts.
Moreover, user tests were conducted with three students to evaluate the
usability and effectiveness of the designs.

The SitRep LDP is intended to be used in situations in which a team
member is confounded by the behavior of other team members. Being
surprised by behavior of others occurs often, perhaps most typically in
beginning teams. The SitRep LDP prescribes the activities that support
the confused partner to develop a better understanding of the partner’s
actions (see Table 1). The SitRep LDP is designed to be applicable in
team situations in which confusion and misunderstanding among team
partners exists. In the USAR-experiment, the SitRep LDP prescribes the
human to request an action report from the agent that is causing the
confusion (in our case, the human became confused by the robot moving
to an unexpected location after the earthquake). The agent responds by
presenting relevant information from its behavior model. In our case,
this means showing the beliefs, goals, and intentions from the goal hi-
erarchy tree, that were used to determine the action that caused the
confusion. For our experiment, we created a simple graphical interface
that enabled participants to obtain this information (see Fig. 3).

The Knowledge-rule LDP is intended to be used in situations that
demand learning of task-critical knowledge by a team partner in order to
perform adequately. This Knowledge-rule LDP prescribes the activities
that supports team members to teach the necessary knowledge to the
demanding partner. Again, this LDP is designed to be applicable in team
situations where a demand for acquiring task-critical knowledge exists.
In our USAR-experiment the LDP prescribes the human to engage in
activities that supports the agent to acquire a new knowledge rule that
contains the task-critical knowledge (in the form if then) (see Table 2).
Fig. 3 shows the graphical interface that we used to enable participants
to construct a new rule using concepts from the knowledge model of the
robot. The first part of the rule corresponds to the situation in which the
robot did not respond correctly (i.e., ’if an earthquake hits during the
scenario... ’), and was already filled in. Participants completed the
’then... ’-part of the knowledge rule by altering concepts (object, prop-
erty, value) from the robot’s knowledge base. After creating a rule, the
robot presents feedback information by showing how this knowledge
rule will influence its future behavior (e.g., after an earthquake hits, it
will first move to buildings for which the status is unknown), by means
of a goal-hierarchy tree diagram (inspired by Harbers et al. (2009)).
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Table 1
SitRep Learning Design Pattern.

SitRep LDP: Learning from an Al team member by reviewing an action report

Behavior pattern An Al team member presents an action report to the human,
containing the information that it used to decide to execute
the specific action at hand. The human team reads the action
report and can click on the different information components
of the report to learn more about the background of the Al
agent’s behavior.

The human team member should be able to indicate a
particular action carried out by the Al team member. The Al
team member should be able to provide a reason why it chose
to perform this action.

The human better understands why their Al team member
chose to execute a certain action, leading to better future
team performance.

The human might draw the wrong conclusions from the
presented information, causing misunderstandings. Also,
since it takes time and requires team members to interrupt the
task, it can affect current team performance negatively.

Interaction
requirements

Positive effect

Negative effect

Use when When the human wishes to learn more about why an Al team
member executed a particular action.
Example A human and a robot are collaborating to save victims from a

disaster area that was hit by an earthquake. The robot checks
whether buildings have collapsed and starts to clear blocked
doorways. The human diagnoses and treats found victims.At a
certain moment, there is an aftershock which hits several
buildings. The robot falls silent, and after its battery has been
replaced, it continues to check the buildings that it was
already planning to check before the aftershock occurred.
This behavior violates the procedure and therefore confuses
the human. The human asks the Al agent to deliver an action
report. The action report contains the current action, the goal
that caused this action, the time at which the action execution
started, information about the current state of the robot and
the environment, and the agent’s beliefs that lead to this
action (including information that the beliefs are based on).
The human reads the information and subsequently
understands that the robot does not understand that the
aftershock caused additional collapse danger to the buildings.
This understanding enables the human to take corrective
measures that support appropriate collaboration in future
collaborations.

When team members collaborate, they need to understand
each others decision making process. It is often argued that
common ground is very important to establish trust, and to
make Al agents effective team partners (Klein et al., 2004). In
the military, a SitRep (Situation Report) is often used to create
this common ground between team members (Sorensen and
Stanton, 2016). A SitRep is a concise overview of the current
situation at hand. It usually contains information about the
environment, time and people involved, as well as actions
that have been done and will be done in the future. The LDP
that we propose is similar to such a SitRep. The information is
presented on the basis of progressive disclosure: in terms of
high-level beliefs, goals and intentions. It is well known that
such information is easily understandable by humans (
Dennett, 1989).

Design rationale

In Tables 1 & 2 we formalize the LDP using the format of Team
Design Patterns (Van Diggelen et al., 2018). The presented LDPs should
be considered as proto-patterns, meaning that although they are foun-
ded on principles and evidence obtained from the literature, their
effectiveness at bringing about learning still needs empirical testing.
This study contributes to this testing.

By using a WOz-paradigm to study human-AI co-learning, assump-
tions must be made concerning the (learning) capabilities of the Al
Considering the LDPs, we assume the Al to be able to explain its actions
on request by using symbolic, human-understandable concepts such as
objects and properties (LDP 1). Moreover, we assume that the Al makes
use of a rule engine to determine its behavior, and that it can adapt its
reasoning based on human feedback on its rules (LDP 2). We attempted
to make the behavior of the AI partner as realistic as possible by
modeling a knowledge base as well as a goal hierarchy tree that could



T.A.J. Schoonderwoerd et al.

International Journal of Human - Computer Studies 164 (2022) 102831

¢ Learning Design Pattern 1 — [m} X
Action: "Go to Building B4™
Goal of action Additional information
»  Search building for victims
"Building B4 has the highest priority” is based on:
the priority of buildings.
Timestamp of action
. 00:03:22 afer mission started Priority is determined based on 3 factors
1. How long ago has the status of the building been checked. (“Info-recency”)
2. The status of a buildin
Applied knowledge g
3.The distance between robot and building
* | Building 4 has highest priority
= 1am not at location of Building 4 P . . S e -
The following information was known at the time of the action "Go to Building B4™:
[Building] | [Info-recency] | [Status] | [Distance to robot]
Observations
B4 | na | unknown | 10 m
+ Battery usage B3 | na | unknown | 20 m
«  Own status B5 | na | unknown |  20m
« | Situation status B8 | 1 min | collapsed | im
B6 | -20 min | intact | 2Tm
B7 | 25 min | intact | 35m
B1 | 10 min | intact | 15m
B2 | 5 min | intact | 10m
¢ Learning Design Pattern 2 - o X
Teach new knowledge

Below, you can create an "If... then..." rule for the robot.

You can use the selection menus to determine the content of the rule.

According to you, the robot should learn the following.

Situation:

New knowledge:

Earthquake hits during mission —!

Object: Buildings — in effect-radius of earthquake —!
Property of object: Collapse status —
New value of property: Unknown —
Create rule
Rule: IF: Earthquake hits during mission
THEN: Collapse status van Buildings (in effect-radius of earthquake) = Unknown

Fig. 3. GUI for the Sitrep LDP (top

have been part of an actual Al implementation. Instead, we used this
knowledge and behavior model to construct the protocol for the wizard,
and to create the behavior explanation for LDP 1 and knowledge con-
cepts for LDP 2. The use of this "synthetic” Al was a conscious decision,
as it enables us to design task environments and learning interactions for
studying co-learning and to explore the complexities of co-learning
without having to solve all technical challenges. Of course, the tech-
nical challenges posed by human-Al co-learning need also to be solved
and require research questions by themselves, but the main focus of the
present study is on the human experience of co-learning with an Al
partner.

) and the Knowledge-rule LDP (bottom).

6. Methods

Participants performed two runs of a simulated USAR task in
collaboration with a robot. Half of the group was assigned to the
experimental condition, in which they performed the Sitrep and
Knowledge rule LDPs in between the two tasks. Participants in the
control condition did not engage in these learning activities. The robot
team partner was controlled by a confederate, following a wizard-of-Oz
paradigm (Riek, 2012).

6.1. Participants

Participants were recruited from a participant database. Selection
criteria were: 18-45 years of age, and at least a college degree education.
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Table 2
Knowledge-rule Learning Design Pattern.

Knowledge-rule LDP: Teach new knowledge to an Al team member

Behavior pattern The human implements new knowledge in the AI agent’s
model in the form of if. then. After implementation, the Al
agent presents the effect that this new rule will have on its
behavior and action execution.

The human should be able to compose a rule that consists of
concepts known to the Al agent. The Al team member should
be able to identify and present the behavioral changes that
would result from implementation of this rule.

The Al gains knowledge and is therefore better able to
execute its tasks. Also, as being the implementer of the Als
knowledge, the human team member understands precisely
how actions of the Al are brought about.

The human might input a wrong rule when they dont
understand the Al agent well enough. This might cause the Al
to show unexpected behavior, possibly opposite to the

Interaction
requirements

Positive effect

Negative effect

human’s intention. Also, since it takes time and requires team
members to interrupt their task, it can effect current team
performance negatively.

Use when When a human discovers that the Al agent lacks certain
knowledge to properly conduct their task.
Example A human and a robot are collaborating to save victims from a

disaster area that was hit by an earthquake. The robot checks
whether buildings have collapsed and starts to clear blocked
doorways. The human diagnoses and treats found victims. At
a certain moment, there is an aftershock which hits several
buildings. The robot falls silent, and after its battery has been
replaced, it continues to check the buildings that it was
already planning to check before the aftershock occurred.
The human understands (through the Sitrep LDP or in
another way) that this is because the robot does not
understand that the aftershock might further collapse
buildings. The human implements into the robot’s model the
critical knowledge that an aftershock changes the status of
nearby buildings to unknown. After implementation, the
robot feeds back to the human, step by step, how this will
affects its behavior in the future.

When collaborating, there might be situations in which the
robots knowledge is incomplete. The human may infer or

Design rationale

recognize this, for example because they received an action
report (see Table 1). Humans have the world and task
knowledge to infer the knowledge that the Al agent needs to
act appropriately in particular situations, and they can define
this in a manner that it is re-usable in future other but similar
contexts.

A total of 35 participants took part (10 male, 25 female). The median age
category was 18-25 years, and the median category of self-rated expe-
rience with playing computer games was 1 (no experience). The data
from four participants were excluded from analysis; three because of
technical complications and one because the participant was unable to
complete the task successfully. In total, data from 31 participants were
used for analyses. Due to technical complications, task completion time
was not registered for five participants.

6.2. Materials

6.2.1. Hardware and software

A simulation of the USAR-task was developed using the Python
programming language and a software library called MATRX (multi-
agent teaming rapid experimentation)'. MATRX allows rapid design,
simulation, and testing of 2D top-down, grid-based environments in
which multiple humans and agents can perform tasks collaboratively.
Moreover, it contains a chat window as part of its interface, allowing
team members to communicate. We implemented one human rescue
worker (controlled by the participant), and one robot explorer agent
(controlled by the wizard).

1 https://matrx-software.com/
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Three laptops were connected through a local network: one server
laptop to start and stop the USAR task, and two laptops on which the task
was carried out (one for control of the explorer agent, and one for
control of the rescue worker agent). The task laptops were equipped
with an external keyboard and mouse, which were used to perform ac-
tions in the simulation environment (e.g., moving around, treat victims,
send commands via the chat). The LDP interfaces ran on the participant
laptop, and were coded in Python using the Tkinter” library.

6.2.2. Protocol for robot behavior

Following the guidelines for designing WOz-studies as described in
Green et al. (2004), a protocol was created containing instructions for
the wizard how to control the robot during the USAR task. The protocol
was derived from the goal hierarchy tree (i.e., behavior model) that was
constructed for the robot behavior (see Section 4), which links goals (e.
g., rescue victims) to beliefs about the world state (e.g., building B2
contains a victim) and intentions (e.g., carry the victim from B2 to the
command post) for the robot. In the protocol, we specified what action
the wizard should perform based on the current world state. The robot’s
default behavior policy was: to autonomously move to a building; to
determine and report the building’s status; and to enter the building and
report any victims. When a participant issued a command to the robot,
the wizard immediately interrupted the current action and executed the
requested command. Upon completion, the wizard resumed actions
based on the protocol. The wizard used one and the same protocol for
controlling the robot, both in the control and the experimental
condition.

In the scenario, the earthquake event was triggered after the robot
had inspected four buildings, one of which had to be B1. As the earth-
quake was programmed to only affect buildings B1 and B2, this ensured
that the status of (at least) building B1 was no longer up to date after the
earthquake. In the first scenario run, the robot would not respond to the
earthquake event at all, and would simply continue its current actions.
However, in the second run (for both conditions), the robot responded
adequately to the event and directly navigated to the affected buildings
(i.e., B1 and B2) to (re)examine their status.

6.2.3. Instruction for participants

Participants received a booklet containing a description of the USAR
task. They were given eight short tutorial exercises to get acquainted
with the task environment and the controls. An additional information
sheet was provided, summarizing the main goal of the task, the capa-
bilities of both agents, and the control scheme. Participants were
allowed to consult this sheet at any time. Participants were told that the
experiment involved collaboration with an Al-controlled robot.
Although in this experiment the robot was actually controlled from
another room by a human wizard, the participants were kept unaware of
this. They were given the impression that the robot acted autonomously.
None of the participants challenged this at any time during the
experiment.

6.3. Measures

Two types of measures were performed in the experiment: learning
measures to obtain insight into the learning effects of the LDPs on par-
ticipants, and performance measures to obtain insight into the effects of
the LDPs on task performance of the human-Al team. The measurements
are summarized in Table 3. Learning processes were measured by using
questionnaires and by rating propositions on Likert scales, which were
administered after each run (both groups) and after each LDP (experi-
ment group only). The following learning measures were collected:

2 https://wiki.python.org/moin/TkInter
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Table 3
Measurements taken during the experiment. Quant = Quantitative Data, Qual =
Qualitative Data.

Measurement Data type Timing
Learning measures
Accuracy of participant’s explanation of overall ~ Qual. After each run

robot behavior

Accuracy of participant’s explanation of the Qual.
robot behavior after the earthquake

Accuracy, certainty (1-5 Likert scale), and

rationale for remembered building choice of the Quant./
robot after the earthquake Qual.

Expected building choice of the robot after Qual. After each run
earthquake, and rationale for this choice

Explanation of robots faulty behavior after the Qual.
earthquake

Certainty of participants knowledge about the Qual.
robots behavior (1-5 Likert scale)

After each run

After each run

After Sitrep LDP

After Sitrep LDP

Correctness of knowledge rule & participants Qual. After Knowledge-
rationale for the rule Rule LDP

Clarity of the behavior explanation in the Quant./ After Knowledge-
Knowledge-rule LDP (1-5 Likert scale) & Qual. Rule LDP
rationale for the rating

Self-rated understanding of the behavior Quant. After Knowledge-
explanation (1-5 Likert scale) Rule LDP

Performance measures

Collaboration fluency (avg. rating on 1-5 Likert ~ Quant. After each run

scale) (Hoffman (2019))
Task duration (# simulation ticks) Quant.
Saved victims score (= sum of score per victim,
0=dead, 0.25=severely injured, 0.5=injured,
0.75=slightly injured,
1=uninjured) Quant. After each run
Idle time of human agent (#ticks in proportion ~ Quant. After each run
to task duration)
Number of commands sent by the human to the Quant.
robot

After each run

After each run

e what participants learned about the robots behavior (11 items: eight

open, three closed questions)
e fluency of collaboration (Dutch translation of Hoffman (2019)).
Participants rate 24 statements about their collaboration with the Al
team member on a 5-point scale. The test distinguishes five di-
mensions of collaboration fluency: human-robot fluency; relative
contribution of team members; trust in the robot; positive teammate traits;
performance improvement over time; and working alliance. Authors of
Hoffman (2019) report high reliability of all scales (Cronbachs a >
0.77).

Experimental group only:
participant’s perception of robot’s behavior: after each run, the
questionnaire presented open questions about the robots behavior.
These questions intended to capture the participant’s knowledge and
understanding of the robot’s behavior. As the objective of an LDP is
to improve team member’s mental model (see Section 2.2), the
questions aim to uncover whether the participant has learned. The
complete questionnaire is available online®

Performance measures were obtained by automatically logging data
during task execution. The following measures were collected:

e Task duration (shorter completion time means better performance)

e Idle time of the human agent (shorter idle time means better
performance)

e The number of commands sent by the human agent (fewer com-
mands means better performance)

3 Schoonderwoerd, Tjeerd (2021), Questionnaire used in human-Al co-
learning experiment, Mendeley Data, V1, doi: 10.17632/7ksfjgsgb2.1.
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e The number and health status of saved victims (higher score means
better performance)

6.4. Procedure

The experiment took place in a large conference room, in full
adherence to the COVID-19-measures issued by the Dutch government.
Participants were randomly assigned to the control group or experi-
mental group. Participants sat behind a table with a laptop, external
keyboard and mouse, and the instruction and questionnaire booklets.
The wizard controlling the robot was hidden from participants in a side
room.

The experiment leader welcomed participants and provided a brief
introduction, then took place at the diagonal other side of the table,
behind the server laptop. Fig. 4 shows the flow of the experiment. Note
that participants from the control group performed both task runs in
succession, while participants from the experimental group performed
both types of LDPs in between the two runs.

7. Results

Repeated-measures analyses of variance were used to test the within-
subjects effects of Run (first vs second) and the between-subjects effects
of Group (LDPs versus no-LDPs). Table 4 shows the results of the
analyses.

Both groups performed better in the second run. They were quicker
and achieved a higher victim score (i.e., more victims are saved, and
saved victims were in a healthier condition). The finding that human
agents (controlled by participants) were less idle during the second run
shows that the human participant was working more efficiently.

Inspection of the interaction between Group and Run for Saved
Victims reveals that groups differed on the first run, t(14) = -2.38,p =
0.024, but not on the second run, t(14) = 0.47, p = 0.644. A difference
between groups on the first run is unexpected, as in that run, both groups
were provided with exactly the same task information and instructions.
Since no outliers in the saved-victim scores were found in both groups,
we regard this finding as incidental. We found no between-groups effects
on the number of commands issued by participants.

Groups rated the collaboration fluency within the team equally, and
this was not affected by Run. Interestingly, participants rated collabo-
ration fluency relatively high in general (i.e., many rated 4 out of 5) and
there was little variation in ratings within and between groups. In the
second run, participants rated fluency of collaboration higher than in the
first run. Additional exploratory analyses on the subscales of the test
showed similar results as for the full scale.

Correlation analyses between objective and subjective performance
measures were conducted. Interestingly, for the first run, no statistically
significant correlation between fluency ratings and any of the objective
performance measures was found. This suggests that performing better
as a team does not necessarily imply that people also perceive the
collaboration as to be better. For the second run, significant correlations
between subjective and objective performance were found for the LDP-
group only. A positive correlation between total task duration and
fluency ratings was found (r = 0.71, p < 0.001), showing that, for the
LDP-group in the second run, longer task durations were associated with
higher ratings on collaboration fluency. Moreover, a higher task dura-
tion was accompanied by a higher number of commands (r = 0.66, p <
0.001), and the number of commands was not correlated with collabo-
ration fluency. This suggests that number-of-commands-issued does not
account for the correlation between task duration and fluency scores. As
we will argue in Section 7.1, the LDP group paid more attention to the
behavior of the robot during the second run. Together this suggests that
more time for interaction with the robot means more opportunities to
pay attention to the teamwork, resulting in a higher appreciation of the
collaboration.
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Brief introduction Questionnaire
and > Tutorial »  USAR run1 >
) } Run 1
task instruction
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v

USAR run 2

Questionnaire
Run 2

Fig. 4. Flow diagram of the experiment procedure. Grey boxes indicate activities that are exclusively performed by participants from the experimental group.

Table 4
Results of five RM-GLMs to determine the effects within and between groups and
runs on each performance metric.

Table 5
Frequency of keywords in the qualitative analysis of answers on open questions
after each run from the control group (n = 15) and LDP group (n = 16)*.

Variable Means in Means in Main Main Interaction
Run 1 Run 2 effect of effect of effect
(Control; (Control; Group Run (Group x
LDP) LDP) (between- (within- Run)
subjects) subjects)
Task duration 4014; 3068; F(1,24) = F(1,24) F(1,24) =
(ticks) 3236 2731 4.64,p = =31.41, 2.89,p=
0.042* p< 0.102
0.001*
Saved victims 6.70; 8.05; F(1,29) = F(1,29) F(1,29) =
score 7.27 7.95 1.60,p = = 67.00, 7.08,p =
0.216 p< 0.013*
0.001*
1dle time (% 8.00; 7.33; F(1,24) = F(1,24) F(1,24) =
of duration) 7.44 7.25 3.94,p = = 16.56, 3.21,p=
0.059 p< 0.086
0.001*
Number of 9.80; 7.20; F(1,29) = F(1,29) F(1,29) =
commands 7.81 6.94 0.62,p = =2.56,p 0.63,p =
0.439 =0.120 0.434
Collaboration 3.70; 3.88; F(1,29) = F(1,29) F(1,29) =
fluency 3.79 3.95 0.41,p = =6.07,p 0.01,p =
0.528 =0.020* 0911

* Significant at @ = 0.05.

7.1. Learning results

The open questions after each run were intended to capture the
participant’s knowledge and understanding of the robot’s behavior. The
first two authors analyzed the free text responses in the questionnaire.
We started with independent open coding of responses to all open
questions from three randomly assigned participants. Keywords were
then compared and discussed, in order to develop a closed coding
scheme for further analysis. This scheme was then used by both evalu-
ators individually to code responses to the open questions from all 31
participants. Then both evaluators compared their outcomes and
resolved any differences in assigned keywords through discussion. The
final step in the qualitative analysis was to sum the occurrences of
keywords for each question per group and per run, in order to obtain a
general overview of the responses.

7.1.1. Participants’ responses to the task runs

Table 5 shows the results of the analysis of answers on the questions
asked after completing each run. After the first run, the frequencies of
keywords show only marginal differences between groups. This is ex-
pected as participants were randomly assigned to a group and the
between-groups manipulation takes place after the first run. After the
second run, participants from both groups were positive about the

Measurement Run  Control group LDP group
Opinion on overall 1 Good (10) Good (13) Autonomous
robot behavior Autonomous (3) 6)
2 Good (10) Good (5) Better (9)
Autonomous (3)
Better (2)

Fixed task list (9)
Algorithm (3)
2 Fixed task list (6)
Algorithm (3)

Fixed task list (7)
Algorithm (6)

Fixed task list (4)
Addition of rule (4)

Explanation of overall 1
robot behavior

Explanation of robot 1 Continued with task Continued with task (6)
behavior after 3
earthquake 2 Inspect collapsed Inspect nearby
buildings (6) collapsed building
(16)
Rationale for 1 Building in Building in earthquake
remembered earthquake radius radius (4)
building choice of 4
the robot after the 2 Building in Building status
earthquake earthquake radius changed (11) Building
5) in earthquake radius
(7) Robot is close to
building (9)
Rationale for the 1 Building in Building in earthquake

radius (9) Robot is close
to building (5)

expected building
choice of the robot
after the earthquake

earthquake radius
(10) Building is close
to robot (4)

2 Building in
earthquake radius
(11) Building is close
to robot (3)

Building in earthquake
radius (8) Robot is close
to building (9)

*Results deemed salient by both raters are displayed in bold text.

behavior of the robot during the task in both runs, and some especially
praised the autonomy of the robot. Interestingly, more participants from
the LDP group stated that the robot had improved its behavior (note that
the robot actually behaved the same for the control and LDP group in
run 1 and 2). We think that engaging in learning activities may have
caused participants of the LDP group to focus on the robot, which may
have increased their appreciation of its performance.

Of interest is the question how participants perceive the robot after
acquiring their first experiences. This was examined by analyzing re-
sponses at the end of run 1. Results showed considerable variation
among participants in their views. Most participants believed that the
robot acted according to a fixed task list. Some participants described
the robot as obedient, goal-oriented, or careful. This suggests that par-
ticipants did not expect adaptive behavior from the robot.

Participants were asked what might have caused the unexpected
behavior of the robot immediately following the earthquake. After the
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first run, approximately one-third of all participants (of both groups, as
at that point there were no between-groups differences) provided a
correct explanation for this behavior (i.e., the robot ignored the earth-
quake). Other participants stated to be unsure about the cause, or
indicate to have no idea. After the second run, there was no change in
the control group: still one-third of the participants of the control group
(6 out of 15) were able to give the correct explanation. There was a
signficant change for participants of the LDP group however: all par-
ticipants provided the correct explanation. This suggests that partici-
pants in the LDP group had learned about the robots behavior, while
participants in the control group did not.

To further explore the suggestion that participants of the LDP-group
were able to substantially improve their awareness and understanding of
the robot, it was investigated how well participants were able to recall to
what building the robot went directly following the earthquake. After
run 1, only one third of participants in each group recalled the building
correctly. After run 2, the recall performance was as follows: in the
control group, 12 out of 15 participants recalled the correct building. In
the LDP-group, the building was correctly recalled by 15 out of 16
participants. The difference between runs was significant F(1,29) =
36.49, p < 0.01), but the difference between groups was not. In addition,
we also asked participants how certain they felt about their recall. As
shown in Figure 5, both groups felt equally certain in the first run, but
more certain on the second run (F(1,28) = 49.52, p < 0.01); and the LDP-
group felt more certain than the control group (¢(15) = 3.10, p < 0.05).

Another indication for the notion that participants of the LDP group
developed a better understanding and awareness of the robot’s behavior
was that they were more specific in their explanation of the robot’s
behavior and the specific circumstances at that time. While the control
group mostly used general terms (e.g., building is hit by earthquake, its
part of its task list, or: that building has a high risk), the LDP group used
more specific terms, apparently taken from the Sitrep LDP (e.g., building
status has recently changed, building is close to robot). The higher level
of detail in answers of the LDP-participants was also observed when
asked to explain the expected robot behavior after the second run.

7.1.2. Participants’ Responses to the learning activities

Table 6 shows the keywords and their frequencies obtained from
participants answers to the questions after completing each LDP (see
Fig. 4). As Table 6 shows, the majority of participants were able to
correctly explain the faulty behavior of the robot in their own words.
Furthermore they were fairly certain of their explanation, as indicated
by the Likert-scale scores (M = 4.00, SD = 0.73). Moreover, nearly all
participants understood that the robots knowledge model was inaccu-
rate, although only 25% of all participants could point out the fault (i.e.,

M Control group
B LDP group

Mean certainty score

Run 1 Run 2

Fig. 5. Mean rating (5-point Likert scale) of participants regarding their cer-
tainty about the recalled location of the robot directly following the earth-
quake. Error bars indicate 95% confidence intervals.
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Table 6

Frequency of keywords used to describe answers from participants from the LDP
group (n = 16) in response to the open questions concerning the Sitrep LDP and
Knowledge-rule LDP.

Measurement LDP Keywords in LDP group

Explanation of robots faulty Sitrep Robot is close to building
behavior after the earthquake (11) Building status is

unknown (10)

Observed accuracy of knowledge Sitrep Inaccurate (15) Behavior
model of the robot, and preferred agreement (11) Knowledge
adjustment to the robot correction (5)

Correctness of the knowledge rule Knowledge- Correct (13) Incorrect (3)

rule

Rationale for the knowledge rule Knowledge- Robot will go to buildings

rule hit by earthquake (12)

Rationale for the clarity rating of Knowledge- Step-by-step (8) Visual (4)

the behavior explanation rule

the status of the building not being changed to unknown in response to
the earthquake). When asked what adjustment to the robots model was
required, 69% of all participants formulated an adjustment in behavioral
terms (i.e., Inspect buildings in earthquake radius directly after an
earthquake occurs). All other participants formulated an adjustment in
terms of knowledge (i.e., increase level of priority of buildings in
earthquake radius). After having been prompted with the Knowledge-
rule LDP, the majority (81%) of the LDP group was still able to
correctly formulate the required knowledge rule to improve the
behavior of the robot, and expected the behavior to improve as a result
of the rule (i.e., the robot will go to buildings hit by the earthquake).
Thus, while most participants (69%) suggested behavioral adjustments
to the robot’s model rather than knowledge adjustments, when specif-
ically asked for, all participants were able to formulate the knowledge
required to improve the robot’s model, mostly by using the terms
learned during the Sitrep LDP.

During the Knowledge-rule LDP, participants were asked to specify a
knowledge rule that, when implemented in the robot’s knowledge
model, would produce correct robot behavior after the earthquake. The
participant received feedback on their knowledge-rule with an expla-
nation based on the knowledge model (see chapter 4) on how this rule
would affect its behavior. We asked participants how they evaluated the
robot’s explanation. In general, participants found the robot’s expla-
nation to be clear (M = 4.20, SD = 0.68), and indicated that it enabled
them to better understand the behavior of the robot (M = 4.20, SD =
0.86). From the qualitative analysis (see Table 6) it becomes clear that
people appreciated the explanation because of its visual, step-by-step
presentation of how the robots behavior is established. Participants
said it helped them to better understand how the robot will respond the
next time an earthquake occurs.

8. Discussion

In this study we designed Learning Design Patterns (LDPs) for
achieving co-learning in human-AlI teams, and evaluated those in a
wizard-of-Oz setting. Co-learning occurs from interactions that enable
humans and Al agents to discover and learn about the task, themselves,
and about each other. The LDPs that we designed describe and prescribe
the learning of behaviors that are needed for handling difficult types of
situations that often occur in a task. We designed two LDPs, consisting of
interaction sequences that support co-learning of humans and Al,
imposing several demands on both the human and AI partner. The ef-
fects of LDPs on learning and performance were evaluated within the
context of a simulated urban-search-and-rescue-task. In particular, ef-
fects on the humans understanding of the AI partner, the human’s
perception of the human-AI collaboration, and the teams performance
were investigated (see Section 8.1). We also investigated whether the
method of predefining sequences of interactions in the form of LDPs is
appropriate for designing effective learning for human-AI teams (see
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Section 8.2).
8.1. Effects of LDPs on learning and team performance

Two LDPs were administered to the human-robot teams. The Sitrep
LDP involved interactions intended to support the human developing an
understanding why the robot showed erroneous task behavior in
response to a particular event, thus threatening the teams performance.
This LDP required the wizard-controlled robot to explain its behavior in
intentional terms, and the human to respond to the explanation in order
to increase understanding. The Knowledge-rule LDP involved in-
teractions intended to support the human in teaching the robot how to
act appropriately under such circumstances. This LDP required the
human to create a rule based on concepts from the knowledge repre-
sentation of the robot, while the robot has to incorporate this rule into its
model and be able to feedback the behavioral consequences of the rule
by means of an explanation. It was expected that engaging in these
Learning Design Patterns would support team members to learn from
each other, and to improve their performance in the second run
(compared with a control condition in which teams did not engage in the
LDPs). Although we did not find an effect on performance, we did find an
effect on learning and understanding.

The interactions of the LDPs supported humans to better understand
the robot. Participants were able to provide more accurate and detailed
explanations of the robots behavior, when compared to participants that
did not engage in the LDPs. Furthermore, the LDPs supported partici-
pants to develop a better awareness of the robots behavior, the team-
work, and the performance of the team (e.g., as shown by their opinions
about the robots behavior, and the certainty of the observed robot
behavior in the second run). It was expected that this better awareness
would result in a more fluent collaboration between partners, and an
improved team performance. This, however, was not found, which is in
contrast to previous studies that found an association between aware-
ness, understanding, and team performance (e.g., Demir et al. (2020);
Ososky et al. (2012)). One reason for our study not demonstrating this
relationship may have to do with the relatively limited role of the LDPs
on the overall performance on the USAR task. That is, although the LDPs
addressed a piece of knowledge that is critical for developing awareness
and understanding, this awareness and understanding contributed to the
teams overall performance in a relatively minor manner. Thus, the ef-
fects of the LDPs may have been of too limited importance for the teams
performance to demonstrate an effect.

Another reason for not finding an effect of LDPs on performance
might be that participants experienced low team cohesion. Team cohe-
sion is described as a bond that drives team members to remain moti-
vated to work together to accomplish a set of goals (Casey-Campbell and
Martens, 2009). In our task, participants could send commands to
intervene with the behavior of the robot. However, there was little need
for the participant to do so, as the robot performed all actions efficiently
and autonomously. This could have elicited participants to assume a
more supervisory control attitude, rather than a team member role. An
indication for this is the relatively few communications initiated by the
human.

8.2. Designing a learning context for human-AI teams

We have emphasized the need to study how human-AI teams jointly
learn. Therefore, there is a need to develop tasks, environments, and
procedures enabling such research. In this paper we have proposed such
a context, which consists of a team task involving interdependencies
between members, a dynamic knowledge representation of the AI
partner to inform a realistic wizard-of-Oz protocol, and sequences of
interactions in the form of Learning Design Patterns. As all learning is
context dependent, we took efforts to embed LDPs in a context that is
typical for human-Al teamwork, to enable their application for human-
Al co-learning in other but similar contexts. The sequences of actions
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and interactions in the LDPs were generically formulated. The Sitrep
LDP is an intervention that encourages humans to look inside the *brain’
of their Al team partner, an interaction that intends to foster under-
standing of the team members thinking and reasoning. The Knowledge-
rule LDP is an intervention that requires the human to think about what
its Al-partner needs to learn, and to design and apply a knowledge
intervention that fulfills that need. This interaction gives the human the
opportunity to feed the AI agent with knowledge to be used when
making its decisions. Such interventions should support collaboration
and understanding over a longer period of time.

Further research in similar contexts is of course necessary to validate
the generalizability of the suggested LDPs. Moreover, it should be taken
into account that we have made several assumptions regarding the ca-
pabilities of an Al team member, e.g. on explainability and the presence
of an explicit, ontology-based knowledge model. These assumptions
should be considered when attempting to apply the LDPs in future
research. Our propositions for LDPs present a start to explore the po-
tential and value of the interventions for human-AlI learning in context.

It is well known that effective team performance requires common
ground between the team partners, for example in the form of a shared
goal and a shared vocabulary. A formal knowledge representation was
developed (see chapter 4) to provide our human-robot team with such a
shared vocabulary. The LDPs in the study were based upon the concepts
used in the knowledge representation. Studying the human-robot
communication that was initiated by the LDPs enabled us to gain
insight into the learning that took place in the human team member, and
to assess whether shared understanding was achieved (i.e., whether the
gained knowledge of the human aligned with that of the robot). Our
work shows that a formal knowledge representation can be useful to
facilitate communicative interactions in co-learning activities. We
believe that such a human-understandable representation of knowledge
should be used as basis for communication between human and AI team
members, in order to enable them to establish common ground when
working together.

As argued earlier, LDPs can only have a positive effect if the in-
teractions address the needs for learning that are typical for tasks to be
performed by human-AI teams. The need to view the Al agent as a true
partner, the preparedness to improve as a team by joint collaboration,
and the willingness to learn about the team partner are a few of them.
Our implementation of a human-AI task environment did not always
satisfy all these needs. A large part of the participants considered the
robot to be a tool rather than a partner. The participants that engaged in
the LDPs developed an understanding of the robot, and the USAR task
required collaboration because of hard dependencies that were created
between team members (Johnson and Bradshaw, 2021; Johnson et al.,
2014b). Still, the observation that participants viewed the effects of
learning as a behavior change rather than as knowledge development,
suggests that participants were not (yet) interested in the long term
significance of their learning activities. Of course, participants were
aware that their collaboration with the robot was limited to the duration
of the experiment only. This may have had an influence on the partici-
pants attitude. In future research, it is important to design tasks in such a
fashion that the human perceives the Al agent as a real team partner.
This can for example be achieved by creating more soft in-
terdependencies between the team members to encourage proactive
helping, or by using psychological mechanisms such as described in
Nass et al. (1996) to enhance team feeling. Moreover, learning should
take place in a more natural way, meaning that learning interactions
happen back and forth over a longer period of time. In our experiment
learning was mostly done in a one-way isolated interaction, which is not
how people learn in natural environments. Lastly, a limitation of this
study is the use of a wizard-of-Oz technique to emulate the behavior of
the robot. By using this method, we were unable to incorporate the
human feedback (i.e., the knowledge rule) in the robot’s knowledge and
behavior model. Although we attempted to make the behavior of the Al
partner as realistic as possible by modeling a knowledge base as well as a
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goal hierarchy tree as basis for the wizard’s protocol, the Al models
remained static and thus did not support learning. Still, we do think the
wizard-of-Oz approach provides a valuable first step to develop under-
standing of human experience and behavior in co-learning between
human and AL In a next study, it might be interesting to extend the
research environment with a dynamic Al-model to study co-learning
from both a human and Al perspective.

9. Conclusion

The rapid advancement of technology empowered by artificial in-
telligence is believed to bring forth new ecosystems in which human and
Al act as complementing partners (Chui, 2017). For this to be successful,
the conditions must be created in which partners jointly learn to
recognize, acknowledge and utilize their respective capabilities (van
den Bosch et al., 2019). This co-learning may occur implicitly by expe-
rience during collaborations. It may also take place intentionally, by
using Learning Design Patterns that elicit the interactions that produce
learning in human-AI teams. In the present study, we designed two ex-
amples of LDPs: the Sitrep-LDP and Knowledge Rule-LDP, and imple-
mented these in a human-AI co-learning testbed for research. The LDPs
showed positive effects on human awareness and understanding of an Al
agents behavior, but it may require additional efforts to advance
improved awareness into better team performance. Based on experi-
ences during our study, we identify several conditions for intentional
co-learning to develop. First, it should be clear for the team why learning
from each other is likely to benefit the teams functioning. That is, the
context should provide an intrinsic motivation to learn. Second, the
team should be supported in performing activities that provide oppor-
tunities to learn, such as after-action reviews in which team members
exchange reflections and explanations of their behavior. Third, effective
communication demands partners to use common concepts and a shared
vocabulary. Humans tend to view behavior of themselves and of others
in terms of everyday concepts such as beliefs, desires, and plans. This is
often referred to as folk psychology (Horgan and Woodward, 1985). AL
agents should therefore be equipped with a system that allows pro-
cessing communication input from the human, and that enables
outputting explanations in a form that can be understood by humans.
Lastly, team members need to be confident that engaging in learning
activities will help them to perform better. Being able to predict the
effects of learning on team performance will support that conviction.
When these conditions are incorporated into a co-learning research
environment, they can provide the required opportunities to study
intentional co-learning in human-AI teams.
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