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A B S T R A C T   

The rapid advancement of technology empowered by artificial intelligence is believed to intensify the collabo
ration between humans and AI as team partners. Successful collaboration requires partners to learn about each 
other and about the task. This human-AI co-learning can be achieved by presenting situations that enable 
partners to share knowledge and experiences. In this paper we describe the development and implementation of 
a task context and procedures for studying co-learning. More specifically, we designed specific sequences of 
interactions that aim to initiate and facilitate the co-learning process. The effects of these interventions on 
learning were evaluated in an experiment, using a simplified virtual urban-search-and-rescue task for a human- 
robot team. The human participants performed a victim rescue- and evacuation mission in collaboration with a 
wizard-of-Oz (i.e., a confederate of the experimenter who executed the robot-behavior consistent with an 
ontology-based AI-model). The designed interaction sequences, formulated as Learning Design Patterns (LDPs), 
were intended to bring about co-learning. Results show that LDPs support the humans understanding and 
awareness of their robot partner and of the teamwork. No effects were found on collaboration fluency, nor on 
team performance. Results are used to discuss the importance of co-learning, the challenges of designing human- 
AI team tasks for research into this phenomenon, and the conditions under which co-learning is likely to be 
successful. The study contributes to our understanding of how humans learn with and from AI-partners, and our 
propositions for designing intentional learning (LDPs) provide directions for applications in future human-AI 
teams.   

1. Introduction 

The increasing advancements in the development and deployment of 
technology utilizing artificial intelligence are changing the way in
dividuals and teams learn and perform their tasks. It is believed that in 
the future, humans and intelligent machines will operate more jointly, as 
hybrid teams (e.g., Li et al., 2015; Peeters et al., 2020; Woods et al., 
2004). To enable a team to harmonize its work processes, it is important 
to be familiar with team members social, cognitive, affective and 
physical qualities (Demir et al., 2020; Ososky et al., 2012). The devel
opment of a hybrid team therefore requires the team to be frequently 
involved in situations that enable and support partners to learn about 
the task and about each other. In addition, it requires collaborative 
learning: situations in which both humans and agents learn how the 
performance of the team depends upon their own role, upon the role of 

the other members in the team, and upon the interdependencies be
tween them Stout et al. (2017). These situations should enable partners 
to learn about a wide array of characteristics of others, such as a team 
members objectives, skills, its (work) history of relevant past experi
ences; its inclination to request or offer assistance; its motivation to 
contribute to the teams objectives; and many more properties. For such 
situations, we use the term co-learning rather than just learning, because 
it involves learning from interactions, and has the explicit objective of 
learning together in order to improve team functioning and perfor
mance. Co-learning supports a team to develop from a collection of 
separate team members into a coordinated expert team (Salas et al., 
1997). 

In contrast to human-human teams, the members of a hybrid team 
have different information processing systems, they bring in different 
knowledge about the task and domain, and do not naturally and 
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automatically share a language to communicate about their knowledge, 
intentions and plans. Yet, despite these differences, humans and agents 
need to develop and gradually refine the knowledge, understanding, and 
skills that are needed for successful cooperation as a hybrid team. To 
support the team in this co-learning process, methods are needed that 
enable human and AI team members to share their knowledge and ex
periences with each other, while accommodating to their inherent dif
ferences. Such methods should ideally be generic in nature, allowing its 
use in various situations. Moreover, proposed methods should be eval
uated in a real or simulated task environment to determine their effects 
on team functioning and performance. 

In this paper, we discuss how to design human-AI co-learning. Based 
on principles from the literature on team learning and human-AI 
collaboration, we designed a set of sequenced interactions intended to 
initiate learning of specific objectives. We introduce the term Learning 
Design Patterns (LDPs) for this. An LDP should be fit for recurrent use in 
a variety of situations that require team partners to learn about the task 
and about the team. In an experiment for a human-AI team, we devel
oped two LDPs and empirically evaluated the effects on learning in the 
human. The team consisted of one human participant and one robot AI, 
who jointly performed an Urban-Search-And-Rescue (USAR) mission in 
a simulated environment. The robot was controlled by a wizard-of-Oz- 
experimenter, a person behind the scenes (Riek, 2012). This technique 
allows studying human-robot interaction without the need of compu
tationally modeling all the required prerequisite competencies of the 
robot, like sensing the environment and communicating in natural 
language. That is, existing computational robot models lack the func
tionality and flexibility for studying how members will be able to learn 
within a future human-robot team, as these models do not yet suffi
ciently incorporate the principles of interdependence and autonomy 
(Lematta et al., 2019). In this study we use the method of a 
restricted-perception wizard-of-Oz (WOz), that has been advocated for 
the study of designs for strategies in human-robot interaction research 
(Sequeira et al., 2016). Half of the human-robot teams engaged in the 
LDPs; the other teams did not. We investigated the effects of LDPs on 
task critical knowledge and situational team awareness (Stanton et al., 
2017), both being critically important for coordinated team operation, 
and the effects on the teams overall performance. 

2. Theoretical background 

There is a rapidly increasing body of research in human-AI teaming 
and human-robot collaboration (Ajoudani et al., 2018). Application 
areas have mostly been safety-critical contexts (Bradshaw et al., 2003; 
Kruijff et al., 2014) and manufacturing (Matheson et al., 2019). Recently 
it has extended to other domains, for example to healthcare (Buxbaum 
et al., 2019). Many studies address the utilization of the different 
strengths and weaknesses of human and artificial intelligence. In order 
for a hybrid team to make use of the different capabilities of the AI 
technology and the human, members need to be able to collaborate 
fluently. Demands for creating successful human-AI collaborations are: 
(1) conditions in which all partners come to recognize and acknowledge 
their respective capabilities; (2) a shared understanding of how to 
exploit complementary strengths to the benefit of the team; and (3) a 
method for establishing adjusted and new work agreements based on the 
team partners’ progressive insights (Mioch et al., 2018). 

2.1. Co-learning 

Developing fluent collaborations is a challenge, even in human-only 
teams. The development of a teams competency is brought about by 
interrelated processes, ranging from team partners temporarily coordi
nating their activities in response to local task circumstances in the short 
term, to fine-tuning their actions to accommodate variations that may 
re-occur in the task context in the long-term. This is all co-learning (van 
den Bosch et al., 2019): a process in which collaborating partners adapt 

to each other and learn together over time. It is key that such learning 
does not happen separately, but through collaborative interactions that 
enable humans and AI to discover and learn about the task, themselves, 
and their team partners. Moreover, to be able to cope with dynamic 
environments, learning should take place in situations that closely 
resemble the actual work environment. Learning should not be limited 
to formal training, but should continue during the lifetime of a teams 
operation, embedded in on-the-job work. Learning always takes place, 
with every new exercise or performance of a team (e.g., Mitchell et al. 
(2018)). 

Co-learning in human-AI teams is related to collaborative learning 
within humans-only teams (Dillenbourg et al., 1996), but not the same, 
considering that human and AI team members have different kinds of 
mental models, embodiments, and ways of learning. A graphical over
view of co-learning can be seen in Fig. 1, which shows the interactions 
between team members and their environment, as well as the growth of 
their individual mental models and their shared mental model. 
Co-learning has been identified as important for successful human-AI 
teamwork, and its components have been conceptually investigated 
(Holstein et al., 2020; van den Bosch et al., 2019; Wenskovitch and 
North, 2020). In addition to this conceptual work, there is a need for 
empirical research into the design of co-learning for human-AI teams, 
and into its effects on team processes and team performance. 

Co-learning may occur implicitly, while partners jointly perform the 
task. From experience, they learn what sequences, or patterns of inter
action (e.g., explaining certain actions, or requesting assistance for a 
particular task) contribute to the teams mission, and what sequences or 
patterns are not successful (this relates to co-adaptation, as in Nikolaidis 
et al. (2017)). Partners may become consciously aware which particular 
patterns are successful, but explicit awareness is in itself not necessary 
for partners to learn and apply this knowledge Patterson et al. (2010). In 
fact, such learning from experience often remains tacit (Reber et al., 
2019). In contrast, co-learning may also take place intentionally, in 
situations purposely designed to elicit interactions that enable team 
members to learn, and to become explicitly aware of what has been 
learned. Such formalization of what has been learned supports partners 
to sustain successful interactions beyond the training context. 

2.2. Learning design patterns 

In our study, we focus on co-learning through explicitly designed 
interactions in which prescribed learning activities enable team mem
bers to improve, correct and extend their mental models. We describe 
the learning interactions in terms of Design Patterns. Design Patterns are 
used to describe a solution to a generic or recurring design problem 
within a particular context (Alexander, 1977; Van Welie et al., 2001). In 
our case, the design problem consists of the learning that needs to take 
place between two members of a team. We compose Learning Design 
Patterns to specify the interactions that take place between these team 
members to facilitate co-learning. The LDPs can be seen as an extension 
of Team Design Patterns (van Diggelen and Johnson, 2019), which have 
been specifically developed to guide human-AI teams in different con
figurations. Our LDPs aim to optimize the co-learning process, to 
improve long-term team performance, in current as well as future tasks 
and contexts. 

3. Design of human-AI team context 

To utilize the different strengths and weaknesses of human and 
artificial intelligence, a hybrid team should be designed for interde
pendence in human-AI relationships (van den Bosch et al., 2019). Within 
such a team, an AI-robot needs to be able to coordinate its activities with 
that of other members of the team; it should be able to provide or request 
help, and it should be able to collaborate with another team member on 
the same task. A true hybrid human-AI team therefore sets demands with 
respect to observability, predictability, directability, and explainability 
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of its team members (Johnson et al., 2014a; Klein et al., 2004; Peeters 
et al., 2020). 

A context that meets the above requirements involves dependencies 
among the members of a team. Johnson and colleagues (Johnson and 
Bradshaw, 2021; Johnson et al., 2014a) define dependency in terms of 
capacity and relationships. Capacity refers to the knowledge, skills, 
abilities, and resources that a team member requires to competently 
perform an activity individually. Dependency exists when a member 
lacks a required capacity to competently perform an activity in a given 
context. Relationships refer to the ability to regulate ones own behavior 
in response to the needs of another team member, and to the re
quirements of the teams task. This may pertain, for example, to: syn
chronizing actions, delegating or taking over tasks, and issuing 
authorizations to permit or prohibit various actions. Dependency exists 
when a member cannot perform a particular task without the help of a 
team member (e.g., together carrying a voluminous and heavy object in 
order to move it), or when a member can perform a task much better and 
quicker when supported by a team member (e.g., an idle member taking 
over a task from a very busy member reduces the work load of the team 
and speeds up completion time). 

Thus, designing a context for studying human-AI co-learning re
quires dependency between tasks, and interdependency between teams 
members. It compels team members to support one another in normal 
and unexpected situations, and to best utilize the strengths of each. 

3.1. A team task for studying human-AI co-learning 

It has been advocated that Urban-Search-And-Rescue (USAR) is an 
appropriate domain for studying how learning of human and AI team 
members may be investigated and supported (Lematta et al., 2019). In 
future USAR teams, robots are expected to fulfill cognitive task functions 
in victim identification that were previously carried out by people, 
including reasoning with mental models (Sreedharan and Kambham
pati, 2018), communicating in natural language (Feng et al., 2018), and 
providing explanations (Chakraborti et al., 2017). We developed a 
computer simulation of an USAR task, in which a human and an agent 
(representing a robot, controlled by a wizard) have to jointly perform 

the search and evacuation of victims from an incident area (see Fig. 2). 
There are a number of buildings in the area that has been hit by an 

earthquake. Each may contain one or more victims. The walls of the 
buildings are shown as colored squares. These buildings may be 
damaged by the earthquake, and each building may contain one or more 
victims. Victims may be unhurt, wounded or dead. The team has to 
localize all victims in the buildings, assess their condition, and bring 
them to the command post. Dependencies have been built in the task. 
For example, wounded victims need to be treated first before they can be 
brought to the command post. Also, damaged buildings cannot be 
entered unless the debris blocking the entrance has been removed. In
terdependencies between team members have been implemented by 
assigning complementary capacities to the human and the agent. For 
example, only the robot can assess whether or not a building has been 
damaged by the earthquake. Furthermore, the robot can remove debris, 
but the human cannot. In contrast, the human can treat victims, but the 
robot cannot. However, they can both carry victims from the buildings 
to the command post. By using complementary capacities, the team 
requires collaboration to complete the task. The human can send com
mands to the robot using template sentences (e.g., ”Free entrance of 
building...′′) via a chat-box that is displayed next to the task 
environment. 

In our experiment, we employ a WOz-paradigm in which the agent is 
controlled by a confederate researcher. To determine the agent’s 
behavior in the scenario, the wizard strictly followed a behavior pro
tocol that was created based on the knowledge and behavior model of 
the agent (see Section 4. This protocol dictated the order of task actions 
that the agent should perform (e.g., move to closest building, inspect the 
building, clear the entrance), and the behavior of the agent in response 
to events or actions of the human team member (e.g., the human team 
member sending a command, or going into a building that the robot was 
already navigating towards). 

To introduce a controlled need for co-learning, the robots model (see 
Section 4) lacked certain knowledge elements that are of critical 
importance for efficient task execution. The implications of this 
knowledge deficiency appear approximately halfway the first run of the 
scenario, when the area is suddenly hit by a second earthquake. In the 

Fig. 1. Co-learning in a human-AI team.  
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instruction, before the start of the experiment, the human participant 
was informed that if such a second earthquake would occur, the status of 
already examined buildings would expire. A re-examination of the 
buildings in the vicinity of the earthquake would then be needed. 
However, this knowledge was not part of the robot’s model, and thus the 
behavior protocol for the wizard controlling the robot did not include 
actions based on this knowledge. The human participant was not 
informed about the robot being unfamiliar with this procedure. As a 
consequence, soon after the second earthquake, the human participant 
was confronted with unexpected behavior of the robot. Participants had 
to sort out for themselves how to proceed and to complete the run. Then, 
for half of the teams, two Learning Design Patterns were initiated (see 
Section 5 for details). The other half of the teams did not engage in these 
LDPs. Then, a second run was administered to all teams, which again 
included an earthquake midway the scenario. Measures of collaboration, 
mutual understanding, and performance (see Section 6.2.2) were used to 
test the effects of the Learning Design Patterns. 

4. Knowledge and behavior model of the robot 

Although the WOz-paradigm allows a human controller to freely 
determine the agent behavior, we chose to explicitly model the knowl
edge and behavior of the robot. We deem this necessary for maintaining 
ecological validity of research into human-AI teams, because humans 
should have the impression that they are working with an AI-driven 
teammate and not with another human being. In order to simulate the 
AI in the robot team member, we made a formal representation of the 
robot’s knowledge, and a behavioral model that links knowledge to 
specific robot behaviors. The behavioral model was used to construct the 
protocol for the wizard, which dictated how the agent should be 
controlled during the USAR task. 

The knowledge of the robot was represented by an ontology-based 
model containing concepts related to the task (e.g., goals, 

requirements) and to team members (e.g., capabilities, intentions). This 
knowledge was determined prior to the experiment. The model consists 
of a domain ontology that represents a relational network of concepts 
(classes or properties) related to the USAR task (e.g., Goal, Agent, Role, 
BuildingStatus, Location, Robot, VictimStatus, Earthquake). This 
domain ontology was built on top of the SUMO upper ontology (Niles 
and Pease, 2001), and extended with management concepts (MSPM; 
Cheah (2008)) and task world models (Van Welie et al., 1998). The final 
ontology consisted of 53 classes (19 of which are object properties) and 
248 axioms. As an example, Human and Robot are modelled as sub
classes of CognitiveAgent (i.e., an agent with responsibilities and with 
the ability to reason; (Niles and Pease, 2001)), that have an Identifier, 
Skill(s), and a Location. The concepts Explorer and RescueWorker are 
Roles that can be enacted by CognitiveAgents, are associated to a Task, 
and require at least one Skill. 

Concepts from the knowledge model were used to construct a 
behavior model that defined what actions should be performed by the 
robot, based on inputs from the environment (i.e., environment state, 
and commands from the human team member). A goal-driven approach 
was used, in which the model decomposes a task into sub-goals, and 
further decomposes it into actions required to achieve a particular goal. 
The benefit of a goal driven approach is that it -in contrast to machine- 
learning techniques- allows behavior explanations that are under
standable by humans. Arguably, actions from an intelligent system are 
best understood by humans if they are explained using concepts such as 
beliefs, intentions, and goals (De Graaf and Malle, 2017; Miller, 2019). 
Therefore, the robot’s behavior model was created using a Goal Hier
archy Tree (GHT, Broekens et al. (2010); Harbers et al. (2010a)), based 
on the guidelines described in Harbers et al. (2010b). A GHT is a 
high-level description of the agents reasoning and is based on hierar
chical task analysis. We decomposed the USAR task into two high-level 
goals (find victims in buildings and rescue victims). These were further 
analyzed into beliefs about world states (e.g., building is collapsed, 

Fig. 2. Screenshot of the human-robot team performing an urban-search-and-rescue task. The avatar with the helmet is of the human participant; the agent’s avatar 
is in building B6. The avatars with initials represent victims, and the question mark means that their condition has not yet been assessed. The color of a building 
indicates its status, with grey indicating: collapsed; and blue: not collapsed. The green building is the command post. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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victim is mildly injured) and intentions of the robot (e.g., clear building 
entrance, bring victim to command post). 

The robot should respond in a manner that corresponds exactly to its 
knowledge of the world at that point in time (which is incomplete and 
even partly incorrect for reasons of the study), its objectives, and to its 
assigned capacities. Therefore, the protocol for the wizard explicitly 
linked beliefs about the world state to behavioral intentions through 
conditional statements (e.g., ’if a building is collapsed, then clear its 
entrance’, and: ’if battery is empty, then send a chat message with 
current battery level’). The wizard solely made use of this protocol to 
determine the behavior of the robot. 

5. Learning design patterns 

We developed two learning design patterns intended to support co- 
learning. The goal of the first LDP (SitRep LDP) is to support identi
fying knowledge gaps that team members may have. The objective of the 
second LDP (Knowledge-rule LDP) is to initiate (inter)actions that 
enable team partners to learn from other team members. 

In our implementation of the USAR task, the need for learning 
manifests itself directly following the earthquake, as the robot shows 
behavior that is not expected by the human. The SitRep LDP aims to 
fulfill this need for learning by providing information that clarifies the 
robot’s behavior; the Knowledge-rule LDP supports the human with 
teaching the robot critical knowledge about the consequences of the 
earthquake. The LDPs were developed using a Research through Design 
approach (Zimmerman et al., 2007): iteratively proposing and evalu
ating designs. Each design iteration was evaluated by a group of experts. 
Moreover, user tests were conducted with three students to evaluate the 
usability and effectiveness of the designs. 

The SitRep LDP is intended to be used in situations in which a team 
member is confounded by the behavior of other team members. Being 
surprised by behavior of others occurs often, perhaps most typically in 
beginning teams. The SitRep LDP prescribes the activities that support 
the confused partner to develop a better understanding of the partner’s 
actions (see Table 1). The SitRep LDP is designed to be applicable in 
team situations in which confusion and misunderstanding among team 
partners exists. In the USAR-experiment, the SitRep LDP prescribes the 
human to request an action report from the agent that is causing the 
confusion (in our case, the human became confused by the robot moving 
to an unexpected location after the earthquake). The agent responds by 
presenting relevant information from its behavior model. In our case, 
this means showing the beliefs, goals, and intentions from the goal hi
erarchy tree, that were used to determine the action that caused the 
confusion. For our experiment, we created a simple graphical interface 
that enabled participants to obtain this information (see Fig. 3). 

The Knowledge-rule LDP is intended to be used in situations that 
demand learning of task-critical knowledge by a team partner in order to 
perform adequately. This Knowledge-rule LDP prescribes the activities 
that supports team members to teach the necessary knowledge to the 
demanding partner. Again, this LDP is designed to be applicable in team 
situations where a demand for acquiring task-critical knowledge exists. 
In our USAR-experiment the LDP prescribes the human to engage in 
activities that supports the agent to acquire a new knowledge rule that 
contains the task-critical knowledge (in the form if then) (see Table 2). 
Fig. 3 shows the graphical interface that we used to enable participants 
to construct a new rule using concepts from the knowledge model of the 
robot. The first part of the rule corresponds to the situation in which the 
robot did not respond correctly (i.e., ’if an earthquake hits during the 
scenario... ’), and was already filled in. Participants completed the 
’then... ’-part of the knowledge rule by altering concepts (object, prop
erty, value) from the robot’s knowledge base. After creating a rule, the 
robot presents feedback information by showing how this knowledge 
rule will influence its future behavior (e.g., after an earthquake hits, it 
will first move to buildings for which the status is unknown), by means 
of a goal-hierarchy tree diagram (inspired by Harbers et al. (2009)). 

In Tables 1 & 2 we formalize the LDP using the format of Team 
Design Patterns (Van Diggelen et al., 2018). The presented LDPs should 
be considered as proto-patterns, meaning that although they are foun
ded on principles and evidence obtained from the literature, their 
effectiveness at bringing about learning still needs empirical testing. 
This study contributes to this testing. 

By using a WOz-paradigm to study human-AI co-learning, assump
tions must be made concerning the (learning) capabilities of the AI. 
Considering the LDPs, we assume the AI to be able to explain its actions 
on request by using symbolic, human-understandable concepts such as 
objects and properties (LDP 1). Moreover, we assume that the AI makes 
use of a rule engine to determine its behavior, and that it can adapt its 
reasoning based on human feedback on its rules (LDP 2). We attempted 
to make the behavior of the AI partner as realistic as possible by 
modeling a knowledge base as well as a goal hierarchy tree that could 

Table 1 
SitRep Learning Design Pattern.  

SitRep LDP: Learning from an AI team member by reviewing an action report 

Behavior pattern An AI team member presents an action report to the human, 
containing the information that it used to decide to execute 
the specific action at hand. The human team reads the action 
report and can click on the different information components 
of the report to learn more about the background of the AI 
agent’s behavior. 

Interaction 
requirements 

The human team member should be able to indicate a 
particular action carried out by the AI team member. The AI 
team member should be able to provide a reason why it chose 
to perform this action. 

Positive effect The human better understands why their AI team member 
chose to execute a certain action, leading to better future 
team performance. 

Negative effect The human might draw the wrong conclusions from the 
presented information, causing misunderstandings. Also, 
since it takes time and requires team members to interrupt the 
task, it can affect current team performance negatively. 

Use when When the human wishes to learn more about why an AI team 
member executed a particular action. 

Example A human and a robot are collaborating to save victims from a 
disaster area that was hit by an earthquake. The robot checks 
whether buildings have collapsed and starts to clear blocked 
doorways. The human diagnoses and treats found victims.At a 
certain moment, there is an aftershock which hits several 
buildings. The robot falls silent, and after its battery has been 
replaced, it continues to check the buildings that it was 
already planning to check before the aftershock occurred. 
This behavior violates the procedure and therefore confuses 
the human. The human asks the AI agent to deliver an action 
report. The action report contains the current action, the goal 
that caused this action, the time at which the action execution 
started, information about the current state of the robot and 
the environment, and the agent’s beliefs that lead to this 
action (including information that the beliefs are based on). 
The human reads the information and subsequently 
understands that the robot does not understand that the 
aftershock caused additional collapse danger to the buildings. 
This understanding enables the human to take corrective 
measures that support appropriate collaboration in future 
collaborations. 

Design rationale When team members collaborate, they need to understand 
each others decision making process. It is often argued that 
common ground is very important to establish trust, and to 
make AI agents effective team partners (Klein et al., 2004). In 
the military, a SitRep (Situation Report) is often used to create 
this common ground between team members (Sorensen and 
Stanton, 2016). A SitRep is a concise overview of the current 
situation at hand. It usually contains information about the 
environment, time and people involved, as well as actions 
that have been done and will be done in the future. The LDP 
that we propose is similar to such a SitRep. The information is 
presented on the basis of progressive disclosure: in terms of 
high-level beliefs, goals and intentions. It is well known that 
such information is easily understandable by humans ( 
Dennett, 1989).  
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have been part of an actual AI implementation. Instead, we used this 
knowledge and behavior model to construct the protocol for the wizard, 
and to create the behavior explanation for LDP 1 and knowledge con
cepts for LDP 2. The use of this ”synthetic” AI was a conscious decision, 
as it enables us to design task environments and learning interactions for 
studying co-learning and to explore the complexities of co-learning 
without having to solve all technical challenges. Of course, the tech
nical challenges posed by human-AI co-learning need also to be solved 
and require research questions by themselves, but the main focus of the 
present study is on the human experience of co-learning with an AI 
partner. 

6. Methods 

Participants performed two runs of a simulated USAR task in 
collaboration with a robot. Half of the group was assigned to the 
experimental condition, in which they performed the Sitrep and 
Knowledge rule LDPs in between the two tasks. Participants in the 
control condition did not engage in these learning activities. The robot 
team partner was controlled by a confederate, following a wizard-of-Oz 
paradigm (Riek, 2012). 

6.1. Participants 

Participants were recruited from a participant database. Selection 
criteria were: 18–45 years of age, and at least a college degree education. 

Fig. 3. GUI for the Sitrep LDP (top) and the Knowledge-rule LDP (bottom).  
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A total of 35 participants took part (10 male, 25 female). The median age 
category was 18–25 years, and the median category of self-rated expe
rience with playing computer games was 1 (no experience). The data 
from four participants were excluded from analysis; three because of 
technical complications and one because the participant was unable to 
complete the task successfully. In total, data from 31 participants were 
used for analyses. Due to technical complications, task completion time 
was not registered for five participants. 

6.2. Materials 

6.2.1. Hardware and software 
A simulation of the USAR-task was developed using the Python 

programming language and a software library called MATRX (multi- 
agent teaming rapid experimentation)1. MATRX allows rapid design, 
simulation, and testing of 2D top-down, grid-based environments in 
which multiple humans and agents can perform tasks collaboratively. 
Moreover, it contains a chat window as part of its interface, allowing 
team members to communicate. We implemented one human rescue 
worker (controlled by the participant), and one robot explorer agent 
(controlled by the wizard). 

Three laptops were connected through a local network: one server 
laptop to start and stop the USAR task, and two laptops on which the task 
was carried out (one for control of the explorer agent, and one for 
control of the rescue worker agent). The task laptops were equipped 
with an external keyboard and mouse, which were used to perform ac
tions in the simulation environment (e.g., moving around, treat victims, 
send commands via the chat). The LDP interfaces ran on the participant 
laptop, and were coded in Python using the Tkinter2 library. 

6.2.2. Protocol for robot behavior 
Following the guidelines for designing WOz-studies as described in 

Green et al. (2004), a protocol was created containing instructions for 
the wizard how to control the robot during the USAR task. The protocol 
was derived from the goal hierarchy tree (i.e., behavior model) that was 
constructed for the robot behavior (see Section 4), which links goals (e. 
g., rescue victims) to beliefs about the world state (e.g., building B2 
contains a victim) and intentions (e.g., carry the victim from B2 to the 
command post) for the robot. In the protocol, we specified what action 
the wizard should perform based on the current world state. The robot’s 
default behavior policy was: to autonomously move to a building; to 
determine and report the building’s status; and to enter the building and 
report any victims. When a participant issued a command to the robot, 
the wizard immediately interrupted the current action and executed the 
requested command. Upon completion, the wizard resumed actions 
based on the protocol. The wizard used one and the same protocol for 
controlling the robot, both in the control and the experimental 
condition. 

In the scenario, the earthquake event was triggered after the robot 
had inspected four buildings, one of which had to be B1. As the earth
quake was programmed to only affect buildings B1 and B2, this ensured 
that the status of (at least) building B1 was no longer up to date after the 
earthquake. In the first scenario run, the robot would not respond to the 
earthquake event at all, and would simply continue its current actions. 
However, in the second run (for both conditions), the robot responded 
adequately to the event and directly navigated to the affected buildings 
(i.e., B1 and B2) to (re)examine their status. 

6.2.3. Instruction for participants 
Participants received a booklet containing a description of the USAR 

task. They were given eight short tutorial exercises to get acquainted 
with the task environment and the controls. An additional information 
sheet was provided, summarizing the main goal of the task, the capa
bilities of both agents, and the control scheme. Participants were 
allowed to consult this sheet at any time. Participants were told that the 
experiment involved collaboration with an AI-controlled robot. 
Although in this experiment the robot was actually controlled from 
another room by a human wizard, the participants were kept unaware of 
this. They were given the impression that the robot acted autonomously. 
None of the participants challenged this at any time during the 
experiment. 

6.3. Measures 

Two types of measures were performed in the experiment: learning 
measures to obtain insight into the learning effects of the LDPs on par
ticipants, and performance measures to obtain insight into the effects of 
the LDPs on task performance of the human-AI team. The measurements 
are summarized in Table 3. Learning processes were measured by using 
questionnaires and by rating propositions on Likert scales, which were 
administered after each run (both groups) and after each LDP (experi
ment group only). The following learning measures were collected: 

Table 2 
Knowledge-rule Learning Design Pattern.  

Knowledge-rule LDP: Teach new knowledge to an AI team member 

Behavior pattern The human implements new knowledge in the AI agent’s 
model in the form of if. then. After implementation, the AI 
agent presents the effect that this new rule will have on its 
behavior and action execution. 

Interaction 
requirements 

The human should be able to compose a rule that consists of 
concepts known to the AI agent. The AI team member should 
be able to identify and present the behavioral changes that 
would result from implementation of this rule. 

Positive effect The AI gains knowledge and is therefore better able to 
execute its tasks. Also, as being the implementer of the AIs 
knowledge, the human team member understands precisely 
how actions of the AI are brought about. 

Negative effect The human might input a wrong rule when they dont 
understand the AI agent well enough. This might cause the AI 
to show unexpected behavior, possibly opposite to the 
human’s intention. Also, since it takes time and requires team 
members to interrupt their task, it can effect current team 
performance negatively. 

Use when When a human discovers that the AI agent lacks certain 
knowledge to properly conduct their task. 

Example A human and a robot are collaborating to save victims from a 
disaster area that was hit by an earthquake. The robot checks 
whether buildings have collapsed and starts to clear blocked 
doorways. The human diagnoses and treats found victims. At 
a certain moment, there is an aftershock which hits several 
buildings. The robot falls silent, and after its battery has been 
replaced, it continues to check the buildings that it was 
already planning to check before the aftershock occurred. 
The human understands (through the Sitrep LDP or in 
another way) that this is because the robot does not 
understand that the aftershock might further collapse 
buildings. The human implements into the robot’s model the 
critical knowledge that an aftershock changes the status of 
nearby buildings to unknown. After implementation, the 
robot feeds back to the human, step by step, how this will 
affects its behavior in the future. 

Design rationale When collaborating, there might be situations in which the 
robots knowledge is incomplete. The human may infer or 
recognize this, for example because they received an action 
report (see Table 1). Humans have the world and task 
knowledge to infer the knowledge that the AI agent needs to 
act appropriately in particular situations, and they can define 
this in a manner that it is re-usable in future other but similar 
contexts.  

1 https://matrx-software.com/ 2 https://wiki.python.org/moin/TkInter 
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• what participants learned about the robots behavior (11 items: eight 
open, three closed questions)  

• fluency of collaboration (Dutch translation of Hoffman (2019)). 
Participants rate 24 statements about their collaboration with the AI 
team member on a 5-point scale. The test distinguishes five di
mensions of collaboration fluency: human-robot fluency; relative 
contribution of team members; trust in the robot; positive teammate traits; 
performance improvement over time; and working alliance. Authors of 
Hoffman (2019) report high reliability of all scales (Cronbachs α ≥

0.77). 
Experimental group only:  

• participant’s perception of robot’s behavior: after each run, the 
questionnaire presented open questions about the robots behavior. 
These questions intended to capture the participant’s knowledge and 
understanding of the robot’s behavior. As the objective of an LDP is 
to improve team member’s mental model (see Section 2.2), the 
questions aim to uncover whether the participant has learned. The 
complete questionnaire is available online3 

Performance measures were obtained by automatically logging data 
during task execution. The following measures were collected:  

• Task duration (shorter completion time means better performance)  
• Idle time of the human agent (shorter idle time means better 

performance) 
• The number of commands sent by the human agent (fewer com

mands means better performance)  

• The number and health status of saved victims (higher score means 
better performance) 

6.4. Procedure 

The experiment took place in a large conference room, in full 
adherence to the COVID-19-measures issued by the Dutch government. 
Participants were randomly assigned to the control group or experi
mental group. Participants sat behind a table with a laptop, external 
keyboard and mouse, and the instruction and questionnaire booklets. 
The wizard controlling the robot was hidden from participants in a side 
room. 

The experiment leader welcomed participants and provided a brief 
introduction, then took place at the diagonal other side of the table, 
behind the server laptop. Fig. 4 shows the flow of the experiment. Note 
that participants from the control group performed both task runs in 
succession, while participants from the experimental group performed 
both types of LDPs in between the two runs. 

7. Results 

Repeated-measures analyses of variance were used to test the within- 
subjects effects of Run (first vs second) and the between-subjects effects 
of Group (LDPs versus no-LDPs). Table 4 shows the results of the 
analyses. 

Both groups performed better in the second run. They were quicker 
and achieved a higher victim score (i.e., more victims are saved, and 
saved victims were in a healthier condition). The finding that human 
agents (controlled by participants) were less idle during the second run 
shows that the human participant was working more efficiently. 

Inspection of the interaction between Group and Run for Saved 
Victims reveals that groups differed on the first run, t(14) = -2.38, p =
0.024, but not on the second run, t(14) = 0.47, p = 0.644. A difference 
between groups on the first run is unexpected, as in that run, both groups 
were provided with exactly the same task information and instructions. 
Since no outliers in the saved-victim scores were found in both groups, 
we regard this finding as incidental. We found no between-groups effects 
on the number of commands issued by participants. 

Groups rated the collaboration fluency within the team equally, and 
this was not affected by Run. Interestingly, participants rated collabo
ration fluency relatively high in general (i.e., many rated 4 out of 5) and 
there was little variation in ratings within and between groups. In the 
second run, participants rated fluency of collaboration higher than in the 
first run. Additional exploratory analyses on the subscales of the test 
showed similar results as for the full scale. 

Correlation analyses between objective and subjective performance 
measures were conducted. Interestingly, for the first run, no statistically 
significant correlation between fluency ratings and any of the objective 
performance measures was found. This suggests that performing better 
as a team does not necessarily imply that people also perceive the 
collaboration as to be better. For the second run, significant correlations 
between subjective and objective performance were found for the LDP- 
group only. A positive correlation between total task duration and 
fluency ratings was found (r = 0.71, p < 0.001), showing that, for the 
LDP-group in the second run, longer task durations were associated with 
higher ratings on collaboration fluency. Moreover, a higher task dura
tion was accompanied by a higher number of commands (r = 0.66, p <
0.001), and the number of commands was not correlated with collabo
ration fluency. This suggests that number-of-commands-issued does not 
account for the correlation between task duration and fluency scores. As 
we will argue in Section 7.1, the LDP group paid more attention to the 
behavior of the robot during the second run. Together this suggests that 
more time for interaction with the robot means more opportunities to 
pay attention to the teamwork, resulting in a higher appreciation of the 
collaboration. 

Table 3 
Measurements taken during the experiment. Quant = Quantitative Data, Qual =
Qualitative Data.  

Measurement Data type Timing 

Learning measures 
Accuracy of participant’s explanation of overall 

robot behavior 
Qual. After each run 

Accuracy of participant’s explanation of the 
robot behavior after the earthquake 

Qual. After each run 

Accuracy, certainty (1–5 Likert scale), and   
rationale for remembered building choice of the 

robot after the earthquake 
Quant./ 
Qual. 

After each run 

Expected building choice of the robot after 
earthquake, and rationale for this choice 

Qual. After each run 

Explanation of robots faulty behavior after the 
earthquake 

Qual. After Sitrep LDP 

Certainty of participants knowledge about the 
robots behavior (1–5 Likert scale) 

Qual. After Sitrep LDP 

Correctness of knowledge rule & participants 
rationale for the rule 

Qual. After Knowledge- 
Rule LDP 

Clarity of the behavior explanation in the 
Knowledge-rule LDP (1–5 Likert scale) & 
rationale for the rating 

Quant./ 
Qual. 

After Knowledge- 
Rule LDP 

Self-rated understanding of the behavior 
explanation (1–5 Likert scale) 

Quant. After Knowledge- 
Rule LDP 

Performance measures 
Collaboration fluency (avg. rating on 1–5 Likert 

scale) (Hoffman (2019)) 
Quant. After each run 

Task duration (# simulation ticks) Quant. After each run 
Saved victims score (= sum of score per victim, 

0=dead, 0.25=severely injured, 0.5=injured, 
0.75=slightly injured,   

1=uninjured) Quant. After each run 
Idle time of human agent (#ticks in proportion 

to task duration) 
Quant. After each run 

Number of commands sent by the human to the 
robot 

Quant. After each run  

3 Schoonderwoerd, Tjeerd (2021), Questionnaire used in human-AI co- 
learning experiment, Mendeley Data, V1, doi: 10.17632/7ksfjgsgb2.1. 
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7.1. Learning results 

The open questions after each run were intended to capture the 
participant’s knowledge and understanding of the robot’s behavior. The 
first two authors analyzed the free text responses in the questionnaire. 
We started with independent open coding of responses to all open 
questions from three randomly assigned participants. Keywords were 
then compared and discussed, in order to develop a closed coding 
scheme for further analysis. This scheme was then used by both evalu
ators individually to code responses to the open questions from all 31 
participants. Then both evaluators compared their outcomes and 
resolved any differences in assigned keywords through discussion. The 
final step in the qualitative analysis was to sum the occurrences of 
keywords for each question per group and per run, in order to obtain a 
general overview of the responses. 

7.1.1. Participants’ responses to the task runs 
Table 5 shows the results of the analysis of answers on the questions 

asked after completing each run. After the first run, the frequencies of 
keywords show only marginal differences between groups. This is ex
pected as participants were randomly assigned to a group and the 
between-groups manipulation takes place after the first run. After the 
second run, participants from both groups were positive about the 

behavior of the robot during the task in both runs, and some especially 
praised the autonomy of the robot. Interestingly, more participants from 
the LDP group stated that the robot had improved its behavior (note that 
the robot actually behaved the same for the control and LDP group in 
run 1 and 2). We think that engaging in learning activities may have 
caused participants of the LDP group to focus on the robot, which may 
have increased their appreciation of its performance. 

Of interest is the question how participants perceive the robot after 
acquiring their first experiences. This was examined by analyzing re
sponses at the end of run 1. Results showed considerable variation 
among participants in their views. Most participants believed that the 
robot acted according to a fixed task list. Some participants described 
the robot as obedient, goal-oriented, or careful. This suggests that par
ticipants did not expect adaptive behavior from the robot. 

Participants were asked what might have caused the unexpected 
behavior of the robot immediately following the earthquake. After the 

Fig. 4. Flow diagram of the experiment procedure. Grey boxes indicate activities that are exclusively performed by participants from the experimental group.  

Table 4 
Results of five RM-GLMs to determine the effects within and between groups and 
runs on each performance metric.  

Variable Means in 
Run 1 
(Control; 
LDP) 

Means in 
Run 2 
(Control; 
LDP) 

Main 
effect of 
Group 
(between- 
subjects) 

Main 
effect of 
Run 
(within- 
subjects) 

Interaction 
effect 
(Group x 
Run) 

Task duration 
(ticks) 

4014; 
3236 

3068; 
2731 

F(1,24) =
4.64, p =
0.042∗

F(1,24) 
= 31.41, 
p <
0.001∗

F(1,24) =
2.89, p =
0.102 

Saved victims 
score 

6.70; 
7.27 

8.05; 
7.95 

F(1,29) =
1.60, p =
0.216 

F(1,29) 
= 67.00, 
p <
0.001∗

F(1,29) =
7.08, p =
0.013∗

Idle time (% 
of duration) 

8.00; 
7.44 

7.33; 
7.25 

F(1,24) =
3.94, p =
0.059 

F(1,24) 
= 16.56, 
p <
0.001∗

F(1,24) =
3.21, p =
0.086 

Number of 
commands 

9.80; 
7.81 

7.20; 
6.94 

F(1,29) =
0.62, p =
0.439 

F(1,29) 
= 2.56, p 
= 0.120 

F(1,29) =
0.63, p =
0.434 

Collaboration 
fluency 

3.70; 
3.79 

3.88; 
3.95 

F(1,29) =
0.41, p =
0.528 

F(1,29) 
= 6.07, p 
= 0.020∗

F(1,29) =
0.01, p =
0.911 

∗ Significant at α = 0.05.  

Table 5 
Frequency of keywords in the qualitative analysis of answers on open questions 
after each run from the control group (n = 15) and LDP group (n = 16)∗.  

Measurement Run Control group LDP group 

Opinion on overall 
robot behavior 

1 Good (10) 
Autonomous (3) 

Good (13) Autonomous 
(6) 

2 Good (10) 
Autonomous (3) 
Better (2) 

Good (5) Better (9) 

Explanation of overall 
robot behavior 

1 Fixed task list (9) 
Algorithm (3) 

Fixed task list (7) 
Algorithm (6) 

2 Fixed task list (6) 
Algorithm (3) 

Fixed task list (4) 
Addition of rule (4) 

Explanation of robot 
behavior after 
earthquake 

1 Continued with task 
(3) 

Continued with task (6) 

2 Inspect collapsed 
buildings (6) 

Inspect nearby 
collapsed building 
(16) 

Rationale for 
remembered 
building choice of 
the robot after the 
earthquake 

1 Building in 
earthquake radius 
(4) 

Building in earthquake 
radius (4) 

2 Building in 
earthquake radius 
(5) 

Building status 
changed (11) Building 
in earthquake radius 
(7) Robot is close to 
building (9) 

Rationale for the 
expected building 
choice of the robot 
after the earthquake 

1 Building in 
earthquake radius 
(10) Building is close 
to robot (4) 

Building in earthquake 
radius (9) Robot is close 
to building (5) 

2 Building in 
earthquake radius 
(11) Building is close 
to robot (3) 

Building in earthquake 
radius (8) Robot is close 
to building (9) 

∗Results deemed salient by both raters are displayed in bold text.  
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first run, approximately one-third of all participants (of both groups, as 
at that point there were no between-groups differences) provided a 
correct explanation for this behavior (i.e., the robot ignored the earth
quake). Other participants stated to be unsure about the cause, or 
indicate to have no idea. After the second run, there was no change in 
the control group: still one-third of the participants of the control group 
(6 out of 15) were able to give the correct explanation. There was a 
signficant change for participants of the LDP group however: all par
ticipants provided the correct explanation. This suggests that partici
pants in the LDP group had learned about the robots behavior, while 
participants in the control group did not. 

To further explore the suggestion that participants of the LDP-group 
were able to substantially improve their awareness and understanding of 
the robot, it was investigated how well participants were able to recall to 
what building the robot went directly following the earthquake. After 
run 1, only one third of participants in each group recalled the building 
correctly. After run 2, the recall performance was as follows: in the 
control group, 12 out of 15 participants recalled the correct building. In 
the LDP-group, the building was correctly recalled by 15 out of 16 
participants. The difference between runs was significant F(1,29) =
36.49, p < 0.01), but the difference between groups was not. In addition, 
we also asked participants how certain they felt about their recall. As 
shown in Figure 5, both groups felt equally certain in the first run, but 
more certain on the second run (F(1,28) = 49.52, p < 0.01); and the LDP- 
group felt more certain than the control group (t(15) = 3.10, p < 0.05). 

Another indication for the notion that participants of the LDP group 
developed a better understanding and awareness of the robot’s behavior 
was that they were more specific in their explanation of the robot’s 
behavior and the specific circumstances at that time. While the control 
group mostly used general terms (e.g., building is hit by earthquake, its 
part of its task list, or: that building has a high risk), the LDP group used 
more specific terms, apparently taken from the Sitrep LDP (e.g., building 
status has recently changed, building is close to robot). The higher level 
of detail in answers of the LDP-participants was also observed when 
asked to explain the expected robot behavior after the second run. 

7.1.2. Participants’ Responses to the learning activities 
Table 6 shows the keywords and their frequencies obtained from 

participants answers to the questions after completing each LDP (see 
Fig. 4). As Table 6 shows, the majority of participants were able to 
correctly explain the faulty behavior of the robot in their own words. 
Furthermore they were fairly certain of their explanation, as indicated 
by the Likert-scale scores (M = 4.00, SD = 0.73). Moreover, nearly all 
participants understood that the robots knowledge model was inaccu
rate, although only 25% of all participants could point out the fault (i.e., 

the status of the building not being changed to unknown in response to 
the earthquake). When asked what adjustment to the robots model was 
required, 69% of all participants formulated an adjustment in behavioral 
terms (i.e., Inspect buildings in earthquake radius directly after an 
earthquake occurs). All other participants formulated an adjustment in 
terms of knowledge (i.e., increase level of priority of buildings in 
earthquake radius). After having been prompted with the Knowledge- 
rule LDP, the majority (81%) of the LDP group was still able to 
correctly formulate the required knowledge rule to improve the 
behavior of the robot, and expected the behavior to improve as a result 
of the rule (i.e., the robot will go to buildings hit by the earthquake). 
Thus, while most participants (69%) suggested behavioral adjustments 
to the robot’s model rather than knowledge adjustments, when specif
ically asked for, all participants were able to formulate the knowledge 
required to improve the robot’s model, mostly by using the terms 
learned during the Sitrep LDP. 

During the Knowledge-rule LDP, participants were asked to specify a 
knowledge rule that, when implemented in the robot’s knowledge 
model, would produce correct robot behavior after the earthquake. The 
participant received feedback on their knowledge-rule with an expla
nation based on the knowledge model (see chapter 4) on how this rule 
would affect its behavior. We asked participants how they evaluated the 
robot’s explanation. In general, participants found the robot’s expla
nation to be clear (M = 4.20, SD = 0.68), and indicated that it enabled 
them to better understand the behavior of the robot (M = 4.20, SD =
0.86). From the qualitative analysis (see Table 6) it becomes clear that 
people appreciated the explanation because of its visual, step-by-step 
presentation of how the robots behavior is established. Participants 
said it helped them to better understand how the robot will respond the 
next time an earthquake occurs. 

8. Discussion 

In this study we designed Learning Design Patterns (LDPs) for 
achieving co-learning in human-AI teams, and evaluated those in a 
wizard-of-Oz setting. Co-learning occurs from interactions that enable 
humans and AI agents to discover and learn about the task, themselves, 
and about each other. The LDPs that we designed describe and prescribe 
the learning of behaviors that are needed for handling difficult types of 
situations that often occur in a task. We designed two LDPs, consisting of 
interaction sequences that support co-learning of humans and AI, 
imposing several demands on both the human and AI partner. The ef
fects of LDPs on learning and performance were evaluated within the 
context of a simulated urban-search-and-rescue-task. In particular, ef
fects on the humans understanding of the AI partner, the human’s 
perception of the human-AI collaboration, and the teams performance 
were investigated (see Section 8.1). We also investigated whether the 
method of predefining sequences of interactions in the form of LDPs is 
appropriate for designing effective learning for human-AI teams (see 

Fig. 5. Mean rating (5-point Likert scale) of participants regarding their cer
tainty about the recalled location of the robot directly following the earth
quake. Error bars indicate 95% confidence intervals. 

Table 6 
Frequency of keywords used to describe answers from participants from the LDP 
group (n = 16) in response to the open questions concerning the Sitrep LDP and 
Knowledge-rule LDP.  

Measurement LDP Keywords in LDP group 

Explanation of robots faulty 
behavior after the earthquake 

Sitrep Robot is close to building 
(11) Building status is 
unknown (10) 

Observed accuracy of knowledge 
model of the robot, and preferred 
adjustment to the robot 

Sitrep Inaccurate (15) Behavior 
agreement (11) Knowledge 
correction (5) 

Correctness of the knowledge rule Knowledge- 
rule 

Correct (13) Incorrect (3) 

Rationale for the knowledge rule Knowledge- 
rule 

Robot will go to buildings 
hit by earthquake (12) 

Rationale for the clarity rating of 
the behavior explanation 

Knowledge- 
rule 

Step-by-step (8) Visual (4)  
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Section 8.2). 

8.1. Effects of LDPs on learning and team performance 

Two LDPs were administered to the human-robot teams. The Sitrep 
LDP involved interactions intended to support the human developing an 
understanding why the robot showed erroneous task behavior in 
response to a particular event, thus threatening the teams performance. 
This LDP required the wizard-controlled robot to explain its behavior in 
intentional terms, and the human to respond to the explanation in order 
to increase understanding. The Knowledge-rule LDP involved in
teractions intended to support the human in teaching the robot how to 
act appropriately under such circumstances. This LDP required the 
human to create a rule based on concepts from the knowledge repre
sentation of the robot, while the robot has to incorporate this rule into its 
model and be able to feedback the behavioral consequences of the rule 
by means of an explanation. It was expected that engaging in these 
Learning Design Patterns would support team members to learn from 
each other, and to improve their performance in the second run 
(compared with a control condition in which teams did not engage in the 
LDPs). Although we did not find an effect on performance, we did find an 
effect on learning and understanding. 

The interactions of the LDPs supported humans to better understand 
the robot. Participants were able to provide more accurate and detailed 
explanations of the robots behavior, when compared to participants that 
did not engage in the LDPs. Furthermore, the LDPs supported partici
pants to develop a better awareness of the robots behavior, the team
work, and the performance of the team (e.g., as shown by their opinions 
about the robots behavior, and the certainty of the observed robot 
behavior in the second run). It was expected that this better awareness 
would result in a more fluent collaboration between partners, and an 
improved team performance. This, however, was not found, which is in 
contrast to previous studies that found an association between aware
ness, understanding, and team performance (e.g., Demir et al. (2020); 
Ososky et al. (2012)). One reason for our study not demonstrating this 
relationship may have to do with the relatively limited role of the LDPs 
on the overall performance on the USAR task. That is, although the LDPs 
addressed a piece of knowledge that is critical for developing awareness 
and understanding, this awareness and understanding contributed to the 
teams overall performance in a relatively minor manner. Thus, the ef
fects of the LDPs may have been of too limited importance for the teams 
performance to demonstrate an effect. 

Another reason for not finding an effect of LDPs on performance 
might be that participants experienced low team cohesion. Team cohe
sion is described as a bond that drives team members to remain moti
vated to work together to accomplish a set of goals (Casey-Campbell and 
Martens, 2009). In our task, participants could send commands to 
intervene with the behavior of the robot. However, there was little need 
for the participant to do so, as the robot performed all actions efficiently 
and autonomously. This could have elicited participants to assume a 
more supervisory control attitude, rather than a team member role. An 
indication for this is the relatively few communications initiated by the 
human. 

8.2. Designing a learning context for human-AI teams 

We have emphasized the need to study how human-AI teams jointly 
learn. Therefore, there is a need to develop tasks, environments, and 
procedures enabling such research. In this paper we have proposed such 
a context, which consists of a team task involving interdependencies 
between members, a dynamic knowledge representation of the AI 
partner to inform a realistic wizard-of-Oz protocol, and sequences of 
interactions in the form of Learning Design Patterns. As all learning is 
context dependent, we took efforts to embed LDPs in a context that is 
typical for human-AI teamwork, to enable their application for human- 
AI co-learning in other but similar contexts. The sequences of actions 

and interactions in the LDPs were generically formulated. The Sitrep 
LDP is an intervention that encourages humans to look inside the ’brain’ 
of their AI team partner, an interaction that intends to foster under
standing of the team members thinking and reasoning. The Knowledge- 
rule LDP is an intervention that requires the human to think about what 
its AI-partner needs to learn, and to design and apply a knowledge 
intervention that fulfills that need. This interaction gives the human the 
opportunity to feed the AI agent with knowledge to be used when 
making its decisions. Such interventions should support collaboration 
and understanding over a longer period of time. 

Further research in similar contexts is of course necessary to validate 
the generalizability of the suggested LDPs. Moreover, it should be taken 
into account that we have made several assumptions regarding the ca
pabilities of an AI team member, e.g. on explainability and the presence 
of an explicit, ontology-based knowledge model. These assumptions 
should be considered when attempting to apply the LDPs in future 
research. Our propositions for LDPs present a start to explore the po
tential and value of the interventions for human-AI learning in context. 

It is well known that effective team performance requires common 
ground between the team partners, for example in the form of a shared 
goal and a shared vocabulary. A formal knowledge representation was 
developed (see chapter 4) to provide our human-robot team with such a 
shared vocabulary. The LDPs in the study were based upon the concepts 
used in the knowledge representation. Studying the human-robot 
communication that was initiated by the LDPs enabled us to gain 
insight into the learning that took place in the human team member, and 
to assess whether shared understanding was achieved (i.e., whether the 
gained knowledge of the human aligned with that of the robot). Our 
work shows that a formal knowledge representation can be useful to 
facilitate communicative interactions in co-learning activities. We 
believe that such a human-understandable representation of knowledge 
should be used as basis for communication between human and AI team 
members, in order to enable them to establish common ground when 
working together. 

As argued earlier, LDPs can only have a positive effect if the in
teractions address the needs for learning that are typical for tasks to be 
performed by human-AI teams. The need to view the AI agent as a true 
partner, the preparedness to improve as a team by joint collaboration, 
and the willingness to learn about the team partner are a few of them. 
Our implementation of a human-AI task environment did not always 
satisfy all these needs. A large part of the participants considered the 
robot to be a tool rather than a partner. The participants that engaged in 
the LDPs developed an understanding of the robot, and the USAR task 
required collaboration because of hard dependencies that were created 
between team members (Johnson and Bradshaw, 2021; Johnson et al., 
2014b). Still, the observation that participants viewed the effects of 
learning as a behavior change rather than as knowledge development, 
suggests that participants were not (yet) interested in the long term 
significance of their learning activities. Of course, participants were 
aware that their collaboration with the robot was limited to the duration 
of the experiment only. This may have had an influence on the partici
pants attitude. In future research, it is important to design tasks in such a 
fashion that the human perceives the AI agent as a real team partner. 
This can for example be achieved by creating more soft in
terdependencies between the team members to encourage proactive 
helping, or by using psychological mechanisms such as described in 
Nass et al. (1996) to enhance team feeling. Moreover, learning should 
take place in a more natural way, meaning that learning interactions 
happen back and forth over a longer period of time. In our experiment 
learning was mostly done in a one-way isolated interaction, which is not 
how people learn in natural environments. Lastly, a limitation of this 
study is the use of a wizard-of-Oz technique to emulate the behavior of 
the robot. By using this method, we were unable to incorporate the 
human feedback (i.e., the knowledge rule) in the robot’s knowledge and 
behavior model. Although we attempted to make the behavior of the AI 
partner as realistic as possible by modeling a knowledge base as well as a 
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goal hierarchy tree as basis for the wizard’s protocol, the AI models 
remained static and thus did not support learning. Still, we do think the 
wizard-of-Oz approach provides a valuable first step to develop under
standing of human experience and behavior in co-learning between 
human and AI. In a next study, it might be interesting to extend the 
research environment with a dynamic AI-model to study co-learning 
from both a human and AI perspective. 

9. Conclusion 

The rapid advancement of technology empowered by artificial in
telligence is believed to bring forth new ecosystems in which human and 
AI act as complementing partners (Chui, 2017). For this to be successful, 
the conditions must be created in which partners jointly learn to 
recognize, acknowledge and utilize their respective capabilities (van 
den Bosch et al., 2019). This co-learning may occur implicitly by expe
rience during collaborations. It may also take place intentionally, by 
using Learning Design Patterns that elicit the interactions that produce 
learning in human-AI teams. In the present study, we designed two ex
amples of LDPs: the Sitrep-LDP and Knowledge Rule-LDP, and imple
mented these in a human-AI co-learning testbed for research. The LDPs 
showed positive effects on human awareness and understanding of an AI 
agents behavior, but it may require additional efforts to advance 
improved awareness into better team performance. Based on experi
ences during our study, we identify several conditions for intentional 
co-learning to develop. First, it should be clear for the team why learning 
from each other is likely to benefit the teams functioning. That is, the 
context should provide an intrinsic motivation to learn. Second, the 
team should be supported in performing activities that provide oppor
tunities to learn, such as after-action reviews in which team members 
exchange reflections and explanations of their behavior. Third, effective 
communication demands partners to use common concepts and a shared 
vocabulary. Humans tend to view behavior of themselves and of others 
in terms of everyday concepts such as beliefs, desires, and plans. This is 
often referred to as folk psychology (Horgan and Woodward, 1985). AI 
agents should therefore be equipped with a system that allows pro
cessing communication input from the human, and that enables 
outputting explanations in a form that can be understood by humans. 
Lastly, team members need to be confident that engaging in learning 
activities will help them to perform better. Being able to predict the 
effects of learning on team performance will support that conviction. 
When these conditions are incorporated into a co-learning research 
environment, they can provide the required opportunities to study 
intentional co-learning in human-AI teams. 
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Van Welie, M., Van Der Veer, G.C., Eliëns, A., 2001. Patterns as tools for user interface 
design. Tools for Working with Guidelines. Springer, pp. 313–324. 
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